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The main result of this paper is the uniqueness of local arbo-
real models, defined as the closure of the class of smooth germs
of Lagrangian submanifolds under the operation of taking iter-
ated transverse Liouville cones. A parametric version implies that
the space of germs of symplectomorphisms that preserve the local
model is weakly homotopy equivalent to the space of automor-
phisms of the corresponding signed rooted tree. Hence the local
symplectic topology around a canonical model reduces to combina-
torics, even parametrically. This paper can be read independently,
but it is part of a series of papers by the authors on the arboreal-
ization program.
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1. Introduction

1.1. Main results

1.1.1. Brief summary. This is part of a series of papers [AGEN19,
AGEN20a, AGEN20b, AGEN20c, AGEN23a, AGEN23b] by the authors on
the arborealization program. Besides motivation, this paper can be read in-
dependently from the other papers, and we begin here with an account of
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its main results. Its relevance to the arborealization program is discussed in
Section 1.2.

The class of arboreal singularities was introduced by the third author
in the paper [N13]. The class was defined in [N13] as abstract stratified
complexes, and also as stratified singular Lagrangians and Legendrians via
concrete embeddings. Subsequently in [St18] and [E18], these constructions
were further decorated by signs (one can view the class in [N13] as the
“positive definite” version of the “arbitrary index” generalization of [St18]
and [E18]).

It is important to point out that the definition in [N13] fixes only the
homeomorphism, and not diffeomorphism type of the singularity. Likewise,
the definitions in [St18] lead a priori to a class of singularities for each com-
binatorial type, rather than unique local models. While this is sufficient for
many applications, for example for calculating many invariants, the homeo-
morphism type of an arboreal Lagrangian does not determine in general the
symplectomorphism type of the ambient manifold, even if the Lagrangian is
smooth (e.g. see [Ab12]). In [E18] an inductive definition for a concrete
representative of each combinatorial type was given, but no explicit formu-
lae were provided, nor was it proved that this concrete representative was
diffeomorphic to other possible representatives of the same combinatorial
type.

In brief, the main new innovations of the current paper are:

(i) Uniqueness Theorem 1.2: Signed arboreal Lagrangian and Legendrian
singularities are determined up to ambient symplectomorphism by
their combinatorial type.

(ii) Canonical Model Definition 2.19: Each combinatorial type has a canon-
ical local model, described not only inductively but by simple polyno-
mial equations.

(iii) Automorphism Theorem 1.3: Automorphisms of signed arboreal La-
grangian and Legendrian singularities are encoded by automorphisms
of their combinatorial data, even parametrically.

The questions of uniqueness and automorphisms as established in (i) and
(iii) were not even considered in prior papers on the subject; the canonical
local models of (ii) were also not known prior to this paper. Given a canonical
model as in (ii), if we take its Legendrian lift, apply any contactomorphism
taking it into generic position, and form its Liouville cone, then (i) implies
we once again obtain a canonical model. At its heart, the proof shows any
sufficiently small contact deformation of a canonical local model in generic
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position in a cosphere bundle can be realized by lifting an isotopy of the
base. The calculation of automorphisms in (iii) follows from a parametric
generalization of this argument.

We find it surprising that canonical models with such good properties
exist. Indeed, we do not know of any other sufficiently large class of La-
grangian singularities which admit a discrete classification up to ambient
symplectomorphism.

1.1.2. Uniqueness Theorem. To explain the Uniqueness Theorem 1.2
in more detail, we first introduce some auxiliary notions.

A closed subset of a symplectic or contact manifold is called isotropic
if is stratified by isotropic submanifolds (by stratified, we mean there is a
locally finite partition into locally closed submanifolds of the ambient mani-
fold). It is called Lagrangian or Legendrian if it is isotropic and purely of the
maximal possible dimension (i.e if any stratum is in the closure of the one of
maximal dimension). The germ at the origin of a locally simply-connected
isotropic subset L ⊂ T ∗

R
n of the cotangent bundle with its standard Li-

ouville structure λ = pdq admits a unique lift to an isotropic germ at the
origin L̂ ⊂ J1

R
n = T ∗

R
n × R of the 1-jet bundle. Given an isotropic subset

Λ ⊂ S∗
R
n of the cosphere bundle, its Liouville cone C(Λ) ⊂ T ∗

R
n, i.e. the

closure of its saturation by trajectories of the Liouville vector field Z = p ∂
∂p
,

is an isotropic subset.
We will take the following inductive definition as our starting point; it

captures how arboreal singularities typically arise in nature.

Definition 1.1. Arboreal Lagrangian (resp. Legendrian) singularities form
the smallest class Arbsymp

n (resp. Arbcontn ) of germs of closed isotropic subsets
in 2n-dimensional symplectic (resp. (2n+ 1)-dimensional contact) manifolds
such that the following properties are satisfied:

(i) (Invariance) Arbsymp
n is invariant with respect to symplectomorphisms

and Arbcontn is invariant with respect to contactomorphisms.

(ii) (Base case) Arbsymp

0 contains pt = R
0 ⊂ T ∗

R
0 = pt.

(iii) (Stabilizations) If L ⊂ (X,ω) is in Arbsymp
n , then the product L× R ⊂

(X × T ∗
R, ω + dp ∧ dq) is in Arbsymp

n+1 .

(iv) (Legendrian lifts) If L ⊂ T ∗
R
n is in Arbsymp

n , then its Legendrian lift
L̂ ⊂ J1

R
n is in Arbcontn .
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(v) (Liouville cones) Let Λ1, . . . ,Λk ⊂ S∗
R
n be a finite disjoint union of

arboreal Legendrian germs from Arbcontn−1 centered at points z1, . . . , zk ∈
S∗

R
n. Let π : S∗

R
n → R

n be the front projection. Suppose
- π(z1) = · · · = π(zk);
- For any i, and smooth submanifold Y ⊂ Λi, the restriction π|Y :
Y → R

n is an embedding (or equivalently, an immersion, since we
only consider germs).

- For any distinct i1, . . . , iℓ, and any smooth submanifolds Yi1 ⊂
Λi1 , . . . , Yiℓ ⊂ Λiℓ , the restriction π|Yi1

∪···∪Yiℓ
: Yi1 ∪ · · · ∪ Yiℓ → R

n

is self-transverse.
Then the union R

n ∪ C(Λ1) ∪ · · · ∪ C(Λk) of the Liouville cones with
the zero-section form an arboreal Lagrangian germ from Arbsymp

n .

With the above classes defined, we can also allow boundary by addition-
ally taking the product L× R≥0 ⊂ (X × T ∗

R, ω + dp ∧ dq) for any arboreal
Lagrangian L ⊂ (X,ω), and similarly for arboreal Legendrians.

The main technical result of this paper is the Stability Theorem 3.5
for arboreal singularities as inductively characterized by Definition 1.1. We
will content ourselves in this introduction with stating its main application,
which is the Uniqueness Theorem 1.2. As will be shown, to each member of
the class Arbsymp

n , one can assign a signed rooted tree T̂ = (T, ρ, ε) with at
most n+ 1 vertices; here T is a finite acyclic graph, ρ is a distinguished root
vertex, and ε is a sign function on the edges of T not adjacent to ρ. The
Uniqueness Theorem states that this discrete data completely determines
the germ:

Theorem 1.2. If two arboreal Lagrangian singularities L ⊂ (X,ω), L′ ⊂
(X ′, ω′) of the class Arbsymp

n have the same dimension and signed rooted

tree T̂ , then there is (the germ of) a symplectomorphism (X,ω) ≃ (X ′, ω′)
identifying L and L′.

Similarly, each member of the class Arbcontn is determined by an asso-

ciated signed rooted tree T̂ = (T, ρ, ε) with at most n+ 1 vertices. Note
that the Uniqueness Theorem in particular implies, for fixed dimension n,
that Definition 1.1 produces only finitely many local models up to ambient
symplectomorphism or contactomorphism.

1.1.3. Canonical Local Models. As a complement to the Uniqueness
Theorem 1.2 (and as called upon essentially in its proof), it turns out there
is a canonical local model in each arboreal class. This is detailed in Section 2,
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beginning with explicit iterated quadratic equations and culminating in Def-
inition 2.19 (one can view arboreal singularities as what results from going
one step beyond locally linear Lagrangians to allow quadratic behavior.)

As a representative for each signed rooted tree T̂ , we construct in Def-
inition 2.19 a canonical local model L

T̂
⊂ T ∗

R
n, where n = |n(T̂ )| is one

less than the number of vertices in the tree. The model L
T̂
⊂ T ∗

R
n is pre-

sented as the positive conormal to a canonical local front H
T̂
⊂ R

n defined
by polynomial equations.

While this material naturally has some overlap with general construc-
tions of [N13], [St18] and [E18], no such canonical local model was known
prior to this paper. Indeed, their construction begins in Section 2.1 with
explicit equations that had not been written down before. To keep track of
their geometry, we use the same combinatorics developed in [N13], [St18]
and [E18]. But even so, we have found it necessary to reformulate the signs
introduced in [St18] and [E18] from scratch in order to match inductive ar-
guments to come, so we give here a warning that our sign conventions do
not agree with prior conventions.

1.1.4. Parametric Stability. In Section 3, we also establish a Paramet-
ric Stability Theorem 3.12 extending the scope of the Stability Theorem 3.5.
In fact, the proofs of the two are intertwined: we do not know a more elemen-
tary proof of the Stability Theorem 3.5 that does not inductively encounter
the Parametric Stability Theorem 3.12. Moreover, the parametric version
has additional consequences such as the following characterization of the
automorphisms of arboreal singularities:

Theorem 1.3. Fix a signed rooted tree T̂ = (T, ρ, ε), set n = |n(T̂ )| and
consider the arboreal T̂ -front H

T̂
⊂ R

n. Let D(Rn, H
T̂
) be the group of

germs at 0 of diffeomorphisms of Rn preserving H
T̂

as a front, i.e. as a
subset along with its coorientation.

Then the fibers of the natural map D(Rn, H
T̂
)→ Aut(T̂ ) are weakly

contractible.

Hence, from Theorem 1.2 and Theorem 1.3, we conclude the local sym-
plectic topology of an arboreal singularity is completely encoded by the
combinatorics of the underlying signed rooted tree, even parametrically.

1.2. Arborealization program

We conclude this introduction by briefly explaining the role of this paper
within the broader arborealization program.
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The initial goal of the arborealization program is to determine when
a Weinstein manifold can be deformed to have an arboreal skeleton, i.e. a
skeleton which is a stratified Lagrangian with arboreal singularities.

It was shown in [N15] that singularities of Whitney stratified La-
grangians can always be locally deformed to arboreal Lagrangians in a non-
characteristic fashion, i.e. without changing their microlocal invariants. The
question of whether a global theory exists at the level of Weinstein struc-
tures is more subtle. In two dimensions the story is classical: generic ribbon
graphs provide arboreal skeleta. In four dimensions, Starkston proved in
[St18] that arboreal skeleta always exist in the Weinstein homotopy class of
any Weinstein domain.

In the article [AGEN20c], we show any polarized Weinstein manifold,
i.e. a Weinstein manifold with a global field of Lagrangian planes in its tan-
gent bundle, can be deformed to have an arboreal skeleton. More specifically,
the arboreal singularities that arise are positive in the sense that they are
indexed by signed rooted trees with all positive signs, and conversely, any
Weinstein manifold with a positive arboreal skeleton comes with a canonical
(homotopy class of) polarization.

The arguments of [AGEN20c] produce skeleta with singularities satisfy-
ing the characterization of Definition 1.1. Without the uniqueness of Theo-
rem 1.2, we would still be faced with the possible moduli of such singulari-
ties. It could happen that two arboreal skeleta built from the same smooth
pieces with the same combinatorial recipe do not have symplectomorphic,
or even diffeomorphic neighborhoods. The uniqueness of Theorem 1.2 guar-
antees this is not the case: there is no moduli of the singularities arising,
and indeed their geometry is unambiguously specified by the combinatorics.

With this in hand, one can still ask: is the symplectic or Weinstein thick-
ening of an arboreal skeleton unique? Using the results of the current paper
we prove in [AGEN20b] that a diffeomorphism between arboreal skeleta,
preserving some additional discrete orientation data, extends to a symplec-
tomorphism of their symplectic thickenings. The existence of a Weinstein
thickening was first explained in [St18]. The uniqueness of a Weinstein thick-
ening is also proved in [AGEN20b]: Weinstein thickenings of an arboreal
skeleton that induce equivalent orientation structures, a further combina-
torial decoration on the skeleton, are Weinstein homotopic via a homotopy
fixing the skeleton. So not only can we unambiguously construct a Wein-
stein manifold from a combinatorial recipe, but the one we construct is the
unique one with those combinatorics. In the present paper we will not con-
sider Weinstein structures, and focus instead on the problem of uniqueness
up to symplectomorphism.
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Thus pairing the results of the current paper with those of [AGEN20c],
one is able to express polarized Weinstein manifolds in purely combinatorial
terms. In a forthcoming paper [AGEN23b], we plan to classify all bifur-
cations (i.e.“Reidemeister moves”) relating positive arboreal skeleta of two
polarized Weinstein manifolds related by a polarized Weinstein homotopy.
This will reduce the classification of (polarized) Weinstein structures, up
to deformation equivalence, to the classification of positive arboreal com-
plexes up to diffeomorphism and Reidemeister moves. As it is discussed in
[AGEN20c] the arborealization program cannot be extended to allWeinstein
manifolds, though it is likely can be extended to a larger class of Weinstein
manifolds beyond the polarized one.
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2. Arboreal models

2.1. Quadratic fronts

Before we present the local models for arboreal singularities, we introduce
the quadratic fronts out of which the models will be built and discuss some
of their basic properties.

2.1.1. Basic constructions. For i ≥ 0, define functions hi : R
i → R by

the inductive formula

h0 = 0 hi = hi(x1, . . . , xi) = x1 − hi−1(x2, . . . , xi)
2

For example, for small i, we have

h1(x1) = x1 h2(x1, x2) = x1 − x22 h3(x1, x2, x3) = x1 − (x2 − x23)2
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Fix n ≥ 0. For i = 0, . . . , n, define smooth graphical hypersurfaces

nΓi = {x0 = h2i } ⊂ R
n+1

equipped with the graphical coorientation, and consider their union

nΓ =
⋃n

i=0
nΓi

Note the elementary identities

nΓi =
iΓi × R

n−i i = 0, . . . , n

nΓi ∩ nΓ0 = {0} × n−1Γi−1 i = 1, . . . , n

Figure 2.1: The hypersurfaces 1Γ0 (green) and 1Γ1 (blue).

Let T ∗
R
n denote the cotangent bundle with canonical 1-form pdx =∑n

i=1 pidxi where p = (p1, . . . , pn) are dual coordinates to x = (x1, . . . , xn).
Let J1

R
n = R× T ∗

R
n denote the 1-jet bundle with contact form dx0 +

pdx = dx0 +
∑n

i=1 pidxi.
Given a function f : Rn → R with graph Γf = {x0 = f(x)} ⊂ R× R

n,
we have the conormal Lagrangian of the graph LΓf

= {x0 = f(x), pi =
−p0∂f/∂xi} ⊂ T ∗

R
n+1, and the conormal Legendrian of the graph ΛΓf

=
{x0 = f(x), p0 = 1, pi = −∂f/∂xi} ⊂ J1

R
n.
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Figure 2.2: The hypersurfaces 2Γ0 (green), 2Γ1 (red) and 2Γ2 (blue).

For i = 0, let nL0 = R
n ⊂ T ∗

R
n denote the zero-section. For i = 1, . . . , n,

introduce the conormal Lagrangian

nLi = Ln−1Γi−1
⊂ T ∗

R
n

of the graph n−1Γi−1 ⊂ R
n, and consider their union

nL =
⋃n

i=0
nLi

Similarly, for i = 0, . . . , n, introduce the conormal Legendrian

nΛi = ΛnΓi
⊂ J1

R
n

of the graph nΓi ⊂ R
n+1, and consider their union

nΛ =
⋃n

i=0
nΛi

Note that the Liouville form vanishes on the conical Lagrangian nLi ⊂
T ∗

R
n, hence its lift to J1

R
n = R× T ∗

R
n with zero primitive is a Legendrian.

We have the following compatibility:
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Lemma 2.1. The contactomorphism

S : J1
R
n

// J1
R
n

S(x0, x, p) = (x0 − p21/4, x1 + p1/2, x2, . . . , xn, p1, . . . , pn)

takes the Legendrian nΛi isomorphically to the Legendrian {0} × nLi, and
thus the union nΛ isomorphically to the union {0} × nL.

Proof. Set hi,1 = hi−1(x2, . . . , xi) so that hi = x1 − h2i,1. Observe nΛi ⊂
J1

R
n is given by the equations

x0 = h2i pdx = −dh2i = −2hidhi = −2hi(dx1 − 2hi,1dhi,1)

so in particular p1 = −2hi and
∑n

i=2 pidxi = 4hihi,1dhi,1.
If we write (x̂0, x̂, p) = S(x0, x, p), for (x0, x, p) ∈ nΛi, then we have

x̂0 = x0 − p21/4 = ±(x0 − h2i ) = 0

x̂1 = x1 + p1/2 = x1 − hi = x1 − (x1 − h2i,1) = h2i,1

Now it remains to observe nLi ⊂ T ∗
R
n is given by the equations

x1 = h2i,1
∑n

i=2 pidxi = −p1dh2i,1 = −2p1hi,1dhi,1

This completes the proof. □

2.1.2. Distinguished quadrants. We now specify some distinguished
quadrants of the nΓ which we will use to define our arboreal models. Which
of these quadrants are cut out by our sign conventions will become clearer
when the arboreal models are introduced.

For 0 ≤ j < i ≤ n, set

hi,j := hi−j(xj+1, . . . , xi)

so in particular hi,0 = hi(x1, . . . , xi) and hi,i−1 = h1(xi) = xi.
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For fixed 0 ≤ i ≤ n, consider the collection of functions

hi,0, . . . , hi,i−1

Note the triangular nature of the linear terms of the collection: for all 0 ≤
j ≤ i− 1, the subcollection

hi,j − xj+1, hi,j+1, . . . , hi,i−1

is independent of xj+1. Thus the level sets of the collection are mutually
transverse.

Fix once and for all a list of signs δ = (δ0, δ1, . . . , δn), δi ∈ {±1}. Define
the domain quadrant nQδ

i ⊂ R
n to be cut out by the inequalities

δ1hi,0 ≤ 0, . . . , δihi,i−1 ≤ 0

By the transversality noted above, nQδ
i is a submanifold with corners dif-

feomorphic to R
i
≥0 × R

n−i. Its codimension one boundary faces are given by
the vanishing of one of the functions hi,j .

Note nQδ
i only depends on the truncated list δ1, . . . , δi. In particular, it

is independent of δ0 which will enter the constructions next.
Define the cooriented hypersurface nΓi|δ ⊂ R

n+1 to be the restricted
signed graph

nΓi|δ = {x0 = δ0h
2
i }|nQδ

i

with the graphical coorientation.
Thus nΓi|δ is cut out by the equations

x0 = δ0h
2
i , δ1hi,0 ≤ 0, . . . , δihi,i−1 ≤ 0

Since nΓi|δ is graphical over nQδ
i , it is also a submanifold with corners diffeo-

morphic to R
i
≥0 × R

n−i. Likewise, its codimension one boundary faces are
given by the vanishing of one of the functions hi,j .

Consider as well the union

nΓ|δ =
⋃n

i=0
nΓi|δ
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Remark 2.2. Note that

nΓi =
⋃

δ,δ0=1
nΓi|δ nΓ =

⋃
δ,δ0=1

nΓ|δ

since x ∈ nΓi implies x ∈ nΓi|δ where for 1 ≤ j ≤ i, we set δj =
−sgn (hi,j(x)), when hi,j(x) ̸= 0, and choose it arbitrarily otherwise.

Remark 2.3. Note if we set δ′ = (δ0, . . . , δn−1,−δn), then the map R
n+1 →

R
n+1, (x0, . . . , xn−1, xn) 7→ (x0, . . . , xn−1,−xn), takes nΓ|δ isomorphically to

nΓ|δ′ as a cooriented hypersurface. Thus we could always set δn = 1 and not
miss any new geometry.

Note nΓi ∩ {x0 < 0}, hence also nΓi|δ ∩ {δ0x0 < 0}, is empty since nΓi

is the graph of h2i ≥ 0.

Lemma 2.4. Fix δ = (δ0, . . . , δn), and set δ′ = (δ0δ1, δ2, . . . , δn). The
homeomorphism

s : δ0R≥0 × R
n

// δ0R≥0 × R
n

s(x0, x1, x2, . . . , xn) = (x0, δ0δ1(x1 + δ1
√
δ0x0), x2, . . . , xn)

gives a cooriented identification

s(nΓi|δ ∩ {δ0x0 ≥ 0}) = δ0R≥0 × n−1Γi−1|δ′ 0 < i ≤ n

Proof. Recall nΓi|δ is defined by

x0 = δ0h
2
i δ1hi,0 ≤ 0, . . . , δihi,i−1 ≤ 0

in particular

x0 = δ0h
2
i δ1hi,0 = δ1hi ≤ 0

Note the functions hi,1, . . . , hi,i−1 are independent of the coordinates x0, x1.
When δ0x0 ≥ 0 and δ1hi ≤ 0, the equation x0 = δ0h

2
i is equivalent to√

δ0x0 = −δ1hi. Expanding this in terms of the definitions, we can rewrite
this in the form

x1 + δ1
√
δ0x0 = hi−1(x2, . . . , xi)

2

Thus since δ′0 = δ0δ1, we see s takes nΓi|δ ∩ {δ0x0 ≥ 0} into δ0R≥0 × {x1 =
δ′0h

2
i−1}.
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Moreover, the additional functions hi,1, . . . , hi,i−1 cutting out
n−1Γi−1|δ′ ⊂ {x1 = δ′0h

2
i−1} pull back to the same functions hi,1, . . . , hi,i−1

cutting out nΓi|δ.
Finally, the coorientations of nΓi|δ,n−1Γi−1|δ′ are positive on respectively

∂x0
, ∂x1

. Observe the ∂x1
-component of s∗∂x0

is in the direction of ∂x1
, and

hence s gives a cooriented identification. □

2.1.3. Alternative presentation. For compatibility with inductive ar-
guments, it is useful to introduce an alternative sign convention and alter-
native presentation of the local models.

Fix signs ε = (ε0, . . . , εn). Consider the involution σε : R
n → R

n defined
by σε(x1, . . . , xn) = (ε1x1, . . . , εnxn).

Define the domain quadrant nRε
i ⊂ R

n cut out by the inequalities

ε0ε1hi,0 ◦ σε ≤ 0, . . . , εi−1εihi,i−1 ◦ σε ≤ 0

Define the cooriented hypersurface nΓε
i ⊂ R

n+1 to be the restricted
signed graph

nΓε
i = {x0 = ε0h

2
i ◦ σε}|nRε

i

with the graphical coorientation. Thus nΓε
i is cut out by the equations

x0 = ε0h
2
i ◦ σε ε0ε1hi,0 ◦ σε ≤ 0, . . . , εi−1εihi,i−1 ◦ σε ≤ 0

Consider as well the union

nΓε =
⋃n

i=0
nΓε

i

Remark 2.5. A simple but important observation: nΓε
i in fact only depends

on ε0, . . . , εi−1 and not εi. This is because hi,i−1 = xi and so εi−1εihi,i−1 ◦
σε = εi−1xi. In particular, the union nΓε is independent of εn.

We have the following adaption of Lemma 2.4.

Lemma 2.6. Fix ε = (ε0, . . . , εn), and set ε′ = (ε1, . . . , εn). The homeo-
morphism

s : ε0R≥0 × R
n

// ε0R≥0 × R
n

s(x0, x1, x2, . . . , xn) = (x0, x1 + ε0
√
ε0x0, x2, . . . , xn)

gives a cooriented identification

s(nΓε
i ∩ {ε0x0 ≥ 0}) = ε0R≥0 × n−1Γε′

i−1 0 < i ≤ n
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Proof. Recall nΓε
i is defined by

x0 = ε0h
2
i ◦ σε ε0ε1hi,0 ◦ σε ≤ 0, . . . , εi−1εihi,i−1 ◦ σε ≤ 0

in particular

x0 = ε0h
2
i ◦ σε ε0ε1hi,0 ◦ σε = ε0ε1hi ◦ σε ≤ 0

Note the functions hi,1, . . . , hi,i−1 are independent of the coordinates x0, x1.
When ε0x0 ≥ 0 and ε0ε1hi ◦ σε ≤ 0, the equation x0 = ε0h

2
i ◦ σε is equiv-

alent to
√
ε0x0 = −ε0ε1hi ◦ σε. Expanding this in terms of the definitions,

we can rewrite this in the form

x1 + ε0
√
ε0x0 = ε1h

2
i−1,1 ◦ σε′

Thus we see s takes nΓε
i ∩ {ε0x0 ≥ 0} into ε0R≥0 × {x1 = ε1h

2
i−1,1 ◦ σε′}.

Moreover, the additional functions hi,1, . . . , hi,i−1 cutting out

n−1Γε′

i−1 ⊂ {x1 = ε1h
2
i−1,1 ◦ σε′}

pull back to the same functions hi,1, . . . , hi,i−1 cutting out nΓε
i .

Finally, the coorientations of nΓε
i ,
n−1Γε′

i−1 are positive on respectively
∂x0

, ∂x1
. Observe the ∂x1

-component of s∗∂x0
is in the direction of ∂x1

, and
hence s gives a cooriented identification. □

Here is a useful corollary that “explains” the geometric meaning of the
signs ε.

Corollary 2.7. Fix ε = (ε0, . . . , εn).
For i = 0, . . . , n− 1, we have εi = ±1 if and only if nΓi+1 is on the ±-

side of nΓi with respect to the graphical dx0-coorientation.
Moreover, for i = 1, . . . , n− 1, we have εi = ±1 if and only if nΓi+1 ∩

nΓ0 is on the ±-side of nΓi ∩ nΓ0 with respect to the graphical dx1-
coorientation.

Proof. For i = 0, the first assertion is immediate from the definitions nΓ0 =
{x0 = 0} and nΓ1 = {x0 = ε0(ε1x1)

2 = ε0x
2
1, ε0ε1(ε1x1) = ε0x1 ≤ 0}.

For i > 0, both assertions follow by induction from Lemma 2.6. □
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Fix signs ε = (ε0, . . . , εn−1). For i = 0, let nLε
0 = R

n ⊂ T ∗
R
n denote the

zero-section. For i = 1, . . . , n, introduce the positive conormal bundles

nLε
i = T+

n−1Γε
i−1

R
n ⊂ T ∗

R
n

determined by the graphical coorientation, and consider their union

nLε =
⋃n

i=0
nLε

i

Fix signs ε = (ε0, . . . , εn). For i = 0, . . . , n, introduce the Legendrian

nΛε
i ⊂ J1

R
n

projecting diffeomorphically to the front nΓε
i ⊂ R

n+1, and consider their
union

nΛε =
⋃n

i=0
nΛε

i

We have the following compatibility of the above Lagrangians and Leg-
endrians analogous to Lemma 2.1.

Lemma 2.8. Fix signs ε = (ε0, . . . , εn), and set ε′ = (ε1, . . . , εn). The con-
tactomorphism

Sε0 : J
1
R
n

// J1
R
n

Sε0(x0, x, p) = (x0 − ε0p21/4, x1 + ε0p1/2, x2, . . . , xn, p1, . . . , pn)

takes the Legendrian nΛε
i isomorphically to the Legendrian {0} × nLε′

i , and
thus the union nΛε isomorphically to the union {0} × nLε′.

Proof. The proof is the same as that of Lemma 2.1 with the following ob-
servations. Consider the additional equations

ε0ε1δ1hi,0 ◦ σδ ≤ 0, . . . , εi−1εihi,i−1 ◦ σε ≤ 0

First, over ε0ε1hi,0 ◦ σε ≤ 0, when p1 = −2ε0ε1hi,0 ◦ σε, we then have p1 =
−2ε0ε1hi,0 ◦ σε ≥ 0, so we obtain the positive conormal direction. Second,
the remaining functions hi,1, . . . , hi,i−1 are independent of x0, x1. Thus Sε0
indeed takes nΛε

i to {0} × nLε
i . □

Remark 2.9. By the lemma, we see the Legendrian nΛε
i ⊂ J1

R
n is inde-

pendent of the initial sign ε0 so only depends on ε′ = (ε1, . . . , εn).
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346 D. Álvarez-Gavela, Y. Eliashberg, and D. Nadler

It is also useful to record the following relationship of nΓε with the
extended model nΓ.

Lemma 2.10. Fix signs ε = (ε0, . . . , εn).
Given a contactomorphism J1

R
n → J1

R
n restricting to a closed em-

bedding nΛε ⊂ ε0 · nΛ with nΛε
i ⊂ ε0 · nΛi, for all i, consider the front Υ =

π(nΛε) ⊂ ε0 · nΓ.
Then either the involution σε or its composition with xn 7→ ±xn takes Υ

to nΓε.

Proof. Note we have nΛε
0 = ε0 · nΛ0 =

nΛ0. Consider the intersection Υ′ =
π((nΛε \ nΛ0) ∩ nΛ0) as a front inside of π(nΛ0) =

nΓ0 = {x0 = 0}. By in-
duction, either the involution σε or its composition with xn 7→ ±xn takes Υ′

to n−1Γε′ where ε′ = (ε1, . . . , εn). So we may assume Υ′ = n−1Γε′ . Now ob-
serve nΓε is the unique way to extend n−1Γε′ within σε(ε0 · nΓ) compatible
with coorientations. □

We also have the following observation about signs. See Section 3.1 for
notation.

Lemma 2.11. Let ν0 be the vertical polarization of T ∗
R
n → R

n.
Then we have ε(ν0,

nLε
1,

nLε
2) = ε0.

Proof. Recall nLε
1 is the positive conormal to the graph n−1Γε

0 = {x0 = 0},
and nLε

1 is the positive conormal to the graph n−1Γε
1 = {x0 = ϵ0x

2
1}. Since

ε0x
2
1 is an ε0-definite quadratic form in x1, the assertion follows. □

2.2. Arboreal models

We now present the local models for arboreal singularities.

2.2.1. Signed rooted trees.

Definition 2.12. We will use the following terminology throughout:

(i) A tree T is a nonempty, finite, connected acyclic graph.

(ii) A rooted tree T = (T, ρ) is a pair of a tree T and a distinguished vertex
ρ called the root.

(iii) A signed rooted tree T̂ = (T, ρ, ε) is a rooted tree (T, ρ) and a dec-
oration ε of a sign ±1 on each edge of T not adjacent to the root
ρ.
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Figure 2.3: A signed rooted tree.

Given a signed rooted tree T̂ = (T, ρ, ε), we write v(T ) for the set of

vertices, e(T ) for the set of edges, and n(T̂ ) = v(T ) \ ρ for the set of non-
root vertices. We regard v(T ) as a poset with unique minimum ρ, and in
general α ≤ β ∈ v(T ) when the shortest path connecting β and ρ contains
α. We call a non-root vertex β a leaf if exactly one edge of T is adjacent to
β, and write ℓ(T̂ ) ⊂ v(T ) for the set of leaf vertices.

Remark 2.13. Throughout what follows, for a finite set S, we write R
S

for the Euclidean space of S-tuples of real numbers. One may always fix a
bijection S ≃ {1, 2, . . . , n}, for some n ≥ 0, and hence an isomorphism R

S ≃
R
n, but it will be convenient to avoid choosing such identifications when

awkward. We will most often consider S = n(T̂ ) the non-root vertices for

some rooted tree T̂ = (T, ρ). Here if one prefers to fix a bijection b : n(T̂ )
∼→

{1, 2, . . . , |n(T̂ )|}, we recommend choosing b to be order-preserving: if α ≤
β, then one should ensure b(α) ≤ b(β). This will allow for a clear translation
of our constructions.

Definition 2.14. A signed rooted tree T̂ = (T, ρ, ε) is called positive if the
decoration ε consists of signs +1.

We will associate to any signed rooted tree T̂ = (T, ρ, ε), a multi-
cooriented hypersurface, conic Lagrangian, and Legendrian

H
T̂
⊂ R

n(T̂ ) L
T̂
⊂ T ∗

R
n(T̂ ) Λ

T̂
⊂ J1

R
n(T̂ )

where as usual we write n(T̂ ) = v(T ) \ ρ for the set of non-root vertices.
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By definition, the latter two will be determined by the first as follows:

(i) L
T̂

is the union of the zero-section R
n(T̂ ) and the positive conormal

to H
T̂
.

(ii) Λ
T̂

is the Legendrian lift of L
T̂

with zero primitive.

2.2.2. Type A trees. Let us first consider the distinguished case of An+1-
trees with extremal root.

Definition 2.15. For n ≥ 0, a linear signed An+1-rooted tree is a signed
rooted tree An+1 = (An+1, ρ, a) with vertices v(An+1) = {0, 1, . . . , n}, edges
v(An+1) = {[i, i+ 1] | i = 0, . . . , n− 1}, and root ρ = 0.

By definition, the sign a is a length n− 1 list of signs (a[1,2], . . . , a[n−1,n]).
Let us set ε = (ε0, . . . , εn−1) = (a[1,2], . . . , a[n−1,n], 1) to be the length n list
of signs where we pad a by adding a single 1 at the end.

Definition 2.16. The models for An-type arboreal singularities are given
as follows:

(i) The arboreal A1-front is the empty set HA1
= ∅ inside the point R0.

For n ≥ 1, the arboreal An+1-front is the cooriented hypersurface

HAn+1
= n−1Γε ⊂ R

n

introduced in Section 2.1.3.

(ii) For n ≥ 0, the arboreal An+1-Lagrangian is the union of the zero-
section and positive conormal

LAn+1
= R

n ∪ T+
RnHAn+1

⊂ T ∗
R
n

(iii) For n ≥ 0, the arboreal An+1-Legendrian is the lift

ΛAn+1
= {0} × LAn+1

⊂ J1
R
n

Remark 2.17. Following Remark 2.5, the arbitrary choice of the last sign
εn−1 = 1 does not affect the arboreal An+1-models.

Recall the linear signed An+1-rooted tree An+1 = (An+1, ρ, a) has ver-
tices v(An+1) = {0, 1, . . . , n} with root ρ = 0, and so the non-root vertices
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Figure 2.4: The two A3 fronts with positive and negative sign.

form the set n(An+1) = {1, . . . , n}. In the above definition, we should more
invariantly view the ambient Euclidean space Rn in the form R

n(An+1) where
the ordering of the coordinates matches that of n(An+1).

With this viewpoint, we rename the smooth pieces of the An+1-front,
indexing them by non-root vertices

Hi =
n−1P ε

i−1 ⊂ HAn+1
i ∈ n(An+1) = {1, . . . , n}

Likewise, we rename the smooth pieces of the of the An+1-Lagrangian, in-
dexing them by vertices

L0 = R
n ⊂ LAn+1

Li = T+
RnHi ⊂ LAn+1

i ∈ n(An+1) = {1, . . . , n}
and similarly, we rename the smooth pieces of the of the An+1-Legendrian,
indexing them by vertices

Λi = {0} × LAn+1,i ⊂ ΛAn+1
i ∈ v(An+1) = {0, 1, . . . , n}

Lemma 2.18. For n ≥ 1, and n ∈ v(An+1) = {0, 1, . . . , n} the unique leaf
vertex, and H̊n ⊂ HAn+1

the interior of the corresponding smooth piece, we
have

HAn+1
\ H̊n = HAn

× R

inside of Rn(An+1) = R
n(An) × R.
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Figure 2.5: Two A4 fronts with different choices of signs. The other two
fronts can be obtained from these two by reflections.

Proof. Recall the other smooth pieces Hi =
n−1P ε

i−1, for i = 1, . . . , n− 1,
are independent of the last coordinate xn. □

2.2.3. General trees. Now we consider a general signed rooted tree T̂ =
(T, ρ, ε).

To each leaf β ∈ ℓ(T̂ ), we associate the linear signed An+1-rooted tree
Aβ = (Aβ , ρ, a) where Aβ is the full subtree of T on the vertices v(Aβ) =
{α ≤ β ∈ v(T )}, and a is the restricted sign decoration.

Consider the Euclidean space R
n(T̂ ). For each β ∈ ℓ(T̂ ), the inclusion

n(Aβ) ⊂ n(T̂ ) induces a natural projection

πβ : Rn(T̂ )
// R

n(Aβ)

Definition 2.19. Let T̂ = (T, ρ, ε) be a signed rooted tree.
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(i) The arboreal model T̂ -front is the multi-cooriented hypersurface given
by the union

H
T̂

=
⋃

β∈ℓ(T̂ )
π−1
β (HAβ

) ⊂ R
n(T̂ )

where HAβ
⊂ R

n(Aβ) is the arboreal Aβ-front.

(ii) The arboreal model T̂ -Lagrangian is the union of the zero-section and
positive conormal

L
T̂

= R
n(T̂ ) ∪ T+

Rn(T̂ )
H

T̂
⊂ T ∗

R
n(T̂ )

(iii) The arboreal model T̂ -Legendrian is the the lift

Λ
T̂

= {0} × L
T̂
⊂ J1

R
n(T̂ )

Arboreal modelsH
T̂
, L

T̂
and Λ

T̂
corresponding to positive T̂ are called

positive.

Figure 2.6: Two non An-type fronts with different choices of signs.

Remark 2.20. When T̂ = An+1, the above definition recovers Defini-
tion 2.16 verbatim.
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Transporting from the case of An+1, we may naturally index the smooth
pieces of the T̂ -front by non-root vertices

Hα = π−1
β (HAβ ,α) ⊂ HT̂

α ∈ n(T̂ )

where β ∈ ℓ(T̂ ) is any leaf with α ≤ β, and HAβ ,α ⊂ HAβ
is the corre-

sponding smooth piece. Likewise, we may index the smooth pieces of the
T̂ -Lagrangian by vertices

Lρ = R
n(T̂ ) ⊂ L

T̂

Lα = T+

Rn(T̂ )
Hα ⊂ LT̂

α ∈ n(T̂ )

and the smooth pieces of the T̂ -Legendrian by vertices

Λα = {0} × Lα ⊂ Λ
T̂

α ∈ v(T̂ )

Let us record a basic compatibility of the above Lagrangians and Leg-
endrians.

Fix a signed rooted tree T̂ = (T, ρ, ε). Let us first consider the situation

when there is a single vertex ρ′ ∈ T̂ adjacent to ρ. Let T̂ ′ = T̂ \ ρ be the
signed rooted tree with root ρ′ and restricted signs.

Let α1, . . . , αk ∈ T̂ ′ be the vertices adjacent to ρ′, and ε1, . . . , εk the
signs of T̂ assigned to the respective edges from ρ′ to α1, . . . , αk.

Let L∞
T̂
⊂ S∗

R
n(T̂ ) be the ideal Legendrian boundary of L

T̂
⊂ T ∗

R
n(T̂ ).

Note that L∞
T̂

lies in the open subspace J1
R
n(T̂ ′) ≃ {pρ′ = 1} ⊂ S∗

R
n(T̂ ).

Lemma 2.21. The contactomorphism

S : J1
R
n(T̂ ′)

// J1
R
n(T̂ ′)

S(xρ′ , x, p) = (xρ′ −∑k
i=1 εip

2
αi
/4, x̂, p)

x̂αi
= xαi

+ εip1/2, for i = 1, . . . , k, x̂β = xβ else

takes the Legendrian L∞
T̂

isomorphically to the Legendrian {0} × L
T̂ ′

.

Thus L∞
T̂

itself is a model arboreal Legendrian of type T̂ ′ = T̂ \ ρ.
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Proof. For each leaf vertex of T̂ , we have a linear signed type A subtree of
T̂ given by the vertices running from ρ to the leaf. By Definition 2.19, L

T̂
is

the union of the corresponding linear signed type A subcomplexes LA. Each
such subcomplex is independent of the coordinate xβ indexed by vertices
β not in the subtree, hence lies in the zero locus of the dual coordinate
pβ . Thus transport of each L∞

A under the contactomorphism of the lemma
reduces to that of Lemma 2.8. □

More generally, suppose ρ1, . . . , ρℓ are the vertices adjacent to ρ. Observe
that T̂ \ ρ is a disjoint union of signed rooted subtrees T̂j ⊂ T̂ \ ρ, for

j = 1, . . . , ℓ, with ρj as root and restricted signs. Let T̂
+
j = T̂j ∪ ρ ⊂ T̂ be

the signed rooted subtree with ρ readjoined as root and with restricted signs.
Set cj = n(T̂ ) \ n(T̂j).

Let L∞
T̂
⊂ S∗

R
n(T̂ ) be the ideal Legendrian boundary of L

T̂
⊂ T ∗

R
n(T̂ ).

We similarly have L∞
T̂

+
j

⊂ S∗
R
n(T̂ +

j ) the ideal Legendrian boundary of

L
T̂

+
j

⊂ T ∗
R
n(T̂ +

j ).

Since ρj is the unique vertex adjacent to ρ within T̂
+
j , observe that L

T̂
+
j

is connected and in fact lies in

J1
R
n(T̂j) = {pρj

= 1} ⊂ S∗
R
n(T̂ +

j ).

Moreover, observe that L∞
T̂

is the disjoint union of the connected components

Λj = L∞
T̂

+
j

× R
cj ⊂ J1

R
n(T̂j) × T ∗

R
cj = {pρj

= 1} ⊂ S∗
R
n(T̂ )

By Lemma 2.21, L∞
T̂

+
j

⊂ J1
R
n(T̂j) is a model arboreal Legendrian of type

T̂j , so Λj = L∞
T̂

+
j

× R
cj ⊂ J1

R
n(T̂j) × T ∗

R
cj is a stabilized model arboreal

Legendrian of type T̂j . This proves:

Lemma 2.22. Fix a signed rooted tree T̂ = (T, ρ, ε).

Let ρ1, . . . , ρk be the vertices adjacent to ρ. Let T̂j ⊂ T̂ \ ρ be the signed

rooted subtree with ρj as root and restricted signs, and T̂
+
j = T̂j ∪ ρ ⊂ T̂

the signed rooted subtree with ρ readjoined as root and with restricted signs.
Set cj = n(T̂ ) \ n(T̂j).
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Then the ideal Legendrian boundary L∞
T̂
⊂ S∗

R
n(T̂ ) of the model arboreal

Lagrangian L
T̂
⊂ T ∗

R
n(T̂ ) of type T̂ is the disjoint union of the Legendrians

Λj = L∞
T̂

+
j

× R
cj ⊂ S∗

R
n(T̂ ),

which are stabilized model arboreal Legendrians of type T̂j.

By Lemma 2.18, we also have the following.

Corollary 2.23. For β ∈ ℓ(T̂ ) a leaf vertex, and H̊β ⊂ HT̂
the interior of

the corresponding smooth piece, we have

H
T̂
\ H̊β = H

T̂ \β
× R

β

inside of Rn(T̂ ) = R
n(T̂ \β) × R

β.

2.2.4. Extended arboreal models. It will be useful for us also define
extended arboreal models associated with rooted, but not signed trees T =
(T, ρ).

For the unsigned rooted tree An+1 = (An+1, ρ) we define

HAn+1
:= n−1Γ ⊂ R

n,

LAn+1
:= R

n ∪ T ∗
RnHAn+1

⊂ T ∗
R
n,

ΛAn+1
:= 0× LAn+1

⊂ J1
R
n.

Similarly, for a general rooted tree T = (T, ρ) we define

HT =
⋃

β∈ℓ(T ) π
−1
β (HAβ

) ⊂ R
n(T̂ )

where HAβ
⊂ R

n(Aβ) is the arboreal Aβ-front. Furthermore, we define

LT = R
n(T ) ∪ T+

Rn(T )HT̂
⊂ T ∗

R
n(T )

and

ΛT = {0} × ΛT ⊂ J1
R
n(T )

Clearly, for any signed version T̂ of the tree T we haveH
T̂
⊂ HT , LT̂

⊂
LT ,ΛT̂

⊂ ΛT .
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Lemma 2.24. Given a closed embedding Λ∞
T̂
⊂ Λ∞

T
with Λ∞

T̂ ,α
⊂ Λ∞

T ,α, for

all α, the front π(Λ∞
T̂
) ⊂ HT is an embedding of H

T̂
.

Proof. For each leaf vertex of T̂ , we have a linear signed type A subtree of
T̂ given by the vertices running from ρ to the leaf. By construction, Λ∞

T̂

and Λ∞
T

are the union of the corresponding type A subcomplexes L∞
A and

L∞
A
. Each such subcomplex is independent of the coordinates xβ indexed

by vertices β not in the subtree. Now Lemma 2.10 confirms π(L∞
A ) is the

standard embedding of HA after a change of coordinates xα indexed by
vertices α in the subtree. Moreover, the change of coordinates agrees for xα
indexed by vertices α in the intersection of such subtrees. By definition, H

T̂

is the union of the HA. □

3. The stability theorem

In this section we define arboreal Lagrangian and Legendrian subsets and
prove their stability under symplectic reduction and Liouville cone opera-
tions.

3.1. Arboreal Lagrangians and Legendrians

Definition 3.1. Arboreal Lagrangians and Legendrians are defined as fol-
lows:

(a) A closed subset L ⊂ X of a 2m-dimensional symplectic manifold (X,ω)
is called an arboreal Lagrangian if the germ of (X,L) at any point λ ∈ L
is symplectomorphic to the germ of the pair (T ∗

R
n × T ∗

R
m−n, L

T̂
×

R
m−n) at the origin, for a signed rooted tree T̂ with n := n(T̂ ) ≤ m.

(b) A closed subset Λ ⊂ Y of a (2m+ 1)-dimensional contact manifold
(Y, ξ) is called am arboreal Legendrian if the germ of (Y,Λ) at any point
λ ∈ Λ is contactomorphic to the germ of (J1(Rn × R

m−n) = J1
R
n ×

T ∗
R
m−n,Λ

T̂
× R

m−n) at the origin, for a signed rooted tree T̂ with

n := n(T̂ ) ≤ m.

(c) A closed subsetH ⊂M of an (m+ 1)-dimensional manifoldM is called
an arboreal front if the germ of (M,H) at any point m ∈M is diffeo-
morphic to the germ of (Rn+1 × R

m−n, H
T̂
× R

m−n) at the origin, for

a signed rooted tree T̂ with n := n(T̂ ) ≤ m.
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The pair (T̂ ,m) is called the arboreal type of the germ of L, Λ, or H
at the given point. We say L, Λ, or H is positive if it is locally modeled on
positive arboreal models at all points.

Remark 3.2. Later we will also allow arboreal Lagrangians to have bound-
ary and even corners, but throughout the present discussion we restrict to
the above definition for simplicity.

Given an arboreal Lagrangian we call supλ∈L{n(T̂ (λ))} the maximal

order of L, where T̂ (λ) is a the signed rooted tree describing the germ
of L at the point λ. Similarly, we define the maximal order of arboreal
Legendrians and fronts.

Every arboreal Lagrangian or Legendrian is naturally stratified by
isotropic strata indexed by the corresponding tree type. A Lagrangian distri-
bution η in X is called transverse to an arboreal Lagrangian L if it is trans-
verse to all top-dimensional strata of L. Similarly a Legendrian distribution
η ⊂ ξ in a contact (Y, ξ) is called transverse to an arboreal Legendrian Λ if
it has trivial intersection with tangent planes to all top-dimensional strata
of Λ.

Definition 3.3. A polarization of L or Λ is a transverse Lagrangian distri-
bution.

Remark 3.4. We emphasize the transversality to an arboreal Lagrangian
means transversality to its closed smooth pieces, and not just to open strata.

Before we continue we introduce some auxiliary notions. Let V be a
symplectic vector space and ℓ1, ℓ2, ℓ3 ⊂ V linear Lagrangian subspaces which
are pairwise transverse. We write ℓ1 ≺ ℓ2 ≺ ℓ3 if ℓ3 corresponds to a positive
definite quadratic form with respect to the polarization (ℓ1, ℓ2) of V . Let
C ⊂ V be a coisotropic subspace. For any linear Lagrangian subspace ℓ ⊂ V
we denote by [ℓ]C the symplectic reduction of ℓ with respect to C.

Let L be an arboreal Lagrangian whose germ at a point λ ∈ L has the
type (T̂ = (T, ρ, ε),m). Let Lρ ⊂ TλX the tangent plane to the root La-
grangian corresponding to the root ρ. For each vertex α connected by an
edge with ρ let Lα ⊂ TλX denote the Lagrangian plane tangent to the La-
grangian corresponding to the vertex a. We recall that Lρ and Lα cleanly
intersect along a codimension 1 subspace. Consider a coistropic subspace
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Cα := Span(Lρ, Lα) ⊂ TλX. Let η be a Lagrangian distribution in X trans-
verse to L. Define the sign

(1) ε(η, L, α) =

{
+1, if [Lρ]

Cα ≺ [Lα]
Cα ≺ [η]Cα ;

−1, if [Lρ]
Cα ≺ [η]Cα ≺ [Lα]

Cα .

 

Figure 3.1: The notion of sign for the A2 singularity.

Similarly, if Λ is an arboreal Legendrian in a contact manifold (Y, ξ),
and η a Legendrian distribution transverse to Λ, then for any point λ ∈ Λ
of type T̂ = (T, ρ, ε) we assign a sign ε(η,Λ, α) for every vertex α adja-
cent to the root ρ as equal to ±1 depending on the ≺-order of the triple
[Lρ]

Cα , [Lα]
Cα , [η]Cα in [ξλ]

Cα .

3.2. Stability of arboreal Lagrangians and Legendrians

The following is the main result of Section 3. We use below the notation
t∗M for the germ of the cotangent bundle T ∗M along M .

Theorem 3.5. Let T̂ be a signed rooted tree. Let ρ1, . . . , ρk be vertices
adjacent to the root ρ and T̂j be subtrees with roots ρj (where we removed
the decoration of edges [ρjα]). Let ϕj : t

∗
R
m → J1

R
m, m ≥ n = n(T ), be

germs of Weinstein hypersurface embeddings with disjoint images. Denote

zj := ϕj(0), Λ
j = ϕj(LT̂j

× R
m−n(T̂j)), j = 1, . . . , k. Suppose that

(i) π(zj) = 0;
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(ii) the arboreal Legendrian Λ :=
⋃k

j=1 Λ
j projects transversely under the

front projection J1
R
n → R× R

n;

(iii) for each edge [ρjα] we have ε(ν,Λj , α) = ε[ρjα].

Then R
m ∪ C(Λ), where C(Λ) is the Liouville cone of Λ, is an arboreal

Lagrangian of type (T̂ ,m) or equivalently, the germ of the front π(Λ) is

diffeomorphic to H
T̂
× R

m−n(T̂ ).

Theorem 3.5 is a corollary of its unsigned version which is the content
of the following proposition.

Proposition 3.6. Let T be a rooted tree. Let ρ1, . . . , ρk be vertices adjacent
to the root ρ and Tj be subtrees with roots ρj. Let ϕj : t

∗
R
m → J1

R
m, m ≥

n = n(T ), be germs of Weinstein hypersurface embeddings. Denote zj :=
ϕj(0), Λ

j = ϕj(LTj
× R

m−n(Tj)), j = 1, . . . , k. Suppose that

(i) π(zj) = 0;

(ii) the extended arboreal Legendrian Λ :=
⋃k

j=1 Λ
j projects transversely

under the front projection J1
R
n → R× R

n;

Then R
m ∪ C(Λ) is an extended arboreal Lagrangian of type (T ,m), or

equivalently, the germ of the front π(Λ) is diffeomorphic to HT × R
m−n(T ).

Proof of Theorem 3.5 using Proposition 3.6. Consider the arboreal Legen-
drian as a closed subcomplex of the extended model. Apply Proposition 3.6
to assume the extended front is in canonical form. Then Lemma 2.24 implies
the front of the original arboreal Legendrian is a canonical model. □

Proposition 3.6 will be proven below in this section (see Section 3.6 )
below, but first we discuss some corollaries of Theorem 3.5.

Corollary 3.7. Let Λ ⊂ ∂∞T ∗M be an arboreal Legendrian. Suppose that
the front projection π : Λ→M is a transverse immersion. Then L :=
C(Λ) ∪M is an arboreal Lagrangian.

Proof. The intersection H :=M ∩ C(Λ) is the front of the Legendrian Λ.
Each point a ∈ H has finitely many pre-images z1, . . . , zk ∈ Λ. The germs
Λj of Λ at zj by our assumption are images of arboreal Lagrangian models
under Weinstein embeddings of their symplectic neighborhoods. Hence, by
Theorem 3.5 the germ of L at z is of arboreal type. □
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Figure 3.2: In particular, the zero section union the Liouville cone on a
regular Legendrian is arboreal with A2 singularities along its front.

It is not a priori clear that even the standard Lagrangian (resp. Legen-
drian) arboreal models are arboreal Lagrangians (resp. Legendrians). How-
ever, the following corollary shows that they are.

Corollary 3.8. Consider a model Lagrangian L
T̂
⊂ T ∗

R
n, n = n(T̂ ).

Then for any point λ ∈ L
T̂

the germ of L
T̂

at λ is a (T̂ ′, n)-Lagrangian for

a signed rooted tree T̂ ′.

Proof. We argue by induction in n. The base of the induction is trivial.
Assuming the claim for n− 1 we recall that L

T̂
can be presented as Lρ ∪

C(Λ), where Lρ is the smooth piece corresponding to the root ρ of T̂ and
Λ is a union of model Legendrians of dimension n− 1 in ∂∞T

∗(Rn). By
the induction hypothesis Λ is an arboreal Legendrian, and hence applying
Corollary 3.7 we conclude that L

T̂
is an arboreal Lagrangian. □

Remark 3.9. We will not need it in what follows, so only briefly comment
here that it is possible to specify precisely the type (T̂ ′, n) of the germ of L

T̂

at each point λ ∈ L
T̂
. Following [N13] the underlying tree T ′ is a canonically

defined subquotient of T , in other words, a diagram T ′ ← S → T , where
S → T is a full subtree, and S → T ′ contracts some edges; conversely, any
such subquotient can occur. Furthermore, if we partially order T with the
root ρ ∈ T as minimum, then the root ρ′ ∈ T ′ is the unique minimum of
the natural induced partial order on T ′. Finally, to equip T ′ with signs, we
restrict the signs of T to the subtree S, then push them forward to T ′ using
that each edge of T ′ is the image of a unique edge of S.
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Corollary 3.10. Let L
T̂
⊂ T ∗

R
n be a model Lagrangian associated with a

signed rooted tree (T, ρ, ε). Let η0, η1 be two polarizations transverse to L
T̂
.

Suppose that for any vertex α of T adjacent to ρ we have

ε(η0, L, α) = ε(η1, L, α).

Then there is a (germ at the origin of) a symplectomorphism ψ : T ∗
R
n →

T ∗
R
n such that ψ(L) = L and dψ(η0) = η1 along L.

Proof. Since η0 and η1 are transverse polarizations we may choose embed-
dings h0, h1 : T

∗
R
n → J1

R
n as Weinstein hypersurfaces such that hj(ηj) =

ν0, j = 0, 1, where ν0 is the canonical Legendrian foliation of J1
R
n by

fibers of the front projection to R
n × R. Consider the arboreal Lagrangians

Lj := C(hj(LT̂
)) ∪ (Rn × R), j = 0, 1, and note that their arboreal types

are described by the same signed rooted tree T̂ obtained from T̂ by adding
a new root, connecting it by an edge to the old one, and assigning to edges

[ρα] of T̂ ⊂ T̂ adjacent to the old root ρ the sign ε(η0, L, α) = ε(η1, L, α).
Applying Theorem 3.5 we find the required symplectomorphism ψ. □

Corollary 3.11. Let H ⊂M be an arboreal front. Then for any subma-
nifold Σ ⊂M transverse to (all strata of) H the intersection Σ ∩H is an
arboreal front in Σ.

Proof. We can assume thatH is an arboreal front germ at a point x ∈ H, and

hence the germ of (M,H) at x is diffeomorphic to the germ of (Rn(T̂ )+1 ×
R
k, H

T̂
× R

k) for some rooted signed arboreal tree T̂ and k = n− n(T̂ ).
Note that the transversality of Σ to H implies that codimΣ ≤ k and that

the projection of p : Σ ⊂ R
n(T̂ )+1 × R

k → R
n(T̂ )+1 to the first factor is a

submersion, and because we are dealing with germs, it is a trivial fibration.
On the other hand, the projection p|Σ∩H : Σ ∩H → H

T̂
is the restriction of

this fibration to H
T̂
⊂ R

N(T̂ ). □

3.3. Parametric version

The following is the parametric version of Theorem 3.5.

Theorem 3.12. Let T̂ be a signed rooted tree. Let ρ1, . . . , ρk be vertices
adjacent to the root ρ and T̂j be subtrees with roots ρj (where we removed
the decoration of edges [ρjα]). Let ϕyj : t∗Rm → J1

R
m, m ≥ n = n(T ), be
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Figure 3.3: Illustration that Σ ∩H is an arboreal front in Σ.

families of germs of Weinstein hypersurface embeddings with disjoint im-
ages, parametrized by a manifold Y . Denote zyj := ϕyj (0), Λj

y = ϕyj (LT̂j
×

R
m−n(T̂j)), j = 1, . . . , k. Suppose that

(i) π(zyj ) = 0;

(ii) the arboreal Legendrian Λy :=
⋃k

j=1 Λ
j
y projects transversely under the

front projection J1
R
n → R× R

n;

(iii) for each edge [ρjα] we have ε(ν,Λj
y, α) = ε[ρjα].

Then there exists a family of diffeomorphisms ϕy between H
T̂
× R

m−n(T̂ )

and the front π(Λy). If K ⊂ Y is a closed subset and the ϕyj are the standard
embeddings of the local model for y ∈ Op (K), then we may further assume
ϕy = Id for y ∈ Op (K).

The parametric version of Proposition 3.6 is formulated similarly. As a
consequence of Theorem 3.12 we get the following result:

Corollary 3.13. Fix a signed rooted tree T̂ = (T, ρ, ε), set n = |n(T̂ )| and
consider the arboreal T̂ -front H

T̂
⊂ R

n. Let D(Rn, H
T̂
) be the group of

germs at 0 of diffeomorphisms of Rn preserving H
T̂

as a front, i.e. as a
subset along with its coorientation.

Then the fibers of the natural map D(Rn, H
T̂
)→ Aut(T̂ ) are weakly

contractible.

Proof. We deduce Corollary 3.13 from Theorem 3.12. We will argue for
T̂ = An+1 when HAn+1

= n−1Γ; the case of general T̂ is similar.
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Since Aut(An+1) is trivial, we seek to show D(Rn, n−1Γ) is weakly con-
tractible. Note any φ ∈ D(Rn, n−1Γ) preserves 0, and moreover, preserves the
canonical flag in T0R

n given by the tangents to the intersections
⋂

i<i0
n−1Γi.

Let D(Rn) denote the group of germs at 0 of diffeomorphisms of Rn.
Consider a k-sphere of maps ft ∈ D(Rn, n−1Γ), t ∈ Sk. Since all ft preserve
0 and the canonical flag in T0R

n, there exists a k + 1-ball of diffeomorphisms
gt ∈ D(Rn), t ∈ Bk+1, extending ft. Applying Theorem 3.12 to the Wein-
stein hypersurface embeddings induced by gt, we can find diffeomorphisms
ht such that ht takes gt(

n−1Γ) back to n−1Γ and such that ht is the identity
for t ∈ Sk. Then ht ◦ gt ∈ D(Rn, n−1Γ), t ∈ Bk+1, gives an extension of ft to
the k + 1-ball. □

We also formulate the parametric version of Corollary 3.10.

Corollary 3.14. Let L
T̂
⊂ T ∗

R
n be a model Lagrangian associated with a

signed rooted tree (T, ρ, ε). Let ηy0 , η
y
1 be two families of polarizations trans-

verse to L
T̂

parametrized by a manifold Y . Suppose that for any vertex α
of T adjacent to ρ we have

ε(ηy0 , L, α) = ε(ηy1 , L, α).

Then there is a family of (germ at the origin of) symplectomorphisms ψy :
T ∗

R
n → T ∗

R
n such that ψy(L) = L and dψy(ηy0) = ηy1 along L. Moreover, if

ηy0 = ηy1 for y ∈ Op (K) for K ⊂ Y a closed subset, then we can take ψy = Id
for y ∈ Op (K).

The proof is just like in the non-parametric case, but applying Theorem
3.12 instead of Theorem 3.5.

3.4. Tangency loci

Before proving Proposition 3.6 and its parametric analogue we need to an-
alyze more closely the geometry of hypersurfaces forming arboreal fronts.

Definition 3.15. Given smooth hypersurfaces X1, X2 ⊂ R
n+1, we denote

by T (X1, X2) ⊂ R
n+1 their tangency locus, i.e. the subset of points x ∈ X1 ∩

X2 such that TxX1 = TxX2.

Remark 3.16. Given smooth Legendrians L1, L2 ⊂ J1
R
n whose fronts

X1 = π(L1), X2 = π(L2) ⊂ R
n+1 are smooth hypersurfaces, note that

T (X1, X2) = π(L1 ∩ L2).
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For 0 ≤ j < i ≤ n, recall the notation

hi,j := hi−j(xj+1, . . . , xi)

so in particular hi,0 = hi(x1, . . . , xi) and hi,i−1 = h1(xi) = xi. Set

Ti,j = {hi,j = 0} ⊂ R
n+1

Note hi,j is independent of x0, . . . , xj , and we have

Ti,j = R
j+1 × n−j−1Γi−j−1

Lemma 3.17. For 0 ≤ j < i ≤ n, the tangency locus T (nΓi,
nΓj) ⊂ R

n+1

is the intersection of either nΓi or
nΓj with the union

{hi,j = 0} ∪
j−1⋃
k=0

{hi,k = hj,k = 0} = Ti,j ∪
j−1⋃
k=0

(Ti,k ∩ Tj,k)

Proof. Since nΓi,
nΓj are the graphs of h2i , h

2
j , the projection of T (nΓi,

nΓj)
to the domain R

n is cut out by

h2i = h2j dh2i = dh2j

Note hi = hi,0 = x1 − h2i,1, hj = hj,0 = x1 − h2j,1. By examining the dx1-

component of dh2i = dh2j , we see it implies hi = hj . Thus the projection of

T (nΓi,
nΓj) is cut out by the single equation dh2i = dh2j which in turn implies

hi = hj .
To satisfy dh2i = dh2j , so in particular hi = hj , there are two possibilities:

(i) hi = hj = 0; or (ii) hi = hj ̸= 0. In case (i), we find the subset {hi,0 =
hj,0 = 0} appearing in the union of the assertion of the lemma. In case (ii), we
observe dh2i = dh2j is then equivalent to dh2i,1 = dh2j,1 which in turn implies
hi,1 = hj,1.

Now we repeat the argument. To satisfy dh2i,1 = dh2j,1, so in particular
hi,1 = hj,1, there are two possibilities: (i) hi,1 = hj,1 = 0; or (ii) hi,1 = hj,1 ̸=
0. In case (i), we find the subset {hi,1 = hj,1 = 0} appearing in the union
of the assertion of the lemma. In case (ii), we observe dh2i,1 = dh2j,1 is then

equivalent to dh2i,2 = dh2j,2 which in turn implies hi,2 = hj,2.

Iterating this argument, we obtain the subset
⋃j−1

k=0{hi,k = hj,k = 0}, and
arrive at the final equation dh2i,j = 0. By examining the dxj+1-term, we see

dh2i,j = 0 holds if and only if hi,j = 0, which gives the remaining subset of
the assertion of the lemma. □
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Remark 3.18. The only evident redundancy in the description of the
lemma is Ti,j−1 ∩ Tj,j−1 ⊂ Ti,j since hi,j−1 = xj − h2i,j , hj,j−1 = xj , so their
vanishing implies the vanishing of hi,j .

We will be particularly interested in the locus Ti,j ⊂ T (nΓi,
nΓj) and

formalize its structure in the following definition.

Definition 3.19. Given smooth hypersurfaces X1, X2 ⊂ R
n+1, we denote

by τ◦(X1, X2) ⊂ T (X1, X2) the subset of points x ∈ X1 ∩X2 where in
some local coordinates we have X1 = {x0 = 0}, X2 = {x0 = x21}. We write
τ(X1, X2) ⊂ T (X1, X2) for the closure of τ◦(X1, X2), and refer to it as the
primary tangency of X1, X2.

Remark 3.20. Given smooth Legendrians L1, L2 ⊂ J1
R
n whose fronts

X1 = π(L1), X2 = π(L2) ⊂ R
n+1 are smooth hypersurfaces, note that

τ◦(X1, X2) is the front projection of where L1, L2 intersect cleanly in codi-
mension one.

We have the following consequence of Lemma 3.17.

Corollary 3.21. For 0 ≤ j < i ≤ n, the primary tangency τ(nΓi,
nΓj) ⊂

R
n+1 is the intersection of either nΓi or

nΓj with Ti,j.

Before continuing, let us record the following for future use.

Lemma 3.22. Fix 0 ≤ k < j ≤ n− 1.
We have

τ(τ(Γn,
nΓk), τ(

nΓj ,
nΓk)) = τ(nΓn,

nΓj) ∩ τ(nΓj ,
nΓk)

where the primary tangency of τ(Γn,
nΓk), τ(

nΓj ,
nΓk) of the left hand side

is calculated in nΓk ≃ R
n.

Proof. By the preceding corollary, the left hand side is the intersection nΓk ∩
τ(Tn,k, Tj,k).

Note nΓk ∩ Tj,k = τ(nΓj ,
nΓk) =

nΓj ∩ Tj,k. Hence
nΓk ∩ τ(Tn,k, Tj,k) = nΓj ∩ τ(Tn,k, Tj,k)

since y ∈ nΓk ∩ τ(Tn,k, Tj,k) ⇐⇒ y ∈ nΓk ∩ Tj,k, y ∈ τ(Tn,k, Tj,k) ⇐⇒ y ∈
nΓj ∩ Tj,k, y ∈ τ(Tn,k, Tj,k) ⇐⇒ y ∈ nΓj ∩ τ(Tn,k, Tj,k).
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Figure 3.4: Verification of the conclusion of Lemma 3.22 for n =
2, in this case both the right and left hand sides of the equality
τ(τ(2Γ2,

2Γ0), τ(
2Γ1,

2Γ0)) = τ(2Γ2,
2Γ1) ∩ τ(2Γ1,

2Γ0) consist of the origin.

Next, recall

Tn,k = R
k+1 × n−k−1Γn−k−1 Tj,k = R

k+1 × n−k−1Γj−k−1

Hence by the preceding corollary, we have

τ(Tn,k, Tj,k) = Tj,k ∩ {hn,j = 0}

Thus the left hand side is given by nΓj ∩ Tj,k ∩ Tn,j .
On the other hand, by the preceding corollary, the right hand side is also

given by nΓj ∩ Tn,j ∩ Tj,k. □

3.4.1. More on distinguished quadrants.

Corollary 3.23. For 0 ≤ j < i ≤ n, we have

nΓε
i ∩ nΓε

j = T (nΓε
i ,

nΓε
j) = τ(nΓε

i ,
nΓε

j)

and they coincide with the closed boundary face of nΓε
i cut out by hi,j = 0.

Proof. For j = 0, we have nΓε
0 =

nΓ0 = {x0 = 0}. From the definitions, we
have

nΓε
i ∩ nΓ0 = T (nΓε

i ,
nΓ0) = τ(nΓε

i ,
nΓ0)

which is cut out of nP ε
i by hi,0 = hi = 0.
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For j > 0, the assertions follow from Lemma 2.4 by induction on n. □

Remark 3.24. Note for any 0 ≤ j < i ≤ n, we have

τ(nΓi,
nΓj) =

⋃
ε τ(

nΓε
i ,

nΓε
j)

To see this, consider x ∈ τ(nΓi,
nΓj), so that hi,j(x) = 0 by Corollary 3.21.

Choose ε so that x ∈ nΓε
i . Then by Corollary 3.23, we have x ∈ τ(nΓε

i ,
nΓε

j).

For i = 0, let nLε
0 = R

n ⊂ T ∗
R
n denote the zero-section. For i = 1, . . . , n,

consider the conormal bundles

nLε
i = T ∗

n−1Γε
i−1

R
n ⊂ T ∗

R
n

and their union
nLε =

⋃n
i=0

nLε
i

Similarly, for i = 0, . . . , n, consider the smooth Legendrian

nΛε
i ⊂ J1

R
n

that maps diffeomorphically to nΓε
i ⊂ R

n+1 under the front projection π :
J1

R
n → R

n+1, and their union

nΛε =
⋃n

i=0
nΛε

i

Note the contactomorphism of Lemma 2.1 takes nΛε
i ⊂ J1

R
n isomorphi-

cally to {0} × nLε
i ⊂ {0} × T ∗

R
n, and thus nΛε ⊂ J1

R
n isomorphically to

{0} × nLε ⊂ {0} × T ∗
R
n.

We have the following topological consequence of Lemma 2.4.

Corollary 3.25. As a union of smooth manifolds with corners, nΓε ⊂ R
n+1

is given by the gluing

nΓε = (n−1Γε′ × R≥0)
∐

(n−1Γε′×{0})(R
n × {0})

where ε′ = (ε0ε1, ε2, . . . , εn). The front projection takes nLε ⊂ J1
R
n homeo-

morphically to nΓε ⊂ R
n+1.

Before continuing, let us record the following for future use.



✐

✐

“3-Eliashberg” — 2023/9/27 — 2:08 — page 367 — #37
✐

✐

✐

✐

✐

✐

Arboreal models and their stability 367

Corollary 3.26. For 0 < j < i ≤ n, the closure of the codimension one
clean intersection of nLε

i ,
nLj is precisely nLε

i ∩ nLε
j.

Proof. The closure of the codimension one clean intersection of nLε
i ,

nΛj is
conic and projects to the primary tangency of n−1Γε

i−1,
n−1Γj−1. By Corol-

lary 3.21, the primary tangency of n−1Γi−1,
n−1Γj−1 is cut out by hi−1,j−1 =

0. By Corollary 3.23, this is precisely the tangency T (n−1Γε
i−1,

n−1Γj−1) and
hence lifts precisely to the conic intersection nLε

i ∩ nLε
j . □

3.5. The case of An+1-tree

The following Theorem 3.27 will play a key role in proving Proposition 3.6.

Theorem 3.27. Let φ : T ∗
R
n → J1

R
n be an embedding as a Weinstein

hypersurface. Assume that the image of nL under φ is transverse to the fibers
of the projection J1

R
n → R

n. Let Υ = π(φ(nL)) ⊂ R× R
n be (the germ of)

the front at the central point.
Then there exists a diffeomorphism R× R

n → R× R
n taking Υ to the

germ at the origin of nΓ ⊂ R× R
n.

The proof of Theorem 3.27 will proceed by induction on the dimension
n. At each stage, we will prove the fully parametric version:

Theorem 3.28. Let φy : T ∗
R
n → J1

R
n be a family of Weinstein hyper-

surface embeddings parametrized by a manifold Y . Assume that the image
of nL under φy is transverse to the fibers of the projection J1

R
n → R

n. Let
Υy = π(φy(nL)) ⊂ R× R

n be (the germs of) the fronts at the central points.
Then there exists a family of diffeomorphisms ψy : R× R

n → R× R
n

taking Υy to the germ at the origin of nΓ ⊂ R× R
n. If φy = Id for y ∈

Op (K), where K ⊂ Y is a closed subset, then we may assume ψy = Id for
y ∈ Op (K).

As usual the case of general pairs (Y,K) follows from the case Y = Dk

and K = Sk−1. To simplify notation we set nΦ = φ(nL), so that Υ = π(nΦ)
and similarly with parameter superscripts. We also denote nΦn = φ(nLn)
and Υn = π(nΦn).

3.5.1. Base case n = 0. The k-parametric version states: the germ of
any graphical hypersurface Υ ⊂ R× R

k is diffeomorphic to the germ of the
zero-graph 0Γ× R

k = {0} × R
k. This can be achieved by an isotopy gener-

ated by a time-dependent vector field of the form ht∂x0
. This vector field is

zero at infinity if Υ is standard at infinity.
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3.5.2. Case n = 1. The next case of the induction n = 1 is elementary
but slightly different from the others, so it is more convenient to treat sep-
arately.

With the setup of the theorem, consider the front Υ = π(1Φ) ⊂ R
2, and

assume without loss of generality that the origin is the central point. By
induction, we may assume, the front takes the form Υ = Γ0 ∪Υ1 ⊂ R

2 where
Γ0 = {x0 = 0}. Near the origin, the intersection Γ0 ∩Υ1 and tangency locus
T (Γ0,Υ1) coincide and consist of the origin alone. Moreover, by construction,
the origin is a simple tangency, and so Υ1 = {x0 = αx21} with α(0) ̸= 0. Now
it is elementary to find a time-dependent vector field of the form htx0∂x0

,
hence vanishing on Γ0, generating an isotopy taking Υ1 to either Γ1 = {x0 =
x21} or −Γ1 = {x0 = −x21}. In the former case, we are done; in the latter
case, we may apply the diffeomorphism (x0, x1) 7→ (−x0, x1) to arrive at
the configuration Γ0 ∪ Γ1. Finally, it is evident the prior constructions can
be performed parametrically, with the vector field zero at infinity if Υ is
standard at infinity.

3.5.3. Inductive step. The inductive step takes the following form. Sup-
pose the fully parametric assertion has been established for dimension
n− 1. Starting from nΦ ⊂ T ∗

R
n, remove the last smooth piece to obtain

nΦ′ = nΦ \ nΦn, and consider the corresponding front Υ′ = π(nΦ′). Note
that nΦ′ = n−1Φ× R ⊂ T ∗(Rn−1 × R), and so by an inductive application
of the 1-parametric version of the theorem, we may assume

Υ′ = n−1Γ× R

We will find a diffeomorphism R
n+1 → R

n+1 that preserves Υ′ (as a
subset, not pointwise), and takes Υn to nΓn. Moreover, it will be evident
the diffeomorphism can be constructed in parametric form, including the
relative parametric form. This will complete the inductive step and prove
the theorem.

3.5.4. Two propositions. The proof of the inductive step is based on
the following 2 propositions.

Proposition 3.29. Fix n ≥ 2.
With the setup of Theorem 3.27, suppose Υ =

⋃n−1
i=0

nΓi ∪Υn where we
recall Υn = π(nΦn). Suppose in addition Υn has primary tangency loci sat-
isfying

τ(Υn,
nΓi) ⊃ τ(nΓn,

nΓi) i = 0, . . . , n− 1
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Then Υn = {x0 = αh2n} where

α = 1 + β
n−1∏
j=1

h2n,j = 1 + βh2n,1 · · ·h2n,n−1

Moreover, the same holds in parametric form.

Proof. We have Υn = {x0 = g} for some g. Since τ(Υn,
nΓ0) ⊃

τ(nΓn,
nΓ0) = {hn = 0}, we must have g is divisible by h2n, hence

g = αh2n, for some α. Next, for any j ̸= 0, n, by Lemma 3.17, τ(nΓn,
nΓj)

is cut out by hn,j = 0. Since τ(Υn,
nΓj) ⊃ τ(nΓn,

nΓj), and hn ̸= 0 along a
dense subset of {hn,j = 0}, taking the ratio g/h2n shows that we must have
α = 1 + δ, where δ is divisible by h2n,j . Repeating this argument, and using
the transversality of the level-sets of the collection hn,j , we conclude that
δ = βh2n,1 · · ·h2n,n−1. □

Proposition 3.30. Fix n ≥ 2.
With the setup of Theorem 3.27, suppose Υ =

⋃n−1
i=0

nΓi ∪Υn where we
recall Υn = π(nΦn). Suppose in addition Υn = {x0 = αh2n} where

α = 1 + β
n−1∏
j=1

h2n,j = 1 + βh2n,1 · · ·h2n,n−1

Consider the family Υn,t = {x0 = (1− t+ tα)h2n} so that Υn,0 =
nΓn,

Υn,1 = Υn.
Then there exist functions gt : R

n+1 → R such that the vector fields

gtvn−1 = gt
∑n−1

i=0 xi
1
2i∂xi

= gtx0∂x0
+ 1

2gtx1∂x1
+ · · ·+ 1

2n−1 gtxn−1∂xn−1

generate an isotopy φt : R
n+1 → R

n+1 such that φt(Υn,0) = Υn,t.
In addition, the functions ht, hence vector fields htvn−1, are divisible by

the product
∏n−1

j=1 hn,j .
Moreover, all of the above holds in parametric form.

The following lemmas are needed for the proof of Proposition 3.30.

Lemma 3.31. For all 0 ≤ i ≤ n, the vector field

vi =
∑n

j=0 xj
1
2j ∂xj

= x0∂x0
+ 1

2x1∂x1
+ · · ·+ 1

2ixi∂xi

preserves each nΓj ⊂ R
n+1, for j = 0, . . . , i.
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Proof. Since nΓj ⊂ R
n+1 is independent of xj+1, . . . , xn, it suffices to prove

the case i = j = n. Recall nΓn is the zero-locus of f = x0 − h2n. We will show
v(hn) =

1
2hn and so v(f) = f . Recall hn = hn,0 = x1 − h2n,1, and in general

hn,j = xj+1 − h2n,j+1 with hn,n−1 = xn. Thus vn(hn,n−1) =
1
2nhn,n−1, and by

induction, v(hn,j) =
1

2j+1hn,j , so in particular v(hn,0) = v(hn) =
1
2hn. □

Remark 3.32. In the context of the inductive step outlined above, we will
use Lemma 3.31 in particular the vector field

vn−1 =
∑n−1

i=0 xi
1
2i∂xi

= x0∂x0
+ 1

2x1∂x1
+ · · ·+ 1

2n−1xn−1∂xn−1

to move Υn to nΓn. The lemma confirms we will preserve Υ′ = n−1Γ× R =⋃n−1
i=0

nΓi.

Lemma 3.33. For any 0 ≤ j < i ≤ n, and 1 ≤ k ≤ i, we have

∂h2i
∂xk

= −(−2)k
k−1∏

j=0

hi,j = −(−2)khi,0hi,1 · · ·hi,k−1

Proof. Recall hi = hi,0 and the inductive formulas hi,j = xj+1 − h2i,j+1 with
hi,i−1 = xi. Thus we have

∂h2i,j
∂xj+1

= 2hi,j
∂h2i,j
∂xk

= −2hi,j
∂h2i,j+1

∂xk
k > j + 1

and the assertion follows. □

Proof of Proposition 3.30. Suppose Υ =
⋃n−1

i=0
nΓi ∪Υn where Υn is the

graph of

Hβ = (1 + β
n−1∏
j=1

h2n,j)h
2
n = (1 + βh2n,1 · · ·h2n,n−1)h

2
n

Our aim is to find a normalizing isotopy, generated by a time-dependent
vector field vt, taking the graph Υn = {x0 = Hβ} to the standard graph
nΓn = {x0 = h2n}, i.e. to the graph where β = 0, while preserving

⋃n−1
i=0

nΓi.
Thus for any infinitesimal deformation in the class of functions Hβ , we
seek a vector field v realizing the deformation and preserving the functions
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h0, . . . , hn−1, i.e. we seek to solve the system

ḣi = 0, i = 0, . . . , n− 1

Ḣβ = γ

n−1∏

j=0

h2n,j = γh2n,0 · · ·h2n,n−1

(2)

where Ḣβ denotes the derivative of Hβ with respect to v, and γ is any given
smooth function.

Let Φβ ⊂ T ∗
R
n+1 denote the conormal to the graph of Hβ . Any vector

field v =
∑n

j=0 vj∂/∂xj
on R

n+1 extends to a Hamiltonian vector field vH
on T ∗

R
n+1 with Hamiltonian H =

∑n
j=0 pjvj . We will find v deforming the

graph of Hβ by finding H so that vH deforms the conormal to the graph
Φβ .

In general, for a function f : Rn → R, with graph Γf = {x0 = f} ⊂
R
n+1, denote the conormal to the graph by T ∗

Γf
⊂ T ∗

R
n+1. With respect

to the contact form p1dx1 + . . . pndxn − x0dp0, the conormal T ∗
Γf

is given by
the generating function F (x1, . . . , xn) = −p0f(x1, . . . , xn), i.e. it is cut out
by the equations

pi = −p0
∂f

∂xi
, i = 1, . . . , n

x0 = f(x1, . . . , xn)

Hence given a Hamiltonian H =
∑n

j=0 pjvj , its restriction to the conor-
mal T ∗

Γf
is given by

H|T ∗

Γf
= p0v0|x0=f − p0

n∑

j=1

∂f

∂xj
vj |x0=f

and so further restricting to p0 = 1, we find the Hamilton-Jacobi equation

H|T ∗

Γf
∩{p0=1} = v0|x0=f −

n∑

i=1

∂f

∂xi
vi|x0=f = v0|x0=f − ḟ
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372 D. Álvarez-Gavela, Y. Eliashberg, and D. Nadler

Let us apply the above to Hβ and hi, for i = 0, . . . , n− 1. It allows us
to transform system (2) into the system

v0(x1, . . . , xn, hi)−
n∑

j=1

∂hi
∂xj

vj = 0, i = 0, . . . , n− 1

v0(x1, . . . , xn, Hβ)−
n∑

j=1

∂Hβ

∂xj
vj = γ

n−1∏

j=0

h2n,j

(3)

Note we can reformulate Lemma 3.31 from this viewpoint: when β = γ = 0,
given any function h = h(x1, . . . , xn), the functions

v0 = x0h, v1 =
x1
2
h, v2 =

x2
4
h, . . . , vn =

xn
2n
h(4)

satisfy system (3).
Now let us choose v0, v1, . . . vn−1 as in (4) but set vn = 0. This will satisfy

the first n equations of system (3), independently of β, γ. From hereon, we
will restrict to this class of vector fields and focus on the last equation of
system (3).

Let us first set β = 0, so that Hβ = h2n, and solve system (3) in this
case. Using Lemma 3.33, we can then rewrite the left-hand side of the last
equation of system (3) in the form

v0(x1, . . . , xn, h
2
n)−

n−1∑

j=1

∂h2n
∂xj

vj = h


h2n −

n−1∑

j=1

∂h2n
∂xj

xj
2j




= h


h2n +

n−1∑

j=1

(−1)jxj
j−1∏

k=0

hn,k




Here we recall the notation hi,j = hi−j(xj+1, . . . , xi), so that using the rela-
tions hn = hn,0, hn,k − xk+1 = −h2n,k+1 we have

∂hn
∂xj

= 2j−1(−1)j−1
j−1∏

k=1

hn,k.
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Further, we can inductively simplify the term in parentheses

h2n +

n−1∑

j=1

(−1)jxj
j−1∏

k=0

hn,k = hn


hn − x1 +

n−1∑

j=2

(−1)jxj
j−1∏

k=1

hn,k




= hn


−h2n,1 +

n−1∑

j=2

(−1)jxj
j−1∏

k=1

hn,k




= hnhn,1


−hn,1 + x2 +

n−1∑

j=3

(−1)jxj
j−1∏

k=2

hn,k




· · ·

= (−1)n−1hnhn,1hn,2 · · ·hn,n−1 = (−1)n−1
n−1∏

j=0

hn,j

Thus for β = 0, the last equation of system (3) reduces to

(−1)n−1h

n−1∏

j=0

hn,j = γ

n−1∏

j=0

h2n,j

and hence can be solved by

h = (−1)n−1γ

n−1∏

j=0

hn,j

Now for general β, we will similarly calculate the left-hand side of the
last equation of system (3). To simplify the formulas, set

F =
n−1∏
j=0

hn,j θ = βF 2

Thus we have Hβ = (1 + θ)h2n, and our prior calculation showed when β = 0,
the last equation of system (3) took the form

(−1)n−1hF = γF 2

so was solved by h = (−1)n−1γF .
For general β, we just need to consider the extra term obtained from the

θ part of the factor (1 + θ) which multiplies h2n. It therefore follows formally
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from the previous equation that, after factoring out the function h to be
solved for, the left-hand side of the last equation of system (3) takes the
form

(−1)n−1(1 + θ)F − h2n
n−1∑

j=1

1

2j
∂θ

∂xj
xj

Thus the equation itself takes the form

(5)


(−1)n−1(1 + θ)F − h2n

n−1∑

j=1

1

2j
∂θ

∂xj
xj


h = γF 2

Since θ = βF 2, we have

∂θ

∂xj
= F 2 ∂β

∂qj
+ β

∂F 2

∂qj
= F 2 ∂β

∂qj
+ 2Fβ

∂F

∂qj

and hence ∂θ
∂xj

is divisible by F . Thus we can divide equation (5) by F , and

after renaming γ, write equation (5) in the form

(1 +O(x))h = γF

where O(x) vanishes at the origin. We conclude we can solve the equation
by h = (1 +O(x))−1γF .

This completes the proof of Proposition 3.30. □

3.5.5. Proof of Theorem 3.27. In this section, we use Propositions 3.29
and Proposition 3.30 to complete the inductive step outlined in 3.5.3, and
thus, complete the proof of Theorem 3.27. Let us assume n ≥ 2. Recall the
notation nΦ = φ(nL), nΦn = φ(nLn), Υ = π(nΦ) and Υn = π(nΦn).

Then Υ = Υ′ ∪Υn where Υ′ =
⋃n−1

i=0
nΓi is already standard. We will

implement the following strategy. Suppose for some 0 < k ≤ n− 1, we have
moved Υn, while preserving Υ′, so that we have the relation of primary
tangencies

τ(Υn,
nΓj) ⊃ τ(nΓn,

nΓj) j > k

Then using Proposition 3.29 and Proposition 3.30, or alternatively, the cases
n = 0, 1 when respectively k = n− 1, n− 2, we will move Υn, while preserv-
ing Υ′, so that we have the relation of primary tangencies

τ(Υn,
nΓj) ⊃ τ(nΓn,

nΓj) j ≥ k
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Proceeding in this way, we will arrive at k = 0, where all primary tangen-
cies have been normalized. Then a final application of Proposition 3.29 and
Proposition 3.30 will complete the proof.

Figure 3.5: The strategy of the proof: inductively normalize tangencies.

To pursue this argument, we need the following control over primary
tangencies.

Lemma 3.34. Fix 0 ≤ k < j ≤ n− 1.
We have

τ(τ(Υn,
nΓk), τ(

nΓj ,
nΓk)) ⊃ τ(Υn,

nΓj) ∩ τ(nΓj ,
nΓk)

Moreover, when k = n− 2, the tangency of τ(Υn,
nΓn−2) and

τ(nΓn−1,
nΓn−2) is nondegenerate.

Proof. We will assume k > 0 and leave the case k = 0 as an exercise.
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Fix a point

y ∈ τ(Υn,
nΓj) ∩ τ(nΓj ,

nΓk)

In particular y ∈ Υn and so y = π(ỹ) for some ỹ ∈ nΦn. Recall nΛn =⋃
ε
nΛε

n. Hence after applying φ we may also write nΦn =
⋃

ε
nΦε

n and so
ỹ ∈ nΦε

n, for some ε.
Note y ∈ τ(Υn,

nΓj) implies ỹ is in the closure of the clean codimension
one intersection of nΦn,

nΛj .
By applying φ to Corollary 3.26, this locus intersects nΦε

n precisely along
nΦε

n ∩ nΛε
j and so ỹ ∈ nΛε

j .
Similarly, note y ∈ τ(nΓj ,

nΓk) implies ỹ is in the closure of the clean
codimension one intersection of nΛj ,

nΛk. By Corollary 3.26, this locus in-
tersects nΛε

j precisely along nΛε
j ∩ nΛε

k and so ỹ ∈ nΛε
k.

Thus altogether ỹ ∈ nΦε
n ∩ nΛε

j ∩ nΛε
k = (nΦε

n ∩ nΛε
k) ∩ (nΛε

j ∩ nΛε
k).

By Corollary 3.26, the intersections nΦε
n ∩ nΛε

k and nΛε
j ∩ nΛε

k are clo-
sures of clean codimension one intersections, hence their projections lie in
the primary tangencies τ(Υn,

nΓk) and τ(
nΓj ,

nΓk) (for the first intersection
one applies φ to the conclusion of Corollary 3.26). Moreover, nΦε

n ∩ nΛε
k and

nΛε
j ∩ nΛε

k intersect along their primary tangency. Since π restricted to nΛk

has no critical points, the projection of this primary tangency is again a pri-
mary tangency. Hence y ∈ τ(τ(Υn,

nΓk), τ(
nΓj ,

nΓk)), proving the asserted
containment.

We leave the nondegeneracy of the case k = n− 2 to the reader. □

Now we are ready to inductively normalize the primary tangencies.

Lemma 3.35. Fix 0 ≤ k < n− 1.
Suppose

τ(Υn,
nΓj) = τ(nΓn,

nΓj) j > k

Then there exists a diffeomorphism ψ : Rn+1 → R
n+1 preserving Υ′ =⋃n−1

i=0
nΓi such that

τ(ψ(Υn),
nΓj) = τ(nΓn,

nΓj) j ≥ k

Moreover, when k ̸= n− 2, the diffeomorphism is an isotopy.

Proof. We will assume k < n− 3. We leave the elementary cases k = n−
2, n− 3 to the reader. They can be deduced from the parametric versions of
the cases n = 0, 1 presented in 3.5.1, 3.5.2 respectively.

Throughout what follows, we use the projection R
n+1 → R

n to identify
nΓk = R

n.
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On the one hand, we have

τ(nΓj ,
nΓk) = R

k × n−k−1Γj−k−1 k < j < n

On the other hand, by Lemma 3.34 and assumption, we have

τ(τ(Υn,
nΓk), τ(

nΓj ,
nΓk)) = τ(Υn,

nΓj) ∩ nΓk

= τ(nΓn,
nΓj) ∩ nΓk k < j < n

Hence within nΓk = R
n, the loci τ(Υn,

nΓk) and τ(
nΓn,

nΓk) have the same
tangencies with

τ(nΓj ,
nΓk) = R

k × n−k−1Γj−k−1 k < j < n

Thus Proposition 3.29 and Proposition 3.30 provide a time-dependent
vector field of the form

vt = ht
n−1∑

i=k+1

1
2ixi∂xi

generating an isotopy φ : Rn−k → R
n−k satisfying

φ(τ(Υn,
nΓk)) = τ(nΓn,

nΓk)

In addition, the function ht, hence vector field vt, is divisible by the product∏n−1
j=k+1 hn,j , and thus φ preserves its zero-locus.
Let us complete vt to the vector field

Vt = ht
n−1∑
i=0

1
2ixi∂xi

and consider the isotopy ψ : Rn+1 → R
n+1 generated by Vt.

Then ψ satisfies

ψ(τ(Υn,
nΓk)) = τ(nΓn,

nΓk)

It also preserves nΓi, for 0 ≤ i ≤ n− 1, as well as τ(Υn,
nΓj) = τ(nΓn,

nΓj),
for j > k. In addition, it preserves

τ(nΓj ,
nΓk) = R

k × n−k−1Γj−k−1 k < j < n

since this is the zero-locus of hn,j . □
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Finally, let us use the lemma to complete the inductive step of the proof
of Theorem 3.27 as outlined above. Suppose for some 0 < k ≤ n− 1, we have
moved Υn, while preserving Υ′, so that we have the sought-after primary
tangencies

τ(Υn,
nΓj) = τ(nΓn,

nΓj) j > k

Then using Lemma 3.35, we can move Υn, while preserving Υ′, so that we
have the sought-after primary tangencies

τ(Υn,
nΓj) = τ(nΓn,

nΓj) j ≥ k

Proceeding in this way, we arrive at k = 0, where all primary tangencies have
been normalized. Now a final application of Proposition 3.29 and Proposi-
tion 3.30 move Υn to nΓn, while preserving Υ′, and thus complete the proof
of Theorem 3.27.

3.6. Conclusion of the proof

We are now ready to prove Proposition 3.6. As a consequence we establish
Theorem 3.5, and since all the above also holds parametrically this also
establishes the parametric version Theorem 3.12.

Proof of Proposition 3.6. Take any point λ in the front H := π(Λ) and let
π−1(λ) = {λ1, . . . , λk}. Let Λ1, . . . ,Λk be germs of Λ at these points of arbo-
real types (Tj , n), n(Tj) = nj . We need to show that the germ of the front
H at λ is diffeomorphic to the germ of a model front HT , where T is a
signed rooted tree obtained from

⊔
Tj by adding the root ρ and adjoining

it to the roots ρj of the trees Tj by edges [ρρj ]. The signs of all edges of
the trees Tj are preserved, while previously unsigned edges ρjα get a sign
ε(ν, L, α), see (1).

We proceed by induction on the number of vertices in the signed rooted
tree T = (T, ρ, ε).

The base case of a (A1,m)-front H ⊂ R
m is the same geometry as ap-

pearing in 3.5.1: any graphical hypersurface H ⊂ R× R
m−1 is isotopic to

the germ of the zero-graph {0} × R
m−1.

For the inductive step, fix a rooted tree T = (T, ρ, ε), and as usual set
n = |n(T )|. Consider a (T ,m)-front H ⊂ R

m, with by necessity m ≥ n.
Fix a leaf vertex β ∈ ℓ(T ), which always exists as long as T ̸= A1.

Consider the smaller signed rooted tree T ′ = T \ β, and the corresponding
(T ′,m)-front H ′ = H \ H̊[β] ⊂ R

m, where H̊[β] ⊂ H is the interior of the
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smooth piece indexed by β. By induction, we may assume

H ′ = HT ′ × R
m−n+1 ⊂ R

m

Thus it remains to normalize the smooth piece H[β].
Let Aβ = (Aβ , ρ, εβ) be the linear signed rooted subtree of T = (T, ρ, ε)

with vertices v(Aβ) = {α ∈ v(T ) |α ≤ β}. Set d = v(T ) \ v(Aβ) = n(T ) \
n(Aβ) to be the complementary vertices.

Consider the (Aβ ,m)-front K ⊂ H given by the union K =⋃
α∈n(Aβ)

K[α] of the smooth pieces of H ⊂ R
m indexed by α ∈ n(Aβ). Note

for A ′
β = Aβ ∩T ′, and K ′ = K ∩H ′, we already have

K ′ = HA ′

β
× R

m−n+1+d ⊂ R
m

and seek to normalize the smooth piece K[β] = H[β].

Figure 3.6: Treating the complementary directions as parameters.

Now we can apply Theorem 3.27 to normalize K[β] viewed as the final
smooth piece of K. More specifically, we can apply Theorem 3.27 to nor-
malize K[β] while preserving K ′ and viewing the complementary directions
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R
m−n+1+d as parameters, see Figure 3.6. This insures we preserve H ′ and

hence do not disturb its already arranged normalization.
This concludes the proof of Proposition 3.6. □
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