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In this article, we will introduce a collection of tools aimed at study-
ing periodic orbits of Hamiltonian systems, their (linear) stability,
and their bifurcations. We will provide topological obstructions
to the existence of orbit cylinders of symmetric orbits, for me-
chanical systems preserved by anti-symplectic involutions (e.g. the
circular restricted three-body problem). Such cylinders induce con-
tinuous paths which do not cross the bifurcation locus of suitable
GIT quotients of the symplectic group, which are branched mani-
folds whose topology provide the desired obstructions. Namely, the
complement of the corresponding loci consist of several connected
components which we enumerate and explicitly describe; by con-
struction these cannot be joined by a path induced by an orbit
cylinder. We also provide preferred normal forms for each regular
and singular component. We further introduce a notion of signa-
ture for symmetric orbits, which extends the notion from Krein
theory (which only applies for elliptic orbits), to allow also for the
case of symmetric orbits which are hyperbolic. This signature helps
predict at which points of a symmetric orbit a bifurcation arises.
This gives a general theoretical framework for the study of stability
and bifurcations of symmetric orbits, with a view towards practical
and numerical implementations within the context of space mission
design. This is the subject of the follow-up paper [7], where this
framework is supported by numerical work.
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1. Introduction

In this article, we will introduce a collection of tools aimed at studying peri-
odic orbits of Hamiltonian systems, their stability, and their bifurcations1. In
the case where the system admits symmetries in the form of anti-symplectic
involutions, we will obtain richer refinements for the case of symmetric or-
bits. The prototypical system of interest is the circular restricted three-body
problem, although these tools apply in full generality. The motivation stems
from the study of families of orbits, which are ubiquitous in the space mis-
sion design industry, where closed trajectories are used to place satellites in
orbit around a celestial body2. This is the subject of the follow-up article
[7], where Euler characteristic of suitable local Floer homology groups are
considered, which help predict the existence of orbits before and after a bi-
furcation. Moreover, the mathematical framework here provided is used also
in [7] in the study of families of orbits in the Jupiter-Europa and Saturn-
Enceladus systems. These systems are of tremendous current interest, as
the icy moons are believed to be candidates for harboring conditions for ex-
traterrestrial life. The list of orbits that have been found, for the three-body
problem alone, is certainly long (see e.g. [21, Chapter 9] for numerical work,
[10] for a quantitative analysis of bifurcations, [5] for symmetric planar or-
bits, [13] and references therein for a very recent numerical investigation on
Hill’s lunar problem); this poses the necessity of keeping track on how they
relate to each other.

1Recall that a bifurcation of a periodic orbit occurs whenever one considers 1-
parameter families of orbits t 7→ γt, and at some singular time t0 the orbit γt0 be-
comes degenerate, i.e. the monodromy matrix has 1 as an eigenvalue; see Abraham–
Marsden’s book [3, p. 599] for a complete generic classification in dimension 4.

2For instructive videos on the role of the Halo orbits in the NASA Gateway space
mission, see e.g. https://www.youtube.com/watch?v=kpgj6Im40l4.

https://www.youtube.com/watch?v=kpgj6Im40l4
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This motivates our general direction, encapsulated in the following guid-
ing questions:

Guiding Question 1. (Classification) Can we tell when two or-
bits are qualitatively differenta?

Guiding Question 2. (Catalogue/Data Science) Can we
resource-efficiently refine “data bases” of known orbits or known bi-
furcations between them, so that one may use techniques from data
science to study them (e.g. machine learning)?

Guiding Question 3. (Practical tests) Can we use Floer-
theoretical invariants to test the accuracy of the algorithms, and to
guide/organise the numerical work?

aWe say that two orbits are qualitatively different if there is no regular
family joining them.

In this article we will address the first two questions. The third one is
addressed in [7], with supporting numerical work. The concrete aims here
pursued, which provide the underlying theoretical framework, are to:

1) (Global topological methods) Introduce global topological meth-
ods for the study of periodic orbits of Hamiltonian systems and their
bifurcations, for which we give an algebraic interpretation, in the form
of the sequence of maps and spaces

(1) SpI(2n)//GLn(R) → Sp(2n)//Sp(2n) → Mn×n(R)//GLn(R) ∼= R
2n,

which we call the GIT sequence3. It consists of GIT quotients of spaces
of matrices with respect to suitable actions. The action on the second
and third space is by conjugation, and the first one we will explain
shortly.

2) (B-signature) Introduce the notion of B-signature, a sign attached
to each elliptic and hyperbolic eigenvalue of the monodromy matrix
of a symmetric periodic orbit, and which generalizes the notion of

3Recall that the GIT quotient X//G of the action of a group G on a space X
is defined via the relation x ∼ y if the closures of their G-orbits intersect. It is
Hausdorff, and needed for topological reasons, as X/G may not be.
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the classical Moser–Krein [14–17, 20] signature to also apply to the
hyperbolic case. This sign is relevant for bifurcations of symmetric
orbits, as it can help predict at which symmetric point a bifurcation
occurs (see Figure 1 and also [7]).

3) (Branching structure) Describe the “singular regions” of
Mn×n(R)//GLn(R) ∼= R2n the base of the GIT sequence for the cases
n = 1, 2, enumerate the connected components lying above the “regu-
lar components” of each of the GIT quotients SpI(2n)//GLn(R) and
Sp(2n)//Sp(2n), and determine the covering degree for each compo-
nent of the maps in the sequence. See Figure 3.

4) (Labelling) Identify each component of SpI(2n)//GLn(R) and
Sp(2n)//Sp(2n) with the corresponding B-signs (which agree with the
Krein signs in the second case). See Figure 5.

5) (Normal forms) Describe a choice of a favourite representative for
each lift of the regular components, as well as the singular ones.

The case n = 1 of the GIT sequence is elementary and appears e.g. in [23,
Appendix B], where it plays an important role when trying to define a real
version of Embedded Contact Homology (ECH). Moreover, as we learned
after finishing a first version of this article, for n = 2, the GIT sequence is a
refinement and reformulation of the “Broucke stability diagram” [4], which
is already used in the space mission design industry (see e.g. [18]). In this
context, stability of an orbit is of central importance not only theoretically
but also for space mission design, as this minimizes the fuel corrections of
a spacecraft needed to stay in orbit, and this notion is already captured by
the diagram (see the end of Appendix B). The cases n = 1, 2 apply to e.g. to
the (circular) planar and spatial restricted three-body problem, respectively.
The cases n = 3, 4 were also studied by Howard–Mackay [11].

Symmetric orbits and monodromy matrices. After fixing the energy
and projecting out the direction of the flow of a Hamiltonian system with
n+ 1 degrees of freedom, the linearization of the dynamics at any given
point of an orbit gives a 2n× 2n-symplectic matrix (the reduced monodromy
matrix ). A different choice of point gives another matrix is the same sym-
plectic conjugacy class. Therefore an orbit induces a point in the space
Sp(2n)//Sp(2n), where Sp(2n) acts by conjugation on itself. This is the
“middle” space in the GIT sequence, designed to study arbitrary closed
orbits.
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Now, the first space in the GIT sequence is designed to study symmetric
orbits, see Figure 1. This is the case for several families which appear in
numerical work, and therefore entail practical interest. A symmetric orbit
can be thought of as a chord or open string, i.e. an orbit segment with its
endpoints lying in the fixed-point set of the antisymplectic involution. If we
pick one of the symmetric points of the symmetric orbit (an endpoint of the
chord), the corresponding monodromy matrix at this point satisfies special
symmetries. Concretely, such a matrix has the form

(2) M = MA,B,C =

(

A B
C AT

)

∈ M2n×2n(R),

where A,B,C are n× n-matrices that satisfy the equations

(3) B = BT , C = CT , AB = BAT , ATC = CA, A2 −BC = I,

which ensure that M is symplectic. We will denote the space of such sym-
plectic matrices by SpI(2n) (where the I stands for involution). A general
algebraic fact due to Wonenburger [22] is that every symplectic matrix is
symplectically conjugated to a matrix in SpI(2n)4. We will therefore call a
matrix of the form MA,B,C , a Wonenburger matrix.

The expression for MA,B,C implies the choice of a basis for the tangent
space to the fixed-point locus along the symmetric point. A different choice
of basis amounts to acting with an invertible matrix R ∈ GLn(R), via

(4) R∗

(

A,B,C
)

=
(

RAR−1, RBRT , (RT )−1CR−1
)

,

i.e. MA,B,C is replaced by MR∗(A,B,C). This leaves invariant the conjugacy
class of A, and it is also easy to check that MA,B,C and MR∗(A,B,C) are
symplectically conjugated. The first space in the GIT sequence is then the
GIT quotient SpI(2n)//GLn(R) corresponding to this action.

B-signature. We will explain how the B-sign is defined in the hyperbolic
case, for n = 2, which is one of the novelties of this paper. Suppose that
MA,B,C ∈ SpI(4) and A has two distinct real eigenvalues. If µ be one of the
eigenvalues of A, its eigenspace Eµ is then one-dimensional. Since AB = BA,
B leaves Eµ invariant. Then there exists a real number bµ such that for any

4This algebraic fact has a geometric realization in the case of a symmetric orbit,
where every symplectic matrix of any point in the orbit is symplectically conjugated
to the ones corresponding to the symmetric points.
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L L L
t=0 t=1/2

A B C

symmetric points

symmetric points fake points symmetric pointsfake points

Figure 1: (A) A simple symmetric orbit x; we indicate the intersection with
L =Fix(ρ) with right angles. The fixed point locus of the involution ρ is a
Lagrangian submanifold, and the intersection points of the orbit with this
locus are the symmetric points. (B) A period doubling bifurcation, only
intersecting L near x(0). (C) The alternative version of (B), intersecting L
only near x(1/2). The B-signature jumps at the symmetric point where the
new doubled orbit is not symmetric (a “fake” intersection point). Invariance
of the Euler characteristic of the local Lagrangian Floer homology at x
implies that only one of (B) or (C) can happen; see [7].

eigenvector v to the eigenvalue µ of A we have

Bv = bµv.

Definition 1.1. The eigenvalue µ of A is called B-positive if bµ is positive
and B-negative if bµ is negative.

Moreover, this definition is independent of the eigenbasis. In the presence
of a period doubling bifurcation of symmetric orbit, the B-signature jumps
either at t = 0 or at t = 1/2 (as in Figure 1). The orbit arising from a period
doubling bifurcations will be symmetric near the point where the B-sign did
not jump (this is illustrated in [7] with numerical examples).

The GIT sequence. The GIT sequence is then

(5) SpI(2n)//GLn(R) → Sp(2n)//Sp(2n) → Mn×n(R)//GLn(R)

given by

[MA,B,C ] 7→ [[MA,B,C ]] 7→ [A].

Here, brackets denote the corresponding equivalence class. Wonenburger’s
aforementioned result implies that the first map is surjective, and the second
one is easily seen to be so. By mapping the equivalence class of a matrix
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A ∈ Mn×n(R) to the coefficients of its characteristic polynomial, we get the
identification Mn×n(R)//GLn(R) ∼= Rn. We shall review this nice fact in
Appendix A.

Orbit cylinders and bifurcations in the GIT sequence. The GIT
quotients in the GIT sequence are labeled n-dimensional branched mani-
folds (LBMs), in such a way that the maps in the GIT sequence preserve
this structure. Namely, the branches of these LBMs are equipped with pos-
itive/negative labels, keeping track of the B-signs of the corresponding ma-
trices, and the maps collapse branches together (see Figure 2 and 55). Cru-
cially, this data stays invariant in the presence of an orbit cylinder. Namely,
an orbit gives a point in the base of the GIT sequence, and hence a family
of orbits gives a path. This path corresponds to a bifurcation if it crosses
suitable “walls” in the base of the GIT sequence. For instance, if the path
crosses the line with slope 1 in Figure 4, it means that there is a bifurcation.
If it crosses the line with slope −1, the double-cover of the orbit bifurcates.
What is more, a bifurcation of the k-fold cover is captured by a line of slope
cos(2πk/l), for some l, in the same figure. This can all be implemented easily
and visually (we will provide simple and explicit formulas).

The topological obstructions. The topology of the spaces
SpI(2n)//GLn(R) and Sp(2n)//Sp(2n), together with the labels, pro-
vide precisely the obstruction to the existence of orbit cylinders. Namely, if
two orbits correspond to points lying in different component of the diagram
in Figure 3, then one should expect a bifurcation on a family that joins
them (if any). Moreover, this is refined with the B-signs. Namely, even if
two orbits lie in the same component of the base diagram in R2, but have
different B-signature, they also cannot be joined by a regular family (see
again Figure 5).

Example. If n = 2, and if the orbit is symmetric with monodromy matrix
MA,B,C , and it is not non-real6, we assign to the orbit the tuple (p, ϵ),
where the B-signature data is ϵ = (ϵ1, ϵ2) (corresponding to its pair of two
eigenvalues, with ϵi ∈ {±}), and p = (tr(A), det(A)) ∈ R2. This is how the
orbit is meant to be stored in a “data base”. Note that the data to be stored
is cheap and resource-efficient, thus addressing Guiding Question 2.

Krein theory, B-signature, and stability. Krein theory, roughly speak-
ing, is a refinement of the spectrum of a given symplectic matrix, equipping

5The only branch with no well-defined signature is the non-real one N , see foot-
note below.

6We say that a 4× 4 symplectic matrix is non-real if it has as eigenvalues

λ, λ−1, λ.λ
−1

with λ /∈ S1 ∪ R.
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the eigenvalues with suitable signs. This data completely characterizes the
strong stability of the matrix, as proved independently by Krein and Moser;
we shall review this in Appendix B (Theorem B.3).

We will also show in Appendix B that in the elliptic case the B-sign and
the Krein sign of a symmetric orbit agree. This has the advantage of incor-
porating Krein theory in a much simpler and efficient way, for the purposes
of practical implementations, as is rather straightforward to check whether
a matrix is B-positive/negative (provided it is presented in its Wonenburger
form MA,B,C). Also, this notion is motivated from the theory of symmetric
spaces, i.e. SpI(2n) can be identified with the space of linear antisymplectic
involutions, a symmetric space where the product of two such involutions is
given by conjugating one with the other.

The information carried by the topology of the LBM Sp(2n)//Sp(2n)
coincides precisely with the information carried by Krein theory; its labels
only apply for the elliptic case. On the other hand, the information car-
ried by the topology of the LBM SpI(2n)//GLn(R) is given by the more
refined B-signature, as it allows to distinguish more symmetric orbits via
the associated labels. Topologically, this means that SpI(2n)//GLn(R) has
more branches than Sp(2n)//Sp(2n), some of which get collapsed under the
natural map in the GIT sequence; see Figure 5.

Organization of the paper. In Section 2 we give the general dynamical
setup with focus on symmetric orbits, and explicitly describe the spatial
circular restricted three-body problem. In Section 3: we explain how the lin-
earization at a symmetric point is a Wonenburger matrix; we prove the basic
algebraic relation between the characteristic polynomial of a Wonenburger
matrix and its first block (Lemma 3.2); we study the GIT sequence in more
detail, and completely determine the cases n = 1, 2; and finally topologically
relate the cases n = 1 with n = 2, i.e. we show that the n = 2 case is a prod-
uct of two copies of the n = 1 case away from the non-real region, up to a
suitable identification by Z2 over a parabola in R2. In Section 4, we explain
how the GIT sequence encodes every type of bifurcation in the form of a
pencil of lines, for n = 2. In Section 5, we give a preferred representative of
each regular and singular component of the base of the GIT sequence for
n = 2. In Appendix A, we give a proof that Mn×n(R)//GLn(R) ∼= R2n. In
Appendix B, we review Krein theory, its relation to stability of orbits, and
show that the Krein-signature coincides with the B-signature for symmetric
elliptic orbits (Lemma 3.4).

Acknowledgements. The second author is supported by the National Sci-
ence Foundation under Grant No. DMS-1926686, and partially supported by
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2. Geometric and dynamical setup

We now describe the general setup, which motivates the linear algebra of
the sections to come. We assume that (M,ω) is a symplectic manifold and
H : M → R a smooth function. The Hamiltonian vector field XH of H is
defined by the requirement that

dH = ω(·, XH).

Abbreviate by S1 = R/Z the circle. A periodic orbit x ∈ C∞(S1,M) is a
solution of the ODE

∂tx(t) = τXH(x(t)), t ∈ S1,

where τ is a positive real number referred to as the period of the periodic
orbit. If ϕt

H denotes the flow of the Hamiltonian vector field of H, we can
characterize the periodic orbit equivalently by

x(t) = ϕτt
H (x(0)).

Abbreviating x0 = x(0) the differential

dϕτ (x0) : Tx0
M → Tx0

M

is a linear symplectic map of the symplectic vector space (Tx0
M,ωx0

) called
the monodromy.

We assume now that the periodic orbit x is nonconstant which is
equivalent to the requirement that XH(x(t)) is never zero or in other words
x(t) is no critical point of H for every t ∈ S1. Since H is autonomous, i.e.,
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does not depend on time, it follows that

dϕτ
H(x0)XH(x0) = XH(x0),

i.e., XH(x0) is an eigenvector to the eigenvalue 1 of the monodromy. More-
over, by preservation of energy H is constant along the periodic orbit and
therefore the monodromy maps the codimension one subspace ker dH(x0)
of the tangent space Tx0

M into itself. Therefore the monodromy induces a
linear map on the quotient space

dϕτ
H(x0) : ker dH(x0)/⟨XH(x0)⟩ → ker dH(x0)/⟨XH(x0)⟩

which we refer to as the reduced monodromy. The kernel of the restriction of
the symplectic form to the tangent space ker dH(x0) of the regular level set
Σ := H−1(c) containing x0 is precisely spanned by the Hamiltonian vector
field. Therefore the reduced monodromy is itself symplectic with respect to
the induced symplectic form on the quotient space. Hence if the dimension
of the symplectic manifold is 2n we can associate to the periodic orbit x
an element in Sp(2n− 2)//Sp(2n− 2), namely the equivalence class of its
reduced monodromy. It is interesting to remark that this class does not
depend on the starting point of the periodic orbit. In fact, if we translate
our periodic orbit in time

r∗x(t) = x(t+ r), t ∈ S1

for r ∈ S1, we obtain different (parametrized) periodic orbits r∗x whose re-
duced monodromy gives rise to the same element in Sp(2n− 2)//Sp(2n− 2),
since the reduced monodromies at different starting points of the periodic
orbit are symplectically conjugated to each other via the differential of the
flow of the Hamiltonian vector field.

We now consider a real symplectic manifold (M,ω, ρ). This is a sym-
plectic manifold (M,ω) together with an antisymplectic involution ρ, i.e., a
diffeomorphism of M satisfying

ρ2 = idM , ρ∗ω = −ω.

We assume that H is invariant under ρ, i.e.,

H ◦ ρ = H.
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This implies that the Hamiltonian vector field is antiinvariant, meaning that

ρ∗XH = −XH .

In particular, the flow is conjugated to its inverse by the antisymplectic
involution, in formulas

(6) ρϕt
Hρ = ϕ−t

H .

A periodic orbit x of H is called symmetric if it satisfies

x(t) = ρ(x(−t)), t ∈ S1.

In particular, we have for a symmetric periodic orbit that

x
(

0
)

, x
(

1
2

)

∈ Fix(ρ).

The fixed point set of an antisymplectic involution Fix(ρ) is a Lagrangian
submanifold of M , and in particular, if we look just at half the symmetric
periodic orbit we get a chord Fix(ρ) to itself. Hence we can think of a
symmetric periodic orbit in two ways, either as a closed string or as an
open string from the Lagrangian Fix(ρ) to itself.

The differential of the antisymplectic involution

dρ(x0) : Tx0
M → Tx0

M

gives rise to a linear antisymplectic involution on the symplectic vector space
(Tx0

M,ωx0
) which induces a linear antisymplectic involution on the quotient

space

dρ(x0) : ker dH(x0)/⟨XH(x0)⟩ → ker dH(x0)/⟨XH(x0)⟩.

Differentiating (6) we get

dρ(x0) ◦ dϕτ
H(x0) ◦ dρ(x0) =

(

dϕτ
H(x0)

)−1
,

i.e., equation (7) for

I = dρ(x0), M = dϕτ
H(x0).

Hence to a symmetric periodic orbit the reduced monodromy associates an
element in the quotient space SpI(2n− 2)//GL2n−2(R), which we describe
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in detail in the next section. The reason why we have to mod out the general
linear group lies in the ambiguity of choosing a basis on the linear Lagrangian
subspace Fix(I) in ker dH(x0)/⟨XH(x0)⟩. To obtain this map we have to
choose the starting point of the periodic orbit on the Lagrangian Fix(ρ).

Example. The motivating example is the well-known circular restricted
three-body problem, concerning the motion of a massless particle in R3

under the influence of two heavy primaries with mass µ and 1− µ, where µ ∈
(0, 1) is a mass parameter. By a time-dependent rotation, we can fix these
primaries at m⃗ = (µ− 1, 0, 0), which we will call Moon, and e⃗ = (µ, 0, 0),
which we will call Earth. The corresponding Hamiltonian, defined on (T ∗R3 \
{m⃗, e⃗}, dp⃗ ∧ dq⃗), is

H(q⃗, p⃗) =
1

2
∥p⃗∥2 −

µ

∥q⃗ − m⃗∥
−

1− µ

∥q⃗ − e⃗∥
+ p1q2 − p2q1.

The planar case of this problem is obtained by setting q3 = p3 = 0.
The Hamiltonian is preserved by the anti-symplectic involutions

ρ1 : (q1, q2, q3, p1, p2, p3) 7→ (q1,−q2,−q3,−p1, p2, p3)

ρ2 : (q1, q2, q3, p1, p2, p3) 7→ (q1,−q2, q3,−p1, p2,−p3).

In the most symmetric case µ = 1/2, there is a further anti-symplectic in-
volution ρ3 preserving H with a similar expression.

3. The symplectic group, symmetries, and GIT quotients

Although we later restrict to dimension four we start our discussion for the
general case. Our starting point is a fascinating theorem due to Wonenburger
[22] which tells us that every element M ∈ Sp(2n) can be written as the
product of two linear antisymplectic involutions

M = I1I2.

Since I1 and I2 are involutions, it follows that

M−1 = I2I1 = I1MI1,

i.e. M is conjugated to its inverse via an antisymplectic involution. All linear
antisymplectic involutions are conjugated to each other, and in particular
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to the standard antisymplectic involution

I =

(

I 0
0 −I

)

where I is the n× n identity matrix. Hence there exists G ∈ Sp(2n) such
that

G−1I1G = I.

With this notion we rewrite

M−1 = GIG−1MGIG−1

and therefore one has

G−1M−1G = IG−1MGI.

Hence after conjugation we can assume that

(7) M−1 = IMI.

If we write M as a block matrix

M =

(

A B
C D

)

for n× n-matrices A,B,C, and D, it follows since M is symplectic that
these matrices satisfy

ABT = BAT , CDT = DCT , ADT −BCT = I.

Moreover, the inverse of M is given by

M−1 =

(

DT −BT

−CT AT

)

.

It follows from (7) that

(

DT −BT

−CT AT

)

=

(

A −B
−C D

)

.

Therefore D = AT , and so M can be written as

(8) M =

(

A B
C AT

)
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where A,B,C satisfy the equations

(9) B = BT , C = CT , AB = BAT , ATC = CA, A2 −BC = I.

We summarize this discussion in the following proposition.

Proposition 3.1. Every symplectic matrix M ∈ Sp(2n) is symplectically
conjugated to a matrix of the form (8) with A,B,C satisfying (9).

As the above discussion shows, symplectic matrices of the from (8) with
A,B,C satisfying (9) are precisely the symplectic matrices M satisfying (7).
We abbreviate this submanifold of Sp(2n) by

SpI(2n) =
{

M ∈ Sp(2n) : M−1 = IMI
}

.

This space itself has an interesting structure. Note that it follows from (7)
that

(IM)2 = IMIM = M−1M = I

so that IM is itself an antisymplectic involution. Therefore M = I(IM)
is precisely a Wonenburger decomposition of M into the product of two
antisymplectic involutions. On the other hand if J is an antisymplectic
involution, then IJ lies in SpI(2n), since

(IJ )−1 = J I = I(IJ )I.

Consequently one can identify the space SpI(2n) via the map M 7→ IM
with the space of linear antisymplectic involutions, which itself corresponds
to the tangent bundle of the Lagrangian Grassmannian [2].

In the following we will freely identify the space SpI(2n) as the mod-
uli space

{

(A,B,C) ∈ Mn×n(R) : (A,B,C) solution of (9)
}

= SpI(2n),

via the map

(A,B,C) 7→ MA,B,C :=

(

A B
C AT

)

.

Since every symplectic matrix is symplectically conjugated to one in SpI(2n)
it suffices to restrict one’s attention to this submanifold in order to under-
stand the GIT quotient Sp(2n)//Sp(2n). Although it might be in general
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cumbersome to find for a general matrix M ∈ Sp(2n) a matrix conjugated
to M in SpI(2n), we explained in the previous section that for reduced mon-
odromy matrices of symmetric periodic orbits in the restricted three-body
problem there is a simple geometric way to do that. The message of this
paper which we want to convey is that given a symmetric form (8) of a sym-
plectic matrix in its similarity class, i.e., the equivalence class of a symplectic
matrix up to conjugation by symplectic matrices, it is advantageous to keep
it for further exploration of the similarity class. For instance for a symmetric
periodic orbit we recommend to look at the reduced monodromy at a point
in the fixed point set of the antisymplectic involution and not an arbitrary
point on the periodic orbit. A first hint of this philosophy is provided by the
following lemma, which tells us that the characteristic polynomial pA,B,C

of the symplectic matrix MA,B,C is completely determined by the matrix A
and does not depend on the matrices B and C.

Lemma 3.2. The characteristic polynomial of a matrix MA,B,C ∈ SpI(2n)
is given by

pA,B,C(t) = tnp−2A

(

− t− 1
t

)

,

where p−2A is the characteristic polynomial of the matrix −2A.

Proof. For a matrix MA,B,C ∈ SpI(2n) its characteristic polynomial is given
by

pA,B,C(t) = det

(

A− tI B
C AT − tI

)

.

Note that in view of (9) we have

(

A− tI B
C AT − tI

)(

A− tI 0
−C I

)

=

(

(A− tI)2 −BC B
CA−ATC AT − tI

)

=

(

t2I − 2tA+ I B
0 AT − tI

)

.

Taking determinants on both sides we obtain

pA,B,C(t) · det(A− tI) = det(t2I − 2tA+ I) · det(AT − tI)

= det(t2I − 2tA+ I) · det(A− tI)

and hence

pA,B,C(t) = det(t2I − 2tA+ I) = tnp−2A

(

− t− 1
t

)
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where p−2A is the characteristic polynomial of the matrix −2A. This proves
Lemma 3.2. □

Note that in the case 2n = 4 we have

p−2A(s) = s2 + 2(trA)s+ 4detA

and therefore

pA,B,C(t) = t4 − 2(trA)t3 + 2(1 + 2detA)t2 − 2(trA)t+ 1.

The group GLn(R) acts on SpI(2n) by

(10) R∗

(

A,B,C
)

=
(

RAR−1, RBRT , (RT )−1CR−1
)

,

where R ∈ GLn(R) and (A,B,C) ∈ SpI(2n). As explained in the Introduc-
tion, this action comes from the ambiguity in choosing a basis for the tangent
space to the Lagrangian fixed-point locus, at an endpoint of a chord. Note
that A transforms as a linear map, whereas B,C transform as bilinear forms.
This corresponds to the conjugation action by a linear symplectomorphism:

MR∗(A,B,C) =

(

R 0
0 (RT )−1

)(

A B
C AT

)(

R−1 0
0 RT

)

.

We therefore obtain a sequence of maps between GIT quotients

(11) SpI(2n)//GLn(R) → Sp(2n)//Sp(2n) → Mn×n(R)//GLn(R)

given by

[MA,B,C ] 7→ [[MA,B,C ]] 7→ [A],

as explained in the Introduction.

Warm-up: two dimensional case. Let us first describe the sequence (11)
in the simplest possible case, i.e. n = 1. This case has also been studied in
[23, Appendix B], where it plays an important role when trying to define a
real version of Embedded Contact Homology (ECH). The identification

M1×1(R)//GL1(R) ∼= R

is tautological, and the relevant maps are [MA,B,C ] 7→ [[MA,B,C ]] 7→ [A] =
A = tr(MA,B,C)/2. The action of GL1(R) = R+ on SpI(2) is simply



“3-Moreno” — 2023/12/12 — 16:59 — page 739 — #17

On GIT quotients of the symplectic group 739

-1 1

Sp(2)//Sp(2)

Sp(2) //GL (R)
1

I

M  (R)//GL (R)
11x1

Figure 2: The GIT sequence in the case n = 1.

ϵ ·

(

A B
C A

)

=

(

A ϵ2B
1
ϵ2C A

)

,

where A2 −BC = 1, ϵ > 0. We have Sp(2) = SL(2,R), and a matrix A ∈
Sp(2) is either hyperbolic (i.e. |tr(A)| > 2, in which case it has two real
eigenvalues r, 1/r with |r| > 1), elliptic (i.e. |tr(A)| < 2, in which case it
has two conjugate complex eigenvalues in the unit circle), or parabollic (i.e.
|tr(A)| = 2, in which case it has eigenvalue ±1 with algebraic multiplicity
two). From the discussion in [8, Section 10.5], we gather that Sp(2)//Sp(2)
admits a homeomorphism

Sp(2)//Sp(2) = {z ∈ C : |z| = 1} ∪ {r ∈ R : |r| ≥ 1} ⊂ C,

via the identification

s(eiθ) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

, s(r) =

(

r 0
0 1

r

)

.

The hyperbolic locus consists of closed orbits and corresponds to {|r| > 1};
the elliptic locus also consists of closed orbits, and corresponds to {|z| =
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1}\{±1}; and the parabollic locus is {±1}, where {+1} corresponds to the
three different Jordan forms with eigenvalue 1 of algebraic multiplicity two,
and, similarly {−1} corresponds to the three Jordan forms with eigenvalue
−1 of algebraic multiplicity two.

Similarly, the GIT quotient SpI(2)//GL1(R) admits an identification
[23, Appendix B]

SpI(2)//GL1(R) = {z ∈ C : |z| = 1} ∪ {(± cosh(u), sinh(u)) : u ∈ R} ⊂ C,

via

t(eiθ) = s(eiθ) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

, t(u) =

(

± cosh(u) sinh(u)
sinh(u) ± cosh(u)

)

.

The matrix t(u) has eigenvalues ±eu,±e−u. Moreover, the matrices t(u) and
t(−u) are both symplectically conjugate to diag(±eu,±e−u), hence to each
other, and therefore define the same element in Sp(2)//Sp(2). After these
identifications, the GIT sequence becomes

eiθ 7→ eiθ 7→ cos(θ),

(± cosh(u), sinh(u)) 7→ r = ±e|u| 7→ r = ±e|u|.

This sequence is topologically depicted in Figure 2; note that it consists of
branched maps between 1-dimensional branched manifolds, with branching
locus {±1}. The covering degree of the first map is two over the hyperbolic
locus, and one everywhere else. For the second map, it is two over the elliptic
locus, and one elsewhere.

Four dimensional case. We now describe the sequence (11) in the four
dimensional case, where n = 2. In this case the identification

M2×2(R)//GL2(R) ∼= R
2

is obtained via the map

M2×2(R)//GL2(R) → R
2, [A] 7→

(

tr(A), det(A)
)

.

The spaces SpI(4)//GL2(R) and Sp(4)//Sp(4) are not manifolds but
have some branch points. The branch points lie over three curves in
M2×2(R)//GL2(R) = R2 which we describe next. We abbreviate coordinates
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on R2 by (τ, δ), where τ stands for trace and δ for determinant. The first
branch locus is the graph of the parabola δ = 1

4τ
2

Γd =
{

(

τ, 14τ
2
)

: τ ∈ R

}

at which the characteristic polynomial of A has a double root. The two other
branch loci are the straight lines

Γ1 =
{

(τ, τ − 1) : τ ∈ R

}

, Γ−1 =
{

(τ,−τ − 1) : τ ∈ R

}

at which the characteristic polynomial has a root at 1 respectively −1, i.e.,
the matrix A has 1 respectively −1 as an eigenvalue. We shall refer to the
preimage of Γ1 ∪ Γ−1 under the map Sp(4)//Sp(4) → R2 as the bifurca-
tion locus of Sp(4)//Sp(4). In the same way we refer to the preimage of
Γ1 ∪ Γ−1 under the map SpI(4)//GL2(R) → R2 as the bifurcation locus
of SpI(4)//GL2(R). Note that the map SpI(4)//GL2(R) → Sp(4)//Sp(4)
maps the latter to the former.

The branch locus Γd touches the branching loci Γ1 and Γ−1 in the points

Γd ∩ Γ1 =
{

(2, 1)
}

, Γd ∩ Γ−1 =
{

(−2, 1)
}

at which the characteristic polynomial has a double root at 1 respectively
−1. Finally the two branch loci Γ1 and Γ−1 intersect in the point

Γ1 ∩ Γ−1 =
{

(0,−1)
}

at which the characteristic polynomial has a root at 1 and −1, i.e., the
matrix A has eigenvalues 1 and −1. We abbreviate by

Γ = Γd ∪ Γ1 ∪ Γ−1

the full branch locus. Its complement decomposes into seven connected com-
ponents

(12) R
2 \ Γ = E2 ∪ EH+ ∪ EH− ∪H++ ∪H−+ ∪H−− ∪N

which we describe next; see Figure 3.
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d
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d
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1
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1
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Figure 3: The branching locus and the seven components of
M2×2(R)//GL2(R). We denote the number of sheets on the interior of each
component as a/b, where a is the number of sheets of SpI(4)//GL2(R), and
b, that of Sp(4)//Sp(4). Similarly, we indicate the number of sheets over
the branch locus; cf. Figure 5. This information gives a refinement of the
“Broucke stability diagram” [4].

The only bounded component in the decomposition the doubly elliptic
component

E2 =
{

(τ, δ) ∈ R
2 : −2 < τ < 2, max{−τ − 1, τ − 1} < δ < 1

4τ
2
}

.

A matrix A corresponding to this component has two distinct real eigen-
values −1 < µ1 < µ2 < 1, while a matrix MA,B,C ∈ SpI(4) corresponding to
such a matrix A has two pairs of eigenvalues on the unit circle (eiθ1 , e−iθ1)
and (eiθ2 , e−iθ2) with 0 < θ2 < θ1 < π which are related to the eigenvalues
of A in view of Lemma 3.2 by

eiθ1 = µ1 + i
√

1− µ2
1, eiθ2 = µ2 + i

√

1− µ2
2.
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The elliptic/positive hyperbolic component EH+ is given by

EH+ =
{

(τ, δ) ∈ R
2 : τ > 0,

∣

∣δ + 1
∣

∣ < τ
}

.

A matrix A for this component has two distinct real eigenvalues −1 < µ1 <
1 < µ2, while a matrix MA,B,C ∈ SpI(4) corresponding to A has one pair of
eigenvalues on the unit circle (eiθ, e−iθ) for 0 < θ < π and a pair of positive
real eigenvalues

(

λ, 1
λ

)

with λ > 1 such that

eiθ = µ1 + i
√

1− µ2
1, λ = µ2 +

√

µ2
2 − 1.

The elliptic/negative hyperbolic component EH− is given by

EH− =
{

(τ, δ) ∈ R
2 : τ < 0,

∣

∣δ + 1
∣

∣ < −τ
}

.

A matrix A for this component has two distinct real eigenvalues µ1 < −1 <
µ2 < 1, while a matrix MA,B,C ∈ SpI(4) corresponding to A has one pair of
eigenvalues on the unit circle (eiθ, e−iθ) for 0 < θ < π and a pair of negative
real eigenvalues

(

λ, 1
λ

)

with λ < −1 such that

eiθ = µ2 + i
√

1− µ2
2, λ = µ1 −

√

µ2
1 − 1.

The negative/positive hyperbolic component H−+ is given by

H−+ =
{

(τ, δ) ∈ R
2 : δ < −1,

∣

∣τ
∣

∣ < −δ − 1
}

.

A matrix A for this component has two distinct real eigenvalues µ1 < −1 <
1 < µ2, while a matrix MA,B,C ∈ SpI(4) corresponding to A has one pair
negative real eigenvalues

(

λ1,
1
λ1

)

with λ1 < −1 and one pair of positive real

eigenvalues
(

λ2,
1
λ2

)

such that

λ1 = µ1 −
√

µ2
1 − 1, λ2 = µ2 +

√

µ2
2 − 1.

The doubly positive hyperbolic component H++ is given by

H++ =
{

(τ, δ) ∈ R
2 : τ > 2, τ − 1 < δ < 1

4τ
2
}

.

Amatrix A for this component has two distinct real eigenvalues 1 < µ1 < µ2,
while a matrix MA,B,C ∈ SpI(4) corresponding to A has two pairs of positive
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real eigenvalues
(

λ1,
1
λ1

)

and
(

λ2,
1
λ2

)

with 1 < λ1 < λ2 such that

λ1 = µ1 +
√

µ2
1 − 1, λ2 = µ2 +

√

µ2
2 − 1.

The doubly negative hyperbolic component H−− is given by

H−− =
{

(τ, δ) ∈ R
2 : τ < −2, −τ − 1 < δ < 1

4τ
2
}

.

A matrix A for this component has two distinct real eigenvalues µ1 < µ2 <
−1, while a matrix MA,B,C ∈ SpI(4) corresponding to A has two pairs of
negative real eigenvalues

(

λ1,
1
λ1

)

and
(

λ2,
1
λ2

)

with λ1 < λ2 < −1 such that

λ1 = µ1 −
√

µ2
1 − 1, λ2 = µ2 −

√

µ2
2 − 1.

Finally, the nonreal component N is given by the region above the graph of
the parabola δ = 1

4τ
2

N =
{

(τ, δ) ∈ R
2 : δ > 1

4τ
2
}

.

A matrix A for this component has no real eigenvalues but a pair of two
nonreal complex conjugated eigenvalues (µ, µ). A matrix MA,B,C ∈ SpI(4)
has than a quadruple of complex eigenvalues

(

λ, λ, 1
λ ,

1
λ

)

which are neither
real nor lie on the unit circle where

λ = µ+
√

µ2 − 1

where in this case
√

µ2 − 1 is the choice of a complex root of the complex
number µ2 − 1.

The union of the first six connected components in the decomposition (12)
we abbreviate by

R = E2 ∪ EH+ ∪ EH− ∪H++ ∪H−+ ∪H−−

and refer to it as the real part of R2 \ Γ. With this notion we have a decom-
position

R
2 \ Γ = R∪N

into real and nonreal part. An equivalence class of matrices [A] in the real
part has two distinct real eigenvalues, while in the nonreal part it has two
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nonreal eigenvalues which are related to each other by complex conjugation.

If V ⊂ R2 is an open subset we denote by Sp(4)//Sp(4)
∣

∣

V
the subset

of Sp(4)//Sp(4) consisting of all [[MA,B,C ]] ∈ Sp(4)//Sp(4) such that [A]
lies in V and similarly SpI(4)//GL2(R)

∣

∣

V
. Outside the branch locus Γ the

maps

SpI(4)//GL2(R)
∣

∣

R2\Γ
→ Sp(4)//Sp(4)|R2\Γ → R

2 \ Γ

are smooth coverings where the number of sheets however depends
on the connected component in R2 \ Γ. On this set it actually does not
matter if one is considering the GIT quotient or just the topological quotient.

Suppose now that MA,B,C ∈ SpI(4) and A has two distinct real eigenvalues,
i.e., [A] ∈ R. Let µ be one of the eigenvalues of A. Its eigenspace Eµ ⊂ R2

is then one-dimensional. In an eigenbasis the matrix A is diagonal (so
A = AT ) and hence in view of the equation AB = BA it follows that B
leaves Eµ invariant. In particular, there exists a real number bµ such that
for any eigenvector v to the eigenvalue µ of A we have

Bv = bµv.

Definition 3.3. The eigenvalue µ of A is called B-positive if bµ is positive
and B-negative if bµ is negative.

Note that positivity and negativity of bµ does not depend on the choice
of the eigenbasis, since B transforms as a symmetric form and therefore
under change of the eigenbasis bµ gets multiplied by a positive number. We
now consider the elliptic case, i.e., −1 < µ < 1. In particular, we must have
[A] ∈ E2 ∪ EH+ ∪ EH−. Then

λ = µ+ i
√

1− µ2

is an eigenvalue of the symplectic matrix MA,B,C .

Lemma 3.4. In the elliptic case the eigenvalue µ of A is B-positive (neg-
ative) if and only if the eigenvalue λ of MA,B,C is Krein-positive (negative).

We shall prove this lemma in Appendix B. Note that it is crucial to take
the positive sign for the imaginary part of the eigenvalue λ. Its complex
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conjugate

λ = µ− i
√

1− µ2

is then another eigenvalue of the symplectic matrix MA,B,C of opposite
Krein-type than λ. That means that if µ is B-positive, then λ is Krein-
negative and if µ is B-negative, then λ is Krein-positive. We further point
out that the Krein-type of an eigenvalue of a symplectic matrix only
depends on the conjugation class of the symplectic matrix.

In the hyperbolic case where a real eigenvalue µ of A satisfies |µ| > 1
there is no analogon of the Krein-type. On the other hand the B-type
of an eigenvalue of a symplectic matrix MA,B,C ∈ SpI(4) is defined in
the hyperbolic case as well and independent of the action of GL2(R) on
SpI(4). This is the reason why in the hyperbolic case there are more sheets
in the covering SpI(4)//GL2(R) → R2, than in the branched covering
Sp(4)//Sp(4) → R2.

Planar vs. spatial GIT quotients. We now explain the relationship be-
tween the GIT quotients for the two dimensional case (or planar case, i.e.
n = 1), and the four dimensional case (or spatial case, i.e n = 2). Intuitively
speaking, the spatial case behaves as a product of two planar cases (i.e.
when two pairs of eigenvalues are independent of each other), except for the
case where a non-real quadruple arises. Topologically, this means that the
product of two copies of the GIT spaces for n = 1 corresponds to the GIT
space for n = 2 with the non-real locus removed (although one needs to take
a quotient by a Z2 action which forgets the order of the matrices which lie
over the locus Γd). The details are as follows.

Note that the product of two copies of the base of GIT sequence for n = 1
is a copy of R2, and an element in this space corresponds to an ordered
list of eigenvalues. For n = 2, the base is parametrized by the trace and
determinant of a 2× 2-matrix. Therefore the map to consider is

F : R2 → R
2, (a, b) 7→ (a+ b, ab),

i.e. the map which associates to an ordered list of the two eigenvalues
the trace and determinant of the matrix. In view of the inequality

(a+ b)2 ≥ (a+ b)2 − (a− b)2 = 4ab,
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the image of F precisely misses the non-real component N of the base of
the GIT sequence for n = 2. Moreover, on R2 we have the involution

I : R2 → R
2, (a, b) 7→ (b, a)

interchanging the two eigenvalues. The map F is invariant under the invo-
lution I, i.e.

F ◦ I = F.

This reflects the fact that for the trace and determinant the order of the
eigenvalues does not play a role. The fixed point set of I is the diago-
nal ∆ in R2 which is mapped under F precisely to the branching locus
Γd. If p0 : Sp

I(2n)//GLn(R) → Sp(2n)//Sp(2n) and p1 : Sp(2n)//Sp(2n) →
Mn×n(R)//GLn(R) are the maps in the GIT sequence, and p2 = p1 ◦ p0, we
conclude that

(SpI(4)//GL2(R))\p
−1
2 (N ) ≃ (SpI(2)//GL1(R))× (SpI(2)//GL1(R))/ ∼,

(Sp(4)//Sp(4))\p−1
1 (N ) ≃ (Sp(2)//Sp(2))× (Sp(2)//Sp(2))/ ∼,

where the quotient identifies a pair (M1 = MA1,B1,C1
,M2 = MA2,B2,C2

) with
first blocks satisfying A1 = A2 ∈ R, with the pair I(M1,M2) = (M2,M1).

4. Higher-order bifurcations and pencils of lines

In this section, for n = 2, we consider the complete bifurcation locus, i.e.
the locus of matrices having one eigenvalue which is a k-th root of unity for
some k, and therefore corresponding to a k-fold bifurcation. We will see that
this locus projects to the base of the GIT sequence as a line whose slope
depends on k. More generally, we will consider the locus of matrices having
a fixed eigenvalue. It turns out that the collection of such loci gives a pencil
of lines in the plane, tangent to a parabola. This already appears e.g. in [12,
p. 49] and [18, Figure 3]. For completeness, the details are as follows.

Let λ be an eigenvalue of M = MA,B,C , which is a k-fold root of unity,
i.e. it satisfies λk = 1. By Lemma 3.2, we have a = a(λ) = 1

2(λ+ 1
λ) is an

eigenvalue of A. If we write λ = e2πiℓ/k, we have a = cos(2πℓ/k). Moreover, if
b is the remaining eigenvalue of A, its trace is τ = a+ b, and its determinant
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is δ = ab, and we have the following equation

δ = aτ − a2 = cos(2πℓ/k)τ − cos(2πℓ/k)2,

which is a linear relation between δ and τ , depending on k and ℓ. Note
that the resulting lines in R2, denoted Γk,ℓ, are all tangent to the parabola
Γd, as no bifurcation can occur over the nonreal component N . Moreover,
two of such lines intersect at a point, consisting of the loci of curves whose
two eigenvalues bifurcate with the orders corresponding to the lines. More
generally, one can consider the locus Γθ consisting of matrices having e2πiθ

as an eigenvalue. The same computation as above shows that this is the line

δ = cos(2πθ)τ − cos(2πθ)2,

tangent to Γd at τ = 2 cos(2πθ). The collection {Γθ : θ ∈ [0, 2π)} is a pencil
of lines, tangent to the parabola Γd, but with slopes varying only in [−1, 1].
The intersection of Γθ with Γθ′ lies in E2, and is the locus of matrices having
eigenvalues e±2πiθ, e±2πiθ′

. Analogously, we can consider the case where λ
is real, i.e. hyperbolic, in which case the resulting line Γλ = {δ = a(λ)τ −
a(λ)2}, consisting of the locus of matrices with eigenvalue λ, is tangent to
Γd at τ = 2a; note that Γλ = Γ1/λ. The slope a(λ) is greater than 1 (resp.
smaller than −1) if and only if λ is positive (resp. negative) hyperbolic.
The intersections between any of the lines Γθ,Γλ again have the obvious
interpretation. See Figure 4.

5. Normal forms

In this section we describe normal forms for matricesMA,B,C ∈ SpI(4) under
the action of GL2(R) given by (10). Our normal forms still lie in SpI(4),
therefore with the exception of the doubly elliptic case they differ rather
from standard normal forms of symplectic matrices as for example explained
in [19].

5.1. The regular cases

In this section we assume that our symplectic matrix does not lie over
the branch locus. Under this assumption the orbits are closed and there
is no difference between the equivalence class in the GIT quotient and the
topological quotient.
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Γd

Γ1Γ-1

Γd

Γ1Γ-1

Figure 4: On the left, the elliptic pencil of lines {Γθ, θ ∈ [0, 2π)}. On the
right, the complete pencil, also containing the hyperbolic pencil {Γλ : λ ∈
R\[−1, 1]}.

We first consider the case where A has two different real eigenvalues,
i.e., [A] ∈ R. In this case A is diagonalizable and after acting with GL2(R)
we can assume without loss of generality that A is actually diagonal

A =

(

µ1 0
0 µ2

)

while we order the eigenvalues in increasing order µ1 < µ2. In particular, we
have that A = AT and therefore

AB = BA, AC = CA,

i.e., A commutes with both matrices B and C. Since the two eigenvalues of
A are different, this implies that B and C are diagonal as well

B =

(

b1 0
0 b2

)

, C =

(

c1 0
0 c2

)

.

From the equation A2 −BC = I we obtain

b1c1 = µ2
1 − 1, b2c2 = µ2

2 − 1.

Since we are considering the regular case the squares of µ1 and µ2 are differ-
ent from one and therefore in particular, b1, b2, c1, c2 are all nonzero. After
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acting by the matrix

R =

(

∣

∣

b1
c1

∣

∣

−1/4
0

0
∣

∣

b2
c2

∣

∣

−1/4

)

according to (10) we can achieve in addition that

|b1| = |c1|, |b2| = |c2|

so that we have

b21 = |µ2
1 − 1|, b22 = |µ2

2 − 1|.

In the following we discuss the six connected components of the real part
R one by one. We start by assuming that [A] lies in the double elliptic
component E2. In this case the two real eigenvalues of A satisfy −1 < µ1 <
µ2 < 1. In particular, there exist unique angles θ1, θ2 ∈ (0, π) such that

µ1 = cos θ1, µ2 = cos θ2.

We then have

|b1| = |c1| =
√

1− cos2 θ1 = sin θ1, |b2| = |c2| =
√

1− cos2 θ2 = sin θ2

and the signs of b1 and c1 as well as those of b2 and c2 have to be opposite.
We therefore get the following four normal forms









cos θ1 0 − sin θ1 0
0 cos θ2 0 − sin θ2

sin θ1 0 cos θ1 0
0 sin θ2 0 cos θ2









,









cos θ1 0 sin θ1 0
0 cos θ2 0 − sin θ2

− sin θ1 0 cos θ1 0
0 sin θ2 0 cos θ2









,









cos θ1 0 − sin θ1 0
0 cos θ2 0 sin θ2

sin θ1 0 cos θ1 0
0 − sin θ2 0 cos θ2









,









cos θ1 0 sin θ1 0
0 cos θ2 0 sin θ2

− sin θ1 0 cos θ1 0
0 − sin θ2 0 cos θ2









.

We therefore see that the fiber of SpI(4)//GL2(R) over [A] consists of four
points. Moreover, in view of Lemma 3.4 all these matrices are distinguished
symplectically by the Krein-type, namely the B-sign, of their eigenvalues.
Therefore the fiber of Sp(4)//Sp(4) consists of four points as well.

We next discuss the case that [A] lies in the elliptic/positive hyper-
bolic component EH+. In this case the two real eigenvalues of A satisfy
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−1 < µ1 < 1 < µ2. Hence there exist unique θ1 ∈ (0, π) and θ2 ∈ (0,∞)
such that

µ1 = cos θ1, µ2 = cosh θ2.

Hence

|b1| = |c1| =
√

1− cos2 θ1 = sin θ1, |b2| = |c2| =

√

cosh2 θ2 − 1 = sinh θ2.

Where the signs of b1 and c1 are opposite the signs of b2 and c2 agree. We
obtain the following four normal forms.









cos θ1 0 − sin θ1 0
0 cosh θ2 0 − sinh θ2

sin θ1 0 cos θ1 0
0 − sinh θ2 0 cosh θ2









,









cos θ1 0 − sin θ1 0
0 cosh θ2 0 sinh θ2

sin θ1 0 cosh θ1 0
0 sinh θ2 0 cosh θ2









,









cos θ1 0 sin θ1 0
0 cosh θ2 0 − sinh θ2

− sin θ1 0 cos θ1 0
0 − sinh θ2 0 cosh θ2









,









cos θ1 0 sin θ1 0
0 cosh θ2 0 sinh θ2

− sin θ1 0 cos θ1 0
0 sinh θ2 0 cosh θ2









.

The fiber of SpI(4)//GL2(R) over [A] consists again of four points. How-
ever, the two matrices on the first line are symplectically conjugated via the
symplectic matrix









1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0









and the same holds for the two matrices on the second line. On the other
hand the matrices on the first line and the ones on the second line are
symplectically still distinguished by the Krein-type of the first eigenvalue
µ1 = cos θ1. Hence the fiber of Sp(4)//Sp(4) consists over [A] consists of
two points.

In the elliptic/negative hyperbolic case the eigenvalues satisfy
µ1 < −1 < µ2 < 1 so that we write

µ1 = − cosh θ1, µ2 = cos θ2
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for θ1 ∈ (0,∞) and θ2 ∈ (0, π). We have the following four normal forms









− cosh θ1 0 − sinh θ1 0
0 cos θ2 0 − sin θ2

− sinh θ1 0 − cosh θ1 0
0 sin θ2 0 cos θ2









,









− cosh θ1 0 sinh θ1 0
0 cos θ2 0 − sin θ2

sinh θ1 0 − cosh θ1 0
0 sin θ2 0 cos θ2









,









− cosh θ1 0 − sinh θ1 0
0 cos θ2 0 sin θ2

− sinh θ1 0 − cosh θ1 0
0 − sin θ2 0 cos θ2









,









− cosh θ1 0 sinh θ1 0
0 cos θ2 0 sin θ2

sinh θ1 0 − cosh θ1 0
0 − sin θ2 0 cos θ2









.

Again on each line the matrices are symplectically conjugated while on
different lines they are symplectically distinguished by the Krein-type of
the second eigenvalue. Therefore the fiber of SpI(4)//GL2(R) over [A] has
again four points while the one of Sp(4)//Sp(4) has just two points.

In the doubly positive hyperbolic case H++ we obtain the following
four normal forms








cosh θ1 0 − sinh θ1 0
0 cosh θ2 0 − sinh θ2

− sinh θ1 0 cosh θ1 0
0 − sinh θ2 0 cosh θ2









,









cosh θ1 0 sinh θ1 0
0 cosh θ2 0 − sinh θ2

sinh θ1 0 cosh θ1 0
0 − sinh θ2 0 cosh θ2









,









cosh θ1 0 − sinh θ1 0
0 cosh θ2 0 sinh θ2

− sinh θ1 0 cosh θ1 0
0 sinh θ2 0 cosh θ2









,









cosh θ1 0 sinh θ1 0
0 cosh θ2 0 sinh θ2

sinh θ1 0 cosh θ1 0
0 sinh θ2 0 cosh θ2









.

which now are all symplectically conjugated. Similarly are the nega-
tive/positive hyperbolic case H−+ and the doubly negative hyperbolic
case H−−. The only difference is that in the negative/positive hyperbolic
case cosh θ1 has to be replaced by − cosh θ1 and in the doubly negative
hyperbolic case both cosh θ1 and cosh θ2 get a minus sign.

A different treatment is needed in the nonreal case, where [A] ∈ N .
In this case A has two nonreal eigenvalues which are complex conjugate of
each other

µ = reiθ, µ = re−iθ

for r > 0 and θ ∈ (0, π). After conjugation we can assume that the matrix
A is the composition of a dilation by r and a rotation by θ

A =

(

r cos θ −r sin θ
r sin θ r cos θ

)

.
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The matrix B is symmetric and transforms as a bilinear form. Hence after a
further rotation which does not affect the matrix A, since A commutes with
every rotation, we can assume that B is diagonal

B =

(

b1 0
0 b2

)

.

The equation AB = BAT implies that b2 = −b1 and after a further dilation
which still does not affect A we can assume that B has the form

B =

(

1 0
0 −1

)

,

i.e., B is just an orthogonal reflection at the first axis. The equation A2 −
BC = I implies that

C = B(A2 − I) =

(

r2 cos 2θ − 1 −r2 sin 2θ
−r2 sin 2θ −r2 cos 2θ + 1

)

.

Therefore we obtain the unique canonical form









r cos θ −r sin θ 1 0
r sin θ r cos θ 0 −1

r2 cos 2θ − 1 −r2 sin 2θ r cos θ r sin θ
−r2 sin 2θ −r2 cos 2θ + 1 −r sin θ r cos θ









.

In particular, since the canonical form is unique we see that both fibers of
SpI(4)//GL2(R) and Sp(4)//Sp(4) over [A] consist of a single point, that
means over the nonreal component the coverings are just trivial, i.e., home-
omorphisms.

5.2. The branch locus

In this section we discuss normal forms over the branch locus. Over the
branch locus not all orbits are closed and there is can be a difference
between normal forms for the GIT quotient and the usual quotient. The
branch locus itself has three singular points at (2, 1), (−2, 1), and (0,−1).
On the complement of the singularities the branch locus consists of nine
connected components all homeomorphic to an open interval.

Recall that we abbreviated the first branch locus by Γd which is given by
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Γd =
{(

τ, 14τ
2
)

: τ ∈ R
}

. It contains the two singularities (2, 1) and (2,−1).
Its complement decomposes into three connected components

Γd \
{

(2, 1) ∪ (−2, 1)
}

= Γ1
d ∪ Γ2

d ∪ Γ3
d

where

Γ1
d =

{

(

τ, 14τ
2
)

: τ < −2
}

,

Γ2
d =

{

(

τ, 14τ
2
)

: −2 < τ < 2
}

,

Γ3
d =

{

(

τ, 14τ
2
)

: τ > 2
}

.

Similarly we have the decomposition

Γ1 \
{

(2, 1), (0,−1)
}

= Γ1
1 ∪ Γ2

1 ∪ Γ3
1

with

Γ1
1 =

{

(τ, τ − 1) : τ < 0
}

Γ2
1 =

{

(τ, τ − 1) : 0 < τ < 2
}

Γ3
1 =

{

(τ, τ − 1) : τ > 2
}

as well as

Γ−1 \
{

(−2, 1), (0,−1)
}

= Γ1
−1 ∪ Γ2

−1 ∪ Γ3
−1

with

Γ1
−1 =

{

(τ,−τ − 1) : τ < −2
}

Γ2
−1 =

{

(τ,−τ − 1) : −2 < τ < 0
}

Γ3
−1 =

{

(τ,−τ − 1) : τ > 0
}

.

With these notions the nonsingular part of the branch locus decomposes
into connected components as follows

Γ \
{

(2, 1), (−2, 1), (0,−1)
}

= Γ1
d ∪ Γ2

d ∪ Γ3
d ∪ Γ1

1 ∪ Γ2
1 ∪ Γ3

1 ∪ Γ1
−1 ∪ Γ2

−1 ∪ Γ3
−1.

We first discuss the normal forms over the nonsingular part of the
branch locus. Hence we assume that MA,B,C ∈ SpI(4) with [A] ∈ Γ \
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{(2, 1), (−2, 1), (0,−1)}. We first assume that [A] ∈ Γd \ {(2, 1), (−2,−1)},
i.e., A has one real eigenvalue µ different from ±1 of algebraic multiplicity
two. The geometric multiplicity of the eigenvalue µ is one or two. We first
explain that by going over to the GIT quotient we can assume that its ge-
ometric multiplicity is two as well. To see that suppose that the geometric
multiplicity of µ is one. After acting with GL2(R) we can assume that A is
a Jordan block

A =

(

µ 1
0 µ

)

.

From the equation AB = BAT we infer that the symmetric matrix B has
the form

B =

(

b2 b1
b1 0

)

where from the equation ATC = CA we deduce that C has the form

C =

(

0 c1
c1 c2

)

.

For ϵ > 0 we consider the matrix

Rϵ =

(

ϵ 0
0 1

ϵ

)

.

We have

RϵAR
−1
ϵ =

(

µ ϵ2

0 µ

)

RϵBRT
ϵ =

(

ϵ2b2 b1
b1 0

)

(RT
ϵ )

−1CR−1
ϵ =

(

0 c1
c1 ϵ2c2

)

and therefore

lim
ϵ→0

RϵAR
−1
ϵ =

(

µ 0
0 µ

)

lim
ϵ→0

RϵBRT
ϵ =

(

0 b1
b1 0

)

lim
ϵ→0

(RT
ϵ )

−1CR−1
ϵ =

(

0 c1
c1 0

)

.
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This shows that by going over to the GIT-quotient we can assume without
loss of generality that the geometric multiplicity of the eigenvalue µ is two
as well. In this case the matrix A is diagonal

A =

(

µ 0
0 µ

)

.

In fact A is just a scalar multiple of the identity matrix and therefore a fixed
point of the action of GL2(R) by conjugation. The matrix B transforms
as a bilinear form and since any bilinear form can be diagonalized we can
assume after conjugation that B is also diagonal. Since µ ̸= ±1 the formula
A2 −BC = I implies that B has to be nonsingular and therefore C has to
be diagonal as well. The discussion of normal forms is now analogous to
the real regular case. Different from the real regular case there are only
three normal forms and not four. These are in one to one correspondence
with the signature of B. If the signature of B is one in the real regular
case there were still two different normal forms which were distinguished
on which eigenspace of A the matrix B was positive and on which it was
negative. Since the two eigenvalues now coincide this distinction is not
possible anymore.

If [A] lies in Γ2
d, i.e., in the intersection of the closure of the double

elliptic component and the nonreal component, we have the following three
normal forms for the eigenvalue µ = cos θ with θ ∈ (0, π)









cos θ 0 − sin θ 0
0 cos θ 0 − sin θ

sin θ 0 cos θ 0
0 sin θ 0 cos θ









,









cos θ 0 sin θ 0
0 cos θ 0 − sin θ

− sin θ 0 cos θ 0
0 sin θ 0 cos θ









,









cos θ 0 sin θ 0
0 cos θ 0 sin θ

− sin θ 0 cos θ 0
0 − sin θ 0 cos θ









.

Hence over Γ2
d the branch cover SpI(4)//GL2(R) has three branches.

Moreover, the three normal forms are distinguished symplectically by their
Krein-type so that Sp(4)//Sp(4) over Γ2

d has three branches as well.

If [A] lies in Γ3
d, i.e., the intersection of the closures of the doubly

positive hyperbolic component and the nonreal component we have the
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following three normal forms for µ = cosh θ with θ ∈ (0,∞)









cosh θ 0 − sinh θ 0
0 cosh θ 0 − sinh θ

− sinh θ 0 cosh θ 0
0 − sinh θ 0 cosh θ









,









cosh θ 0 sinh θ 0
0 cosh θ 0 − sinh θ

sinh θ 0 cosh θ 0
0 − sinh θ 0 cosh θ









,









cosh θ 0 sinh θ 0
0 cosh θ 0 sinh θ

sinh θ 0 cosh θ1 0
0 sinh θ 0 cosh θ









.

In particular, over Γ3
d the branched cover SpI(4)//GL2(R) has three

branches. On the other hand the above three normal forms are sym-
plectically conjugated and therefore Sp(4)//Sp(4) has just one branch.
A similar picture happens over Γ1

d, i.e., the intersection of the clo-
sures of the negative hyperbolic component and the nonreal component.
There one just needs to replace cosh θ by − cosh θ in the previous discussion.

We next assume that [A] ∈ Γ1 \ {(2, 1), (0,−1)}, i.e., A has one eigen-
value equal to 1 and another real eigenvalue µ ̸= ±1. In particular, A is
diagonalizable and after conjugation we can assume that A has the form

A =

(

1 0
0 µ

)

.

In particular, we have A = AT and therefore B and C commute with A.
This implies that they are diagonal as well

B =

(

b1 0
0 b2

)

, C =

(

c1 0
0 c2

)

.

In view of A2 −BC = I we obtain

b1c1 = 0, b2c2 = µ2 − 1.

The first equation implies that b1 or c1 is zero. We next explain that by
going over to the GIT quotient we can assume that both b1 and c1 are zero.
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To see that we first assume that c1 = 0 but b1 ̸= 0 so that we have

A =

(

1 0
0 µ

)

, B =

(

b1 0
0 b2

)

, C =

(

0 0
0 c2

)

.

For ϵ > 0 we consider the family of matrices

Rϵ =

(

ϵ 0
0 1

)

.

Acting with Rϵ on the triple of matrices above we obtain

RϵAR
−1
ϵ = A

RϵBRT
ϵ =

(

ϵ2b1 0
0 b2

)

(RT
ϵ )

−1CR−1
ϵ = C

and therefore

lim
ϵ→0

RϵAR
−1
ϵ = A

lim
ϵ→0

RϵBRT
ϵ =

(

0 0
0 b2

)

lim
ϵ→0

(RT
ϵ )

−1CR−1
ϵ = C.

This shows that we can assume that b1 = 0. Similarly we see that we can
assume as well that c1 = 0, by using instead in the above argument the
family of matrices

Rϵ =

(

1
ϵ 0
0 1

)

.

After using the action of GL2(R) once more we can additionally assume that

|b2| = |c2| =
√

|µ2 − 1|.

If [A] ∈ Γ2
1, i.e., if [A] lies in the intersection of the closures of the doubly

elliptic component and the elliptic/positive hyperbolic component, we have
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the following two normal forms for µ = cos θ with θ ∈ (0, π)









1 0 0 0
0 cos θ 0 − sin θ
0 0 1 0
0 sin θ 0 cos θ









,









1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ









.

In particular, over Γ2
1 the branched cover SpI(4)//GL2(R) has two branches.

This two branches are distinguished by their Krein-type and therefore not
symplectically conjugated, so that Sp(4)//Sp(4) has two branches as well.

If [A] ∈ Γ3
1, i.e., if [A] lies in the intersection of the closures of the

doubly positive hyperbolic component and the elliptic/positive hyperbolic
component, the two normal forms are for µ = cosh θ with θ ∈ (0,∞)









1 0 0 0
0 cosh θ 0 − sinh θ
0 0 1 0
0 − sinh θ 0 cosh θ









,









1 0 0 0
0 cosh θ 0 sinh θ
0 0 1 0
0 sinh θ 0 cosh θ









.

Again SpI(4)/GL2(R) has two branches over Γ3
1 but now the two branches

are symplectically conjugated and there is just one branch of Sp(4)//Sp(4).
The case where [A] ∈ Γ1

1, i.e., where [A] lies in the intersection of the closures
of the elliptic/negative hyperbolic component and the negative/positive
hyperbolic component is similar, one just needs to replace cosh θ by − cosh θ.

Finally the discussion where [A] ∈ Γ−1 \ {(−2, 1), (0,−1)} is analo-
gous to the one where [A] ∈ Γ1 \ {(2, 1), (0,−1)}. The only difference is that
one has to replace 1 by −1. This finishes the description of the branched
covers over the nonsingular part of the branch locus.

It remains to consider the singular part of the branch locus namely
the three points (2, 1), (−2, 1), and (0,−1). We start with the point (2, 1).
In this case A has only 1 as eigenvalue with algebraic multiplicity two. If the
geometric multiplicity is two as well, then A is the identity matrix. If the
geometric multiplicity is one, then A is conjugated to the 2× 2-Jordan block
with 1 on the diagonal. We explain that in either case the 4× 4-identity
matrix I4 lies in the closure of the GL2(R)-orbit of MA,B,C . For that
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purpose we first consider the case where A is the Jordan block

A =

(

1 1
0 1

)

.

From the equations AB = BAT and ATC = CA we infer that the symmetric
matrices B and C simplify to

B =

(

b2 b1
b1 0

)

, C =

(

0 c1
c1 c2

)

.

From the equation A2 −BC = I we obtain

b1c1 = 0, c1b2 + c2b1 = 2.

From the first equation we see that b1 or c1 vanishes. We first consider the
case where b1 = 0, so that our triple of matrices reads

A =

(

1 1
0 1

)

, B =

(

b2 0
0 0

)

, C =

(

0 c1
c1 c2

)

.

For ϵ > 0 we consider the family of matrices

Rϵ =

(

ϵ 0
0 1

ϵ2

)

.

Acting with this family of matrices on the triple (A,B,C) we obtain

RϵAR
−1
ϵ =

(

1 ϵ3

0 1

)

RϵBRT
ϵ =

(

ϵ2b2 0
0 0

)

(RT
ϵ )

−1CR−1
ϵ =

(

0 ϵc1
ϵc1 ϵ4c2

)

and therefore

lim
ϵ→0

RϵAR
−1
ϵ =

(

1 0
0 1

)

lim
ϵ→0

RϵBRT
ϵ =

(

0 0
0 0

)

lim
ϵ→0

(RT
ϵ )

−1CR−1
ϵ =

(

0 0
0 0

)

.
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We see that in this case I4 lies in the closure of the GL2(R)-orbit of MA,B,C .
The case where c1 = 0 is analogous. One just needs to use the family of
matrices

Rϵ =

(

ϵ2 0
0 1

ϵ

)

.

It remains to discuss the case where A is the identity matrix

A = I =

(

1 0
0 1

)

.

The equation A2 −BC = I implies in this case that

BC = 0.

We first consider the case B = 0. In this case the family of matrices 1
ϵ I acts

on the triple (A,B,C) by

(

1
ϵ I
)

∗
(I, 0, C) = (I, 0, ϵ2C)

with limit

lim
ϵ→0

(

1
ϵ I
)

∗
(I, 0, C) = (I, 0, 0)

which shows that in this case I4 lies in the closure of the GL2(R)-orbit
MA,B,C . A similar argument holds in the case where C = 0 by using the
family of matrices ϵI instead. It remains to discuss the case where neither B
nor C are the zero-matrix. Since B is symmetric and transforms as a bilinear
form we can diagonalize B so that we can assume without loss of generality
that

B =

(

b1 0
0 b2

)

with b1 ̸= 0. Since C is symmetric as well we obtain from the equation that
C has to be of the form

C =

(

0 0
0 c2

)

.

Since C is not the zero-matrix we must have c2 ̸= 0 which implies in view
of BC = 0 that b2 = 0 so that our triple becomes

A =

(

1 0
0 1

)

, B =

(

b1 0
0 0

)

, C =

(

0 0
0 c2

)

.
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We consider the family of matrices

Rϵ =

(

ϵ 0
0 1

ϵ

)

.

We act with this family of matrices on the triple (A,B,C) to obtain

RϵAR−1
ϵ = A

RϵBRT
ϵ =

(

ϵ2b1 0
0 0

)

(RT
ϵ )

−1CR−1
ϵ =

(

0 0
0 ϵ2c2

)

and hence

lim
ϵ→0

RϵAR
−1
ϵ =

(

1 0
0 1

)

lim
ϵ→0

RϵBRT
ϵ =

(

0 0
0 0

)

lim
ϵ→0

(RT
ϵ )

−1CR−1
ϵ =

(

0 0
0 0

)

.

This proves that as well in this last case I4 lies in the closure of the
GL2(R)-orbit of MA,B,C and therefore over (2, 1) the branched covers
SpI(4)//GL2(R) as well as Sp(4)//Sp(4) consists of a single point namely
the equivalence class of the matrix I4.

The story over (−2, 1) is completely analogous. Over this point the
two branched covers just consist of the equivalence class of the matrix −I4.

We are left with a last point, namely (0,−1). If a matrix A lies over
this point it has 1 and −1 as eigenvalues. In particular, it is diagonalizable
and hence after taking advantage of the GL2(R)-action we can assume that
A has the form

A =

(

1 0
0 −1

)

.

In particular, we have A = AT implying that the symmetric matrices B and
C commute with A. In particular, they have to keep invariant the eigenspaces
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Γd1 Γ1NH

Γd3
NH

H EHE HE
3

Γ-1 HHE
1

Γ1 HHE
1

Γ12

Sp(4)//GL (R)

Sp(4)//Sp(4)

2

I

2

E HEΓ-1
22

E NΓd22

Γ-1 HHE
3

Figure 5: Different (2-dimensional) branches of SpI(4)//GL2(R)
and Sp(4)//Sp(4). The signs on each branch correspond to B-
positivity/negativity of the corresponding eigenvalue (a priori there are 4
possibilities). The first vignette shows how they come together when crossing
from E2 to N along Γ2

d. On the second, when crossing from H−− to N along
Γ1
d. The picture is the same for H++ to N along Γ3

d, and so on. All branches
come together to a single point along each of the three singular points
(2, 1), (0,−1), (−2, 1). The natural map SpI(4)//GL2(R) → Sp(4)//Sp(4)
in the GIT sequence collapses branches together, as shown in the picture.
For example, above, B-positivity/negativity over the hyperbolic eigenspace
of matrices of type EH+ is not invariant under symplectic conjugation, and
hence the corresponding branches come together in Sp(4)//Sp(4); we may
still distinguish the elliptic eigenvalues via Krein theory, however.
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of A and are therefore themselves diagonal matrices

B =

(

b1 0
0 b2

)

, C =

(

c1 0
0 c2

)

.

The formula A2 −BC = I implies that

b1c1 = 0, b2c2 = 0,

i.e., b1 or c1 has to vanish or b2 or c2 has to vanish. By going over to the
GIT-quotient we can arrange that all of them vanish. For example if b1 does
not vanish, then c1 has to vanish and we use the sequence of matrices

Rϵ =

(

ϵ 0
0 1

)

to arrange that in the limit as ϵ goes to zero b1 vanishes as well. Similarly, if
c1 does not vanish, then b1 has to vanish and in this case we use the sequence
of matrices

Rϵ =

(

1
ϵ 0
0 1

)

and similarly for b2 and c2. Hence we can assume that B = C = 0 and there-
fore we have the unique normal form









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









.

In particular, the two branched covers consists as well of a single point over
(0,−1). This finishes the description of normal forms in all cases.

Appendix A. The GIT quotient

In this appendix, we review the definition of the GIT quotient, and some
nice general facts about the GIT quotient corresponding to the conjugation
action of the general linear group on the space of matrices.

Assume that G is a Lie group which acts on a manifold X. The space
of orbits X/G is in general not a Hausdorff space. In order to remedy this



“3-Moreno” — 2023/12/12 — 16:59 — page 765 — #43

On GIT quotients of the symplectic group 765

situation in some cases we consider the orbit closure relation on X, namely

x ∼ y :⇐⇒ Gx ∩Gy ̸= ∅,

i.e., the closures of the orbits of x and of y intersect. This relation is obviously
reflexive and symmetric. If it is in addition transitive, it is an equivalence
relation and in this case we define the GIT quotient as

X//G := X/ ∼ .

The following example plays an important role in our story.

Proposition A.1. The group GLn(R) acts on the space of real n× n-
matrices Mn×n(R) by conjugation

R∗A = RAR−1, R ∈ GLn(R), A ∈ Mn×n(R).

For this action the orbit closure relation is transitive and the GIT quotient
Mn×n(R)//GLn(R) is homeomorphic to Rn. If for A ∈ Mn×n(R) the char-
acteristic polynomial is written as

pA(t) = (−1)ntn + cn−1t
n−1 + . . .+ c1t+ c0,

then a homeomorphism is given by mapping the equivalence class of a matrix
to the coefficients of its characteristic polynomial

Mn×n(R)//GLn(R) → R
n, [A] 7→ (cn−1, . . . , c1, c0).

Proof. Suppose that A ∈ Mn×n(R). Then A is conjugated by a matrix
R ∈ GLn(R) to a matrix in real Jordan form. In case all eigenvalues of
A are real, the real Jordan form does not differ from the complex Jordan
form. In case A has as well nonreal eigenvalues its real Jordan form does
not agree with its complex Jordan form and needs some explanation. We
first note that nonreal eigenvalues of A appear in pairs (λ, λ), since the
matrix A is real. In order to avoid double counting we restrict our attention
to nonreal eigenvalues in the upper halfplane H = {z = x+ iy ∈ C : y > 0}.

If λ ∈ R and m ∈ N we define the Jordan block Jλ,m as in the com-
plex case as the m×m-matrix whose diagonal entries are all λ, and whose
superdiagonal entries are all 1, while all other entries are zero like. For
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example,

Jλ,3 =





λ 1 0
0 λ 1
0 0 λ



 .

If λ = a+ bi ∈ H we first define the 2× 2-matrix

Cλ =

(

a −b
b a

)

.

Then different from the complex case we define for m ∈ N the Jordan block
Jλ,m as the 2m× 2m-matrix consisting of m×m blocks of 2× 2-matrices
whose diagonal entries are all Cλ, and whose superdiagonal entries are all I2,
i.e., the 2× 2-identity matrix, while all other entries are zero. For instance
we have

Jλ,3 =





Cλ I2 0
0 Cλ I2
0 0 Cλ



 .

A real Jordan matrix is then as usual a block matrix having Jordan blocks
on the diagonal and zeros elsewhere.

Each Jordan block is similar to one where the superdiagonal is scaled
by ϵ > 0. We illustrate this paradigmatically for the Jordan block Jλ,3 for
real λ, for which we have





ϵ2 0 0
0 ϵ 0
0 0 1









λ 1 0
0 λ 1
0 0 λ









1
ϵ2 0 0
0 1

ϵ 0
0 0 1



 =





λ ϵ 0
0 λ ϵ
0 0 λ



 .

In particular, in the orbit closure of the matrix A there lies a block diagonal
matrix, namely

DA =
⊕

λ∈S(A)∩R

λ⊕a(λ) ⊕
⊕

λ∈S(A)∩H

C
⊕a(λ)
λ ,

where S(A) denotes the spectrum of A, i.e., the set of all eigenvalues of
A, and a(λ) denotes the algebraic multiplicity of an eigenvalue. Strictly
speaking we need to specify an order on the eigenvalues, in order to make
DA well-defined as a matrix. We choose the lexicographic order with real
value as the first letter and imaginary value as the second one. Since however
different ordering conventions lead to conjugated matrices the reader is free
to choose his own preferred convention which will not influence the following
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arguments. We note that DA is uniquely determined by the characteristic
polynomial of A. In particular, we see that if two matrices A and B have
the same characteristic polynomial pA = pB we have

DA ∈ GLn(R)A ∩GLn(R)B

implying that A ∼ B. On the other hand, suppose that A ∼ B. This means
that there exists a matrix

D ∈ GLn(R)A ∩GLn(R)B.

In particular, there exist a sequence Rν ∈ GLn(R) such that

lim
ν→∞

RνAR
−1
ν = D

as well as a sequence Sν ∈ GLn(R) with

lim
ν→∞

SνBS−1
ν = D.

Since conjugated matrices have the same characteristic polynomial we have
pA = pRνAR−1

ν
for every ν and therefore

pD = lim
ν→∞

pRνAR−1

ν
= pA

and similarly

pD = pB

implying that

pA = pB.

We have proved that

A ∼ B ⇐⇒ pA = pB.

Since every polynomial with leading coefficient (−1)n arises as the charac-
teristic polynomial of a matrix A ∈ Mn×n(R), the proposition follows. In
particular, each equivalence class has a canonical representative consisting
of a real Jordan matrix with no superdiagonal blocks. □
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Appendix B. Krein theory and strong stability for
Hamiltonian systems

In this appendix, we review some basic facts about Krein theory, its rela-
tionship with stability for orbits of Hamiltonian systems, and compare it to
our notion of B-positivity in the case of symmetric orbits. We follow the
exposition in Ekeland’s book [6] (see also Abbondandolo’s book [1]).

Consider a linear symplectic ODE

ẋ = M(t)x,

where M(t) = JA(t) ∈ sp(2n), with A(t) symmetric, and T -periodic, i.e.

A(t+ T ) = A(t) for all t, and J =

(

0 I
−I 0

)

is the standard complex mul-

tiplication. The solutions are given by x(t) = R(t)x(0), where R(t) ∈ Sp(2n)
is symplectic and solves Ṙ(t) = M(t)R(t), R(0) = I.

Definition B.1. (stability) The ODE ẋ = JA(t)x is called stable if all
solutions remain bounded for all t ∈ R. It is strongly stable if there exists
ϵ > 0 such that, if B(t) is symmetric and satisfies ∥A(t)−B(t)∥ < ϵ, then
the ODE ẋ = JB(t)x is stable. Similarly, a symplectic matrix R is stable
if all its iterates Rk remain bounded for k ∈ Z, and it is strongly stable if
there exists ϵ > 0 such that all symplectic matrices S with ∥R− S∥ < ϵ are
also stable.

Appealing to Floquet theory, one can show that the ODE ẋ = JA(t)x
is (strongly) stable if and only if R(T ) is (strongly) stable; see [6, Section
2, Proposition 3]. Moreover, stability is equivalent to R(T ) being diagonal-
izable (i.e. all eigenvalues are semi-simple, meaning that their algebraic and
geometric multiplicities agree), with its spectrum lying in the unit circle [6,
Section 1, Proposition 1]. Questions about the strong stability of Hamilto-
nian systems are therefore reduced to questions about the strong stability
of symplectic matrices.

Now, recall that the spectrum of a symplectic matrix R satisfies spe-
cial symmetries. Concretely, its eigenvalues come in families of the form

{λ, λ, λ−1, λ
−1

}. Therefore, if ±1 are eigenvalues, then they have even mul-
tiplicity. In addition, if all its eigenvalues are simple, different from ±1, and
lie in the unit circle, then they come in pairs {λ, λ}. In this case, this implies
that any other symplectic matrix close to R will also have simple eigenvalues
in the unit circle different from ±1 (otherwise an eigenvalue would have to
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bifurcate into two, which is not possible if eigenspaces are 1-dimensional).
Therefore in this case, R is strongly stable. The case of eigenvalues with
higher multiplicity is the subject of Krein theory, which we now review.

Consider the nondegenerate bilinear form G(x, y) = ⟨−iJx, y⟩ on C2n,
associated to the Hermitian matrix −iJ . Every real symplectic matrix R
preserves G. Moreover, if λ, µ are eigenvalues of R which satisfy λµ ̸= 1,
then the corresponding eigenspaces are G-orthogonal, since

G(x, y) = G(Rx,Ry) = λµG(x, y),

if x, y are the corresponding eigenvectors. Moreover, if we consider the gen-
eralized eigenspaces

Eλ =
⋃

m≥1

ker(R− λI)m,

then it also holds that Eλ, Eµ are G-orthogonal if λµ ̸= 1 [6, Section 2,
Proposition 5]. This, in particular, implies that if |λ| ≠ 1, then Eλ is G-
isotropic, i.e. G|Eλ

= 0. If σ(R) denotes the spectrum of R, we have a G-
orthogonal decomposition

C
2n =

⊕

λ∈σ(R)
|λ|≥1

Fλ,

where Fλ = Eλ if |λ| = 1, and Fλ = Eλ ⊕ E
λ
−1 if |λ| > 1. Since G is non-

degenerate, and the above splitting is G-orthogonal, the restriction Gλ =
G|Fλ

is also non-degenerate. Recall that the signature of a non-degenerate
bilinear form G is the pair (p, q), where p is the dimension of a maximal
subspace where G is positive definite, and q is the dimension of a maximal
subspace where G is negative definite. Note that if |λ| ≠ 1, with algebraic
multiplicity d, then the 2d-dimensional space Fλ has Eλ as a d-dimensional
isotropic subspace, and hence the signature of Gλ is (d, d). On the other
hand, if |λ| = 1, then the non-degenerate form Gλ can have any signature.
This justifies the following:

Definition B.2. (Krein-positivity/negativity) If λ is an eigenvalue of
the symplectic matrix R with |λ| = 1, then the signature (p, q) of Gλ is called
the Krein-type or Krein signature of λ. If q = 0, i.e. Gλ is positive definite,
λ is said to be Krein-positive. If p = 0, i.e. Gλ is negative definite, λ is said
to be Krein-negative. If λ is either Krein-negative or Krein-positive, we say
that it is Krein-definite. Otherwise, we say that it is Krein-indefinite.
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If λ is of Krein-type (p, q), then λ is of Krein-type (q, p) [6, Section 2,
Lemma 9]. If λ satisfies |λ| = 1 and it is not semi-simple, then it is easy
to show that it is Krein-indefinite [6, Section 2, Proposition 7]. Moreover,
±1 are always Krein-indefinite if they are eigenvalues, as they have real
eigenvectors x, which are therefore G-isotropic, i.e. G(x, x) = 0. The follow-
ing, originally proved by Krein in [14–17] and independently rediscovered by
Moser in [20], gives a characterization of strong stability in terms of Krein
theory:

Theorem B.3. R is strongly stable if and only if it is stable and all its
eigenvalues are Krein-definite.

See [6, Section 2, Theorem 3] for a proof. Note that this generalizes the
case where all eigenvalues are simple, different from ±1 and in the unit circle,
as discussed above.

We now prove Lemma 3.4.

Proof of Lemma 3.4. Since the notion of Krein-type is invariant under sym-
plectic conjugation and only involves the eigenspaces it suffices to show that
for the matrix

M =

(

cos θ − sin θ
sin θ cos θ

)

the eigenvalue eiθ is Krein-negative; the positive case is analogous. An eigen-
vector is given by

v =

(

1
−i

)

.

We have

G(v, v) = −2

and this shows that eiθ is Krein-negative, concluding the proof. □

Stability in the GIT sequence. In the setup of the GIT sequence for
n = 2, the (linearly) stable orbits are the ones whose matrices lie over the
closure of the E2 component of the GIT quotient M2×2(R)//GL2(R). The
strongly (linearly) stable orbits correspond to those lying over E2, i.e. they
cannot be perturbed to lie away from E2. However, there are also matrices
which are strongly stable and lying over Γ2

d, corresponding to the boundary
of the ++ and −− branches (see Figure 5). We remark that the relationship
between linear stability and the diagram of Figure 5 was already observed
in [4].
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G. Szebehely. De Gruyter Expositions in Mathematics, 17. Walter de
Gruyter & Co., Berlin, 1994. xiv+362 pp. ISBN 3-11-013703-8.

[6] I. Ekeland, Convexity methods in Hamiltonian mechanics. Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics
and Related Areas (3)], 19. Springer-Verlag, Berlin, 1990. x+247 pp.
ISBN 3-540-50613-6.

[7] U. Frauenfelder, D. Koh, and A. Moreno, Symplectic methods in
the numerical search of orbits in real-life planetary systems, Preprint
arXiv:2206.00627.

[8] U. Frauenfelder, O. van Koert, The Restricted Three-Body
Problem and Holomorphic Curves, Pathways in Mathematics.
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