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We estimate the displacement energy of Lagrangian 3-spheres in a
symplectic 6-manifold X, by estimating the displacement energy
of a one-parameter family Lλ of Lagrangian tori near the sphere.
The proof establishes a new version of Lagrangian Floer theory
with cylinder corrections, which is motivated by the change of open
Gromov-Witten invariants under the conifold transition. We also
make observations and computations on the classical Floer theory
by using the symplectic sum formula and Welschinger invariants.
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1. Introduction

LetX be a closed symplectic manifold and L be a closed Lagrangian subman-
ifold. A classical problem in symplectic topology cares about the dynamic of
L under Hamiltonian isotopies. In particular L is called nondisplaceable if it
cannot be separated from itself by any Hamiltonian diffeomorphism. That
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is,

L ∩ ϕ (L) ̸= ∅, ∀ϕ ∈ Ham (X,ω) .

Otherwise L is called displaceable. For a displaceable Lagrangian subman-
ifold, there is a notion of displacement energy to characterize how much
effort one needs to displace it away. Let Ht be a time-dependent Hamilto-
nian function on X for t ∈ [0, 1] and ϕt be the corresponding Hamiltonian
isotopy. The Hofer length of Ht is defined as

||Ht||X =

∫ 1

0
(max
X

Ht −min
X

Ht)dt

and the displacement energy of L is defined as

EL = inf{||Ht||X | L ∩ ϕ1 (L) = ∅}.

If L is nondisplaceable then EL is defined to be infinity.
By the work of Gromov [30] and Chekanov [10, 11, 35], the displace-

ment energy is closely related to the least energy of a holomorphic disk
with boundary on L. Later this relation has been extended by Fukaya-Oh-
Ohta-Ono to the torsion part [19, 24] of the Lagrangian Floer cohomology
of L, possibly equipped with bounding cochains and deformed by bulk cy-
cles. Hence it gives us finer estimates on the displacement energy. In this
note we establish a new version of Lagrangian Floer cohomology counting
more general bordered Riemann surfaces and study its torsion part. As an
application we obtain some new estimates of the displacement energy of
Lagrangian 3-spheres in a symplectic 6-manifold.

More precisely, this new version of Lagrangian Floer theory not only
counts holomorphic strips with Lagrangian boundary conditions, but also
counts holomorphic strips with one interior hole, where the interior hole is
mapped to another reference Lagrangian submanifold. Usually this refer-
ence Lagrangian is a chosen Lagrangian 3-sphere. This extra counting of
holomorphic cylinders enables us to use certain chains to deform the Floer
theory, generalizing the notion of bulk cycles.

Counting holomorphic cylinders between two non-intersecting La-
grangian submanifolds provides us a map between some quantum invariants
of these two Lagrangian submanifolds. For an incomplete list, see [7] and
[31] for some geometric applications. In our current setting, this Floer the-
ory is motivated by various works around the conifold transition, a surgery
that replaces a Lagrangian 3-sphere by a holomorphic CP 1, introduced by
Smith-Thomas-Yau [40]. How geometric invariants change under this tran-
sition is an important question in the fields of symplectic topology and



✐

✐

“3-Sun” — 2023/12/15 — 18:32 — page 511 — #3
✐

✐

✐

✐

✐

✐

Displacement energy of Lagrangian 3-spheres 511

enumerative geometry. Particularly, some closed Gromov-Witten invariants
with point-wise constraints are not preserved under this transition, unless
one also takes the open Gromov-Witten invariants on S3 into account. From
this point of view, to compare the Lagrangian Floer theory of a Lagrangian
away from the holomorphic CP 1 in the resolved side, it is natural to consider
the contributions of bordered curves with disconnected boundaries on both
of the sphere S3 and the Lagrangian. So here we realize this idea in a sim-
ple version, where both holomorphic strips and holomorphic strips with one
interior hole attached on S3 are counted. Similar philosophy already started
to play an important role in the mirror symmetry ground. This article can
be regarded as an application, maybe the first one, to symplectic topology.

However, the above philosophy often expects that the data of all gen-
era should be considered, otherwise what one obtained is not an invariant.
Therefore our baby theory only works modulo some energy. Recently, the
open Gromov-Witten theory in T ∗S3 with all genera has been successfully
related to knot-theoretic invariants by Ekholm-Shende [17]. It would be in-
teresting to try to apply the techniques therein to define a full genus Floer
theory, starting with the monotone Lagrangian torus in T ∗S3. Hopefully
there will be a correspondence between open Gromov-Witten invariants with
coefficients in skein modules and bulk-deformed open Gromov-Witten invari-
ants. Then one may move further to toric compactifications or other general
cases, to see how Lagrangian Floer theory and even Fukaya category change
under the conifold transition.

1.1. Main results

Let X be a closed symplectic 6-manifold with a Lagrangian 3-sphere S. We
say S is integrally homologically trivial if the inclusion map i : H3(S;Z) →
H3(X;Z) is a trivial map. For an oriented Lagrangian submanifold L in X,
we will study holomorphic disks with boundary on L and holomorphic cylin-
ders with one boundary on L and the other on S. The following condition
is designed to make various moduli spaces behave nicely.

Condition 1.1. There exists a compatible almost complex structure J and
two positive numbers E+ ≥ ES such that

1) all non-constant J-holomorphic disks on L, with energy less than E+,
have positive Maslov indices;

2) all Maslov two J-holomorphic disks on L, with energy less than E+,
are regular;
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3) all non-constant J-holomorphic spheres, with energy less than E+,
have positive first Chern numbers.

4) all J-holomorphic disks on S, with energy less than ES , are constant
(this includes the case of a J-holomorphic sphere with one point at-
tached on S);

5) all J-holomorphic cylinders with one boundary on L and the other on
S, with energy less than ES have positive Maslov index.

This condition is an open condition except item (2). In this article, we
expect that the transversality results of holomorphic curves can be obtained
by using a specific J satisfying Condition 1.1 via virtual perturbation [19,
26]. Or we fix an open neighborhood of a J satisfying (1), (3), (4), (5) then
use families of almost complex structures in this neighborhood via classical
means, also see Remark 4.12 and Remark 5.13.

Now for a triple (X,S, L) indicated before, moreover suppose that there
is a 4-chain K in X such that ∂K = S and K ∩ L = ∅. Note that L is an
orientable 3-manifold hence spin. Then by the work of Fukaya-Oh-Ohta-
Ono [19], there is an A∞-structure {mk} on the singular cohomology of L,
modulo TE+ . The main point of this article is to use the chain K as a bulk
deformation to deform {mk}.

Theorem 1.2. Let X be a closed symplectic 6-manifold with an integrally
homologically trivial Lagrangian 3-sphere S, and let L be an oriented La-
grangian submanifold of X satisfying Condition 1.1. For a 4-chain K such
that ∂K = S and K ∩ L = ∅, let

b = w ·K, w ∈ Λ0, v(w) > 0

and E := min{ES + v(w), 2v(w), E+}. Then there is an A∞-structure
{mcy,b

k } on the singular cohomology of L, with coefficients in Λ0

/
TE · Λ0.

Here Λ0 is the universal Novikov ring with a valuation v, see Section 2
for our conventions. This A∞-structure {mcy,b

k } is a deformation of the A∞-
structure {mk} in [19], deformed by the chain K with Novikov ring coeffi-
cients. In particular, we count not only holomorphic disks but also holomor-
phic cylinders with boundaries on L and S.

An example is that when both X and L are monotone, then the condi-
tions can be achieved by taking E+ = +∞ and ES as the minimal area of a
symplectic disk with boundary on S.
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Similar to the case of the usual A∞-structure, we can also use {mcy,b
k } to

construct a Lagrangian Floer cohomology of L, deformed by the chain K.
In Theorem 1.2, the Lagrangian submanifold L can be any closed oriented
3-manifold with a spin structure. Next we focus on the case where L is a
Lagrangian torus close to S, to get some geometric applications. We start
with the local geometry near a Lagrangian 3-sphere. Let S3 be a 3-sphere
and (T ∗S3, ω0) be the total space of its cotangent bundle equipped with the
standard symplectic form. It is known that there is a one-parameter family
of Lagrangian tori {Lλ}λ∈(0,+∞) in (T ∗S3, ω0) such that

1) Lλ is monotone with a monotonicity constant λ and has minimal
Maslov number two;

2) Lλ has nonzero Floer cohomology with certain weak bounding
cochains, hence it is nondisplaceable in T ∗S3;

3) for any neighborhood of the zero section S3, Lλ is contained in this
neighborhood if λ is small enough.

We will review the explicit construction in Section 3 following [13] and [15],
where they computed the Gromov-Witten disk potential of Lλ. Moreover,
by the local study there is a compatible almost complex structure J0 on
(T ∗S3, ω0) such that

1) J0 is cylindrical outside a large compact set;

2) all J0-holomorphic disks on Lλ with Maslov index two are regular;

3) the images of all J0-holomorphic disks on Lλ with Maslov index two
are outside a neighborhood Vλ of the zero section.

A compactly supported small generic perturbation of J0 also satisfies above
properties.

Then let S be a Lagrangian 3-sphere in a symplectic 6-manifold X and
U be a Weinstein neighborhood of S which is symplectomorphic to some
disk cotangent bundle (DrT

∗S3, ω0). A subfamily of {Lλ}λ∈(0,+∞) sits in
U = DrT

∗S3 and one can ask whether Lλ is globally nondisplaceable in X.
Note that if Lλ is nondisplaceable for all small λ then the Lagrangian sphere
S is also nondisplaceable. We will use this approach to obtain some estimates
of the displacement energy of S by estimating the displacement energy of
Lλ near it.

The above idea is motivated by concrete examples in [13] and [38]. Let
F3 be the manifold of full flags in C3. When F3 is equipped with a monotone
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symplectic form, a Lagrangian 3-sphere in F3 with vanishing Floer cohomol-
ogy was found in [33]. Later in [13] this Lagrangian sphere is shown to be
nondisplaceable by showing the local one-parameter family of Lagrangian
tori Lλ near it has nontrivial Floer cohomology. When F3 is equipped with
a non-monotone symplectic form then the “same” Lagrangian 3-sphere is
proved to be displaceable, see [38].

Both [13] and [38] use explicit geometric properties of F3. And here we
try to study a general theory without knowing much about the ambient sym-
plectic manifold X. One difficulty is that for a general ambient symplectic
manifold, there is no “canonical” ambient 4-cycle to deform the Floer coho-
mology to be non-zero. Locally in T ∗S3 there are only 4-chains with bound-
ary as the zero section. Directly using these chains to deform will cause that
some boundary operators do not have zero square, since the 4-chain has a
codimension one boundary. Our strategy is to consider the moduli space
of holomorphic cylinders to cancel this possible boundary effect, such that
those 4-chains can be used as deformations.

Assuming (1)− (3) in Condition 1.1, the one-pointed open Gromov-
Witten invariant nβ is defined, for any Maslov two disk class β ∈ π2(X,L)
with energy less than E+. We consider the sequence

{βk | nβ ̸= 0, E(βk) ≤ E(βk+1)}∞k=1

of disk classes with Maslov index two, enumerated by their symplectic en-
ergy, see Figure 1. From the local study we know that Lλ bounds four J-
holomorphic disks with Maslov index two inside U , with same energy E1,λ.
There maybe other Maslov two holomorphic disks of which the images are
not contained in U . We call them outside disk contributions. If Lλ is near S,
the local disk contributions are the first four elements in the above sequence.
This is why we need λ0 small in Theorem 1.4. Now let E5,λ = E(β5) be the
least energy of outside disk contributions. Then when Lλ is close to S we
have that E5,λ ≫ E1,λ.

As we mentioned before, the A∞-structure {mcy,b
k } is a deformation of

the usual A∞-structure, by using holomorphic cylinder counting. Let β be
a class of cylinders with one end on L, the other end on S, with Maslov
index two. Consider the moduli space of holomorphic cylinders Mcy

1 (β; J)
representing β, with one boundary marked point on the side of L. By Con-
dition 1.1, there is no disk bubble or sphere bubble off the cylinders, if
ω(β) < ES , E+. The only possible boundary of Mcy

1 (β; J) is where the cir-
cle boundary of a cylinder on S shrinking to a point. And we will glue
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Mcy
1 (β; J) with another moduli space of holomorphic disks with one inte-

rior marked point to cancel this boundary. However, note that there is an
almost complex structure J0 on (T ∗S3, ω0) such that the images of all J0-
holomorphic disks on Lλ with Maslov index two are outside a neighborhood
Vλ of the zero section. In this case, the disk counting and cylinder counting
are separated. Then we can count such holomorphic cylinders by defining
the following mapping degree

ncyβ := deg(ev : Mcy
1 (β; J) → L) ∈ Q.

The next condition gives some control on the local cylinder contributions.

Condition 1.3. There exists a compatible almost complex structure J
satisfying Condition 1.1 and the following

6) the images of all J-holomorphic disks on Lλ with µ(β) = 2, ω(β) <
E5,λ are outside a neighborhood Vλ of S;

7) 0 ̸= 1 + ncyβ1
+ ncyβ2

− ncyβ3
− ncyβ4

;

8) 0 = ncyβ for any class β with µ(β) = 2, ω(β) < E5,λ, β ̸= βi.

Note that (6) can be achieved by assuming J = J0 on U , (7) and (8)
may put non-trivial constraints. Nonetheless, we give an argument that af-
ter degenerating the complex structure near S, there is no holomorphic disk
or cylinder touching S with Maslov index two. Hence ncyβ is always zero and
(7), (8) are satisfied. However, this degenerate almost complex structure may
not satisfy other assumptions in Condition 1.1. Hence we view them as as-
sumptions, rather than consequences, under which we can perform computa-
tions to obtain geometric applications from this deformed A∞-structure. On
the other hand, the mapping degree of some disk class (or the one-pointed
open Gromov-Witten invariant of that class) is known to be one. Then Con-
dition 1.3 helps to show that after adding cylinder contributions the leading
order terms of the potential function have non-degenerate critical points.
So we can use an implicit function theorem to perturb away higher energy
terms.

Theorem 1.4. Let X be a closed symplectic 6-manifold which contains
an integrally homologically trivial Lagrangian 3-sphere S. Consider the La-
grangian embedding

Lλ →֒ U = DrT
∗S3 ⊂ X
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Figure 1: Disk contributions from inside and outside.

for λ ∈ (0, λ0) where λ0 is a sufficiently small number. If Lλ satisfies Con-
dition 1.3, and it can be displaced by a Hamiltonian isotopy ϕt generated by
Gt, then

||Gt||X ≥ E5,λ

and

||Gt||X + 2||Gt||S ≥ min{ES + E5,λ − E1,λ, 2(E5,λ − E1,λ), E+}.

Here ||·||X is the Hofer norm and ||·||S is a relative Hofer norm defined
by

||Gt||S =

∫ 1

0
(max

S
Gt −min

S
Gt)dt.

Theorem 1.4 is an explicit application of Theorem 1.2, where a certain
bulk chain wK is used with v(w) = E5,λ − E1,λ. By definition we know that
||Gt||X ≥ ||Gt||S . But for the above two inequalities we can not say which
one is stronger, unless we know the behavior of Gt on S. For example, the
displaceable Lagrangian sphere S in F3 can be displaced by a group action.
In particular the Hamiltonian function is constant on S, hence ||Gt||S = 0
and the second inequality is much stronger than the first one and almost
optimal, see Section 6.3.

Note that our family of tori approaches the sphere infinitesimally, as a
corollary we obtain an estimate of the displacement energy of our Lagrangian
sphere S.

Corollary 1.5. With the same notation in Theorem 1.4 and assuming that
ES ≥ E5,λ, E+ ≥ 2E5,λ, if S can be displaced by a Hamiltonian isotopy ϕt
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generated by Gt then

||Gt||X ≥ lim
λ→0

E5,λ, ||Gt||X + 2||Gt||S ≥ lim
λ→0

2(E5,λ − E1,λ) = lim
λ→0

2E5,λ.

As λ tends to zero, the parameter E1,λ tends to zero and E5,λ − E1,λ

increases to E5,λ=0. The energy E5,λ=0 is roughly the least energy of a holo-
morphic disk with boundary on S. (This also explains why the assumption
that ES ≥ E5,λ is somehow reasonable.) Then the Hofer norm of the Hamil-
tonian which displaces S is roughly twice the least energy of a holomorphic
disk, with a modification term given by the relative Hofer norm.

Next we remark about the applicable range of the above theorems. Con-
dition 1.1 is a strong condition, where (1)− (3) are usually assumed to define
potential functions and Lagrangian Floer cohomology for a non-monotone
Lagrangian torus, see Assumption 3.2 in [5]. And (4), (5) are technical for
us to avoid possible disk and cylinder bubbles on the Lagrangian sphere S,
with small energy.

In addition to the monotone case, possible examples which satisfy Con-
dition 1.1 come from the toric fiber of a symplectic Fano (almost) toric man-
ifold. When J is toric, (1)− (3) are true for any E+ > 0. But in practice we
need to fix some number E+ to keep Condition 1.1 an open condition (except
(2)), by Gromov compactness theorem, see Lemma 6.4.7 and Lemma 6.4.8
in [32]. More specifically, let X0 be a nodal toric Fano threefold and let X
be the smoothing of X0. Each node gives us a Lagrangian S3 and the local
tori near the spheres become toric fibers. There is a full classification [29]
of 100 nodal toric Fano threefolds, 18 out of which are smooth. In theory
one can compute explicitly all the disk potential functions of the toric fibers
therein to find the torsion thresholds, by using the combinatorial data from
their polytopes. But we do not try to do it here. We also assume that S is
homologically trivial over Z. This condition is needed such that S bounds a
4-chain in X and some cylinder counting can be defined. The smoothings of
nodal toric Fano threefolds still satisfy this condition. Note that rationally
homologically non-trivial Lagrangian spheres are always nondisplaceable, by
Theorem H [19]. Therefore our goal here is to use certain examples to convey
the idea of Floer cohomology deformed by chains, instead of proving results
in very general cases.

Besides introducing this new version of Floer theory, we also carry out
some computations of the classical Floer cohomology, which neither uses
bounding cochains and bulk-deformations, nor assumes Condition 1.1. Let
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(X,ω) be a closed symplectic 6-manifold such that

(1.1) [c1(TX)] = c · [ω], c ∈ R

on the image of the Hurewicz map π2(X;Z) → H2(X;Z). We sayX is mono-
tone if c > 0, it is Calabi-Yau if c = 0 and it is negatively monotone if c < 0.
Note that π1(S

3) = π2(S
3) = 0 implies that π2(X,S) ∼= π2(X). If (1.1) is

satisfied then the two homomorphisms c1 and ω on the relative homotopy
group are also proportional to each other with the same constant c. In par-
ticular if X is monotone then S is automatically a monotone Lagrangian
submanifold in the usual sense.

First, by a degeneration method [27, 28] from the symplectic cut and
sum construction, we can determine the displaceability of S and Lλ when X
is Calabi-Yau and negatively monotone. Note that Theorem 1.4 uses cylinder
counting to cancel the outside disk contributions to some extent, here we find
that the outside disk contributions can be perturbed away. Combined with
the Oakley-Usher’s families [37] of monotone nondisplaceable Lagrangian
submanifolds in T ∗Sn, a general phenomenon holds in all higher dimensions.

Theorem 1.6. For any integer n ≥ 3, let (X2n, Sn, ω) be a Calabi-Yau or
negatively monotone symplectic manifold with a Lagrangian sphere. Then
there are continuum families of Lagrangian submanifolds

Lλk,m
∼= (S1 × Sk × Sm)

/
Z2,

k,m ∈ Z+, k ≤ m, k +m = n− 1, λ ∈ (0, λ0) ⊂ R

near the Lagrangian sphere S and are nondisplaceable in X.

The nondisplaceability of a Lagrangian sphere in a Calabi-Yau manifold
was proved in Theorem L [19]. And M. F. Tehrani [27] gave an alternative
proof by the symplectic sum and cut method. Here we are using his approach
to analyze the Lagrangian submanifolds near the sphere. For readers who are
interested in the Lagrangian skeleta of a Calabi-Yau manifold, this theorem
helps to show that if a symplectic manifold is the divisor complement of
a Calabi-Yau manifold and contains a Lagrangian sphere, then its skeleta
must intersect all those Lλk,m near this sphere, see the work [43] by Tonkonog-
Varolgunes.

When the dimension n = 2 the existence of a one-parameter family of
nondisplaceable Lagrangian tori near a Lagrangian two-sphere has also been
studied. First Fukaya-Oh-Ohta-Ono [23] proved the existence when the am-
bient space is S2 × S2 and the Lagrangian sphere is the anti-diagonal. Then
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the general case, without assumption on c1, is studied by the author in [42],
by using the local geometry of T ∗S2 to control the global picture. Similar
local-to-global philosophy also played an important role in [9], [44] and [47]
for other local models, where many geometric applications are obtained.

Next we discuss the case when X is monotone. Since S3 is simply-
connected, orientable and spin, the classical Floer cohomologyHF (S3; Λ(Z))
is well-defined over the integers, which can be computed by using the
pearl complex. Here Λ(Z) is the Novikov ring with Z as the ground ring.
The underlying complex is generated by critical points of a Morse func-
tion over the Novikov ring. If we use the height function to compute it,
the only essential maps count pearly trajectories with Maslov index four,
connecting the minimum and maximum point. For example, when X has
minimal Chern number N ≥ 3, these maps are zero and we have that
HF (S3; Λ(Z)) = H∗(S3;Z)⊗ Λ(Z). When X has minimal Chern number
N = 2, these maps are two-pointed open Gromov-Witten invariants of class
β. When X has minimal Chern number N = 1, these maps count holomor-
phic disks connected by negative gradient flow lines. However, the usual
two-pointed open Gromov-Witten invariant of class β is not well-defined
due to splittings of disks with Maslov index two.

On the other hand, Welschinger [45] defined F -valued open counts of
disks for a Lagrangian submanifold L when H1(L;F ) → H1(X;F ) is injec-
tive, for a commutative ring F . Given a disk class β and r ≥ 1 boundary
constraints, his invariant nWr,β counts multi-disks weighted by linking num-
bers. We compare his invariants and the Floer differential and find they are
equal to each other, up to sign.

Theorem 1.7. Let S be a Lagrangian 3-sphere in a monotone symplectic
6-manifold X. Choose a generic triple (f, ρ, J) of a Morse function f , a
Riemannian metric ρ and a compatible almost complex structure J . Assume
that f is the height function and p is its minimum and q is its maximum.
Then given a disk class β ∈ π2(X,S) with Maslov index four, we have an
equality

♯Pprl(p, q;β; f, ρ, J) = ±nW2,β .
Here the left-hand side of the equation is the signed count of pearly trajecto-
ries connecting p to q, see Section 3.2.

Therefore we can define the following invariant

nW2 :=
∑

µ(β)=4

nW2,β ∈ Z
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to determine the Floer cohomology. That is, HF (S; Λ(Z2)) ̸= {0} if nW2 is
an even number. So we hope the Welschinger invariants help us to compute
the Floer homology in certain settings, like the one-pointed open Gromov-
Witten invariants in the case of toric fibers. Moreover, we expect to define
similar enumerative equations for Lagrangian submanifolds of general topo-
logical type. For example, for a Lagrangian S3 × Tn we may need both two
types of enumerative invariants to determine its Floer homology.

1.2. Future questions

Now we formulate three questions motivated by above discussions.

Question 1.8. Is it true that all monotone Lagrangian 3-spheres in a closed
symplectic 6-manifold are nondisplaceable? What about higher dimensions?

When the ambient space is open, there are certain monotone Lagrangian
(2k + 1)-spheres in Ck+1 × CP k which are displaceable, see [4] and [2]. In
higher dimensions, Solomon-Tukachinsky [41] and Chen [12] have generalized
Welschinger invariants. We expect their invariants also have some meaning
in Floer theory.

Question 1.9. Is it true that all Lagrangian 3-spheres in a closed Calabi-
Yau manifold are not isolated?

By “not isolated” we mean for a Lagrangian sphere S there is another
Lagrangian submanifold L such that L is not Hamiltonian isotopic to S and
not displaceable from S. A stronger question would be that any Lagrangian
3-sphere in a Calabi-Yau manifold must intersect another Lagrangian 3-
sphere. One possibility is that L comes from a “completion” of the cotangent
fiber of S. Then, how to relate the cotangent fiber generation [1] to a global
statement will be a deeper question.

Question 1.10. Is it true that all simply-connected Lagrangian submani-
fold in a Calabi-Yau manifold are nondisplaceable?

In the 3-dimensional case it is true since the only candidate is the 3-
sphere. And this question can be viewed as a generalization for Gromov’s
theorem that no simply-connected Lagrangian submanifold exists in Cn. If
a simply-connected Lagrangian submanifold L lives in a Calabi-Yau mani-
fold, it has vanishing Maslov class. The possible appearance of Maslov zero
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holomorphic disks with boundary on L gives obstructions to define the La-
grangian Floer cohomology. The obstructions are cohomology classes living
in H2(L;Q). One treatment is to totally exclude them by assuming that
H2(L;Q) = 0. Then this question has an affirmative answer, see Theorem
6.1.15 and Corollary 6.1.16 in [19].

The outline of this article is as follows. In Section 2 we give the back-
ground on potential functions with bulk deformations. In Section 3 we re-
view the symplectic sum and cut method and prove Theorem 1.6 and The-
orem 1.7. In Section 4 and 5 we construct three types of Floer theories with
cylinder corrections and show some geometric properties of these theories.
The first model is a disk model with cylinder corrections, which gives us a
deformed potential function to do concrete computations. The second and
third models are complexes generated by Hamiltonian chords and intersec-
tion points respectively, which will be used to study the intersection behavior
of our Lagrangians under Hamiltonian perturbations. Once the equivalences
between the three models is established, we apply them, in Section 6, to
obtain estimates of displacement energy and prove Theorem 1.4.
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2. Preliminaries

We give a very brief summary to the theory of deformed Floer cohomology
and potential functions, referring to Section 2 and Appendix 1 in [23] for
more details.

First we specify the ring and field that will be used. The Novikov ring
Λ0 and its field Λ of fractions are defined by

Λ0 = {
∞∑

i=0

aiT
λi | ai ∈ C, λi ∈ R≥0, λi < λi+1, lim

i→∞
λi = +∞}
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and

Λ = {
∞∑

i=0

aiT
λi | ai ∈ C, λi ∈ R, λi < λi+1, lim

i→∞
λi = +∞}

where T is a formal variable. The maximal ideal of Λ0 is defined by

Λ+ = {
∞∑

i=0

aiT
λi | ai ∈ C, λi ∈ R>0, λi < λi+1, lim

i→∞
λi = +∞}.

We remark that the field Λ is algebraically closed since the ground field is
C, see Appendix A in [21]. All the nonzero elements in Λ0 − Λ+ are units in
Λ0. Next we define a valuation v on Λ by

v(

∞∑

i=0

aiT
λi) = inf{λi | ai ̸= 0}, v(0) = +∞.

This valuation gives us a non-Archimedean norm

|a =

∞∑

i=0

aiT
λi | = e−v(a).

In the following we abuse the notations between singular chains and
cochains via the following conventional Poincaré duality, see Remark 3.5.8
[19]. For a singular chain x in L, the Poincaré dual PD(x), regarded as a
current satisfies that

(2.1)

∫

x

α |x=
∫

L

PD(x) ∧ α

for any differential form α ∈ Ωdimx(L). Geometrically when we define moduli
space of holomorphic curves with point constraints, we think our curves with
points attached on certain chains. But for algebraic convenience we think
these chains as cochains with gradings reversed and shifted.

LetX be a closed symplectic 6-manifold and L be an oriented Lagrangian
submanifold. Fukaya-Oh-Ohta-Ono constructed a filtered A∞-algebra struc-
ture on H∗(L; Λ0) where

mk : H
∗(L; Λ0)

⊗k → H∗(L; Λ0)

are the A∞-operations, see section 3 in [21]. The operators mk are defined
as

mk(x1, · · · , xk) =
∑

β∈π2(X,L)

Tω(β) ·mk;β(x1, · · · , xk)
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where geometrically mk;β(x1, · · · , xk) count holomorphic disks, represent-
ing the class β, with boundary marked points attached on given cocycles
(x1, · · · , xk) in L. We remark that the operators mk are first defined at the
chain level then can be passed to their “canonical model” at the cohomology
level. Here we directly use the canonical model at the cohomology level.

An element b ∈ H1(L; Λ+) is called a weak bounding cochain if it satisfies
the A∞-Maurer-Cartan equation

(2.2)

∞∑

k=0

mk(b, · · · , b) ≡ 0 mod PD([L]).

Here PD([L]) ∈ H0(L;Z) is the Poincaré dual of the fundamental class and
it is the unit of the filtered A∞-algebra. We denote by Mweak(L) the set of
weak bounding cochains of L. If Mweak(L) is not empty then we say L is
weakly unobstructed.

The coefficients of weak bounding cochains can be extended from Λ+

to Λ0. For b ∈ H1(L; Λ0) we can write b = b0 + b+ where b0 ∈ H1(L;C) and
b+ ∈ H1(L; Λ+). Then we define

(2.3) mk,β(b, · · · , b) := e⟨∂β,b0⟩mk,β(b+, · · · , b+)

where the pairing ⟨∂β, b0⟩ =
∫
∂β
b0. Note that if b0 = b′0 + 2π

√
−1Z then

e⟨∂β,b0⟩ = e⟨∂β,b
′
0⟩. So the weak bounding cochains with Λ0 coefficients are

actually defined modulo this equivalence. More precisely, they should be
regarded as elements in

H1(L; Λ0)
/
H1(L; 2π

√
−1Z) := H1(L;C)

/
H1(L; 2π

√
−1Z)⊕H1(L; Λ+).

Now for a weak bounding cochain b we can deform the A∞-operations
in the following way. Define

mb
k(x1, · · · , xk) :=

∞∑

l=0

∑

l0+···+lk=l

mk+l0+···+lk(b
⊗l0 , x1, b

⊗l1 , x2, · · · , xk, b⊗lk).

That is, we insert b in all possible ways. Then {mb
k} is a new sequence of

A∞-operations on H∗(L; Λ0) which satisfies that

(2.4) mb
1 ◦mb

1 = 0,
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see Proposition 3.6.10 in [19]. So we can define the deformed Floer cohomol-
ogy HF (L, b; Λ0) as the cohomology of mb

1 whenever b is a weak bounding
cochain.

When L is a torus, we define a potential function

PO : Mweak(L) → Λ+

by setting
∞∑

k=0

mk(b, · · · , b) = PO(b) · PD([L]).

The new A∞-operations {mb
k} can be regarded as a deformation of {mk}

by a weak Maurer-Cartan element b, which is from the cohomology of L
itself. Similarly we can deform the A∞-operations by the cohomology of
the ambient symplectic manifold X. Such a deformation is called a bulk
deformation.

Let ElH
∗(X; Λ+) be the subspace of H∗(X; Λ0)

⊗l which is invariant
under the action of the lth symmetric group. Then in [19] a sequence of
operators {ql,k;β}l≥0;k≥0 is constructed

ql,k;β : ElH
∗(X; Λ+)⊗H∗(L; Λ0)

⊗k → H∗(L; Λ0).

Geometrically those operators count holomorphic disks with both bound-
ary marked points attached on given cocycles in L and interior marked
points attached on given cocycles in X. And we define the operator ql,k :=∑

β T
ω(β) · ql,k;β . Again, here we are using the operators constructed on the

canonical model. When l = 0 we have that

(2.5) q0,k(1;x1, · · · , xk) = mk(x1, · · · , xk)

where 1 ∈ H∗(X; Λ0) is the unit.
Now for any b ∈ H∗(X; Λ+) and x1, · · · , xk ∈ H∗(L; Λ0) we define

(2.6) mb

k(x1, · · · , xk) =
∞∑

l=0

ql,k(b
⊗l;x1, · · · , xk).

Then {mb

k} also defines a filtered A∞-algebra structure on H∗(L; Λ0). For a
fixed b, an element b ∈ H1(L; Λ+) is called a weak bounding cochain (with
respect to b) if it satisfies the A∞-Maurer-Cartan equation given by the
deformed operators {mb

k}. And we write Mweak(L; b) as the set of weak
bounding cochains of L with respect to b.
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To do concrete computations there are two divisor axioms for the oper-
ators mk and ql,k. For b ∈ H2(X; Λ+), b ∈ H1(L; Λ+) and µ(β) = 2 we have
that

(2.7)
mk;β(b

⊗k) =
(b(∂β))k

k!
·m0;β(1);

ql,k;β(b
⊗l;x1, · · · , xk) =

(b · β)l
l!

· q0,k;β(1;x1, · · · , xk).

where b(∂β) and b · β are pairings between homology and cohomology classes
(we assume that b ∩ L = ∅). These are first studied in [18] and we refer to
Section 7 in [22] for a proof.

Next we put those two deformations together, one from the Lagrangian
itself and the other from the ambient space. Define an operator

(2.8) dbb(x) =
∑

k0,k1

mb

k0+k1+1(b
⊗k0 , x, b⊗k1) : H∗(L; Λ0) → H∗(L; Λ0).

When b ∈ Mweak(L; b) we have that

(2.9) dbb ◦ dbb(x) = 0

and the resulting cohomology

HF (L, b, b; Λ0)

is called the deformed Floer cohomology of L by the bulk deformation b.
If we expand the summation of db

b
we will find that the new differential db

b

contains the differential mb
1.

(2.10)

dbb(x) =
∑

k0,k1

mb

k0+k1+1(b
⊗k0 , x, b⊗k1)

=
∑

l,k0,k1

ql,k0+k1+1(b
⊗l; b⊗k0 , x, b⊗k1)

= mb
1(x) +

∑

l≥1,k0,k1

ql,k0+k1+1(b
⊗l; b⊗k0 , x, b⊗k1).

Hence the differential db
b
is a sum of the “zeroth order” term mb

1 and “higher
order” deformations which count holomorphic disks with interior marked
points attached on given cocycles in X.
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Similarly we define a bulk-deformed potential function

POb : Mweak(L; b) → Λ+

by setting
∞∑

k=0

mb

k(b, · · · , b) = POb(b) · PD([L]).

From the above discussion we have that POb=0(b) = PO(b).
Since the operators mb

1 and db
b
are defined by infinite sums, we need to

assume that b, b are with Λ+ coefficients for the convergence issue. But they
can be extended with coefficients in Λ0 by using similar idea in (2.3). Hence
we obtain a cohomology theory totally over Λ0. So we omit the coefficients
in Mweak(L) and Mweak(L; b) when we do not emphasize them.

A structural result, Theorem 6.1.20 in [19], tells us a decomposition
formula for the deformed Floer cohomology

(2.11) HF (L, b, b; Λ0) ∼= (Λ0)
a ⊕ (

l⊕

i=1

Λ0

T λiΛ0
)

where a ∈ Z≥0 is called the Betti number and λi ∈ R+ are called the torsion
exponents of the deformed Floer cohomology. It is proved that only the free
part of the deformed Floer cohomology is an invariant under Hamiltonian
diffeomorphisms, see Theorem J in [19]. Hence it suffices to show that a > 0
if we want to prove some L is nondisplaceable. When a = 0, the torsion
exponents are closely related to the displacement energy of L, which we will
discuss in detail in Section 5.

3. Computations of classical Floer cohomology

In this section we carry out some computations of classical Floer cohomology,
which are free of bounding cochains and bulk-deformations. Condition 1.1
will not be used.

3.1. Symplectic cut and sum construction

First we summarize the symplectic cut and sum construction to analyze
holomorphic disks on Lagrangian submanifolds near a Lagrangian sphere.
The whole construction is fully described in section 2 of [27] and section 3
of [28].
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Let

Qn = {[z0, · · · , zn+1] ∈ CPn+1 | z20 =

n+1∑

j=1

z2j }

be the complex quadric hypersurface and

Dn = {[z0, · · · , zn+1] ∈ Qn | z0 = 0} ∼= Qn−1

be the divisor at infinity. Then the real part Qn,R = Qn ∩ RPn+1 is a La-
grangian n-sphere in (Qn, ωFS) and Qn −Dn is a Weinstein neighborhood
of Qn,R. Another perspective is that there is a Hamiltonian S1-action on
T ∗Sn such that the sphere bundles of it are regular level sets. If we collapse
the circles on a sphere bundle with radius r then (DrT

∗Sn, ∂DrT
∗Sn) goes

to (Qn, Dn) with a rescaled Fubini-Study symplectic form.
Now we recall the materials from Proposition 2.1 in [27] and Proposi-

tion 3.1 in [28]. Let ∆ ⊂ C be a disk centered at the origin. A symplectic
fibration is a pair π : (X , ωX ) → ∆ such that π is surjective, the total space
(X , ωX ) is a smooth symplectic manifold, the fiber Xz is a smooth symplec-
tic submanifold when z ̸= 0, and X0 is a union of symplectic submanifolds
of (X , ωX ) meeting along a smooth symplectic submanifold D. We call D
the singular locus of X0. A Lagrangian subfibration of π : (X , ωX ) → ∆ is a
submanifold S ⊂ X disjoint from D, such that π(S) = ∆ and Sz := S ∩Xz

is a Lagrangian submanifold for every z.

Proposition 3.1. Let (X,ω, S) be a symplectic 2n-manifold with a La-
grangian n-sphere S. There exists a symplectic fibration π : (X , ωX ) → ∆
with a Lagrangian subfibration S. Let Xz be the fiber at z ∈ ∆ then we have

1) X0 = X− ∪D X+ where both X± are closed smooth symplectic mani-
folds and D = X− ∩X+ is a common symplectic hypersurface;

2) when z ̸= 0 the pair (Xz, ωX |Xz
,Sz) is symplectomorphic to (X,ω, S);

3) when z = 0 then S0 is in X− and the 4-tuple (X−, ωX |X−
, D,S0) is

symplectomorphic to (Qn, ϵωFS , Dn, Qn,R) for some scaling parameter
ϵ > 0, which depends on a choice of the size of a Weinstein neighbor-
hood of S in X.

Next we specify the almost complex structures we will use on this fi-
bration. An almost complex structure J on the fibration π : (X , ωX ) → ∆ is
said to be admissible if

1) it is compatible with ωX and preserves ker dπ;
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Figure 2: Degeneration of a holomorphic disk.

2) it restricts to an almost complex structure on the singular locus D of
X0 and satisfies that

NJ(u, v) ∈ TxD ∀u ∈ TxD, v ∈ TxX0, x ∈ D

where NJ is the Nijenhuis tensor of J .

We denote the set of all admissible almost complex structures on X by JX

and the subset of l-differentiable elements by J l
X . Both spaces JX and J l

X

are non-empty and path-connected.
With respect to an admissible almost complex structure we can com-

pare the first Chern numbers and Maslov indices between (X,ω) and
(X±, ωX |X±

). Let β ∈ H2(X−, S;Z) and A ∈ H2(X+;Z) such that β ·X−

D = A ·X+
D then we can deform the connected sum of β and A to be a

homology class β +A ∈ H2(X,S;Z) in the smooth fiber. Note that ∂β = 0
so the pairings ⟨c1(TX−), β⟩ and ⟨c1(TX), β +A⟩ are well-defined and we
have the following relation.

Proposition 3.2. With the above notation,

⟨c1(TX), β +A⟩ = ⟨c1(TX−), β⟩+ ⟨c1(TX+), A⟩ − 2A ·X+
D

= ⟨c1(TX+), A⟩+ (n− 2)A ·X+
D

(3.1)

We remark that the first line of (3.1) is a general formula and the second
line uses that X− is the quadric hypersurface.

Next we use the symplectic cut and sum construction to analyze holo-
morphic disks with boundaries on a Lagrangian submanifold near a La-
grangian sphere, with respect to some almost complex structure. In [37]
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Oakley-Usher constructed many families of monotone nondisplaceable La-
grangian submanifolds in T ∗Sn.

Theorem 3.3. (Oakley-Usher) There exist continuum families of mono-
tone Lagrangian submanifolds

Lλk,m
∼= (S1 × Sk × Sm)

/
Z2,

k,m ∈ Z+, k ≤ m, k +m = n− 1, λ ∈ (0,+∞) ⊂ R

with non-zero Floer cohomology in T ∗Sn.

Then for a closed symplectic manifold X containing a Lagrangian sphere
S, a sub-family of these Lagrangian submanifolds sits inside a Weinstein
neighborhood U of S. In the following we will show that when the sym-
plectic manifold is Calabi-Yau or negatively monotone, any Lagrangian sub-
manifolds in U does not bound J-holomorphic disks which are not totally
contained in U , for some J . Hence we get continuum families of nondisplace-
able Lagrangian submanifolds stated in Theorem 1.6.

Theorem 3.4. (Theorem 1.6) For any integer n ≥ 3, let (X2n, Sn, ω) be a
Calabi-Yau or negatively monotone symplectic manifold with a Lagrangian
sphere. Then there are continuum families of Lagrangian submanifolds

Lλk,m
∼= (S1 × Sk × Sm)

/
Z2,

k,m ∈ Z+, k ≤ m, k +m = n− 1, λ ∈ (0, λ0] ⊂ R

near the Lagrangian sphere S and are nondisplaceable in X.

Proof. The proof is based on a dimension-counting argument, similar to the
proof of Theorem 1.1 in [27]. Let (X , ωX ) be the fibration constructed above
and JX be the set of all admissible almost complex structures on X . For
an admissible almost complex structure J ∈ JX , let Jz be the restriction of
J on Xz. Let L

λ
z be the image of Lλk,m in Xz. For small λ, we have that

Lλ0 ⊂ X−.
We will study the limit of holomorphic disks from smooth fibers to the

central fiber X0 = X− ∪D X+. In particular, we will show that for z suffi-
ciently close to 0, the Lagrangian submanifold Lλz ⊂ Xz does not bound any
Jz-holomorphic disk which are not inside the Weinstein neighborhood of S,
if J is generic enough.

Let Mreg(X+, A, J+) be the moduli space of somewhere injective
J+-holomorphic curves of class A ∈ H2(X+;Z), where J+ = J |X+

. Then
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classic result shows that there is a dense subset J reg
X ⊂ JX such that

Mreg(X+, A, J+) is a smooth manifold of dimension

dimRMreg(X+, A, J+) = 2n− 6 + 2⟨c1(TX+), A⟩

for J ∈ J reg
X and J+ = J |X+

. In particular, if 0 > 2n− 6 + 2⟨c1(TX+), A⟩
then the moduli space Mreg(X+, A, J+) is empty.

Next let zi ∈ ∆ be a sequence converging to 0 and Ji be the restriction
of J on Xzi . Consider a sequence of Ji-holomorphic disks of class β in Xzi ,
with boundary on Lλzi . Then by Gromov compactness we get a nodal disk
u in X0 = X− ∪D X+ with boundary on Lλ0 . In general this nodal curve at
the Gromov limit can have several components and some of them might lie
inside D or is a multiple cover of a somewhere injective curve in X+.

Suppose that u has a component in X+ which are not contained in
D. Let u′ be its underlying somewhere injective curve, representing a class
A ∈ H2(X+;Z). Note that J is admissible therefore the image of u′ intersects
with D in a finite set with positive multiplicities. That is, A ·X+

D = s > 0.
Then we choose B ∈ H2(X−;Z) such that B ·X−

D = s. The class A+B can
be deformed into a class A#B ∈ H2(Xz;Z) in the smooth fiber Xz. By (3.1)
we have that

⟨c1(TXz), A#B⟩ = ⟨c1(TX−), B⟩+ ⟨c1(TX+), A⟩ − 2A ·X+
D

= ⟨c1(TX+), A⟩+ (n− 2)s.
(3.2)

Note that X− is a monotone symplectic manifold and B ·X−
D = s > 0, the

symplectic area of B is positive. Hence the class A#B has positive area in
Xz. Since we assume that X = Xz is Calabi-Yau or negatively monotone,
we have that 0 ≥ ⟨c1(TXz), A#B⟩. Combining this with above equality and
s ≥ 1 we get

2⟨c1(TX+), A⟩+ 2n− 6 ≤ 2(2− n)s+ 2n− 6

≤ 2(2− n) + 2n− 6 = 4− 6 = −2 < 0.
(3.3)

Therefore when J ∈ J reg
X the moduli space Mreg(X+, A, J+) is empty, a

contradiction to that u′ is a J+-holomorphic curve in X+. Actually we can
make the moduli spacesMreg(X+, A, J+) to be empty for all classes A with a
uniform area bound. Then by Gromov compactness Lλz ⊂ Xz does not bound
any Jz-holomorphic disk which are not inside the Weinstein neighborhood
U of S and with energy less than the area of A, when z is small enough.
Otherwise we get the non-trivial curve u′ in X+.
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In conclusion, for each positive number E, there is an admissible almost
complex structure JE such that Lλz ⊂ Xz does not bound any non-constant
JEz -holomorphic disk which are not inside U and with area smaller than E,
when z is small. In order to achieve transversality, we only need to perturb
J+ or Jz outside U , while keeping Jz in U as some fixed almost complex
structure. For example, we can take the almost complex structure used by
Oakley-Usher to compute the Floer cohomology in U . Then we know that
Lλz only bounds non-constant Jz-holomorphic disk in U , which gives a non-
trivial Floer cohomology modulo energy E. Since the above argument works
for any E > 0, we obtain that Lλz is nondisplaceable in Xz = X. □

Oakley and Usher proved that if we compactify the cotangent bundle to
be the quadric then L0,m is displaceable in Qm+2 for m ≥ 2. This matches
the discussion above that when the ambient space is monotone there will
be holomorphic disks coming from outside, which may break the Floer co-
homology. The major task of following sections will be studying possible
deformations of Floer cohomology to deal with those outside contributions.

One may also use the neck-stretching technique in symplectic field theory
to prove above results. For example when dimS = 3, on the contact hyper-
surface ∂U , there is a contact form such that the minimal Conley-Zehnder
index of Reeb orbits is two. Starting with a holomorphic disk with boundary
on a Lagrangian Lλk,m, we stretch along ∂U and get a holomorphic build-
ing. The X+-part of the holomorphic building will be a holomorphic curve
with several negative punctures, having a non-positive Chern number. The
dimension of the moduli space of such curves (or its underlying somewhere
injective curves) in X+ is negative.

3.2. Welschinger invariants and the pearl complex

Now we change the gear to compare the open Gromov-Witten invariants
defined by Welschinger [45] and the Floer differential in the pearl complex.
The former count of holomorphic disks is weighted by linking numbers, and
the later is weighted by number of Morse flow lines. An observation is that
these two weights are related, and we will compare them up to signs. The
conventions of orientations of moduli spaces on each side are in [45], and in
the Appendix A of [8] respectively. We expect that after a careful comparison
of signs, the results in this subsection have some generalizations with integer
coefficients.

We first review the construction in [45]. For a closed oriented La-
grangian 3-manifold L of a symplectic 6-manifold X, such that L does not
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bound Maslov zero holomorphic disks for some J and H1(L;A) injects into
H1(X;A) for some commutative ring A, Welschinger defines enumerative
invariants which count holomorphic disks with boundary on L. Here we will
focus on a special case of a monotone Lagrangian sphere S in a monotone
symplectic 6-manifold X.

Since S is simply-connected, we can define Welschinger invariants with
value in any commutative ring. We will mainly use Z or Z2 coefficients. And
the final conclusion of the relation between the Welschinger invariants and
the Floer differentials will be over Z2 coefficients.

Fix an orientation and (the unique) spin structure on S. For a class
β ∈ π2(X,S) and a generic compatible almost complex structure J , we
write Pβ

r (X,S; J) as the moduli space of simple J-holomorphic disks with
boundary on S, representing the class β, and with r marked points on the
boundary. And we write Mβ

r (X,S; J) as the quotient of Pβ
r (X,S; J) by

the automorphism group of the unit disk. For generic J , the moduli space
Mβ

r (X,S; J) is an oriented manifold of dimension µ(β) + r, with an evalu-
ation map to Sr. Then we compactify this moduli space and still write it as
Mβ

r (X,S; J).
Next we introduce the moduli spaces of nodal disks and multi-disks. Let

β1, β2 ∈ π2(X,S) be two disk classes. We denote by P(β1,β2)
0 (X,S; J) the fiber

product Pβ1

0 (X,S; J)ev1 ×ev−1
Pβ2

0 (X,S; J), by using the evaluation maps at
−1 and 1. And we define

P(β1,β2)
r (X,S; J) = P(β1,β2)

0 (X,S; J)× ((∂∆0 − {node})r − diag∆0
).

Here ∆0 is the nodal disk as the closure of (H× {0}) ∪ ({0} ×H) ⊂ C2 in
CP 2, and diag∆0

is the big diagonal. We then denote by

M(β1,β2)
r (X,S; J) = P(β1,β2)

r (X,S; J)/Aut(∆0).

By Gromov compactness and gluing theorems, the moduli space

M(β1,β2)
r (X,S; J) canonically identifies as a component of the boundary of

the (compactified) moduli space Mβ1+β2

r (X,S; J). In the notation of [45],
their orientations differ by −1, see Proposition 2 in [45].

Let β1, β2, · · · , βn ∈ π2(X,S) be disk classes. We define
Pβ1,β2,··· ,βn

0 (X,S; J) as the direct product of Pβi

0 (X,S; J)’s. Likewise,

we define Mβ1,β2,··· ,βn

r (X,S; J) as the quotient

Mβ1,β2,··· ,βn

r (X,S; J) =

(Pβ1,β2,··· ,βn

0 (X,S; J)× ((∂∆ ∪ · · · ∪ ∂∆)r − diag∂∆))/(Aut(∆))n.
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Here ∆ is the closed unit disk in C and diag∂∆ is the big diagonal of ∂∆ ∪
· · · ∪ ∂∆. For every n ≥ 2, we denote by M(β1,β2),··· ,βn

0 (X,S; J) as the direct
product

M(β1,β2),··· ,βn

0 (X,S; J) =

M(β1,β2)
0 (X,S; J)×Mβ3

0 (X,S; J)× · · ·Mβn

0 (X,S; J).

And likewise we define M(β1,β2),··· ,βn

r (X,S; J). The moduli space

M(β1,β2),··· ,βn

r (X,S; J) can be identified as a codimension one part of the
moduli space Mβ1,β2,··· ,βn

r (X,S; J), after Gromov compactification. See Sec-
tion 2.4 in [45] for the compatibilities of orientations between product, for-
getful map and subspaces.

Now we denote by Mβ1,··· ,βn

r,int (X,S; J) the dense open subset of

Mβ1,··· ,βn

r (X,S; J) made of disks whose n boundary components have pair-
wise disjoint images in L. It is equipped with a boundary map which
sends a holomorphic map u to u(∂∆ ∪ · · · ∪ ∂∆). Hence we can view
u(∂∆ ∪ · · · ∪ ∂∆) as a link in S with n components, oriented by the bound-
ary orientation as the boundary of a holomorphic multi-disk.

In our setting, we are interested in disk classes β ∈ π2(X,S) with Maslov
index four. Since S is orientable and monotone, the class β can only split
into two classes with Maslov index two. So we only need the case where
there are at most two components. Then we can define a linking weight on
the moduli space Mβ1,··· ,βn

r,int (X,S; J) in a simpler way. It is a locally constant
function

lkn : Mβ1,··· ,βn

r,int (X,S; J) → Z.

When n = 1, there is only one component of Mβ1

r,int(X,S; J), we define lk1 =

1 be the constant function. When n = 2, for an element u ∈ Mβ1,β2

r,int (X,S; J)
we define lk2(u) = lk(u(∂∆ ∪ ∂∆)), the linking number of two boundary
components of u. Now let β be a disk class of Maslov index four. We set

(3.4) [Mβ,2(X,S; J)] :=

2∑

n=1

1

n!

∑

β1+···+βn=β

lkn[Mβ1,··· ,βn

2,int (X,S; J)]

to define the two-pointed Welschinger invariants. Here
lkn[Mβ1,··· ,βn

2,int (X,S; J)] is defined as the linking number

lkn(Mβ1,··· ,βn

2,int (X,S; J)) times the fundamental class [Mβ1,··· ,βn

2,int (X,S; J)].
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Theorem 3.5. (Theorem 2, [45]) Let S be a monotone Lagrangian 3-sphere
in a symplectic 6-manifold X. For a Maslov four disk class β, the chain

ev∗[Mβ,2(X,S; J)] :=

2∑

n=1

1

n!

∑

β1+···+βn=β

ev∗(lkn[Mβ1,··· ,βn

2,int (X,S; J)])

is a cycle whose homology class in H6(S × S;Z) does not depend on the
generic choice of J .

The idea of the proof is the following. First we have a main com-
ponent Mβ

2,int(X,S; J) of which the codimension one boundaries are

±M(β1,β2)
2,int (X,S; J) with β = β1 + β2. Then for each pair of β1, β2 we have

a moduli space of multi-disks Mβ1,β2

2,int (X,S; J) of which the codimension one

boundaries are also ±M(β1,β2)
2,int (X,S; J), weighted by linking numbers. After

unioning all these moduli spaces together, all the codimension one boundary
cancel by a careful check of signs and linking numbers. Hence we get a mod-
uli space without codimension one boundary and the homology class given
by evaluation maps does not depend on various choices. We also remark that
the factor 1

n! is used to compensate the permutations of β1, · · · , βn. For ex-
ample, both Mβ1,β2

2,int (X,S; J) and Mβ2,β1

2,int (X,S; J) appear in the formula, but

as a boundary of the main component, the moduli space M(β1,β2)
2,int (X,S; J)

only appears once.
Then the two-pointed Welschinger invariant of class β is defined as

nW2,β := ⟨ev∗[Mβ,2(X,S; J)], PD[pt] ∪ PD[pt]⟩ ∈ Z,

which is independent of a generic choice of J .
Next we review the pearl complex to compute the Floer cohomology,

and compare its differential with the two-pointed Welschinger invariant. We
refer to [6–8] for more details about the pearl complex.

Let L be a monotone Lagrangian submanifold of a symplectic manifold
X, which is closed or convex at infinity. Fix a triple (f, ρ, J) where f : L→ R

is a Morse function, ρ is a Riemannian metric on L and J is a compatible
almost complex structure. Define a complex generated by the critical points
of f :

C(f, ρ, J) = F ⟨Crit(f)⟩ ⊗ F [T, T−1].

Here F is a commutative ring and F [T, T−1] is the ring of formal Laurent
polynomials. When L is spin, the ring F can be taken as Z otherwise we
need to take F = Z2. In [6, 7] the ground ring is assumed to be Z2 and in
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[8] it is extended to the case of Z. See Appendix A in [8] for the orientation
data for all related moduli spaces.

Let Φt be the flow of the negative gradient line of (f, ρ), for 0 ≤ t ≤ ∞
(or −∞ ≤ t ≤ ∞ if X is closed). Given two points x, y ∈ L and a non-zero
class β ∈ π2(X,L), consider the space of all sequences (u1, · · · , ul) of every
possible length l ≥ 1, where:

1) ul is a non-constant J-holomorphic disk with boundary on L;

2) there exists −∞ ≤ t′ < 0 such that Φt′(u1(−1)) = x;

3) for every 1 ≤ i ≤ l − 1 there exists 0 < ti <∞ such that Φti(ui(1)) =
ui+1(−1);

4) there exists 0 < t′′ ≤ ∞ such that Φt′′(ul(1)) = y;

5)
∑

1≤i≤l[ui] = β.

We view two sequences (u1, · · · , ul) and (u′1, · · · , u′l′) as equivalent if l = l′

and for every 1 ≤ i ≤ l there exists δi ∈ Aut(∆) with δi(−1) = −1, δi(1) = 1
and such that u′i = ui ◦ δi. The space of equivalence classes is denoted by
Pprl(x, y;β; f, ρ, J). Elements of this space will be called pearly trajectories
connecting x to y.

We will be interested in the case when both x and y are critical points
of f . (In particular, t′ = −∞ and t′′ = +∞.) The central theorem (for ex-
ample, Theorem 2.1 in [7]) states that for a generic triple (f, ρ, J), the space
Pprl(x, y;β; f, ρ, J) behaves like a manifold of dimension |x| − |y|+ µ(β)− 1.
Then we define a differential

d : C(f, ρ, J) → C(f, ρ, J), d(x) =
∑

y,β

♯Pprl(x, y;β; f, ρ, J)y · Tµ(β)

where the sum is over all y, β with |x| − |y|+ µ(β)− 1 = 0. The rest of the
central theorem says that d gives us a homology theory and the homology
is independent of the triple (f, ρ, J). Following the notation in [6–8], we call
this homology the quantum homology QH(L) of L. One property of QH(L)
is that it is isomorphic to the self-Floer homology HF (L,L), hence if L is
displaceable then QH(L) is zero.

Now we focus on our case where L is a monotone Lagrangian 3-sphere
S. We choose the height function f : S → R on the unit sphere S3 ⊂ R4

and a Riemannian metric ρ such that (f, ρ) is Morse-Smale. Then f has
exactly one critical point p (minimum) of index zero and one critical point q
(maximum) of index three. And the differentials between p and q determine
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QH(S). Note that by degree reasons, the only possible non-trivial maps are

dβ : p 7→ ♯Pprl(p, q;β; f, ρ, J)q · T 4

where β is a disk class with Maslov index four. And the differential d =∑
µ(β)=4 dβ .
The key point of this subsection is the observation that

♯Pprl(p, q;β; f, ρ, J) equals nW2,β , up to sign. The proof is based on the
following lemma.

Lemma 3.6. Let f : S → R be a perfect Morse function on a 3-sphere.
Let K1,K2 be two oriented disjoint knots in S. Then the linking number
lk(K1,K2) equals the signed count of negative gradient flow lines of f start-
ing from one point on K1, ending at one point on K2, up to sign.

Proof. Let p be the minimal point of f , consider the image of K1 under the
flow Φ. That is, define

C :=
⋃

x∈K1

{y ∈ L | ∃t ∈ [0,∞), Φt(x) = y} ∪ {p}.

We give an orientation on C which is compatible with the orientation of
K1 as its boundary. Then there is a one-to-one correspondence between
intersection points of K2 and C and flow lines starting from one point on
K1, ending at one point on K2. (We perturb the metric ρ a bit such that
they intersect transversally.) Moreover, this intersection number betweenK2

and C equals the linking number lk(K1,K2). Hence we complete the proof.
Note that we assume that f is perfect, for any x ∈ K1 there is a unique

smooth flow line connecting x and p. For a general Morse function, there
may be broken flow lines going back to other critical points. We suggest [3]
for general discussions. □

We remark that the signs of intersection points are given by the ori-
entations of K1,K2 and C. The signs of flow lines depend on conventions
in Morse theory. In [3], it is shown that there is a convention such that
those two signs match. For our purpose, we need to compare the convention
in [3] and that in the Appendix of [8], to get a genuine equality between
Welschinger invariants and Floer differentials. We will not do it here.

Theorem 3.7. (Theorem 1.7) In the above notations, given a disk class
β ∈ π2(X,S) with Maslov index four, we have an equality

♯Pprl(p, q;β; f, ρ, J) = ±nW2,β .



✐

✐

“3-Sun” — 2023/12/15 — 18:32 — page 537 — #29
✐

✐

✐

✐

✐

✐

Displacement energy of Lagrangian 3-spheres 537

Proof. Fix the height function f on S and generic choices of (ρ, J) to de-
fine the pearl complex. Let p (q respectively) be the minimal (maximal
respectively) point of f . Given a disk class β with Maslov index four, let
Mβ,2(X,S; J) be the moduli space in (3.4) and let Mβ,2(X,S; (p, q); J) be
the moduli space of elements such that two marked points go to p and q
respectively. Then the two-pointed Welschinger invariant nWβ is the number
of elements in Mβ,2(X,S; (p, q); J).

We will construct a one-to-one correspondence between the moduli
space of pearly trajectories connecting p to q and the moduli space
Mβ,2(X,S; (p, q); J). Pick an element u in Mβ,2(X,S; (p, q); J). First, if
the underlying disk of u is a single disk u1. After reparametrization we as-
sume that u1(−1) = p and u1(1) = q. So this configuration is counted once
in the space of pearly trajectories. On the other hand, a single disk has self-
linking number one by definition hence it contributes once to nW2,β . Next, if
the underlying disk of u is a multi-disk u1, u2. (It has at most two compo-
nents since S is monotone.) Note that if two marked points are both on one
component, then we have a Maslov index two disk with two-pointed con-
straints, which does not happen generically. So we assume that u1(−1) = p
and u2(1) = q. Then this configuration is weighted by the number of flow
lines from the boundary of u1 to the boundary of u2, which is the same as
the linking number by the above lemma. Hence the multi-disks are counted
by the same number in both moduli spaces, up to sign. □

Then we can define an invariant

nW2 :=
∑

µ(β)=4

nW2,β ∈ Z

to determine the Floer cohomology HF (S; Λ(Z2)). By above arguments, we
have that

nW2 ≡
∑

µ(β)=4

♯Pprl(p, q;β; f, ρ, J) = d(p) mod 2.

So HF (S; Λ(Z2)) ̸= {0} if nW2 is an even number.
Therefore the Welschinger invariants give us another way to compute the

Floer homology of a monotone Lagrangian 3-sphere. We sketch two examples
for this application. Consider the following Lagrangian embedding

S3 → C2 × CP 1, x 7→ (i(x),−h(x))
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where i is the inclusion of the unit sphere and h is the Hopf map. The
symplectic form on C2 × CP 1 is the standard one times the Fubini-Study
form. By the C2 factor, any compact subset of C2 × CP 1 is displaceable.
Hence we get a displaceable Lagrangian 3-sphere which is monotone with
minimal Maslov number four. Note that π2(C

2 × CP 1, S) ∼= π2(CP
1) is

one-dimensional, there is only one class β with Maslov index four. The
two-pointed Welschinger invariant nW2,β is just the usual two-pointed open

Gromov-Witten invariant since β is minimal. We expect that nW2,β = 1, which

comes from the factor of CP 1. On the other hand, we could compactify
C2 × CP 1 to be CP 2 × CP 1 by symplectic cutting on the boundary of a
round ball B4(R) ⊂ C2. Choosing R properly, we get a monotone Lagrangian
3-sphere in CP 2 × CP 1. Then π2(CP

2 × CP 1, S) is two-dimensional with
two generators β1, β2 from CP 1 and CP 2. We expect both nW2,β1

and nW2,β2

to be 1. Hence nW2 ≡ 0 mod 2, which shows that the Lagrangian 3-sphere
is nondisplaceable after compactifying the ambient space. Note that in this
case the Lagrangian 3-sphere is known to have non-trivial Floer homology
by using Lagrangian correspondence, see Section 6 in [46].

Remark 3.8. Here are two remarks about possible generalisations of the
relation between Welschinger invariants and Floer homology.

1) As we have noticed, when the Lagrangian is spin, both Welschinger
invariants and Floer homology can be defined over Z hence over any Zp.
We expect a careful comparison of orientation data between [45] and
the Appendix in [8] would give a genuine equality between invariants,
not only modulo 2.

2) For a higher dimensional monotone Lagrangian sphere, one may use
the structural maps in the Biran-Oh spectral sequence which com-
putes QH(L), to define two-pointed open Gromov-Witten invariants.
Those structural maps might correspond to the open Gromov-Witten
invariants defined by Solomon-Tukachinsky [41] and Chen [12].

4. A deformed Floer complex

In this section we construct a Floer complex by counting holomorphic disks
and cylinders, and show that these moduli spaces give an A∞-algebra mod-
ulo some energy. A second Floer complex, counting holomorphic strips and
strips with one interior hole, will be constructed in Section 5. Although our
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later applications are about local tori, the construction of a deformed A∞-
algebra does not use that the Lagrangian being a torus. Hence we state the
results in a general setting.

4.1. Monotone Lagrangian tori in T
∗
S

3

We first review the construction of a family of monotone Lagrangian 3-tori
{Lλ}λ∈(0,+∞) in T

∗S3, which serve as our main examples. Let T ∗S3 be the
cotangent bundle of S3 with the standard symplectic structure. And let
Y0 = {xy − zw = 0} ⊂ C4 be a singular hypersurface. One key fact is that
there is a symplectomorphism

T ∗S3 − {zero section} → Y0 − {(0, 0, 0, 0)}.

Hence T ∗S3 admits a Hamiltonian T 3-action outside the zero section:

(eiθ1 , eiθ2 , eiθ3) · (x, y, z, w) = (eiθ1x, e−iθ2y, eiθ1−iθ3z, e−iθ2+iθ3w).

This Hamiltonian T 3-action gives us a singular torus fibration

π : T ∗S3 → P ⊂ R3.

Here the base P is a convex polytope in R3, cut out by 4 affine functions

x ≥ 0; −y ≥ 0; x− z ≥ 0; z − y ≥ 0

where (x, y, z) are coordinates in R3. This polytope P has four faces Pi
corresponding to the above four affine functions. A regular fiber over an
interior point is a smooth Lagrangian torus and the fiber over the vertex
at (0, 0, 0) is a Lagrangian 3-sphere, the zero section. We refer to [13] and
[38] for the details of the construction in view of a Gelfand-Tsetlin system.
Moreover the fiber Lλ := π−1(λ,−λ, 0) is a monotone Lagrangian torus with
minimal Maslov number two, for any λ ∈ (0,+∞). This is the one-parameter
family of monotone Lagrangian tori in T ∗S3 which are the main objects of
this note. Similar to the toric case in [14] and [21], the open Gromov-Witten
theory of regular fibers of certain Gelfand-Tsetlin systems was studied in
[33], which we state below in our setting.

Theorem 4.1. (Section 9, [33]) Let L be a monotone fiber of the Gelfand-
Tsetlin system on T ∗S3, then there exists a compatible almost complex struc-
ture J0 such that



✐

✐

“3-Sun” — 2023/12/15 — 18:32 — page 540 — #32
✐

✐

✐

✐

✐

✐

540 Yuhan Sun

1) There is a one-to-one correspondence between the J0-holomorphic disks
with Maslov index two bounded by L and the faces of the Gelfand-
Tsetlin polytope P ;

2) Every Maslov index two class β ∈ H2(X,L) is Fredholm regular and
the one-pointed open Gromov-Witten invariant nβ = 1;

3) There is a neighborhood W of the zero section S such that the images
of all J0-holomorphic disks with Maslov index two bounded by L are
outside W , see Lemma 9.9 in [33].

Therefore in our case each fiber bounds four holomorphic disks with
Maslov index two, which span the relative homology H2(X,L). We remark
that since Lλ is monotone the one-pointed open Gromov-Witten invariant
of a given class is independent of the choice of J . So nβ = 1 is not only
true for J0 but also for other regular compatible almost complex structures
on T ∗S3. Strictly speaking, Section 9 in [33] consider the case of a closed
symplectic manifold which locally looks like T ∗S3, and the proof therein is a
local argument. Hence the above conclusions are also true for our monotone
fibers, when the ambient space is T ∗S3.

Another description of this one-parameter family of monotone La-
grangian tori comes from a Lefschetz fibration, see [15] where they also
computed all the one-pointed Gromov-Witten invariants. We consider the
smoothing

Y = {xy − zw = ϵ} ⊂ C4

which is symplectomorphic to T ∗S3. It can be embedded into

Ŷ = {xy = u− a, zw = u− b} ⊂ C5

where a, b are positive real numbers and ϵ = b− a > 0. The projection Ŷ →
C to the u-variable gives us a double conic fibration with singular fibers over
u = a and u = b. There is a fiberwise 2-torus action

(θ1, θ2) · (x, y, z, w) = (eiθ1x, e−iθ1y, eiθ2z, e−iθ2w) ∀(θ1, θ2) ∈ T 2.

We call an above torus orbit an equator in the fiber. Then pick a circle
in the base Cr = {|z| = r, r > b > a} ⊂ C. The 3-tori formed by crossing an
equator with a base circle are of our interest. In particular these tori are
monotone with minimal Maslov number two. Note that if we pick a segment
connecting a and b and cross the segment with equators which degenerate
at endpoints then we get a Lagrangian 3-sphere, Hamiltonian isotopic to the
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zero section. To compare this one-parameter family of Lagrangian tori with
the Oakley-Usher construction [37] we mentioned in Section 3, this family
Lλ corresponds to Lλ1,1.

From above approaches we get all the information to count Maslov two
disks with boundary on Lλ so that we can write down the disk potential
function explicitly. In specific coordinates it is

(4.1) PO(b) = x+ y−1 + xz−1 + y−1z, b ∈ H1(Lλ; Λ0).

We omit the energy parameter here since Lλ is monotone. It is easy to
check that this potential function has a one-dimensional critical loci, which
indicates that with respect to some weak bounding cochain the Floer coho-
mology of Lλ is nonzero hence Lλ is nondisplaceable in T ∗S3.

If we consider a Lagrangian 3-sphere S in a symplectic 6-manifold X
then Lλ sits inside a neighborhood of S for small λ. Due to the global
symplectic geometry of X our local torus Lλ may bound more higher energy
holomorphic disks with Maslov index two. Therefore the potential function
may have more higher energy terms and may fail to have global critical
points. Correspondingly, our torus Lλ may be displaceable in X. Indeed if
the Lagrangian 3-sphere S is displaceable in X, then Lλ is displaceable for
small λ.

4.2. Conifold transition

Before constructing the moduli spaces of holomorphic cylinders we first de-
scribe some topological aspects of the conifold transition, mostly following
[40]. By a 3-fold ordinary double point, or a node, we mean a complex sin-
gularity analytically equivalent to

{xy − zw = 0} ⊂ C4.

There are two ways to desingularize the node. One is by considering its
deformation, or the smoothing

{xy − zw = ϵ} ⊂ C4

which is a complex symplectic smooth hypersurface equipped with the in-
duced symplectic structure on C4. It is symplectomorphic to the total space
of the cotangent bundle of a 3-sphere, no matter ϵ is, while its complex
structure depends on ϵ. The other desingularisation is a small resolution.
We first blow up the singular point, getting a smooth complex manifold
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with an exceptional divisor CP 1 × CP 1, then blow down either family of
CP 1. We have two choices of CP 1 to blow down and the resulting manifolds
are related by a flop. The complex structure on either one is canonical while
the symplectic structure depends on the size of CP 1. As a complex mani-
fold, the small resolution is the total space of the holomorphic vector bundle
O(−1)⊕O(−1) → CP 1. We say a conifold transition by passing from one
desingularisation to the other.

Beyond this local picture, the conifold transition was generalized in [40]
as a surgery of symplectic 6-manifolds, replacing a Lagrangian 3-sphere by a
holomorphic CP 1 with a correct normal bundle. In order to patch the local
parameters together, some topological conditions on the symplectic manifold
are needed.

Theorem 4.2. (Theorem 2.9, [40]) Fix a symplectic 6-manifold X with a
collection of n disjoint embedded Lagrangian 3-spheres Si. There is a “good”
relation ∑

i

ai[Si] = 0 ∈ H3(X;Z), ai ̸= 0 ∀i

if and only if there is a symplectic structure on one of the 2n choices of
conifold transitions of X in the Lagrangian Si, such that the resulting CP 1s
are symplectic.

One interesting question is that how symplectic invariants change under
conifold transitions. The closed string case, like quantum cohomology, has
been more studied by algebraic geometry and by symplectic sum construc-
tions. The open string case like Floer theory is less touched, in particular for
a global symplectic manifold, and we will explore some points in this note.

4.3. An example about the quadric hypersurface

Now we discuss a motivating example about the quadric hypersurface. Let

Q3 = {[z0, · · · , z4] ∈ CP 4 | z20 =

4∑

j=1

z2j }

be the quadric hypersurface in CP 4. It is a monotone symplectic manifold
with the induced symplectic structure. And the real part Q3,R = Q3 ∩ RP 4

is a Lagrangian 3-sphere. We can also obtain Q3 by performing a symplectic
cutting on the boundary of some disk bundle of T ∗S3. Then the zero section
corresponds to the real part Q3,R and the boundary of the disk bundle, after
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quotienting by the Hamiltonian S1-action, becomes the divisor at infinity
which is isomorphic to CP 1 × CP 1. In this point of view the quadric hyper-
surface is the “simplest” compactification of T ∗S3 by adding one divisor at
infinity.

Note that the symplectic cutting behaves well with respect to the mo-
ment map

π : T ∗S3 → P ⊂ R3

we get a singular toric fibration

π : Q3 → PQ ⊂ R3

of Q3. The new polytope PQ will be cut out by five affine functions

x ≥ 0; −y ≥ 0; x− z ≥ 0; z − y ≥ 0; y − x+ 1 ≥ 0.

So compared with the polytope of T ∗S3 there is one more face y − x+ 1 = 0,
which corresponds to the divisor at infinity. Here we fix the constant 1 just
for simplicity. The symplectic manifold of the polytope PQ is only isomorphic
to the actual hypersurface Q3 up to a conformal parameter.

By using the toric degeneration method in [33] the disk potential func-
tion of regular fibers can be explicitly computed. For example, over the point
(13 ,−1

3 , 0) there is a monotone Lagrangian 3-torus L. Its disk potential func-
tion is

(4.2) PO(b) = x+ y−1 + xz−1 + y−1z + x−1y, b ∈ H1(L; Λ0).

Compared with the case in T ∗S3, there is one more term in the potential
function due to the new divisor at infinity. Directly we can check that the new
potential function has three critical points, which shows that L carries three
different local systems as three different objects in the monotone Fukaya
category of Q3.

Moreover, by the work of Smith [39] the Lagrangian sphere Q3,R split-
generates the monotone Fukaya category with eigenvalue zero. (It also fol-
lows from Evans-Lekili [16] since Q3,R is a Lagrangian SU(2)-orbit.) Note
that the sum of Betti numbers of Q3 is four. Therefore the sphere and
the monotone torus with three bounding cochains split-generate the whole
monotone Fukaya category.

Since the Lagrangian sphere Q3,R is homologically trivial we can perform

conifold transition on it. The resulting manifold Q̃3 happens to be toric and
one can check that the critical loci of the potential function are six toric
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fibers with bounding cochains, which match the sum of Betti numbers of Q̃3.
Therefore three torus branes are merged and transformed into a sphere brane
under the (reversed) conifold transition! This is a 6-dimensional analogue of
4-dimensional phenomenon in [23], where the “baby conifold transition” of
the second quadric hypersurface Q2 = CP 1 × CP 1 was studied.

Hence motivated by [23] all the Lagrangian tori over the line in the
polytope connecting the sphere brane and the monotone torus brane are
expected to be nondisplaceable. The proof of the 4-dimensional case in [23]
considers the bulk-deformed potential functions of these tori, which have
critical points for particular bulk deformations. However the same technique
fails in our 6-dimensional situation. One reason is that the topology of Q3

is “too simple” for us. To compute the bulk-deformed potential function
explicitly one often uses divisors as bulk deformations. The only 4-cycle of
Q3 is the divisor at infinity. After direct computations we find it does not
help us to produce critical points of potential functions of our Lagrangians.
This motivates us to use other faces of the polytope as bulk deformations.
However, the preimages of other four faces attaching the Lagrangian sphere
are four 4-chains, not 4-cycles since they bound the 3-sphere. And we cannot
naively use chains as bulk deformation since the squares of some boundary
operators are not zero.

If we want to use those 4-chains to perturb the Floer cohomology of
our toric fiber, the key problem is to cancel the “boundary effect” of these
chains. To achieve this goal we introduce the moduli space of holomorphic
cylinders.

Another direction which avoids using these 4-chains is to look at other
nodal toric Fano 3-folds. In particular when the second Betti number is large.
Then there are more 4-cycles to do bulk deformation and one is more likely
to prove the local tori are nondisplaceable since there are more parameters.
As we mentioned in the introduction, there is a full classification [29] of 100
nodal toric Fano threefolds where one can do computations explicitly.

4.4. Weakly unobstructedness of local tori

In the last subsection we compactify DrT
∗S3 to be the quadric hypersurface,

which has a toric degeneration to a Fano variety admitting a small resolu-
tion, such that our local tori become toric fibers. A direct consequence is that
the local tori are weakly unobstructed, see Theorem 10.1 [33] and Theorem
1.2 [34]. However, for a general symplectic 6-manifold X containing a La-
grangian sphere S, to show that local tori near S are weakly unobstructed
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is not easy. For example, in the general toric case without assuming the
Fano condition, the weakly unobstructedness [21] is proved by using the Tn-
action on moduli space of disks. In this article we assume Condition 1.1 to
make our local Lagrangian tori to be weakly unobstructed under an energy
bound. Now we give some speculations about how to relax this condition.
We can first allow J-holomorphic spheres with zero first Chern numbers, as
indicated in Remark 3.6 [5]. Next we may use the notion of “broken Floer
theory” by Charest-Woodward [9].

In [9] the weakly unobstructedness is shown for (local) toric fibers near
a blow-up locus, a reverse flip and for the Clifford torus in a Darboux chart.
For example, they have the following result.

Theorem 4.3. (Theorem 7.21 [9]) Let (X2n, E, ω) be a rational symplectic
manifold with an exceptional divisor E of small volume. That is, E ≃ CPn−1

with normal bundle isomorphic to O(−1). Let L be a local toric fiber near
E. Then there exists suitable perturbation data such that the Fukaya algebra
of L is weakly unobstructed. Moreover, we have that

H1(L; Λ0) ⊂ Mweak(L)

hence for any b ∈ H1(L; Λ0) the Floer cohomology HF (L, b) is well-defined.

Their method seems very likely to be applicable to our case for any ra-
tional symplectic manifold, since our local tori live in a Fano almost toric
piece Q3 after degeneration. That is, when X is rational we hope to prove
that the local tori are always weakly unobstructed without assuming Con-
dition 1.1. This will be pursued in future work, and currently in this article
we still assume that our local torus satisfies Condition 1.1 for some J .

4.5. Holomorphic disks and cylinders

Let X be a symplectic 6-manifold and S be an integrally homologically
trivial Lagrangian 3-sphere in X. Now we will prove Theorem 1.2, which
works in a more general case without assuming L to be a local torus. In next
subsection we will apply it to the case of local tori. Fix a 4-chainK inX such
that ∂K = S and b = w ·K with w ∈ Λ+. Let L be an oriented Lagrangian
submanifold of X such that L ∩K = ∅ and L satisfies Condition 1.1.

Set E := min{ES + v(w), 2v(w), E+}, we will construct an A∞-structure
{mcy,b

k } on the singular cohomology of L, with coefficients in Λ0

/
TE · Λ0. For

a disk class β ∈ π2(X,L), consider the moduli space of holomorphic disks
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Ml,k(β), the set of J-holomorphic maps

u : (D, ∂D) → (X,L)

with l interior marked points and k boundary marked points modulo auto-
morphism, of the class β. Since we only construct a theory modulo TE , we
assume that ω(β) < E.

When l = 0 and k ≥ 0, let

M0,k+1(β; (x1, · · · , xk))

be the compactified moduli space of holomorphic disks of class β with k + 1
boundary marked points, such that the last k marked points are mapped
to k singular chains (x1, · · · , xk) in L respectively. Then by using the first
boundary marked point, we get a chain

ev : M0,k+1(β; (x1, · · · , xk)) → L

and we can define an operator

mk;β : C∗(L)
⊗k → C∗(L).

Setting mk :=
∑

β mk;βT
ω(β) we get a collection of operators {mk} which

satisfies the (curved) A∞-relation. This is the A∞-structure on C∗(L) defined
in [19], without bulk deformations.

Now consider the case when l = 1 and k ≥ 0, let

M1,k+1(β; (x1, · · · , xk),K)

be the compactified moduli space of holomorphic disks of class β with k + 1
boundary marked points and one interior marked point, such that the last
k marked points are mapped to k singular chains (x1, · · · , xk) in L, and the
interior marked point is mapped to K. When K is replaced by a cycle, those
moduli spaces are used in [19] to define an A∞-structure on C∗(L) with bulk
deformation by that cycle. In the following we will explain how to use the
chain K as a bulk deformation, up to some energy.

Different from the case that K is a cycle, there is one more codimen-
sion one boundary in M1,k+1(β; (x1, · · · , xk),K), which corresponds to that
the interior marked point goes to the boundary of K. We write this codi-
mension one boundary as M1,k+1(β; (x1, · · · , xk), S = ∂K). If we directly
use M1,k+1(β; (x1, · · · , xk),K) to define operators, then these operators will
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Figure 3: Degeneration when circle ends meet.

not obey the A∞-relation, nor have the invariance property. So we introduce
moduli space of holomorphic cylinders to compensate these extra codimen-
sion one boundaries.

Consider the homotopy classes of cylinders, with one end on S and
the other on L. Note that S is simply-connected, any homotopy class
of such cylinders corresponds to a disk class β ∈ π2(X,L). Hence we
abuse the notation to use β as a disk class or a cylinder class. Fix a
class β with ω(β) < min{ES , E+}, we will construct another moduli space
Mcy

1,k+1(β; (x1, · · · , xk), S). We remark that for those classes having energy
greater than min{ES , E+}, once they are weighted by the energy parameter
T v(w) from b, the total energy is greater than E. So we do not need to study
them by energy reasons.

We write the domain of a cylinder as

Aϵ,p = {z ∈ C | |z| ≤ 1, |z − p| ≥ ϵ, ϵ < 1− |p|}

where 0 < ϵ < 1 is a conformal parameter and p is an interior point in the
unit disk. Topologically the domain is an annulus with two disjoint bound-
aries Cϵ and C1. With respect to an almost complex structure J in Condi-
tion 1.1, we consider the J-holomorphic maps

{u : Aϵ,p → X | u(C1) ∈ L, u(Cϵ) ∈ S}.

And the moduli space M̃cy
1,k+1(β; (x1, · · · , xk), S) contains all such maps u

representing a homotopy class β with k + 1 marked points on the boundary
C1, modulo automorphisms. Here the last k marked points are mapped to
k singular chains (x1, · · · , xk) in L. Next we compactify this moduli space.

Theorem 4.4. There is a compactification Mcy
1,k+1(β; (x1, · · · , xk), S) of

the moduli space M̃cy
1,k+1(β; (x1, · · · , xk), S), such that it has a codimension
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one boundary component

∂cyMcy
1,k+1(β; (x1, · · · , xk), S) = −M1,k+1(β; (x1, · · · , xk), S)

with respect to suitably chosen orientations.

Proof. The construction of the compactification is by adding all possible
degenerations. And the verification of the compactness will be proved by a
gluing method.

First we consider the case when p is fixed but ϵ goes to zero. Then in
the limit we add a holomorphic disk with one interior point attaching on S.
Conversely we need to do the gluing to resolve this interior point. The gluing
analysis here is similar to the gluing when one study open Gromov-Witten
theory and the boundary class of the given disk class is trivial. We describe
the construction here following Proposition 3.8.27 and Subsection 7.4.1 in
[19].

For a holomorphic disk with an interior point mapping to S, the idea
to “blow up” this interior point to get a holomorphic cylinder is first glue a
constant disk to this point then convert this boundary gluing to a interior
gluing. Let D(1) be the unit disk in C. Consider a holomorphic map

u : D(1) → X, u(∂D(1)) ∈ L

with two marked points. One marked point z0 = (1, 0) on the boundary and
one interior marked point w0 = (0, 0) with u(w0) ∈ S. Let D(σ) be a small
disk with one boundary marked point z1 and Σ be a nodal surface such that

Σ = D(1) ⊔D(σ)
/
(0, 0) ∼ (0, 0).

Then we consider a holomorphic map wu, which is induced from u.

wu(z) =

{
u(z) z ∈ D(1),

u(w0) z ∈ D(σ).

That is, the restriction of the map wu on D(σ) is a constant map. Next,
under transversality assumptions, several standard steps give us the gluing
conclusion.

1) First we smooth the singular point of Σ as an interior singular point
to get the pregluing map, without being holomorphic.
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2) Then we apply the implicit function theorem to get a genuine holo-
morphic cylinder with two boundary marked points z0 and z1. Here z0
is on the positive boundary and z1 is on the negative boundary.

3) We forget the marked point z1 by a forgetful map. The image of the
forgetful map is parameterized by the small disk D(σ).

4) In the end we check that the implicit function theorem and the forget-
ful map is S1-equivariant with respect to the standard rotation action
on D(σ). And we modulo this action to obtain a neighborhood of u as
u×D(σ)

/
S1 = u× [0, σ).

This cylinder-to-disk degeneration gives us a codimension one boundary

∂cyMcy
1,k+1(β; (x1, · · · , xk), S)

which matches the moduli space

−M1,k+1(β; (x1, · · · , xk), S)

up to an orientation. When β is energy minimal, this codimension one
boundary is the only boundary of the moduli space.

The second case is that p is fixed and ϵ goes to 1− |p|. That is, two
boundary C1 and Cϵ meet. In the limit a small region between these two
circle boundaries converges to a holomorphic strip, see Figure 3. Since this
strip splits from a finite energy map, itself also has finite energy. Hence the
two ends of the strip converge to intersection points of S and L, which is
empty. In conclusion such a degeneration does not happen.

The third case is that when ϵ goes to zero and p goes to C1.

1) When lim ϵ
1−|p| = c > 0. Then by a conformal change the domain be-

comes a disk with an annulus bubble, with the modulus of the annulus
bubble determined by c.

2) When lim ϵ
1−|p| = 0. It is a similar case as above where c = 0, the an-

nulus bubble becomes a disk bubble, with one interior point attached
to S.

3) When lim ϵ
1−|p| = +∞. Then two circle boundaries meet much faster

than ϵ goes to zero. This degeneration will end up with a holomorphic
strip as in the second case. So we exclude it in the same way.
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Other cases include disk splittings and sphere bubbles. As we remarked
before, sphere bubbles are of codimension two and disk bubbles with bound-
ary on S do not happen by energy reasons. The only possible disk splittings
are on the side of L, which will eventually give us the A∞-relation, together
with (1) and (2) in the third case.

In conclusion we add all possible degenerations to compactify the moduli
space. And there is a particular codimension one boundary component which
comes from the circle boundary Cϵ shrinking to a point. □

Then we glue the two moduli spaces together to obtain a new moduli
space.

Corollary 4.5. There are fundamental chains on moduli spaces
M1,k+1(β; (x1, · · · , xk),K) and Mcy

1,k+1(β; (x1, · · · , xk), S) such that we can
glue them along their boundaries to obtain a moduli space

M1,k+1(β; (x1, · · · , xk),K + S)

=M1,k+1(β; (x1, · · · , xk),K) ⊔Mcy
1,k+1(β; (x1, · · · , xk), S)

/
∼

where the equivalence ∼ is given in Theorem 4.4.

Proof. The fundamental chains on related moduli spaces are constructed
by classical methods. We start with energy minimal classes to glue moduli
spaces such that corresponding holomorphic curves are somewhere injective.
Then for general classes we use domain dependent almost complex structures
JΣ for Σ a disk or a cylinder. For each point p ∈ Σ, we assume it is in
the component of J in Condition 1.1. Moreover when Σ is a cylinder, we
also requires that the almost complex structure depends on the modulus of
domain. □

By using the first boundary marked point we get a singular chain

ev : M1,k+1(β; (x1, · · · , xk);K + S) → L.

The expected dimension of this fundamental chain is

dimM1,k+1(β; (x1, · · · , xk);Ki + S) = µ(β) + k + 1−
k∑

j=1

(3− dj)

where dj is the dimension of the singular chain xj .
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These chains

ev : M1,k+1(β; (x1, · · · , xk);K + S) → L

will play the role of ql,k;β when the interior marked point is attached on a
chain K, not a cycle. For b = K we define

q
cy,b
1,k;β : C∗(L)⊗k → C∗(L)

by

(4.3) (x1, · · · , xk) 7→ (ev : M1,k+1(β; (x1, · · · , xk);K + S) → L)

and extend it linearly over Λ+. That is, for b = wK with w ∈ Λ+, we define

(4.4) q
cy,b
1,k;β(x1, · · · , xk) := w · qcy,K1,k;β(x1, · · · , xk).

Similarly we define q
cy,b
1,0;β as the chain

(4.5) w · (ev : M1,1(β;K + S) → L)

with coefficient w. Then we define the operator qcy,b1,k to be

(4.6) q
cy,b
1,k =

∑

β

q
cy,b
1,k;β · Tω(β).

By the Gromov compactness theorem the right hand side is a finite sum.
These operators are only defined for class β with ω(β) < min{ES , E+}. Oth-
erwise, after weighted by Tω(β)+v(w), they vanish automatically since we
work modulo TE .

As we mentioned in the beginning of Section 2, here we abuse the no-
tations between singular chains and cochains via the Poincaré duality. Ge-
ometrically when we define moduli space of holomorphic curves with point
constraints, we think our curves with points attached on certain chains. But
for algebraic convenience we think these chains as cochains with gradings re-
versed and shifted. And for notational simplicity, we use K to both represent
the 4-chain K or PD(K), as a degree two cochain.
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Being analogous to (2.6), we define

(4.7)
m
cy,b
k (x1, · · · , xk) :=

∞∑

l=0

q
cy,b
l,k (b⊗l;x1, · · · , xk)

:= q
cy,b
0,k (1;x1, · · · , xk) + q

cy,b
1,k (b;x1, · · · , xk).

Here operators q
cy,b
1,k are defined as above by using holomorphic cylinders.

The operators qcy,b0,k are defined to be mk, see (2.5), which are the operators
in the A∞-structure on L without using interior marked points. Hence by
definition, the above definition becomes

(4.8)
m
cy,b
k (x1, · · · , xk) :=

∞∑

l=0

q
cy,b
l,k (b⊗l;x1, · · · , xk)

= mk(x1, · · · , xk) + q
cy,b
1,k (b;x1, · · · , xk).

Now we hope it is more clear that these operators serve as a zeroth and first
order approximation of the genuine A∞-structure with bulk deformations,
since all qcy,bl,k are defined to be zero for l ≥ 2. We will show that they also
give an A∞-relation modulo some energy.

Proposition 4.6. With above notations, the operators {mcy,b
k } give a

curved A∞-relation on C∗(L) modulo TE.

Proof. To prove the A∞-relation for {mcy,b
k } we need to check for each k

that
(4.9)∑

k1+k2=k+1

∑

i

(−1)∗mcy,b
k1

(x1, · · · ,mcy,b
k2

(xi, · · · , xi+k2−1), · · · , xk) ≡ 0 mod TE

where ∗ = deg x1 + · · ·+ deg xi−1 + i− 1. This can be shown by looking at
boundaries of various one-dimensional moduli spaces.

Note that mcy,b
k = mk + q

cy,b
1,k by definition. There are four types of com-

positions in (4.9):

mk1 ◦mk2 , q
cy,b
1,k1

◦mk2 , mk1 ◦ qcy,b1,k2
, q

cy,b
1,k1

◦ qcy,b1,k2
.

The first type of terms mk1 ◦mk2 is zero since mk satisfies an A∞-relation.
The last type of terms qcy,b1,k1

◦ qcy,b1,k2
is zero modulo TE since both of them are

weighted by at least T v(w).
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Now it remains to show that the sum of second type and third type
terms

±q
cy,b
1,k1

◦mk2 ±mk1 ◦ qcy,b1,k2

is zero. We consider the moduli space

M1,k+1(β; (x1, · · · , xk);K + S)

in Theorem 4.4. For simplicity, we assume that x1, · · · , xk are singular cycles.
By definition, this moduli space is a union of two moduli spaces. One part is
a moduli space of holomorphic cylinders with boundary insertions. The other
part is a moduli space of holomorphic disks with boundary insertions and
one interior insertion. Both parts have a codimension one boundary coming
from cylinder-to-disk degeneration or marked point going to the boundary
of the chain K. And by gluing these two moduli spaces together, this codi-
mension one boundary is cancelled. Then we look at other codimension one
boundaries. With this understood, the following check is similar to the usual
A∞-relations on a monotone spin Lagrangian submanifold.

Under Condition 1.1, there is no disk bubble on the side of Lagrangian
sphere S, with energy less than ES . The only codimension one bound-
aries are disk splitting on the side of the Lagrangian torus L. So the codi-
mension one boundary of the cylinder part corresponds to a disk splitting
from a cylinder. And the codimension one boundary of the disk part cor-
responds to a disk splitting from a disk with interior marked point at-
tached on K. Those codimension one boundaries together give the terms
±q

cy,b
1,k1

◦mk2;β2
±mk1;β1

◦ qcy,b1,k2
with β1, β2 ̸= 0. That is, the disk splitting is

not a constant disk (see Figure 4). On the other hand, the operator m1;β=0

is defined as taking the boundary of a singular chain weighted by signs.
Then m1;β=0 ◦ qcy,b1,k1+k2−1 corresponds to the codimension one boundary of
the moduli space M1,k+1(β; (x1, · · · , xk);K + S). Therefore after a careful
check of signs, those two types of operators cancel with each other since
they both correspond to the codimension one boundary of a moduli space.
We assume L is oriented hence spin, the signs will be satisfied by similar
computations in [19] for the genuine bulk-deformed A∞-relations. Then we
complete the proof of Theorem 1.2.

We remark that here we assume x1, · · · , xk are singular cycles. If they are
chains then the moduli space M1,k+1(β; (x1, · · · , xk);K + S) will have more
codimension one boundaries when boundary marked points goto ∂xi. These
boundary terms will cancel with q

cy,b
1,k1+k2−1 ◦m1;β=0 in the A∞-relation. □
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±

q
cy,b
1,k1

◦mk2

±

mk1 ◦ qcy,b1,k2

Figure 4: Splittings of disks and cylinders.

We expect that the transversality result needed to define the above A∞-
structure can be obtained by using one almost complex structure J satisfying
Condition 1.1 via virtual perturbation, or a family of J ’s in a small neighbor-
hood of a J satisfying Condition 1.1 via classical means, see Remark 4.12.
For another J ′ satisfying Condition 1.1, if we can connect J with J ′ by a
family of J ’s satisfying Condition 1.1 except (2), we will get a homotopy
equivalence between A∞-structures, by a cobordism argument.

Proposition 4.7. Let {Jt}t∈[0,1] be a smooth family of almost complex
structures such that J0 and J1 satisfy Condition 1.1 and Jt satisfies Condi-
tion 1.1 except (2) for each t ∈ [0, 1]. Then two A∞-structures m

cy,b;J0

k and

m
cy,b;J1

k are homotopy equivalent.

Now we remark about the dependence of the choice of the chain K we
use. Suppose that we have two four-chains K and K ′ such that ∂K = ∂K ′ =
S, K ∩ L = K ′ ∩ L = ∅ and they represent the same class in H4(X,S). Then
we expect that there is an A∞-homotopy equivalence between m

cy,b
k and

m
cy,b′

k , where b = wK and b′ = wK ′. If K and K ′ can be joined by a fam-
ily of four-chains Kt with ∂Kt = S such that Kt ∩ L = ∅ for all t, then
the above A∞-homotopy equivalence induces an identity map on potential
functions. In general there may be some Kt intersecting L. Then the above
A∞-homotopy equivalence induces a coordinate change on potential func-
tions. For genuine bulk deformations, this A∞-homotopy equivalence (and
the coordinate change) is discussed in [19] and Section 2.5 in [25]. We expect
the technique therein combined with our gluing of the interior marked point
gives the desired A∞-homotopy equivalence.

Once we have the A∞-relation modulo some energy, we can talk about
the canonical model of {mcy,b

k }, see [20]. That is, we have a new collection of

operators {mcy,b,can
k } on the cohomology H∗(L), such that {mcy,b,can

k } give
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an A∞-structure on H∗(L) and ({mcy,b,can
k }, H∗(L)) is homotopy equivalent

to ({mcy,b
k }, C∗(L)). From now on we will only use the canonical model

({mcy,b,can
k }, H∗(L)) and we abuse the notation just write m

cy,b
k instead of

m
cy,b,can
k .
As in the usual Lagrangian Floer theory, an A∞-structure gives a com-

plex. Now we define the b-deformed Floer complex, analogous to (2.6) and
(2.8).

Definition 4.8. For b = wK with w ∈ Λ+ and ρ ∈ H1(L; Λ+), we define
the operator

∂ρcy,b : H∗(L; Λ+) → H∗(L; Λ+)

by

∂ρcy,b(x) =
∑

β

eρ(∂β)qcy,b1,1;β(x) · Tω(β).

The deformed complex is defined by

(H∗(L; Λ+), d
ρ
cy,b = δρ + ∂ρcy,b).

Here δρ is similarly defined as

δρ := m
ρ
1(x) =

∑

β

eρ(∂β)m1,β(x) · Tω(β).

Then the A∞-formula (4.9) gives us a complex.

Proposition 4.9. The operator dρcy,b satisfies that

(dρcy,b)
2 ≡ 0 mod TE .

Hence we have a cohomology modulo TE which we write as HFcy(L; (b, ρ)).

Remark 4.10. In this section we define the operators m
ρ
1 and ∂ρcy,b by

using local systems ρ, which is different in the usual definition of bulk-
deformed potential functions, where weak bounding cochains are used. But
under Condition 1.1 there is no disk bubble with non-positive Maslov index,
these two approaches are the same. This is proved in Section 4.1 in [25] for
the genuine bulk deformation case with all operators ql,k;β . And here we only

need to adapt the proof therein for our operators qcy,b1,k;β . More precisely, the

proof boils down to prove the divisor axiom for the operator qcy,b1,k;β , which is
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given by the integration-along-fiber technique on the moduli spaces of disks,
see Section 4.1 in [25] and Lemma 7.1 in [22] for the proof, or Section 3
in [18] for more original statements. We expect those technique to work to
establish the divisor axiom for our operators here, also see Remark 4.12.

Therefore we obtain a cohomology theory for a fixed bulk chain b = wK.
Its underlying complex is the singular cohomology of L and its differential
counts a combination of holomorphic disks and cylinders. An advantage of
this cohomology is that we can do explicit computation by the help of a
b-deformed potential function. For example, the existence of a critical point
of the potential function gives us a non-vanishing result of the cohomology.

Now we assume that L is a torus and define a b-deformed potential
function

POcy,b : H1(L; Λ+) → Λ+.

For a group homomorphism

ρ : π1(L) = H1(L;Z) → Λ0 − Λ+

we regard eρ(·) as an element in H1(L; Λ+). Then we define

(4.10) POcy,b(ρ) =
∑

β

eρ(∂β)Tω(β)(m0;β(1) + q
cy,b
1,0;β(1))

where m0;β is the (undeformed) A∞-structure on H∗(L), see Section 2. Here

m0;β(1) = PD([L])(m0;β)

and

q
cy,b
1,0;β(1) = PD([L])(qcy,b1,0;β)

are pairings between cochains and chains, which give us two numbers. We
will call qcy,b1,0;β(1) a mixed type one-pointed open Gromov-Witten invariant
of class β, since it has both disk and cylinder contributions. In particular
cases, we will see that the mixed invariant is a sum of the usual one-pointed
open Gromov-Witten invariant and the cylinder contribution. We remark
that this mixed type invariant is invariant under the deformation of J within
Condition 1.1, and small Hamiltonian perturbation ϕ(L) of L if ϕ(L) satisfies
Condition 1.1 with respect to the same J .

Proposition 4.11. Let L be a Lagrangian torus. If the potential function
POcy,b(ρ) for L has a critical point for some (b, ρ) modulo TE

′

, E′ < E,
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then the deformed Floer cohomology satisfies that

HFcy(L; (b, ρ)) ∼= H∗(L;
Λ0

TE′Λ0
) ∼= (

Λ0

TE′Λ0
)⊕8.

Proof. By a direct computation below we can find that if there is a critical
point for some (b, ρ) modulo TE

′

then the deformed boundary operator
dρcy,b ≡ 0 modulo TE

′

. So the cohomology is isomorphic to the underlying
complex.

Let {ei}i=1,2,3 be a set of generators of H1(L;Z). Then any ρ ∈
H1(L; Λ+) can be written as ρ(x) =

∑3
i=1 xiei. And we have that

(4.11)

∂

∂x1
POcy,b(ρ(x))

=
∂

∂x1

∑

β

eρ(∂β)Tω(β)(m0;β(1) + q
cy,b
1,0;β(1))

=
∂

∂x1

∑

β

e(x1e1+x2e2+x3e3)(∂β)Tω(β)(m0;β(1) + q
cy,b
1,0;β(1))

=
∑

β

(e1(∂β)) · e(x1e1+x2e2+x3e3)(∂β)Tω(β)(m0;β(1) + q
cy,b
1,0;β(1))

=
∑

β

e(x1e1+x2e2+x3e3)(∂β)Tω(β)(m1;β(e1) + q
cy,b
1,1;β(e1))

= δρ(e1) + ∂ρcy,b(e1) = dρcy,b(e1).

The third last equality uses the divisor axiom, see (2.7). For other par-
tial derivatives, similar computation also works. Therefore if all the partial
derivatives of POcy,b vanishes then our deformed Floer boundary operators
vanishes on H1(L; Λ+). Since L is a torus of which the cohomology is gener-
ated by degree one elements, we can perform an induction to show that the
deformed Floer boundary operator vanishes on the whole H∗(L; Λ+). We
refer to Section 13 in [21] for the induction process and the extension from
ρ ∈ H1(L; Λ+) to ρ ∈ H1(L; Λ0). □

Remark 4.12. We have completed the construction of a deformed A∞-
structure by using a chain K. Next we will perform computations to get
some geometric applications. We list here what we expect to be true but
didn’t spell out in full details.

1) We need to construct a certain chain model of C∗(L) to serve as the
domain and codomain of our operators. We expect the construction of
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a singular chain model in [19] or a de Rham chain model in [22] work
here.

2) For sign conventions of our operators, we expect the calculation in
Chapter 8 of [19] work here.

3) For transversality of moduli spaces, we expect that we can use either
a single J via virtual perturbation or use families of J via classical
means.

4) Along with the transversality of moduli spaces, we expect that our
operators enjoy the divisor axioms, similar to (2.7).

4.6. Computations for a local torus

In last subsection we defined a version of deformed Floer theory in a general
setting. Now we study the case where L is a Lagrangian 3-torus near a
Lagrangian 3-sphere.

LetX be a symplectic 6-manifold with an integrally homologically trivial
Lagrangian sphere S. We fix a Weinstein neighborhood U of S such that
there is a singular toric fibration on U , as we described in Subsection 4.1.
Topologically U is isomorphic to S3 ×B3 where B3 is a 3-ball. We say U
is a round neighborhood if it is symplectomorphic to DrT

∗S3 with respect
to the round metric on the unit sphere S3. The preimages of four faces in
the moment polytope are four 4-chains Ki = π−1(Pi), i = 1, 2, 3, 4. Each of
them is homeomorphic to S3 × [0, 1] with two boundary components. Up
to orientation ∂0(Ki) is the zero section S and ∂1(Ki) is the generator of
H3(∂U ;Z). First we study some topological condition on S to perform the
conifold transition. Let V be a small closed neighborhood containing X − U
such that U ∩ V is homeomorphic to S3 × S2 × [1− ϵ, 1].

Lemma 4.13. The Lagrangian sphere S is homologically trivial in X if
and only if the inclusion

j2 : H3(U ∩ V ;Z) → H3(V ;Z)

is trivial.

Proof. Note that U ∩ V is homeomorphic to S3 × S2 × [1− ϵ, 1]. Consider
the Mayer-Vietoris sequence

· · · → H3(U ∩ V ) → H3(U)⊕H3(V ) → H3(X) → H2(U ∩ V ) → · · · .
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And we write j1, j2, i1, i2 as the inclusion maps

j1 : H3(U ∩ V ) → H3(U), j2 : H3(U ∩ V ) → H3(V ),

i1 : H3(U) → H3(X), i2 : H3(V ) → H3(X).

Then we have that j1 is an isomorphism hence H4(U,U ∩ V ) = {0}. Note
that H4(X,V ) = H4(U,U ∩ V ) = {0} so i2 is an injection. By the exactness
of the Mayer-Vietoris sequence, we get that i1 ◦ j1 − i2 ◦ j2 = 0. In conclu-
sion i1 is zero if and only if j2 = 0. □

By the above lemma all the four Ki’s can be completed into four 4-
chains in X. In other words the boundary ∂1(Ki) can be capped in X − U .
From now on we only consider those “completed” chains and still write them
as Ki. So Ki’s are 4-chains in X such that ∂(Ki) = ±S and Ki ∩ U is the
preimage of Pi. We remark that there may be different choices of K. For
example any chain K +A for A ∈ H4(X) is another choice of a chain with
boundary S. Now we fix a “completion” for each Ki and regard them as
4-chains in X.

Now for this fixed Weinstein neighborhood U and a local torus L ⊂
U , we estimate some energy parameters of holomorphic disks. Let J be a
compatible almost complex structure on X which satisfies Condition 1.3.
Then the one-pointed open Gromov-Witten invariant nβ is defined with
respect to J , for a disk class β ∈ π2(X,L) with Maslov index two and with
energy less than E+. We consider the sequence

{βk | nβ ̸= 0, E(βk) ≤ E(βk+1)}∞k=1

of disk classes with Maslov index two, enumerated by their symplectic en-
ergy. We know that L bounds four J-holomorphic disks with Maslov index
two inside U , with same energy E1. Those are the first four elements in the
above sequence if L is near S. In particular we can assume that E1 << ES .
Let E5 = E(β5) be the least energy of outside disk contribution. Moreover,
we assume that 2E5 < E+.

In order to directly compute this deformed potential function, we need
to use the special properties of J . We know that L bounds four families of
J-holomorphic disks in U , with Maslov index two, representing four classes
β1, β2, β3, β4. All of this four families of disks are away from a small neigh-
borhood of S, by (6) in Condition 1.3. Hence the moduli space M1,1(βi;K)
is a closed manifold, since the interior marked point cannot go to ∂K. More-
over, the moduli space of cylinders Mcy

1 (β;S), representing a Maslov two
class β with ω(β) < E5, does not have codimension one boundary. This is
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because no J-holomorphic disk touches S if it has Maslov index two and has
energy less than E5.

Therefore, the moduli space M1,1(β;K + S) is a disjoint union of two

closed moduli spaces, see Corollary 4.5. By definition, the coefficient qcy,b1,0;β(1)
in the potential function is the mapping degree

deg(ev : M1,1(β;K + S) → L)).

Hence it is the sum of two mapping degrees

(4.12)
q
cy,b
1,0;β(1) = deg(ev : M1,1(β;K + S) → L))

= deg(ev : M1,1(β;K) → L)) + deg(ev : Mcy
1,1(β;S) → L)).

We write

nβ(K) := deg(ev : M1,1(β;K) → L))

and

ncyβ := deg(ev : Mcy
1,1(β;S) → L)).

By local study, the first mapping degree is known to be one if and only if
β = βi and K is a capped Ki.

Now we can compute the deformed potential function. By the degree
computation it is enough to only consider β with Maslov index two. Let
b = wK1, where K1 is the capped first facet in the singular toric fibration.
With respect to a chosen basis of H1(L;Z) (the same basis as in (4.1)), the
potential function is

(4.13)

POcy,b(ρ) = [(1 + (1 + ncyβ1
)w)x+ (1 + ncyβ2

w)y−1

+ (1 + ncyβ3
w)xz−1 + (1 + ncyβ4

w)y−1z]TE1

+
∑

µ(β)=2,ω(β)=E1,β ̸=βi

ncyβ fβ(x, y, z)T
E1 +H(w, x, y, z, T )

where H(w, x, y, z, T ) are higher energy terms.
We explain (4.13) as follows. There is no term with energy less than

E1, since such a low energy disk or cylinder will be contained in U , where
L is monotone and E1 is the minimal energy. The term (1 + (1 + ncyβ1

)w)x
corresponds to the class β1. Its coefficient is

m0;β1
(1) + q

cy,b
1,0;β1

(1) = m0;β1
(1) + (nβ1

(K1) + ncyβ1
)w = 1 + (1 + ncyβ1

)w,

weighted by the boundary class eρ(∂β1) = x in our chosen basis. Similarly,
for βi with i = 2, 3, 4 we have other three terms, since holomorphic disks
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representing βi with i = 2, 3, 4 do not intersect K1, we have m0;βi
(1) =

1, nβ1
(K1) = 0 but ncyβi

might not be zero. This gives the coefficient 1 + ncyβi

w
in these three terms.

And the term

∑

µ(β)=2,ω(β)=E1,β ̸=βi

ncyβ fβ(x, y, z)T
E1

corresponds to other disk classes with µ(β) = 2, ω(β) = E1, β ̸= βi. By the
local study we know that m0;β(1) = nβ(K1) = 0. However, there might be a
nonzero cylinder contribution ncyβ , which we weight by its energy TE1 and

boundary class fβ(x, y, z) := eρ(∂β). Later we will use (8) in Condition 1.3 to
exclude those contributions. The last term is from contributions of classes
with energy more than E1.

In the low energy terms, the disk contributions are explicitly known but
the cylinder contributions ncyβ are not. Next we show that for a degenerate
almost complex structure J∞, there are no cylinder contributions. How-
ever, we do not know while we degenerating the almost complex structure,
whether other assumptions in Condition 1.1 will be preserved. So when we
use the vanishing of some cylinder contributions, we regard it as an extra
condition.

Proposition 4.14. With respect to some almost complex structure J∞, the
moduli space Mcy

1,1(β, S) is empty. Here β is any class with Maslov index two.

Proof. The proof uses the degeneration technique in Section 3. First we fix
a Weinstein neighborhood U of S and L is in U . Then we chose a smaller
Weinstein neighborhood U ′ ⊂ U of S such that L is not in U ′. That is, U ′

is symplectomorphic to Dr′T
∗S3 with the canonical symplectic form with

a smaller r′. Then by the symplectic sum construction, we have a fibration
X → ∆ over the unit disk. The fiber Xz is symplectomorphic to X if z ̸= 0.
The fiber over zero is a singular symplectic manifold X0 = X− ∪D X+ where
X− is symplectomorphic to the quadric with a scaled symplectic form. The
symplectic manifold X+ is obtained from X − U ′ by quotienting the S1-
action on ∂U ′. Hence L is in X+.

Next we do dimension counting to show that there is no holomorphic
cylinder in the fiber Xz if z is close to zero. We assume that there is a
compatible almost complex structure J on X such that

(4.14) the torus L satisfies Condition 1.1 in X+ with respect to J |X+
.
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For a class β, suppose that we have a sequence uz of Jz-holomorphic cylinders
in Xz representing class β, with z → 0. By Gromov compactness theorem,
we have a limit u0 in X0. Suppose that for the nodal curve u0, its component
in the quadric, which is not contained in D is of class A. Since one end of our
cylinder is on S, the class A is non-zero. The component of u0 in X+ has two
sub-components: one is totally contained in D and the other not in D. We
write the class of the former as B ∈ H2(D) ⊂ H2(X+) and the later as class
β′ ∈ H2(X+, L). We assume that both components A and β′ intersect D at
finitely many points. If A ̸= 0 we write s1 as the intersection number of A
and the divisor D = Q2 ⊂ Q3. Note that D ∼= CP 1 × CP 1 is both a complex
and symplectic submanifold of X+, it is also monotone with respect to the
induced symplectic form. For each ruling C = CP 1 in D, its intersection
number (computed in X+) with D is −1, since the normal bundle of D in
X+ is O(−1,−1). Hence c1(NX+

C)(C) = −1 and c1(TX+)(C) = 1. Then we
write the intersection number B ·D = s11, which is a negative number. And
we write β′ ·D = s12. By above discussion, we know that s11 + s12 = s1 and
c1(TX+)(B) = −s11 since B is a positive linear combination of two rulings.

Now we use the Maslov index formula, which can be deduced from (3.1)

µ(β) = µ(A) + µ(B) + µ(β′)− 4s1 = 6s1 − 2s11 − 4s1 + µ(β′)

≥ 2s1 − 2s11 + 2s12 = 4s12 ≥ 4.

The second equality uses that c1(TQ3) = 3[Q2] and the last inequality uses
assumption (4.14) so that µ(β′) ≥ 2s12.

Therefore if the class β has Maslov index two then the nodal curve
cannot have a component in the top level Q3. That is, for a Maslov index
two class β, there is no Jz-holomorphic cylinder representing β with respect
to some Jz when z is small. Hence we write J∞ as one of Jz for small z. □

Remark 4.15. A similar proof, replacing a sequence of holomorphic cylin-
ders by a sequence uz of Jz-holomorphic disks in Xz with boundary on L
representing class β, shows that there is no Jz-holomorphic disk going to
the neighborhood U ′, representing a Maslov two β with respect to some Jz
when z is small. Hence the assumption (4.14) serves as an alternative of
Condition 1.3 for our later computations. We expect (4.14) is true at least
locally. For example, when X = T ∗S3 if we choose U ′ in the above degen-
eration carefully, our fixed L is still monotone in X+. So we can first do
local computation to exclude cylinder contributions with respect to some
J∞, then try to extend J∞ from a Weinstein neighborhood to the whole
of X.
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One may also use neck-stretching in symplectic field theory to prove
above results. Note that there is a contact form on the boundary of U ′ such
that the Conley-Zehnder indices of its Reeb orbits are at least two. Starting
with a disk or cylinder with Maslov index two, after stretching along ∂U ′, in
the bottom level we have a curve with several negative punctures and with
Maslov index at most two. The dimension of this moduli space is smaller
than two, hence the boundary of such a curve does not pass through a generic
point on L.

In the next section we will relate the cohomology HFcy(L; (b, b)) to an-
other model of cohomology such that the underlying complex is generated by
Hamiltonian chords with ends on L and a Hamiltonian perturbation ϕ(L).
The first cohomology HFcy(L; (b, b)) is for computational purpose and the
later cohomology is more geometrical. Once we established the equivalence
between these two theories we get a critical points theory to detect the
displacement energy of L.

5. A second deformed Floer complex

Now we will construct another deformed Floer complex and study its change
of filtration under Hamiltonian diffeomorphisms. As in the setting of Theo-
rem 1.2, let X be a symplectic 6-manifold, S be an integrally homologically
trivial Lagrangian sphere and L be a Lagrangian submanifold of X satis-
fying Condition 1.1. We also fix a 4-chain K in X such that ∂K = S and
L ∩K = ∅, assuming its existence.

In the following construction we need to introduce Hamiltonian pertur-
bations of L and perturbations of the chosen almost complex structure J .
We first remark that by Gromov compactness theorem, see Lemma 6.4.7
and Lemma 6.4.8 in [32], both Condition 1.1 and Condition 1.3 are open,
except item (2). However there can be more than one connected components
of the set of almost complex structures satisfying each condition. So when
we say a small perturbation of J , we mean another almost complex struc-
ture in the same component with J , which satisfies the conditions. When we
say a small Hamiltonian perturbation ϕ of L, we mean the Hamiltonian is
small such that ϕ(L) also satisfies these conditions with respect to another
J ′ which is in the same component with J and satisfies the conditions. Then
we can connect J with J ′ by a family of almost complex structures in this
component. And when we use domain-dependent almost complex structures
{Jz}z∈Σ, we assume that all Jz are in the same component. As we mentioned
in the beginning of this article, we expect the transversality result needed
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can be obtained by either a single J via virtual perturbation or by families
of J ’s via classical means.

5.1. Definition of the complex

Let Ht be a time-dependent Hamiltonian function on X and let ϕ be its
time-one Hamiltonian diffeomorphism. We first review the Floer complex
generated by the Hamiltonian chords with ends on L, which is called the
dynamical version of Floer theory in [24].

Consider the path space

Ω(L) = {l : [0, 1] → X | l(0) ∈ L, l(1) ∈ L}.

We fix a base path la ∈ Ω(L) for each component a ∈ π0(Ω(L)). Let (l, w)
be a pair such that l ∈ Ω(L) and w : [0, 1]2 → X satisfying

w(s, 0) ∈ L,w(s, 1) ∈ L,w(0, t) = la(t), w(1, t) = l(t).

And we modulo the following Γ-equivalence. Let (l, w), (l, w′) be two such
pairs, the concatenation

w̄#w′ : [0, 1]× [0, 1] → X

defines a loop c : S1 → Ω(L). One may regard this loop as a map C : S1 ×
[0, 1] → X satisfying the boundary condition C(s, 0) ∈ L,C(s, 1) ∈ L. Next
we consider the symplectic area Iω(c) :=

∫
C
ω and the Maslov index Iµ(c) :=

µ(C). We say two pairs (l, w), (l, w′) are Γ-equivalent if Iω(w̄#w
′) = 0 =

Iµ(w̄#w
′). We denote the set of equivalence classes [l, w] by Ω̃(L), which is

called the Novikov covering space.
Then we define the dynamical action functional, with respect to Ht, to

be

(5.1) AHt,la([l, w]) =

∫
w∗ω +

∫ 1

0
Ht(l(t))dt.

on the space of pairs [l, w]. We remark that our convention for Hamilton’s
equation is

ω(XH , ·) = dH(·), where XH is the Hamiltonian vector field of H.
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The critical points of this action functional are Hamiltonian chords. We
write the set of critical points as

CF (L,Ht) = {[l, w] | l′(t) = XHt
(l(t))}.

For a critical point [l, w] the path l corresponds to a geometric intersection
point in L ∩ ϕ(L) since ϕ(l(0)) = l(1) ∈ L. When Ht is generic there are
only finitely many of them, and they do not intersect the 4-chain K. We
remark that the set of critical points has a decomposition with respect to
the different components a ∈ π0(Ω(L)). We define the action functionals and
study their critical points on different components separately.

Now we equip L with local systems. For any group homomorphism

ρ : π1(L) → Λ0 − Λ+

we choose a flat Λ0-bundle (L,∇ρ) such that its holonomy representation is
ρ. Then we define the cochain complex as

(5.2)

C̃F ((L, ρ), Ht; Λ0) :=
⊕

[l,w]∈CF (L,Ht)

hom(Ll(0),Ll(1)) · [l, w]

CF ((L, ρ), Ht; Λ0) := C̃F ((L, ρ), Ht; Λ0)/ ∼ .

Here Ll(i) is the fiber of the bundle L over l(i) and hom(Ll(0),Ll(1)) is defined
as

hom(Ll(0),Ll(1)) := hom(ϕ∗(Ll(0)),Ll(1)),
which is a homomorphism induced by ϕ. And the notion hom(Ll(0),Ll(1)) ·
[l, w] means the free Λ0-module generated by [l, w]. The equivalence ∼ here
is that for TA ∈ Λ0, we define [l, w] ∼ TA[l′, w′] if and only if

l = l′,

∫

w

ω = A+

∫

w′

ω.

Then we extend the above action functional to CF ((L, ρ), Ht; Λ0) as follows

AHt,la(σ[l, w]) = v(σ) +

∫
w∗ω +

∫ 1

0
Ht(l(t))dt.

Next we consider smooth maps

u(τ, t) : R× [0, 1] → X, u(τ, 0) ∈ L, u(τ, 1) ∈ L

such that u(−∞, t) = l0(t), u(∞, t) = l1(t) for some l0, l1 to define the
parallel transport maps. Let B be the homotopy class of u and σ ∈
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Figure 5: Composition of parallel transport maps.

hom(Ll0(0),Ll0(1)) then we define

CompB : hom(Ll0(0),Ll0(1)) → hom(Ll1(0),Ll1(1))

by

(5.3) CompB(σ) = Pal1 ◦ σ ◦ Pal−1
0

where Pali is the parallel transport along the path u(τ, i) ∈ L for i = 0, 1, see
Figure 5. Although we used u to define the parallel transport, the composi-
tion map is a homotopy invariant. That is, it only depends on the homotopy
class B of u.

Now we can define the Floer coboundary operator with local systems.
Let

M([l0, w0], [l1, w1]) ={u(τ, t) : R× [0, 1] → X | ∂τu+ J(∂tu−XHt
) = 0,

u(τ, 0) ∈ L, u(τ, 1) ∈ L, u(−∞, t) = l0(t),

u(∞, t) = l1(t)}

be the moduli space of Floer solutions connecting [l0, w0] and [l1, w1]. Then
for a fixed ρ we define

δρ : CF ((L, ρ), Ht; Λ0) → CF ((L, ρ), Ht; Λ0)

as

(5.4)

δρ(σ[l0, w0])

=
∑

[l1,w1]

Comp[w1−w0](σ)♯M([l0, w0], [l1, w1])[l1, w1].

Here the sum is over all [l1, w1] such that the corresponding moduli space is
zero-dimensional. And the number ♯M([l0, w0], [l1, w1]) is a signed count.
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Proposition 5.1. Under Condition 1.1, the coboundary operator is well-
defined and satisfies that (δρ)2 ≡ 0 mod TE+.

Proof. Under the energy bound E+, the proof is similar to the case when
a Lagrangian torus is monotone, where the self-Floer cohomology is well-
defined, see Theorem 16.4.10 in [36]. Note that Condition 1.1 excludes pos-
sible disk bubbles, with non-positive Maslov indices, splitting from the Floer
strips. For disk bubbles with Maslov index two, they appear in pairs on both
sides of the Floer solutions and cancel with each other. We don’t need to
consider disk bubbles with higher Maslov indices since we are looking at
one-dimensional moduli spaces to show the square of δρ is zero. And so far
we haven’t introduce interior marked points, we don’t need to use the energy
bound ES in Condition 1.1. □

We call the above cohomology given by δρ the Floer cohomology with
local systems. Next we want to deform it further by counting strips with an
interior marked point/an interior hole. The aim is to define a new operator

∂K : CF ((L, ρ), Ht; Λ0) → CF ((L, ρ), Ht; Λ0).

Here K is the chosen 4-chain with ∂K = S and K ∩ L = ∅. First we describe
the domain we will use to count holomorphic maps. Consider the domain

Stripϵ,r=(r′,r′′) = {(τ, t) ∈ R× [0, 1] ⊂ C | (τ − r′)2 + (t− r′′)2 ≥ ϵ2}.

Let C(ϵ) denote the circle boundary (τ − r′)2 + (t− r′′)2 = ϵ2 of Stripϵ,r. We
put the interior hole centered at (r′, r′′) with radius ϵ ∈ (0,min{r′′, 1− r′′}).
The radius ϵ determines the complex structure on the domain. And we write
Strip = Strip0,r as the usual holomorphic strip in C.

Now we consider several moduli spaces. The elements in these moduli
spaces satisfy the same Hamiltonian-perturbed holomorphic equation

∂τu+ J(∂tu−XHt
) = 0.

But they are from different domains and have different boundary conditions.
For a pair ([l0, w0], [l1, w1]) let

M̃1(([l0, w0], [l1, w1]);K)

be the moduli space of Floer strips with one interior marked point at (r′, r′′),
where the interior point is mapped to K. More precisely, it contains maps
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l0 l1 l0 l1

Figure 6: Counting strips with one interior marked point and one hole.

u : Strip→ X such that

u(τ, 0) ∈ L, u(τ, 1) ∈ L, u(−∞, t) = l0, u(∞, t) = l1

and

u(r′, r′′) ∈ K

where the map u represents the class β = w1 − w0. And let

M̃cy
1 (([l0, w0], [l1, w1]);S)

be the moduli space of Floer strips with one interior hole, where the hole
is mapped to S. It contains maps from domain Stripϵ,r for all (ϵ, r). And u
satisfies the same Lagrangian boundary condition as above: the line bound-
aries are mapped to L and two ends converge to given chords l0, l1. One
extra boundary condition is that the circle boundary is mapped to S.

Note that ∂K = S and S is simply connected, the homotopy classes
in these two types of moduli spaces can be identified. Now we fix a bulk
deformation b = wK with w ∈ Λ+. Similar to the discussion in Section 4
we want to compactify these moduli spaces and glue them together along
a common boundary for the same class β = w1 − w0, with ω(β) + v(w) <
E := min{ES + v(w), 2v(w), E+}.

Proposition 5.2. For fixed generators [l0, w0] and [l1, w1], there are com-
pactification

M1(([l0, w0], [l1, w1]);K) ⊇ M̃1(([l0, w0], [l1, w1]);K)

and compactification

Mcy
1 (([l0, w0], [l1, w1]);S) ⊇ M̃cy

1 (([l0, w0], [l1, w1]);S).

Each of them has a particular boundary component such that

∂KM1(([l0, w0], [l1, w1]);K) = −∂cyMcy
1 (([l0, w0], [l1, w1]);S)
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and we can glue them on this component to get a compact moduli space

M1(([l0, w0], [l1, w1]);K + S)) =

M1(([l0, w0], [l1, w1]);K) ⊔Mcy
1 (([l0, w0], [l1, w1]);S)

/
∼

where the equivalence relation is

∂KM1(([l0, w0], [l1, w1]);K) ∼ −∂cyMcy
1 (([l0, w0], [l1, w1]);S).

Proof. To get the compactification we add several types of degenerations:
strip breaking, disk/sphere bubbles and domain degeneration. The cases of
the strip breaking and disk/sphere bubbles are more standard in Floer the-
ory. So we mainly care about the domain degeneration involving parameters
ϵ and r. The former is the radius of the interior hole and the later is the
position of the center of the hole. Note that r = (r′, r′′), if r′ goes to positive
or negative infinity, then we will have an interior marked point or an interior
hole converging to a chord, which is assume to be away from the chain K.
Hence such a degeneration does not happen. In the following we focus on
the parameters ϵ, r′′ and just write r = r′′ for notational simplicity. Suppose
that we have a sequence of parameters {(ϵi, ri)}+∞

i=1 , we will discuss case by
case of possible degenerations.

1) If infi{ϵi} > 0 and ϵi + ri → 1 or−ϵi + ri → 0. Geometrically the circle
boundary approaches to the strip boundary while the radius of the
circle is bounded from below. This type of degeneration will not happen
since our S and L are disjoint. Without losing generality we assume
that ϵi + ri → 1 with ϵi ≡ ϵ0 > 0 for some constant ϵ0. Then we can
scale a neighborhood of the point (0, ϵi + ri) such that locally we have
a holomorphic strip ui with one boundary on L and with one curved
boundary on S, see Figure 7. To compactify such a degeneration we
need to add a genuine holomorphic strip u∞ in the moduli space, since
in the limit the curved boundary becomes a usual boundary. However,
note that such a strip u∞ has finite energy because it splits from
a finite energy solution. By an exponential decay estimate we know
limτ→±∞ u∞(τ, t) converges to the intersections of L and S, which is
empty by our assumption. Hence such a degeneration will not appear.

2) If ϵi → 0 and {ri} stays the interior of the strip. In the limit we have
a holomorphic strip with one interior marked point. Then we can per-
form the same gluing argument as we did in Section 4. That is, we
glue this end with the moduli space of strips with one interior marked
point as we did before, to cancel this end of boundary.
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Figure 7: Zoom in on the region where two boundaries meet.

3) If ϵi → 0 and {ri} goes to one strip boundary. Without losing generality
we assume that limi(ri) = 1. Then we consider the ratio ϵi

1−ri
and there

are different possibilities.
a) If limi

ϵi
1−ri

= +∞, the case is similar to (1) and we use the fact
L ∩ S = ∅ to exclude this degeneration.

b) If limi
ϵi

1−ri
= R for some constant R > 0, after a conformal change

this degeneration is equivalent to an annulus bubble on the bound-
ary. So we put this type of limit of solutions into the compactifica-
tion.

c) If limi
ϵi

1−ri
= R = 0, then after a conformal change it is a disk bub-

ble, with one interior point attaching to S. We put this type of limit
of solutions into the compactification.

In conclusion, to get the compactification we add broken curves in (2),
(3b), (3c) and broken strips. Next we glue the particular boundary compo-
nent in (2) with the moduli space of holomorphic strips with one interior
marked point, as we did in Theorem 4.4.

We write

∂KM1(([l0, w0], [l1, w1]);K)

as the boundary component containing elements when the interior marked
point is mapped to S = ∂K. And we write

∂cyMcy
1 (([l0, w0], [l1, w1]);S)

as the boundary component containing elements in (2). These two boundary
components are the same since they contain the same set of elements. Then
we glue these two compactified moduli spaces along this common boundary
component. □

We remark that if the class β is energy minimal then this boundary
component is the only boundary part. So after gluing we will get a closed
moduli space.
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Now we can define an operator deformed by b = wK. With the fixed ρ
we define

∂KCF ((L, ρ), Ht; Λ0) → CF ((L, ρ), Ht; Λ0)

as

(5.5)

∂K(σ[l0, w0])

=
∑

[l1,w1]

Comp[w1−w0](σ)♯M1(([l0, w0], [l1, w1]);K + S))[l1, w1].

Here the sum is also over all [l1, w1] such that the corresponding moduli
space is zero-dimensional.

Then we set dρK = δρ + ∂K and study when dρK gives us a differential.

Proposition 5.3. For a bulk deformation b = wK, the operator dρK satis-
fies that

(dρK)2 = (∂K)2 ≡ 0 mod TE ,

where E := min{ES + v(w), 2v(w), E+}.

Proof. By definition we have that

(dρK)2 = (δρ)2 + δρ∂K + ∂Kδ
ρ + (∂K)2.

Assuming Condition 1.1 the operator δρ itself is a differential hence (δρ)2 ≡ 0
mod TE+ . The last term (∂K)2 vanishes by the energy reason, since ∂K is
weighted by at least T v(w). Then we need to show that δρ∂K + ∂Kδ

ρ ≡ 0
mod TE . This is obtained by considering one-dimensional moduli spaces of
Floer strips with one interior hole and study the breaking of such strips, see
Figure 8. By Proposition 5.2 we have a list of possible degenerations. Now
we discuss them by cases.

The first type of degeneration, which is strip breaking, corresponds to
the sum δρ∂K + ∂Kδ

ρ.
The second type of degeneration corresponds to disk bubbles with

Maslov index two. Since we assume Condition 1.1 there is no holomor-
phic disks with non-positive Maslov index. In this case disk bubbles on
two components of line boundaries cancel with each other by the invariance
of one-pointed open Gromov-Witten invariants.

The third type of degenerations are annulus bubbles. Under Condi-
tion 1.1, they have positive Maslov indices and we only need to look at
the Maslov two case. In this case, they correspond to the mixed type one-
pointed open Gromov-Witten invariants defined in Section 4. Similar to the
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Figure 8: Degenerations of a one-dimensional moduli space.

invariance of one-pointed open Gromov-Witten invariants, annulus bubbles
appear on both sides of line boundaries. Hence they cancel in pairs.

In conclusion the codimension one boundaries of the moduli space are
listed in Figure 8. Term (2) cannot happen since L ∩ S = ∅. Terms in (3) and
(4) cancel with each other. So the only contribution is δρ∂K + ∂Kδ

ρ, which
corresponds to (1) and should be zero as a signed count. This completes our
proof that dρK is a differential modulo TE . □

Therefore the operator dρK defines a differential modulo TE and we can
talk about the cohomology modulo this energy. We write this cohomology
as

HFcy((L, ρ), (L, ρ), Ht;K).

In the next subsection we will study how this cohomology behaves with
respect to the choice of Hamiltonian Ht. Then we can obtain the desired
energy estimate. The key point is that how the energy of a Floer strip with
one interior hole change under a Hamiltonian diffeomorphism.

Before dealing with a general Hamiltonian diffeomorphism, we look
at the case when Ht is C2-small. Let ϕ be the time-one flow of
Ht. We assume that L ∩ ϕ(L) is transversal and S ∩ ϕ(L) = ∅. More-
over, the new Lagrangian submanifold ϕ(L) also satisfies Condition 1.1
with the same J . Then we can define a similar cohomology theory
HFint,cy((L, ρ), (ϕ(L), ρ);K) where the underlying complex is generated by
intersection points of L and ϕ(L). We call it the intersection model. The
differential is also a sum of two operators, one counts the usual holomorphic
strips and the other counts holomorphic strips with one interior hole. Here
the pair (ϕ(L), ρ) is actually (ϕ(L), (ϕ−1)∗ρ) but for notational simplicity
we just write it as (ϕ(L), ρ).
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Proposition 5.4. The intersection model gives a cohomology theory

HFint,cy((L, ρ), (ϕ(L), ρ);K)

with coefficients Λ0/T
EΛ0.

Proof. We need to show that the square of the differential is zero. It can
be done by the same argument as before, using the assumption that both
S ∩ ϕ(L) = ∅ and S ∩ L = ∅. Moreover, since Ht is C2-small such that L
and ϕ(L) both satisfy Condition 1.1 with a common J . And the counts of
holomorphic disks with Maslov index two, under the energy bound E+, are
the same. Hence possible disk bubbles on L and ϕ(L) cancel with each other.
Then the proof in Proposition 5.3 works for this intersection model.

For a general Hamiltonian perturbation, there may be wall-crossing phe-
nomenon for holomorphic disks with Maslov index two. So this intersection
model is only defined with a small perturbation. □

Remark 5.5. With the assumption that Ht is C
2-small we can prove that

these two theories are equivalent as filtered cohomology groups. But we
do not need this fact in our following context. The intersection model just
plays a transition role between the disk model (coming from the potential
function) and the chord model. In practice we will use a chord model of
which the generators are chords with one end on L and the other end on
ϕ(L). And the displacement result will be proved by a limit argument since
we can take ϕ arbitrarily small.

Another possible approach is to use a Morse-Bott model to define the
above deformed Floer cohomology. In that case, we don’t need to perturb L
by a small Hamiltonian.

5.2. Change of filtration under Hamiltonian diffeomorphisms

Let ϕ be the time-one flow of Ht (not necessarily C
2-small) such that L and

ϕ(L) intersect transversally, and the Hamiltonian chords are disjoint from
K. Then the cohomology HFcy((L, ρ), (L, ρ), Ht;K) is well-defined with co-
efficient Λ0/T

EΛ0. We can view the cohomology group as a Λ0-module. Now
we study how the choice of Ht change the cohomology.

This deformed Floer complex is a modification of the Floer complex with
bulk deformations and can be regarded as its “first order approximation”.
(Note that the differential is a sum of two operators.) The dependence of Ht

on the usual differential δρ with local systems is well-studied in [19] and [24].
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So we focus on the part which involves the operator ∂K . Actually we will
prove a new energy estimate to construct different chain maps and chain
homotopies then the rest of the arguments will follow the same proof in
Section 6 and 7 in [24].

First we recall some relevant backgrounds on the geometric version of
Floer theory and the dynamical one.

Let L0, L1 be two transversally intersecting Lagrangian submanifolds.
The geometric version of the Floer complex CF ∗(L0, L1) is generated by
the intersection points

p ∈ L0 ∩ L1

where p can be regarded as a constant element in the path space

Ω(L0, L1) = {l : [0, 1] → X | l(0) ∈ L0, l(1) ∈ L1}.

We fix a base path la ∈ Ω(L0, L1) for each component a ∈ π0(Ω(L0, L1)).
Let (l, w) be a pair such that l ∈ Ω(L0, L1) and w : [0, 1]2 → X satisfying

w(s, 0) ∈ L0, w(s, 1) ∈ L1, w(0, t) = la(t), w(1, t) = l(t).

Then we define the geometric action functional

(5.6) Ala((l, w)) =

∫
w∗ω

on the space of pairs (l, w). Then as in the previous subsection, we modulo
the Γ-equivalence relation between (l, w) and (l, w′) and write [l, w] as the
equivalence class.

For two Lagrangian submanifolds L0, L1 and a time-dependent Hamil-
tonian H̃t, the dynamical version of the Floer complex is generated by the
solutions of Hamilton’s equation

{x ∈ Ω(L0, L1) | ẋ = XH̃t

(x)}.

For a fixed base path xa and a pair [x,w], the dynamical action functional
is defined as

(5.7) AH̃t,xa

([x,w]) =

∫
w∗ω +

∫ 1

0
H̃t(x(t))dt.

The two versions of Floer complexes can be regarded as filtered com-
plexes with respect to their action functionals. And those two Floer theories
are related by a transformation. We refer to Section 4 in [24] for more details.



✐

✐

“3-Sun” — 2023/12/15 — 18:32 — page 575 — #67
✐

✐

✐

✐

✐

✐

Displacement energy of Lagrangian 3-spheres 575

Next we introduce the notion of the perturbed Cauchy-Riemann equation
to study the relation between these two versions of Floer theories. Let χ+(τ) :
R → R be a smooth function such that

χ+(τ) =

{
0 τ ≤ −2,

1 τ ≥ −1,
χ′
+(τ) ≥ 0

and χ−(τ) = 1− χ+(τ). Also we will use a family of smooth bump functions
χN (τ) for N ≥ 1, satisfying

χN (τ) =

{
0 |τ | ≥ N + 1,

1 |τ | ≤ N,

and

χ′
N (τ) ≥ 0, ∀τ ∈ [−N − 1,−N ], χ′

N (τ) ≤ 0, ∀τ ∈ [N,N + 1].

In particular, we assume that on [−N − 1,−N ] ([N,N + 1] respectively) the
function χN is a translation of χ+ (χ− respectively). For N ≤ 1 we define
χN (τ) = Nχ1(τ) such that χN (τ) converges to the zero function as N goes
to zero.

From now on we assume that our pairs L0, L1 intersect transversally, L0

satisfies Condition 1.1 and L1 is a small Hamiltonian perturbation of L0.
Suppose that L0 satisfies Condition 1.1 for some J0 then we choose J1 such
that L1 satisfies Condition 1.1 for J1 and J0, J1 can be connected by families
of J ’s satisfying Condition 1.1 except (2). See Remark 4.12 and 5.13 for
the choices of almost complex structures. The perturbed Cauchy-Riemann
equation of u(τ, t) : R× [0, 1] → X is the following

(5.8)





∂u

∂τ
+ Jτt (

∂u

∂t
− χ(τ)XH̃t

(u)) = 0,

u(τ, 0) ∈ L0, u(τ, 1) ∈ L1.

Here Jτt is a family of almost complex structures connecting J0 and J1. And
χ(τ) is one of the bump functions we defined before. Similarly we can define
the perturbed Cauchy-Riemann equation where the domain is Stripϵ,r, a
strip with one interior hole.

The energy of a solution u is defined as

E(J,χ(τ),H̃t)
(u) =

∫
|∂u
∂τ

|2J
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and we will study the moduli space of finite energy solutions. First we review
the energy estimate of solutions when the domain is a strip without holes.
From now on, we assume that all the Hamiltonian functions are normalized,
that is, they satisfy that

∫
X
H̃t = 0.

Lemma 5.6. (Lemma 5.1, [24]) Let u be a finite energy solution of the
perturbed Cauchy-Riemann equation with domain Strip. Then we have that

(5.9)

E(J,χ(τ),H̃t)
(u) =

∫
u∗ω +

∫ 1

0
H̃t(u(+∞, t))dt

−
∫ ∞

−∞
χ′(τ)

∫ 1

0
H̃t(u)dtdτ.

When the domain is a strip with one interior hole we can do the
similar computation. As expected, the result has one more term involv-
ing the integral on the circle boundary. We will compute the cases where
χ = χ+, χ = χ− and χ = χN . First we fix the center of the interior hole at
(0, 12) and write

Stripϵ := Stripϵ, 1
2

= {(τ, t) ∈ R× [0, 1] ⊂ C | τ2 + (t− 1

2
)2 ≥ ϵ2}

to do the computation.

Lemma 5.7. Let u be a finite energy solution of the perturbed Cauchy-
Riemann equation with domain Stripϵ. Then we have that

(5.10)

E(J,χ(τ),H̃t)
(u) =

∫
u∗ω +

∫ 1

0
H̃t(u(+∞, t))dt

−
∫ ∞

−∞
χ′(τ)

∫ 1

0
H̃t(u)dtdτ −

∫

C(ϵ)
H̃t(u)

when χ(τ) = χ+(τ).
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t

τ

−2 −1 1

Figure 9: Divide Stripϵ into regions to do integration.

Proof. We prove the lemma by a direct computation.

(5.11)

E(J,χ(τ),Ht)(u) =

∫

Stripϵ

|∂u
∂τ

|2J =

∫

Stripϵ

ω(
∂u

∂τ
, J
∂u

∂τ
)

=

∫

Stripϵ

ω(
∂u

∂τ
,
∂u

∂t
− χ(τ)XH̃t

(u))

=

∫

Stripϵ

ω(
∂u

∂τ
,
∂u

∂t
)−

∫

Stripϵ

ω(
∂u

∂τ
, χ(τ)XH̃t

(u))

=

∫

Stripϵ

u∗ω +

∫

Stripϵ

χ(τ) · dH̃t(u)(
∂u

∂τ
)

=

∫

Stripϵ

u∗ω +

∫

Stripϵ

χ(τ) · ∂
∂τ
H̃t(u).

Next we consider the last term.

(5.12)

∫

Stripϵ

χ(τ) · ∂
∂τ
H̃t(u)

=

∫

Stripϵ,τ≤−2
χ(τ) · ∂

∂τ
H̃t(u) +

∫

Stripϵ,−2≤τ≤−1
χ(τ) · ∂

∂τ
H̃t(u)

+

∫

Stripϵ,−1≤τ≤1
χ(τ) · ∂

∂τ
H̃t(u) +

∫

Stripϵ,1≤τ
χ(τ) · ∂

∂τ
H̃t(u)

For τ ≤ −2, the integral is zero since χ(τ) is zero. For −2 ≤ τ ≤ −1, the
integral is
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(5.13)

∫ −1

−2

∫ 1

0
χ(τ) · ∂

∂τ
H̃t(u)

=

∫ −1

−2
χ(τ) · ∂

∂τ

∫ 1

0
H̃t(u)dtdτ

= (χ(τ) ·
∫ 1

0
H̃t(u)dt)|−1

−2 −
∫ −1

−2
χ′(τ)

∫ 1

0
H̃t(u)dtdτ

=

∫ 1

0
H̃t(u(−1, t))dt−

∫ −1

−2
χ′(τ)

∫ 1

0
H̃t(u)dtdτ.

Similarly for 1 ≤ τ , the integral is

(5.14)

∫ +∞

1

∫ 1

0
χ(τ) · ∂

∂τ
H̃t(u)

=

∫ 1

0
H̃t(u(+∞, t))dt−

∫ 1

0
H̃t(u(1, t))dt.

Now we consider the terms involving the interior hole. For −1 ≤ τ ≤ 1 we
have that χ(τ) ≡ 1 and the integral can be split as

(5.15)

∫

Stripϵ,−1≤τ≤1

∂

∂τ
H̃t(u)

=

∫ 1

−1

∫ 1

1

2
+ϵ

∂

∂τ
H̃t(u)dtdτ +

∫ 1

−1

∫ 1

2
−ϵ

0

∂

∂τ
H̃t(u)dtdτ

+

∫ 1

2
+ϵ

1

2
−ϵ

∫ −
√
ϵ2−(t− 1

2
)2

−1

∂

∂τ
H̃t(u)dτdt

+

∫ 1

2
+ϵ

1

2
−ϵ

∫ 1

√
ϵ2−(t− 1

2
)2

∂

∂τ
H̃t(u)dτdt.

Direct computation gives that

(5.16)

∫ 1

−1

∫ 1

1

2
+ϵ

∂

∂τ
H̃t(u)dtdτ =

∫ 1

1

2
+ϵ
H̃t(u(1, t))dt−

∫ 1

1

2
+ϵ
H̃t(u(−1, t))dt

∫ 1

−1

∫ 1

2
−ϵ

0

∂

∂τ
H̃t(u)dtdτ =

∫ 1

2
−ϵ

0
H̃t(u(1, t))dt−

∫ 1

2
−ϵ

0
H̃t(u(−1, t))dt
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and

(5.17)

∫ 1

2
+ϵ

1

2
−ϵ

∫ −
√
ϵ2−(t− 1

2
)2

−1

∂

∂τ
H̃t(u)dτdt

=

∫ 1

2
+ϵ

1

2
−ϵ

H̃t(u(−
√
ϵ2 − (t− 1

2
)2, t))dt−

∫ 1

2
+ϵ

1

2
−ϵ

H̃t(u(−1, t))dt

∫ 1

2
+ϵ

1

2
−ϵ

∫ 1

√
ϵ2−(t− 1

2
)2

∂

∂τ
H̃t(u)dτdt

= −
∫ 1

2
+ϵ

1

2
−ϵ

H̃t(u(

√
ϵ2 − (t− 1

2
)2, t))dt+

∫ 1

2
+ϵ

1

2
−ϵ

H̃t(u(1, t))dt.

Put all (5.13)− (5.17) into (5.12) we get the desired estimate. Here we write

∫

C(ϵ)
H̃t(u) =

∫ 1

2
+ϵ

1

2
−ϵ

H̃t(u(

√
ϵ2 − (t− 1

2
)2, t))dt−

∫ 1

2
+ϵ

1

2
−ϵ

H̃t(u(−
√
ϵ2 − (t− 1

2
)2, t))dt,

which corresponds to integrate H̃t along C(ϵ) in the counter-clockwise di-
rection. □

Remark 5.8. Note that

∫

C(ϵ)
H̃t(u) =

∫ 1

2
+ϵ

1

2
−ϵ

H̃t(u(

√
ϵ2 − (t− 1

2
)2, t))dt

−
∫ 1

2
+ϵ

1

2
−ϵ

H̃t(u(−
√
ϵ2 − (t− 1

2
)2, t))dt

=

∫ 1

2
+ϵ

1

2
−ϵ

[H̃t(u(

√
ϵ2 − (t− 1

2
)2, t))

− H̃t(u(−
√
ϵ2 − (t− 1

2
)2, t))]dt

≤
∫ 1

2
+ϵ

1

2
−ϵ

[max
S

H̃t −min
S
H̃t]dt

≤
∫ 1

0
[max
S

H̃t −min
S
H̃t]dt = ||H̃t||S .
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Hence we actually find that

−||H̃t||S ≤
∫

C(ϵ)
H̃t(u) ≤ ||H̃t||S

for all ϵ ∈ (0, 12).

By the same computation when χ(τ) = χ− we have that

Lemma 5.9. Let u be a finite energy solution of the perturbed Cauchy-
Riemann equation with domain Stripϵ. Then we have that

(5.18)

E(J,χ(τ),H̃t)
(u) =

∫
u∗ω −

∫ 1

0
H̃t(u(−∞, t))dt

−
∫ ∞

−∞
χ′(τ)

∫ 1

0
H̃t(u)dtdτ −

∫

C(ϵ)
H̃t(u)

when χ(τ) = χ−(τ).

And when χ(τ) = χN we have that

Lemma 5.10. Let u be a finite energy solution of the perturbed Cauchy-
Riemann equation with domain Stripϵ. Then we have that

(5.19) E(J,χ(τ),H̃t)
(u) =

∫
u∗ω −

∫ ∞

−∞
χ′(τ)

∫ 1

0
H̃t(u)dtdτ −

∫

C(ϵ)
H̃t(u)

when χ(τ) = χN (τ).

The above three lemmas provide necessary energy estimates for us to es-
tablish the chain maps and chain homotopies when we change the Hamilto-
nian functions Ht. More precisely, they give the estimates of maximal action
loss for chain maps. Now we explain how to use them in our situations.

Let [p, w′] and [l, w] be the input and output of the strip respectively,
with [w − w′] = [u]. Then the first two terms in (5.10) correspond to the
difference between the actions of the input and output. And the last two
terms correspond to the “action loss”. Note that χ+(τ) ≥ 0 and χ+(−∞) =
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0, χ+(+∞) = 1 we have that the maximal action loss is

(5.20) −
∫ 1

0
max
X

Htdt−
∫

C(ϵ)
Ht(u) ≥ −

∫ 1

0
max
X

Htdt− ||Ht||S

for any solution u in Lemma 5.7. Similarly the maximal action loss is

(5.21)

∫ 1

0
min
X

Htdt−
∫

C(ϵ)
Ht(u) ≥

∫ 1

0
min
X

Htdt− ||Ht||S

for any solution u in Lemma 5.9. We remark that both Lemma 5.7 and
Lemma 5.9 estimate the energy of the solution over the domain Stripϵ where
the interior hole is centered at (0, 12). If we move the center of the hole to
(r′, r′′) then similar estimate can only be weaker. For example, when the
hole is contained outside the support of χ(τ) then the fourth term in (5.10)
will be zero. When the hole is not contained in the region where χ(τ) = 1,
the fourth term will only be smaller than the case we did in (5.10) because
χ(τ) ≤ 1 and χ′(τ) ≥ 0. In conclusion, the above estimates of maximal action
loss work for all the case when we move the center of the interior hole.

Next we construct the chain maps. We fix a C2-small perturbation φ
such that L ∩ φ(L) transversally and φ(L) ∩ S = ∅. Now for a Hamiltonian
Gt, let ϕ be its time-one flow. When L ∩ ϕ(φ(L)) is transversal we can also
define the cohomology

HFcy((L, ρ), (φ(L), ρ), Gt;K)

where the generators are chords of Gt with ends on L and φ(L). Here we
remark that when φ is small L and φ(L) have the same one-pointed open
Gromov-Witten invariants, under energy E+. Hence we can define this co-
homology generated by chords with ends on L and φ(L), similar to Propo-
sition 5.3. For a general Hamiltonian isotopy there may be wall-crossing
phenomenon of the one-pointed invariants which cannot be prevented only
by Condition 1.1.

Then we use the perturbed Cauchy-Riemann equation to construct chain
maps

CFint,cy((L, ρ), (φ(L), ρ);K) → CFcy((L, ρ), (φ(L), ρ), Gt;K)

and

CFcy((L, ρ), (φ(L), ρ), Gt;K) → CFint,cy((L, ρ), (φ(L), ρ);K).
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+ (1)

+ (2)

+ (3)

Figure 10: Degenerations of solutions of the perturbed Cauchy-Riemann
equation.

We remark that the two maps are constructed by using the cut-off functions
χ+ and χ− respectively. Then chain homotopy map is constructed by using
the cut-off function χN .

Proposition 5.11. Let (X,S, L) be a symplectic 6-manifold, a Lagrangian
3-sphere and a Lagrangian submanifold satisfying Condition 1.1. Let (Ht, φ)
and (Gt, ϕ) be the Hamiltonians we chose as above. Then there are two chain
maps

Φ+ : CFint,cy((L, ρ), (φ(L), ρ);K) → CFcy((L, ρ), (φ(L), ρ), Gt;K)

and

Φ− : CFcy((L, ρ), (φ(L), ρ), Gt;K) → CFint,cy((L, ρ), (φ(L), ρ);K),

modulo TE.

Proof. The proof is similar to the proof of Theorem 6.2 in [24]. The only
difference is that we apply our energy estimate of the change of filtration
when the domain has an interior hole. So this difference results in the extra
term ||H||S .

First for a fixed cut-off function χ+ we define a chain map

Φ+ : CFint,cy((L, ρ), (φ(L), ρ);K) → CFcy((L, ρ), (φ(L), ρ), Gt;K)

by Φ+ = T Ẽ+(Φ+,0 +Φ+,1). Here

Φ+,0(σ[p, w
′]) =

∑

[l,w]

Comp[w−w′](σ)♯M0([p, w
′], [l, w]) · [l, w]
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and

Φ+,1(σ[p, w
′]) =

∑

[l,w]

Comp[w−w′](σ)♯M1([p, w
′], [l, w]) · [l, w] · T v(K).

Here the actual bulk deformation is b = wK,w ∈ Λ+. For notational sim-
plicity, we just write v(K) instead of v(w) since w also represents some role

in [l, w]. The energy weights T Ẽ+ is necessary if we require that these maps
do not decrease the action filtration. Note that there will be energy loss for
the perturbed Cauchy-Riemann equation. And the maximal energy loss is
computed in (5.20) and (5.21). So if we set

Ẽ+ =

∫ 1

0
max
X

Gtdt+ ||Gt||S

then we get a map which does not decrease the action.
We explain the moduli spaces as follows. The moduli space

M0([p, w
′], [l, w]) contains solutions of the perturbed Cauchy-Riemann equa-

tion when the domain is a genuine strip, representing the class [w − w′]. The
moduli space M1([p, w

′], [l, w]) is obtained by gluing two moduli spaces

M1([p, w
′], [l, w]) = M1,pt([p, w

′], [l, w]) ⊔M1,hole([p, w
′], [l, w])/ ∼

where M1,pt([p, w
′], [l, w]) contains solutions of the perturbed Cauchy-

Riemann equation when the domain is a strip with one interior marked
point and M1,hole([p, w

′], [l, w]) contains solutions when the domain is a
strip with one interior hole. Both the interior marked point and the center
of the interior hole can move freely. And the gluing is understood as we did
in defining ∂K .

Next we show that Φ+ is a chain map. That is,

Φ+d
ρ
K,int + dρKΦ+ ≡ 0 mod TE .

Note that

(5.22)
Φ+d

ρ
K,int + dρKΦ+ =

T Ẽ+(Φ+,0 +Φ+,1)(δ
ρ
int + ∂K,int) + T Ẽ+(δρ + ∂K)(Φ+,0 +Φ+,1)

and there are eight terms in the full expansion. After compensating the
energy loss by T Ẽ+ , the sum

T Ẽ+(Φ+,1∂K,int + ∂KΦ+,1) ≡ 0 mod T 2v(K) (hence ≡ 0 mod TE)
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by the energy reason. So we need to check the remaining sum of six
terms is zero. The proof is by studying all types of degenerations of one-
dimensional moduli spaces. By similar argument in Proposition 5.3, we can
exclude the sphere bubbles, disk bubbles and annulus bubbles. Then there
are six types of degenerations for the moduli spaces M0([p, w

′], [l, w]) and
M1([p, w

′], [l, w]), shown in Figure 10. In particular, the terms in (1) corre-
spond to

Φ+,0δ
ρ
int + δρΦ+,0

which are from the boundary components of M0([p, w
′], [l, w]). Hence the

sum, weighted by T Ẽ+ , vanishes. Similarly the terms in (2) correspond to

Φ+,1δ
ρ
int + δρΦ+,1

and the terms in (3) correspond to

Φ+,0∂K,int + ∂KΦ+,0.

Therefore the sum of these four terms, weighted by T Ẽ++v(K), vanishes. In
conclusion we have that the sum of these eight terms in (5.22) is zero and
Φ+ is a chain map. In the same way we can construct

Φ− = T Ẽ−(Φ−,0 +Φ−,1)

as a chain map by a chosen cut-off function χ−. Here

Ẽ− = −
∫ 1

0
min
X

Gtdt+ ||Gt||S .

Then Φ± induce maps on the cohomology level, which we still write as
Φ±. □

Next we construct chain homotopy maps such that Φ− ◦ Φ+ is chain
homotopic to some inclusion-induced map.

Proposition 5.12. With the same notations in the previous proposition,
the composition

Φ− ◦ Φ+ : HFint,cy((L, ρ), (φ(L), ρ);K) → HFint,cy((L, ρ), (φ(L), ρ);K)
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χN χN + χN (2) = f0δ
ρ + δρf0

χ+ χ− (1) = Φ−,0Φ+,0

χ0 (3) = i0

Figure 11: Degenerations in Mpara
0 .

equals the inclusion-induced map

i = TE
′

(i0 + i1) : HFint,cy((L, ρ), (φ(L), ρ);K)

→ HFint,cy((L, ρ), (φ(L), ρ);K).

Here E′ = Ẽ+ + Ẽ− = ||Gt||X + 2||Gt||S.

Proof. The chain homotopy maps are constructed by using the perturbed
Cauchy-Riemann equation with cut-off function χN . Consider the one-
parameter moduli spaces

M̃para
0 =

⋃

N∈[0,+∞)

{N} ×MN
0 (p, q)

and

M̃para
1 =

⋃

N∈[0,+∞)

{N} ×MN
1 (p, q)

parameterized by N . Here the moduli space MN
0 (p, q) contains solutions

of the perturbed Cauchy-Riemann equation with cut-off function χN where
the domain is a genuine strip. The moduli space MN

1 (p, q) contains solutions
of the perturbed Cauchy-Riemann equation with cut-off function χN where
the domain is a strip with one interior hole. We only consider the case that
the above solutions represents the class of the constant map. The energy
estimate in Lemma 5.10 tells that for a solution u in MN

0 (p, q) or MN
1 (p, q),
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we always have that

E(J,χN (τ),Gt)(u) =

∫
u∗ω −

∫ ∞

−∞
χ′
N (τ)

∫ 1

0
Gt(u)dtdτ −

∫

C(ϵ)
Gt(u)

≤
∫
u∗ω + ||Gt||X + ||Gt||S

which is uniformly bounded from above, independent of N . Then we can
compactify M̃para

0 and M̃para
1 to obtain Mpara

0 and Mpara
1 , by adding possi-

ble broken curves. In particular, we deal with the codimension one boundary
from domain degenerations in MN

1 (p, q) by gluing it with the moduli space
where the domain is a strip with one interior marked point, as we did before.

Now we only consider the case where p = q and the solutions represent
the class of a constant map. Under transversality assumptions, both of the
moduli spaces Mpara

0 (p, q) and Mpara
1 (p, q) have dimension one in this case.

Next we study the boundary of the these two moduli spaces. By similar argu-
ment before, we exclude disk bubbles, sphere bubbles and annulus bubbles.
Then the boundary components of Mpara

0 (p, p) have four types of degener-
ations (listed in Figure 11) and the boundary components of Mpara

1 (p, p)
have seven types of degenerations (listed in Figure 12). There is another
type of degenerations in Mpara

1 (p, p), where the interior circle shrinks to a
point. We deal with it by using the same strategy as before, gluing this
boundary component with the boundary of moduli space with one interior
marked point. Hence we omit it in Figure 12.

Now we look at the chain homotopy equation

(5.23) Φ− ◦ Φ+ − i = dρK,intf+ fdρK,int

where

Φ+ = T Ẽ+(Φ+,0 +Φ+,1);

Φ− = T Ẽ−(Φ−,0 +Φ−,1);

i = TE
′

(i0 + i1);

f = f0 + f1;

dρK,int = δρ + ∂K,int.

We explain corresponding moduli spaces to construct the operators as fol-
lows. These operators Φ+,0,Φ+,1,Φ−,0,Φ−,1 are chain maps defined in the
previous proposition. The operator dρK,int = δρ + ∂K,int is the differential to
define the cohomology. Operators f0, f1 will be defined as chain homotopy
maps between Φ− ◦ Φ+ and i.
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All four operators f0, f1, i0, i1 are defined from

CFint,cy((L, ρ), (φ(L), ρ);K)

to itself, by using the perturbed Cauchy-Riemann equation with a bump
function χN . Their difference is from different domains and different bump
functions. For i0, the domain is a strip and the bump function is χN = χ0 ≡
0. For i1, the domain is a strip with one interior hole and the bump function
is χN = χ0 ≡ 0. For f0, the domain is a strip and the bump function is χN .
For f1, the domain is a strip with one interior hole and the bump function
is χN .

Since our asymptotic conditions are the same element p, the operator i0
is the identity map, which comes from the “zero end” moduli space M0

0(p, p)
as a boundary of Mpara

0 . Note that when p = q and χN = χ0 ≡ 0 the only
element in M0

0(p, p) is the constant map. Similarly, the only element in
M0

1(p, p) is the constant map. But we have the boundary condition that
the interior hole is mapped to S, which does not intersect L. Hence such a
degeneration will not happen. We formally define the operator i1 as zero.

So in the full expansion of the chain homotopy equation there are 14
terms. The following three terms

∂K,intf1, f1∂K,int, TE
′

Φ−,1Φ+,1 ≡ 0 mod T 2v(K) (hence ≡ 0 mod TE)

by energy reason. And the remaining 11 terms correspond to the 11 types
of degenerations in the moduli spaces Mpara

0 (p, p) and Mpara
1 (p, p), which

form the boundary components of two compact one-dimensional manifolds.
Therefore we proved the chain homotopy property. □

Remark 5.13. The above two propositions are proved assuming some an-
alytic results. First, Condition 1.1 is necessarily used to exclude disk and
annulus bubbles. Moreover, the regularity of the moduli spaces of perturbed
Cauchy-Riemann equations is assumed. When the domain is a genuine strip
this moduli space is discussed in [24]. And we expect the same analytic ar-
gument therein can be applied here when the domain has one interior hole.
In particular, we further expect that, under Condition 1.1, transversality of
related moduli spaces can be achieved by using domain-dependent almost
complex structures or by using fixed almost complex structures via virtual
perturbation.
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χN

χ+ χ− (4′) = Φ−,0Φ+,1

χ
−

χ+ (4) = Φ−,1Φ+,0

χN + χN (5) = f0∂K,int + ∂K,intf0

χN
+ χN

(5′) = δρf1 + f1δ
ρ

χ0 (6) = i1

Figure 12: Degenerations in Mpara
1 .

5.3. Relations among three deformed Floer complexes

So far we defined three complexes to describe a new version of deformed
Floer cohomology, with a bulk deformation b = wK. For the first one, the
disk model,

HFcy(L; (b, ρ))

the underlying complex is the singular cohomology of L and the differential
counts holomorphic disks and holomorphic annuli, twisted by a local system
ρ. The second one, the intersection model,

HFint,cy((L, ρ), (φ(L), ρ);K)

and the third one, the chord model,

HFcy((L, ρ), (φ(L), ρ), Gt;K)

are defined by first choosing suitable (Ht, φ) and (Gt, ϕ) then counting holo-
morphic strips with a possible interior hole. For the genuine Floer coho-
mology with bulk deformations, it is known that these three cohomology
theories are equivalent over the Novikov field Λ (Proposition 8.24 [22]) and
have a good Lipschitz property over the Novikov ring Λ0 (Theorem 6.2 [24]).
Now we will discuss the relations among these three models in our setting.

The disk model, of which the cohomology is determined by the potential
function, is used for concrete computation once we know the potential func-
tion. The displacement results are given by the change of torsion exponents
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of the chord model, where large Hamiltonian perturbation is allowed. And
to connect these two models we need the intersection model, where only
small Hamiltonian perturbation is considered.

Proposition 5.14. Suppose that the potential function POcy,b(ρ) for L
has a critical point for some (b, ρ) modulo TE

′

, E′ ≤ E. If there is a Hamil-
tonian Gt with time-one flow ϕ such that L ∩ ϕ(L) = ∅ then it satisfies that
||Gt||X + 2||Gt||S ≥ E′.

Proof. First the existence of the critical point shows that

HFcy(L; (b, ρ)) ∼= H∗(L;
Λ0

TE′Λ0
) ∼= (

Λ0

TE′Λ0
)⊕8 ̸= {0}

by Proposition 4.11.
Next we choose a C2-small (Ht, φ) such that L ∩ φ(L) is transversal.

Then the cohomology

HFint,cy((L, ρ), (φ(L), ρ);K)

is well-defined for (b = wK, ρ). We can construct chain maps between the
two theories HFcy(L; (b, ρ)) and HFint,cy((L, ρ), (φ(L), ρ);K). In the case
of genuine Floer cohomology with bulk deformations, the chain maps are
constructed in Section 8 [22]. So we combine the proof therein with the
special case when the domain has one interior hole in the previous subsection,
to get the chain maps and chain homotopies with new energy estimates. Note
that Ht is C

2-small, there exists a J ′ for φ(L) to satisfy Condition 1.1 and
J ′ is in the same component with J which makes L satisfy Condition 1.1.
Moreover φ(L) ∩ S is empty. Hence the discussion in previous subsections
all works. Then we obtain that

HFint,cy((L, ρ), (φ(L), ρ);K) ∼=
8⊕

i=1

(
Λ0

TEiΛ0
)

where |E′ − Ei| < ||Ht||X + 2||Ht||S for all i. That is, under the small pertur-
bation Ht the torsion exponents are also slightly perturbed, by the amount
of some Hofer norms.

Therefore we have transited from the disk model to the intersection
model. Next the estimates in previous subsection help us to transit from the
intersection model to the chord model, where large Hamiltonian perturba-
tion is allowed. Suppose that there is a Hamiltonian Gt with time-one flow
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ϕ such that L ∩ ϕ(φ(L)) = ∅. From the definition we know that

HFcy((L, ρ), (φ(L), ρ), Gt;K) = {0}

and Φ+ = Φ− = 0. Proposition 5.12 tells that

Φ− ◦ Φ+ : HFint,cy((L, ρ), (φ(L), ρ);K) → HFint,cy((L, ρ), (φ(L), ρ);K)

equals the inclusion-induced map

TE0(i0 + i1) : HFint,cy((L, ρ), (φ(L), ρ);K) → HFint,cy((L, ρ), (φ(L), ρ);K)

where E0 = ||Gt||X + 2||Gt||S . Therefore we have that

0 = TE0(i0 + i1) : HFint,cy((L, ρ), (φ(L), ρ);K)

→ HFint,cy((L, ρ), (φ(L), ρ);K).

So E0 > maxi{Ei} for all i. Let ||Ht|| → 0 we obtain that ||Gt||X +
2||Gt||S ≥ E′.

In conclusion, for any Hamiltonian diffeomorphism ψ which displaces L
there is a small amount ϵψ > 0 such that for any pair (Ht, φ) with ||Ht|| < ϵψ,
the diffeomorphism ψ also displaces φ(L) from L. Hence we can use those
small (Ht, φ) to do the above energy estimate for ψ, which completes the
proof. □

The above theorem is parallel to Theorem 5.11 in [21] for potential func-
tions without bulk deformation and Theorem 7.7 in [24] for potential func-
tions with bulk deformation. We just adapt the proof therein by using our
energy estimates in this section.

6. Estimates of displacement energy

In this section we estimate the displacement energy of a local torus. We fix
a triple (X,S, U) and a local torus L inside U as in Theorem 1.4, such that
L satisfies Condition 1.1. See Subsection 4.1 for the fibration structure on U
of which L is a fiber. We assume that S is integrally homologically trivial,
and fix a 4-chain K such that ∂K = S.
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6.1. First estimate for EL

Let L be a local torus, we will first show its displacement energy is greater
than or equal to E5. This is directly from the decomposition formula of the
Floer cohomology, which do not need the bulk deformation by the chain K.

Assuming (1)− (3) in Condition 1.1, the one-pointed open Gromov-
Witten invariant nβ is defined, for any Maslov two disk class β ∈ π2(X,L)
with energy less than E+. We consider the sequence

{βk | nβ ̸= 0, E(βk) ≤ E(βk+1)}∞k=1

of disk classes with Maslov index two, enumerated by their symplectic en-
ergy. From the local study we know that Lλ bounds four J-holomorphic
disks with Maslov index two inside U , with same energy E1. Those are the
first four elements in the above sequence if L is near S. Let E5 = E(β5) be
the least energy of outside disk contribution.

Without bulk deformation, the disk potential function is

PO(ρ) = (x+ y−1 + xz−1 + y−1z)TE1 mod TE5 ,

which has a critical point at ρ0 = (x = 1, y = 1, z = −1). Hence we have

HF (L, ρ0; Λ0) ∼= (

8⊕

i=1

Λ0

TEΛ0
) mod TE5

by the decomposition formula. And Theorem J in [19] gives that EL ≥ E5.

6.2. Second estimate for ||Gt||X + 2||Gt||S

For the second estimate we will use the deformed Floer cohomology of a
local torus, which was constructed in previous sections.

Now we assume that L further satisfies Condition 1.3. From equa-
tion (4.13), we have the following deformed potential function

(6.1)

POcy,b(ρ) =

[(1 + (1 + ncyβ1
)w)x+ (1 + ncyβ2

w)y−1

+ (1 + ncyβ3
w)xz−1 + (1 + ncyβ4

w)y−1z]TE1+

+
∑

µ(β)=2,ω(β)=E1,β ̸=βi

ncyβ fβ(x, y, z)T
E1 +H(w, x, y, z, T ) mod TE
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where H(w, x, y, z, T ) are higher energy terms. Recall that E := min{ES +
v(w), 2v(w), E+} for a Lagrangian torus satisfying Condition 1.1.

By Proposition 5.14, if the above function has a critical point modulo
TE

′

with E′ < E, then we have the estimate

||Gt||X + 2||Gt||S ≥ E′.

Hence it suffices to analyze the critical points of this deformed potential
function. The idea is to find some critical points for the low energy terms,
then apply an implicit function theorem to deduce the existence of critical
points globally.

Lemma 6.1. Consider a vector-valued Laurent polynomial function

F = (f1, · · · , fn) : Λn0 → Λn0 ; fi ∈ Λ0[x
±1
1 , · · · , x±1

n ], ∀1 ≤ i ≤ n.

We assume that F has a decomposition by the valuation on Λ0

F = F0 +H, v(F0) = 0, v(H) > ϵ

for some ϵ > 0. If F0 = 0 has a nondegenerate solution at some point
(x1, · · · , xn) ∈ Cn then F = 0 has a solution at (x′1, · · · , x′n) ∈ Λn0 . Moreover
(x1, · · · , xn) ≡ (x′1, · · · , x′n) mod T ϵ.

This lemma is an implicit function theorem in the setting of the Novikov
ring, see Section 10 in [21] for a proof. Now we look at the critical points
equation of the deformed potential function. Note that even in the low energy
level, there are some unknown terms due to cylinder contributions. And we
will use (7), (8) in Condition 1.3 to control these cylinder contributions.
First, assuming Condition 1.3 (8) gives

ncyβ = 0, if µ(β) = 2, ω(β) < E5, β ̸= βi.

Then the deformed potential function becomes

POcy,b(ρ) =

[(1 + (1 + ncyβ1
)w)x+ (1 + ncyβ2

w)y−1

+ (1 + ncyβ3
w)xz−1 + (1 + ncyβ4

w)y−1z]TE1

+H(w, x, y, z, T ) mod TE .



✐

✐

“3-Sun” — 2023/12/15 — 18:32 — page 593 — #85
✐

✐

✐

✐

✐

✐

Displacement energy of Lagrangian 3-spheres 593

And the critical points equation will be

(6.2)

0 = ∂xPOcy,b(ρ)

= [(1 + (1 + ncyβ1
)w) + (1 + ncyβ3

w)z−1]TE1 +
∂H

∂x
mod TE

0 = ∂yPOcy,b(ρ)

= [−(1 + ncyβ2
w)y−2 − (1 + ncyβ4

w)y−2z]TE1 +
∂H

∂y
mod TE

0 = ∂zPOcy,b(ρ)

= [−(1 + ncyβ3
w)xz−2 + (1 + ncyβ4

w)y−1]TE1 +
∂H

∂z
mod TE .

We view (6.2) as a system of three equations with four variables (w, x, y, z)
hence we have freedom to prescribe the value of one of the variables. So
we set x = 1 to these equations and view w, y, z as variables. Then the low
energy part of (6.2) is equivalent to

(6.3)

0 = (1 + (1 + ncyβ1
)w) + (1 + ncyβ3

w)z−1

0 = (1 + ncyβ2
w) + (1 + ncyβ4

w)z

0 = −(1 + ncyβ3
w)z−2 + (1 + ncyβ4

w)y−1.

Next we check that w = 0, y = 1, z = −1 is a solution of (6.3) with Jacobian
determinant

d = 1 + ncyβ1
+ ncyβ2

− ncyβ3
− ncyβ4

.

Hence by assuming Condition 1.3 (7) that d ̸= 0 then w = 0, y = 1, z = −1
becomes a non-degenerate solution. By the Gromov compactness theorem
the higher energy part H in the potential function is a Laurent polynomial
since we work modulo TE . (In general the potential function could be a
Laurent series with energy going to infinity.) Hence our system of equations
fits in the above lemma and the whole system of critical point equation has
a suitable solution modulo TE .

The solution w = 0, y = 1, z = −1 is just a solution to the low energy
part (6.3). The implicit function theorem assures that there is a solution
to (6.2). In particular, this global solution looks like w = 0 + w+, y = 1 +
y+, z = −1 + z+ with w+, y+, z+ ∈ Λ+. Now we estimate v(w) = v(w+) in
order to estimate E := min{ES + v(w), 2v(w), E+}.

The higher energy terms H(w, x, y, z, T ) contains contributions from
disks and cylinders. By our assumption, there are no disk or cylinder contri-
butions between energy E1 and E5. So we only need to perturb the higher
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energy terms with energy larger than or equal to E5. The proof of the im-
plicit function theorem is a step-by-step induction. In particular, a careful
study of the construction of w+ shows that

w+ = c1w1,+ + c2w2,+ + · · ·+ cjwj,+,

ci ∈ C, wi,+ ∈ Λ+, v(wi,+) < v(wi+1,+).

Since the first possible high energy term has energy E5, the valuation
v(w1,+) = E5 − E1. If c1 ̸= 0 we have that v(w) = E5 − E1. If c1 = 0 we con-
sider the next term c2w2,+. The extremal case is that all ci = 0. This means
that we don’t need to deform the potential function by the chain wK. Hence
we can directly use the usual Floer cohomology with local systems to get
the energy estimate. If some ci ̸= 0 we have v(w) ≥ E5 − E1.

Therefore we know that the critical points equation (6.2) has a solution
modulo TE . By Proposition 5.14 we know that if ϕ displaces L then its
corresponding Hamiltonian functions Gt satisfy that

||Gt||X + 2||Gt||S ≥ E,

which completes the proof of Theorem 1.4.
Now we explain the proof of Corollary 1.5. Let Gt be a time-dependent

Hamiltonian function and ϕ be its time-one map such that S ∩ ϕ(S) = ∅.
Then there is a small neighborhood U which is also displaced by ϕ. Note
that for a small number λ′, all local tori Lλ are contained in U if λ ∈ (0, λ′)
and are displaced by ϕ. Therefore we know that

||Gt||X ≥ E5,λ, ||Gt||X + 2||Gt||S ≥ 2(E5,λ − E1,λ)

for all λ ∈ (0, λ′). As λ goes to zero, the energy E1,λ decreases and E5,λ

increases hence we complete the proof of Corollary 1.5.

6.3. Examples of displaceable Lagrangian spheres

Now we briefly review Pabiniak’s construction [38] of displaceable La-
grangian 3-spheres and formally show that our theoretical estimate is almost
optimal in this case. We remark that Condition 1.3 is not verified for these
examples, although we expect they satisfy it.

Consider the Lie group SU(3). We identify the dual of its Lie algebra
su∗(3) with the vector space of 3× 3 traceless Hermitian matrices. Then
the group SU(3) acts on su∗(3) by conjugation. Through a regular point
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z
y

x

(b, b, b)

S3

Figure 13: Moment polytope for the fibration Γ.

diag(a, b,−a− b), the action orbit M is a smooth 6-dimensional symplectic
manifold with the Kostant-Kirillov symplectic form.

We fix a regular point diag(a, b,−a− b) with a > b ≥ 0 and write the
orbit as M . The symplectic form on M is monotone if and only if b = 0.
There is a Gelfand-Tsetlin fibration Γ :M → R3. For a matrix A ∈M let
a1(A) ≥ a2(A) denote the two eigenvalues of the 2× 2 top left minor of
A, and let a3(A) = a11 be the (1, 1) entry of A. Then the system Γ(A) =
(a1(A), a2(A), a3(A)) gives the fibration map. Let (x, y, z) be the coordinates
of R3. The image polytope (see Figure 13) of Γ is given by affine functions

a ≥ x ≥ b;

b ≥ y ≥ −a− b;

x ≥ z ≥ y.

This Gelfand-Tsetlin fibration Γ can be viewed as a smooth torus fibration
away from the fiber Γ−1(b, b, b) since the three functions (a1, a2, a3) integrate
to a 3-torus action. There is a unique non-smooth point (b, b, b) in the poly-
tope, of which the fiber S = Γ−1(b, b, b) is a smooth Lagrangian 3-sphere.
So this fibration is a compactification of the fibration on T ∗S3 by putting
divisors at infinity, see Section 4.1. And the parameters a and b measure the
symplectic form on this compactification.

Moreover we can consider the standard action of the maximal torus of
SU(3), which gives us a subaction of the Gelfand-Tsetlin action. This 2-torus
action has a moment map µ :M → R2. We have the following commutative
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diagram

M R3

R2

µ

Γ

pr

where we view R2 = {x+ y + z = 0} ⊂ R3. The projection map is given by

pr(x, y, z) = (z, x+ y − z,−x− y).

Consider the permutation matrix

P =



−1 0 0
0 0 1
0 1 0




which is an element of SU(3). Then the conjugation with P is a Hamiltonian
action on M . Note that for A = [aij ] ∈M

µ(PAP−1) = (a11, a33, a22).

So we have that

µ(S) = µ(Γ−1(b, b, b)) = pr(b, b, b) = (b, b,−2b)

and

µ(PSP−1) = (b,−2b, b).

In particular if b ̸= 0 then the Lagrangian 3-sphere S will be displaced by
this group action. We also remark that when b = 0 the Lagrangian 3-sphere
S is monotone and is proved to be nondisplaceable by Cho-Kim-Oh [13].

In [33] it is calculated that S bounds two holomorphic disks with en-
ergy 2π(a+ 2b) and 2π(a− b). Moreover the Floer cohomology HF (S, S; Λ)
vanishes. Next we assume that b > 0 so that 2π(a+ 2b) > 2π(a− b). By
Chekanov’s theorem (see Main Theorem in [11]) the displacement energy
ES of S is greater than 2π(a− b). For the Hamiltonian action by P , its
corresponding Hamiltonian function is the inner product with the vector
diag(0, π,−π). That is, for a fiber Γ−1(x, y, z) over the point (x, y, z) the
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Hamiltonian function is constant on the fiber and can be written as

H(x, y, z) = (0, π,−π) · pr(x, y, z) = π(2x+ 2y − z).

From the polytope we can check that

max
M

H = H(a, b, b) = π(2a+ b), min
M

H = H(b,−a− b, b) = π(−2a− b).

Hence we have that

∫ 1

0
(max
M

H −min
M

H)dt = 2π(2a+ b).

In particular H |S≡ H(b, b, b) = 3b. So for this Hamiltonian we have that

||H||M = 2π(2a+ b), ||H||S = 0

and

||H||M + 2||H||S = ||H||M = 2π(2a+ b) ≥ 2E5 := lim
λ→0

2E5,λ = 4π(a− b).

This matches our theoretical prediction in Theorem 1.4. And when a≫
b ≥ 0 we have that 2π(2a+ b) is close to 4π(a− b), which shows that the
estimate is almost optimal in this case.

One can also check the case of the displaceable Lagrangian S3 ⊂ C2 ×
CP 1. Consider the following Lagrangian embedding

S3 → C2 × CP 1, x 7→ (i(x),−h(x))

where i is the inclusion of the unit sphere and h is the Hopf map. The
symplectic form on C2 × CP 1 is the standard one times the Fubini-Study
form. Let H be a Hamiltonian on C2 which displaces the unit sphere and
G(z1, z2) := H(z1) be a Hamiltonian on C2 × CP 1. Then G displaces the
Lagrangian sphere and ||G||C2×CP 1 = ||H||C2 . Moreover, it is known that
||H||C2 can be chosen to be arbitrarily close to π.

However, the Hamiltonian H takes maximal and minimal values on the
unit sphere hence G takes maximal and minimal values on the Lagrangian
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sphere S. So we have ||G||C2×CP 1 = ||G||S . Note that

H2(C
2 × CP 1, S) ∼= H2(C

2 × CP 1) ∼= H2(CP
1)

hence the minimal energy of a holomorphic disk bounding S is π =
∫
CP 1 ωFS .

And our estimate gives that 3||G||C2×CP 1 ≥ 2π, which is not a contradiction
but not very powerful for this example.
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