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We develop a theory of T-duality for transitive Courant algebroids.
We show that T -duality between transitive Courant algebroids
E →M and Ẽ → M̃ induces a map between the spaces of sections
of the corresponding canonical weighted spinor bundles SE and S

Ẽ

intertwining the canonical Dirac generating operators. The map is
shown to induce an isomorphism between the spaces of invariant
spinors, compatible with an isomorphism between the spaces of
invariant sections of the Courant algebroids. The notion of invari-
ance is defined after lifting the vertical parallelisms of the underly-
ing torus bundles M → B and M̃ → B to the Courant algebroids
and their spinor bundles. We prove a general existence result for
T -duals under assumptions generalizing the cohomological inte-
grality conditions for T -duality in the exact case. Specializing our
construction, we find that the T -dual of an exact or a heterotic
Courant algebroid is again exact or heterotic, respectively.
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1. Introduction

The concept of T -duality appeared first in theoretical physics as a duality
between a pair of physical theories related by compactification of a common
(possibly hidden) theory along circles of reciprocal radii. Examples include
the famous duality between type IIA and type IIB string theories. More
generally, it refers to an isomorphism between certain type of structures on
a pair of torus bundles over the same manifold [9]. Already in the case of
circle bundles the topology of the bundle typically changes under T-duality
[7, 8].

Precise formulations of T-duality are available in the framework of gen-
eralized geometry (in the sense of Hitchin) [2, 10]. Recall that the basic idea
of generalized geometry is to replace the tangent bundle TM of a mani-
fold M by a Courant algebroid E. The first examples of Courant algebroids
considered in the literature were the exact Courant algebroids. They are
obtained from the generalized tangent bundle TM := T ∗M ⊕ TM by twist-
ing the canonical Dorfman bracket with a closed 3-form. Another important
class of Courant algebroids is represented by the so called heterotic Courant
algebroids, which were considered by Baraglia and Hekmati in [2], with mo-
tivation from string theory. Cavalcanti and Gualtieri [10] developed a theory
of T -duality for exact Courant algebroids and Baraglia and Hekmati [2] ex-
tended it to heterotic Courant algebroids. The approach of [2] is based on
reduction of exact Courant algebroids and uses T-duality for the latter al-
gebroids.

Exact and heterotic Courant algebroids are particular classes of tran-
sitive Courant algebroids. A Courant algebroid with surjective anchor is
called transitive. Our aim in this article is to develop a T -duality for such
Courant algebroids. Our theory applies to general transitive Courant alge-
broids, which might not arise from reduction of an exact Courant algebroid.
In fact, it does not use reduction. Our main focus is the systematic study of
the interplay of T-duality with Dirac generating operators.

Let M and M̃ be principal k-torus bundles over a manifold B. We call
two transitive Courant algebroids E and Ẽ over M and M̃ , respectively,
T -dual if there exists a certain type of isomorphism between the pullbacks
of E and Ẽ to the fiber product N =M ×B M̃ (see Definition 71 for de-
tails). We show that T -duality gives rise to a map between the spaces of
sections of canonical weighted spinor bundles SE and SẼ of E and Ẽ in-
tertwining the canonical Dirac generating operators, see Theorem 79. More
specifically, we obtain compatible isomorphisms between the spaces of (ap-
propriately defined) invariant sections of E and Ẽ as well as between the
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spaces of invariant sections of SE and SẼ . This implies, in particular, that
any invariant geometric structure on the Courant algebroid E gives rise to
a corresponding invariant ‘T -dual’ geometric structure on Ẽ. A structure
solving a system of partial differential equations on E will be mapped to a
solution of the corresponding system on Ẽ. Examples include integrability
equations as considered in [12] and equations of motion of physical theories
such as supergravity. For instance, it was shown in [13, Section 7] that the
Hull-Strominger system is invariant under T-duality. We plan to investigate
these type of applications in the future.

In Theorem 85 we prove the existence of a T -dual Ẽ for a class of tran-
sitive Courant algebroids E over a principal torus bundleM → B under the
assumption that certain cohomology classes in H2(B,R) are integral. The
result generalizes a theorem of Bouwknegt, Hannabuss, and Mathai [9] in
the exact case, see Section 6.4.1. In the heterotic case we show that the T-
dual Courant algebroids obtained from our construction are again heterotic,
see Proposition 88.

Note that for a given transitive Courant algebroid a T-dual (if it exists)
is in general not uniquely determined. A topological classification in the
spirit of [4] does not lie within the scope of this paper.

A natural continuation of this work is to study how invariant geomet-
ric structures behave under the T -duality for transitive Courant algebroids,
developed in this paper. Generalized metrics on arbitrary (not necessarily
exact or heterotic Courant algebroids) were already considered in the liter-
ature (see e.g. [13]). It is expected that their behavior under our T -duality
will be described by formulae analogous to the Busher’s rules from the exact
or heterotic T -duality. Other geometric structures (like generalized complex,
generalized Kähler, etc) on arbitrary Courant algebroids were defined in our
previous work [12]. We hope to use our T -duality in the construction of new
examples of such structures. These questions are left for future work.

In this paper we only considered Courant algebroids with scalar prod-
uct of neutral signature. It would be interesting to develop T -duality for
other classes of Courant algebroids including, in particular, the ‘odd exact’
Courant algebroids studied in [18]. A first step in this direction would be to
develop a theory of Dirac generating operators for such Courant algebroids.

Acknowledgements. We thank Mario Garćıa, Roberto Rubio and
Mathai Varghese for useful comments. Research of V.C. was partially funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC 2121 Quantum Uni-
verse – 390833306. L. D. was partially supported by the UEFISCDI research
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2. Preliminary material

To keep the text reasonably self-contained, we recall, following [11, 12], basic
facts we need on transitive Courant algebroids and their canonical Dirac gen-
erating operator. We assume that the reader is familiar with the definition
of Courant algebroids, Dirac generating operators, generalized connections
and E-connections. Basic facts on these notions can be found e.g. in [12], the
approach and notation of which we preserve along the paper. In this paper
we always assume that the Courant algebroids have scalar product of neutral
signature. For the definition of densities we keep the conventions from our
previous work [12] which coincide with those from [3]. Namely, if V is a vec-
tor space of dimension n and s ∈ R, then the one-dimensional oriented vector
space |detV ∗|s of s-densities on V consists of all maps ω : ΛnV \ {0} → R

(called s-densities) which satisfy ω(λv⃗) = |λ|sω(v⃗), for any v⃗ ∈ ΛnV \ {0}
and λ ∈ R \ {0}. We will often use the notation |detV ∗| := |detV ∗|1 for the
vector space of 1-densities. Note that, when s is an integer, |detV ∗|s is
canonically isomorphic to |detV ∗|⊗s and |detV ∗|2s to (detV ∗)⊗2s. Any non-
zero form ω ∈ ΛnV ∗ defines an s-density |ω|s(v⃗) = |ω(v1, · · · , vn)|

s, where
v⃗ := v1 ∧ · · · ∧ vn ∈ ΛnV \ {0}. When V is oriented we will identify ΛnV ∗

with |det V ∗| by the isomorphism which assigns to a positively oriented vol-
ume form ω ∈ ΛnV ∗ the density |ω| and we will denote |detV ∗|s by (detV ∗)s.
The same notation will be used when V is replaced by a vector bundle.

Many results from the next sections (on Dirac generating operators,
bilinear pairings, induced isomorphisms on spinor bundles etc) hold in the
larger setting of regular (rather than transitive) Courant algebroids. For
the purpose of this paper they will be formulated for transitive Courant
algebroids.

2.1. The canonical Dirac generating operator

Let (E, π, [·, ·], ⟨·, ·⟩) be a transitive Courant algebroid over a manifold M ,
with anchor π : E → TM , Dorfman bracket [·, ·] and scalar product (of neu-
tral signature) ⟨·, ·⟩. Let S be an irreducible Cl(E)-bundle (sometimes called
a spinor bundle of E). We denote by E ∋ v 7→ γv the Clifford action of E
on S. We assume that S is Z2-graded and that the grading is compatible
with the Clifford multiplication (this always holds when E is oriented). Let
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|detS∗|1/r be the line bundle of 1/r-densities on S, where r := rkS. An E-
connection DS on S induces an E-connection on any density line bundle,
in particular on |detS∗|1/r: if volS ∈ Γ(ΛrS∗) is a local volume form on S
and DS

e volS = ω(e)volS then the induced connection on |detS∗|1/r satisfies
DS

e |volS |
1/r = 1

rω(e)|volS |
1/r, for any e ∈ E. By taking the tensor product

we obtain an E-connection induced by D on the canonical spinor bundle
of S, defined by S := S ⊗ |detS∗|1/r.

The canonical Dirac generating operator /d of E acts on sections of the
canonical weighted spinor bundle of E determined by S. The latter is
defined by

(1) S := S ⊗ |detS∗|1/r ⊗ |detT ∗M |1/2 = S ⊗ L,

where L := |detT ∗M |1/2. The operator /d : Γ(S) → Γ(S) is given by

(2) /d = /D +
1

4
γTD ,

where /D := 1
2

∑
i γẽiD

S
ei is the Dirac operator computed with DS := DS ⊗

DL, (ei) is a frame of E, (ẽi) the metrically dual frame (i.e. ⟨ei, ẽj⟩ = δij),
DS is the E-connection on S induced by an arbitrary E-connection DS

on S compatible with a given generalized connection D on E, DL is the
E-connection on L defined by D by the rule

(3) DL
v (µ) = Lπ(v)µ−

1

2
divD(v)µ, ∀v ∈ E, µ ∈ Γ(L),

where divD(v) := tr (Dv), TD ∈ Γ(Λ3E∗) is the torsion of D, viewed as a
section of the Clifford bundle Cl(E) and acting by Clifford multiplication
on S, and Lπ(v)µ is the Lie derivative of the density µ in the direction of
the vector field π(v). The definition of /d is independent of the choice of
generalized connection D and compatible (with respect to D) E-connection
DS . In particular, DS is independent of the choice of DS , as long as DS is
compatible with a given generalized connection D (a statement for which
the neutral signature of ⟨·, ·⟩ plays a key role). We recall that the connection
DS is compatible with D if, by definition,

(4) DS
v (u · s) = (Dvu) · s+ u ·DS

v s, ∀u, v ∈ Γ(E), s ∈ Γ(S),

where u · s = γus denotes the Clifford action of u on s.
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2.2. Transitive Courant algebroids

2.2.1. Basic properties. Recall that a scalar product on a Lie algebra
is called invariant, if the adjoint representation acts by skew-symmetric en-
domorphisms. A Lie algebra endowed with an invariant (non-degenerate)
scalar product is called a quadratic Lie algebra.

Similarly, a vector bundle G →M endowed with a tensor field [·, ·] ∈
Γ(∧2G∗ ⊗ G) satisfying the Jacobi identity is called a Lie algebra bundle if in
a neighborhood of every point p ∈M the tensor field has constant coefficients
with respect to some local frame. A bundle of quadratic Lie algebras (or,
shortly, a quadratic Lie algebra bundle) is a Lie algebra bundle (G, [·, ·])
endowed with an invariant metric ⟨·, ·⟩ ∈ Γ(Sym2G∗), which we assume of
neutral signature.

Let (G, [·, ·]G , ⟨·, ·⟩G) be a quadratic Lie algebra bundle over a manifoldM
and E a Courant algebroid with underlying bundle T ∗M ⊕ G ⊕ TM , anchor
the natural projection prTM : E → TM , scalar product

⟨ξ + r1 +X, η + r2 + Y ⟩ =
1

2
(η(Y ) + ξ(X)) + ⟨r1, r2⟩G ,

for any ξ, η ∈ T ∗M, r1, r2 ∈ G, X,Y ∈ TM , and whose Dorfman bracket
satisfies

prG [r1, r2] = [r1, r2]G , ∀r1, r2 ∈ Γ(G),

where prG : E → G is the natural projection. As proved in [11], the Dorfman
bracket of E restricted to various components of E is given by

[X,Y ] = LXY +R(X,Y ) + iY iXH

[X, r] = ∇Xr − 2⟨iXR, r⟩G

[r1, r2] = [r1, r2]G + 2⟨∇r1, r2⟩G

[X, η] = LXη, [η1, η2] = [r, η] = 0,(5)

where ∇ is a connection on the vector bundle G, R ∈ Ω2(M,G) and H ∈
Ω3(M), such that ∇ preserves ⟨·, ·⟩G and [·, ·]G , the curvature R∇ of ∇ is
given by

(6) R∇(X,Y )r = [R(X,Y ), r]G , ∀X,Y ∈ X(M), r ∈ Γ(G),
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and the following relations hold:

d∇R = 0,(7)

dH = ⟨R ∧R⟩G .(8)

We recall that

(d∇R)(X,Y, Z) :=
∑

S(X,Y,Z)

(∇X(R(Y, Z))−R(LXY, Z))

⟨R ∧R⟩G(X,Y, Z,W ) := 2
∑

S(X,Y,Z)

⟨R(X,Y ), R(Z,W )⟩G ,

where X,Y, Z,W ∈ X(M) and S(X,Y, Z) denotes cyclic permutations over
X,Y, Z. The Dorfman bracket is uniquely determined by the triple (∇, R,H)
by relations (5) and the additional condition

[u, v] + [v, u] = 2d⟨u, v⟩, ∀u, v ∈ Γ(E).

The above properties of (∇, R,H) are equivalent to the defining proper-
ties of the Dorfman bracket [·, ·]. Conversely, a quadratic Lie algebra bundle
(G, [·, ·]G , ⟨·, ·⟩G) together with a triple (∇, R,H) with the above properties
give rise to a transitive Courant algebroid.

Definition 1. A Courant algebroid E as above is called the stan-
dard Courant algebroid defined by the quadratic Lie algebra bundle
(G, [·, ·]G , ⟨·, ·⟩G) and the data (∇, R,H).

As proved in [11], any transitive Courant algebroid is isomorphic to
a standard Courant algebroid. A dissection of a transitive Courant alge-
broid E is an isomorphism from E to a standard Courant algebroid. The
quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G) which is a summand in a stan-
dard Courant algebroid isomorphic to E is isomorphic to Kerπ/(Kerπ)⊥

(with scalar product and Lie bracket induced from E), where π : E → TM
is the anchor of E. The following simple lemma holds.

Lemma 2. Let E be a transitive Courant algebroid with anchor π : E →
TM . Let (G0, [·, ·]0, ⟨·, ·⟩0) be a quadratic Lie algebra bundle, isomorphic to
Kerπ/(Kerπ)⊥. Then E admits a dissection I0 : E → T ∗M ⊕ G0 ⊕ TM.

Proof. Start with an arbitrary dissection I : E → EM = T ∗M ⊕ G ⊕ TM ,
where the target is defined by a quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G)
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and data (∇, R,H). Then (G0, [·, ·]0, ⟨·, ·⟩0) and data (∇̃, R̃, H̃) where

∇̃X := K∇XK
−1, R̃(X,Y ) := KR(X,Y ), H̃(X,Y, Z) := H(X,Y, Z),

for any X,Y, Z ∈ X(M), where K : G → G0 is an isomorphism of quadratic
Lie algebra bundles, define a standard Courant algebroid isomorphic to EM

(use relations (10) below with Φ := 0 and β := 0). By composing this iso-
morphism with I we obtain the required dissection of E. □

Let Ei := T ∗M ⊕ Gi ⊕ TM (i = 1, 2) be two standard Courant alge-
broids over a manifold M , defined by quadratic Lie algebra bundles
(Gi, [·, ·]Gi

, ⟨·, ·⟩Gi
) and data (∇(i), Ri, Hi). As proved in Proposition 2.7 of

[11], any fiber preserving Courant algebroid isomorphism IE : E1 → E2 is of
the form

IE(η) = η,

IE(r) = −2Φ∗K(r) +K(r),

IE(X) = iXβ − Φ∗Φ(X) + Φ(X) +X,(9)

for any X ∈ TM , r ∈ G1 and η ∈ T ∗M . Above β ∈ Ω2(M), K ∈
Γ Isom(G1,G2) is an isomorphism of quadratic Lie algebra bundles, Φ ∈
Ω1(M,G2),

Φ∗Φ : TM → T ∗M, (Φ∗Φ)(X)(Y ) := ⟨Φ(X),Φ(Y )⟩G2
,

Φ∗K : G1 → T ∗M, (Φ∗K)(r)(X) := ⟨K(r),Φ(X)⟩G2
,

for any X,Y ∈ TM and r ∈ G1, and the next relations are satisfied:

∇
(2)
X r = K∇

(1)
X (K−1r) + [r,Φ(X)]G2

,

KR1(X,Y )−R2(X,Y ) = (d∇
(2)

Φ)(X,Y ) + [Φ(X),Φ(Y )]G2
,

H1 −H2 = dβ + ⟨(KR1 +R2) ∧ Φ⟩G2
− c3,(10)

for any X,Y ∈ X(M) and r ∈ Γ(G2), where

c3(X,Y, Z) := ⟨Φ(X), [Φ(Y ),Φ(Z)]G2
⟩G2
,

for any X,Y, Z ∈ X(M).

Remark 3. The second and third relations (10) are equivalent to relations
(46) and (47) of [11] (easy check) but are written in a simpler form. (We de-
composed prT ∗M (IE |TM ), which in the notation of [11] is denoted by β, into
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its symmetric part −⟨Φ(·),Φ(·)⟩G2
and skew-symmetric part β, see relation

(44) of [11]).

Notation 4. In the next lemma (and along the entire paper) we shall
denote by Der (G) the bundle of skew-symmetric derivations of a quadratic
Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G).

Lemma 5. Assume that the adjoint actions adGi
: Gi → Der(Gi) of the Lie

algebra bundles (Gi, [·, ·]Gi
) of the standard Courant algebroids Ei are injec-

tive. Then the second relation (10) follows from the first.

Proof. From the injectivity of adG2
, the second relation (10) holds if and

only if
(11)

[KR1(X,Y )−R2(X,Y ), r]G2
= [(d∇

(2)

Φ)(X,Y ) + [Φ(X),Φ(Y )]G2
, r]G2

for any X,Y ∈ X(M) and r ∈ Γ(G2). Taking the covariant derivative with
respect to ∇(2) of the first relation (10) we obtain

[∇
(2)
Y (Φ(X)), r]G2

=[R2(X,Y ), r]G2
+∇

(2)
LXY r +∇

(2)
Y (K∇

(1)
X (K−1r))

−K∇
(1)
X (K−1∇

(2)
Y r),(12)

where we used R∇(2)

(X,Y )r = [R2(X,Y ), r]G2
, which follows from (6). Now,

a straightforward computation which uses the first relation (10), relation
(12), and

(d∇
(2)

Φ)(X,Y ) = ∇
(2)
X (Φ(Y ))−∇

(2)
Y (Φ(X))− Φ(LXY )

shows that

[(d∇
(2)

Φ)(X,Y ), r]G2
= [KR1(X,Y )−R2(X,Y ), r]G2

+
(
(∇XK)(∇YK

−1)− (∇YK)(∇XK
−1)

)
(r),(13)

where ∇ denotes the connection on End(G1,G2) induced by ∇(1) and ∇(2).
On the other hand, using the Jacobi identity for [·, ·]G2

and the first relation
(10), we can compute

(14) [[Φ(X),Φ(Y )]G2
, r]G2

=
(
(∇YK)(∇XK

−1)− (∇XK)(∇YK
−1)

)
(r).

Adding (13) with (14) we obtain (11). □
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The proof of the following proposition is straightforward.

Proposition 6. If I1 : E1 → E2 and I2 : E2 → E3 are isomorphisms be-
tween standard Courant algebroids Ei = T ∗M ⊕ Gi ⊕ TM , defined, accord-
ing to (9), by (β1,K1,Φ1) and (β2,K2,Φ2) respectively, then I2 ◦ I1 : E1 →
E3 is defined by (β3,K3,Φ3) where

(15) K3 := K2K1, Φ3 := Φ2 +K2Φ1

and, for any X,Y ∈ TM ,

β3(X,Y ) := (β1 + β2)(X,Y ) + ⟨Φ2(X),K2Φ1(Y )⟩G2

− ⟨Φ2(Y ),K2Φ1(X)⟩G2
.(16)

In particular,

(β3 − Φ∗
3Φ3)(X,Y ) = (β1 − Φ∗

1Φ1)(X,Y ) + (β2 − Φ∗
2Φ2)(X,Y )

− 2⟨K2Φ1(X),Φ2(Y )⟩G3
.(17)

Definition 7. We say that two dissections Ii : E → T ∗M ⊕ Gi ⊕ TM of a
transitive Courant algebroid E are related by (β,K,Φ), where β ∈ Ω2(M),
K ∈ Γ Isom(G1,G2) and Φ ∈ Ω1(M,G2), if the isomorphism I2 ◦ I

−1
1 of stan-

dard Courant algebroids is given by (9).

2.2.2. The canonical Dirac generating operator of a standard

Courant algebroid. Let E = T ∗M ⊕ G ⊕ TM be a standard Courant
algebroid defined by a quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G) and
data (∇, R,H). Let SG be an irreducible Cl(G)-bundle (always assumed
to be graded), with canonical spinor bundle SG = SG ⊗ |detS∗

G |
1/r, where

r := rkSG . Then

S := Λ(T ∗M)⊗̂SG

is an irreducible spinor bundle of E, with Clifford action

(18) γξ+r+X(ω ⊗ s) = (iXω + ξ ∧ ω)⊗ s+ (−1)|ω|ω ⊗ (r · s),

for any ξ ∈ T ∗M , r ∈ G, X ∈ TM , ω ∈ Λ(T ∗M), s ∈ SG , where r · s denotes
the Clifford action of r on s. The canonical weighted spinor bundle of E
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determined by S, as defined in (1), is canonically isomorphic to

(19) S = Λ(T ∗M)⊗̂SG

owing to the canonical isomorphism

(20) |det (Λ(TM)⊗ S∗
G)|

1

Nr ⊗ |detT ∗M |1/2 ∼= |detS∗
G |

1/r

given by

|(Z1 ⊗ s∗1) ∧ · · · ∧ (ZN ⊗ s∗r)|
1

Nr ⊗ |α1 ∧ · · · ∧ αm|1/2

7→ |s∗1 ∧ · · · ∧ s∗r |
1/r,(21)

where N := rkΛ(TM), (s∗i ) is a local frame of S∗
G , (αi) is a local frame of

T ∗M and (Zi) is the local frame of Λ(TM) induced by the local frame (Xi)
of TM dual to (αi).

As shown in Theorem 67 of [12], the canonical Dirac generating operator
/d : Γ(S) → Γ(S) takes the form

/d(ω ⊗ s) = (dω −H ∧ ω)⊗ s+∇SG(s) ∧ ω

+
1

4
(−1)|ω|+1ω ⊗ (CG · s) + (−1)|ω|+1R̄E(ω ⊗ s),(22)

where ω ∈ Ω(M) and s ∈ Γ(SG). Above CG ∈ Γ(Λ3G∗) ⊂ Γ(Cl(G)) is the
Cartan form CG(u, v, w) := ⟨[u, v]G , w⟩G which acts on s by Clifford mul-
tiplication, ∇SG is the connection on SG induced by a connection ∇SG on SG
compatible with ∇,

∇SG(s) ∧ ω :=
∑

i

(αi ∧ ω)⊗ (∇SG

Xi
s)

and

R̄E(ω ⊗ s) :=
1

2

∑

i,j,k

⟨R(Xi, Xj), rk⟩G(αi ∧ αj ∧ ω)⊗ (r̃k · s),

where (rk) is a local frame of G and (r̃k) the metrically dual frame (i.e.
⟨ri, r̃j⟩G = δij for any i, j). The connection ∇SG is independent of the choice
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of connection ∇SG compatible with ∇ and preserves the grading of SG . Sim-
ilar to (4), the compatibility of ∇SG with ∇ means that

(23) ∇SG

X (r · s) = (∇Xr) · s+ r · ∇SG

X s,

for any X ∈ X(M), r ∈ Γ(G) and s ∈ Γ(SG). Sometimes it will be convenient
to write the canonical Dirac generating operator in the equivalent form

/d(ω ⊗ s) = (dω)⊗ s+
∑

i

(αi ∧ ω)⊗ (∇SG

Xi
s)−H · (ω ⊗ s)

−
1

4
CG · (ω ⊗ s)−

1

2

∑

i,j,k

⟨R(Xi, Xj), rk⟩G r̃k · αi · αj · (ω ⊗ s),(24)

where the dots denote the Clifford action of Cl(E) ∼= ΛE on S.

3. The bilinear pairing on spinors

Let (E, π, [·, ·], ⟨·, ·⟩E) be a rank 2n ≥ 2 transitive Courant algebroid over
a manifold M , S an irreducible spinor bundle of E of rank r and
S = S ⊗ | detS∗|1/r the canonical spinor bundle of S. Before we state
the next proposition we need to define the determinant of a bilin-
ear pairing ⟨·, ·⟩ on S. For this we consider ⟨·, ·⟩ as a map S → S∗,
v 7→ ⟨v, ·⟩. Its determinant detS → detS∗ defines a nowhere vanishing
section det⟨·, ·⟩ ∈ Γ((detS∗)⊗2). Since S = S ⊗ | detS∗|1/r, detS = detS ⊗
| detS∗| and (detS)2 ∼= (detS)2 ⊗ | detS∗|2 ∼= (detS)2 ⊗ (detS∗)2 is canon-
ically identified with the trivial line bundle, which means that det⟨·, ·⟩
is simply a real-valued function. This function can be computed as fol-
lows: let (si) be a local frame of S defined on some open set U ⊂M and
l := |s1 ∧ · · · ∧ sr|

−1/r. Then

(25) det⟨·, ·⟩|U = det (aij), aij := ⟨si ⊗ l, sj ⊗ l⟩.

Note that detλ⟨·, ·⟩ = λrdet⟨·, ·⟩, for any λ ∈ R∗.

Proposition 8. i) For any U ⊂M open and sufficiently small, there is a
pairing

(26) ⟨·, ·⟩S|U : Γ(S|U )× Γ(S|U ) → C∞(U)

which is C∞(U)-linear, satisfies

(27) ⟨u · s, u · s̃⟩S|U = ⟨u, u⟩E⟨s, s̃⟩S|U , ∀u ∈ Γ(E|U ), s, s̃ ∈ Γ(S|U )
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and has determinant 1 if n > 1 and −1 if n = 1. Any two such pairings
differ by multiplication by ±1.

ii) If n is even then the even and odd parts S0|U and S1|U of S|U are or-
thogonal with respect to ⟨·, ·⟩S|U . If n is odd then S0|U and S1|U are isotropic
with respect to ⟨·, ·⟩S|U .

iii) The pairing ⟨·, ·⟩S|U is symmetric if n ≡ 0, 1 (mod 4) and skew-
symmetric if n ≡ 2, 3 (mod 4).

iv) Let D be a generalized connection on E. The pairing ⟨·, ·⟩S|U is pre-
served by the E-connection DS induced by (any) E-connection DS on S,
compatible with D.

Definition 9. The pairings ⟨·, ·⟩S|U are called canonical pairings of S|U .

The remaining part of this section is devoted to the proof of Proposition 8
and to various corollaries. Let V be an n-dimensional vector space. We begin
by considering the irreducible Cl(V ⊕ V ∗)-module ΛV ∗ where V ⊕ V ∗ is
endowed with its standard metric of neutral signature

⟨X + ξ, Y + η⟩ =
1

2
(ξ(Y ) + η(X)), ∀X,Y ∈ V, ξ, η ∈ V ∗

and the Clifford action is given by

(X + ξ) · ω := iXω + ξ ∧ ω, ∀X ∈ V, ξ ∈ V ∗, ω ∈ ΛV ∗.

It is well known that the vector valued bilinear pairing

(28) ⟨·, ·⟩ : ΛV ∗ ⊗ ΛV ∗ → ΛnV ∗, ⟨ω, ω̃⟩ :=
(
ωt ∧ ω̃

)
top

,

where t : ΛV ∗ → ΛV ∗ is defined on decomposable forms by (α1 ∧ · · · ∧
αk)

t := αk ∧ · · · ∧ α1 and, for a form ω ∈ ΛV ∗, ωtop ∈ ΛnV ∗ denotes its com-
ponent of maximal degree, satisfies (27) (see e.g. [15]). Since the metric of
V ⊕ V ∗ has neutral signature, we obtain that (28) is determined (up to
multiplication by a non-zero constant), by this property. Note that ΛevenV ∗

and ΛoddV ∗ are orthogonal with respect to the pairing (28) when n is even
and are isotropic when n is odd. Also it is easy to check that (28) is non-
degenerate, symmetric if n ≡ 0, 1 (mod 4) and skew-symmetric if n ≡ 2, 3
(mod 4). By choosing a volume form on V , we obtain an R-valued pair-
ing with the same properties. These considerations hold for any irreducible
Clifford module in neutral signature and lead to the following lemma.

Lemma 10. Let W be an irreducible Cl(n, n)-module and W :=W ⊗
|detW ∗|1/r where r := dimW.
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i) There is an R-valued pairing ⟨·, ·⟩W on W which satisfies

(29) ⟨u · w, u · w̃⟩W = ⟨u, u⟩⟨w, w̃⟩W , ∀u ∈ R
2n, w, w̃ ∈ W

and det⟨·, ·⟩W = 1 if n > 1, respectively det⟨·, ·⟩W = −1 if n = 1. Such a
pairing is unique up to multiplication by ±1.

ii) The pairing ⟨·, ·⟩W is symmetric if n ≡ 0, 1 (mod 4) and skew-
symmetric if n ≡ 2, 3 (mod 4). The even and odd parts W0 and W1 of W
are orthogonal with respect to ⟨·, ·⟩W when n is even and are isotropic when
n is odd.

Proof. It remains to prove that we can rescale ⟨·, ·⟩W appropriately in or-
der to have det⟨·, ·⟩W = 1 or −1. Assume that n > 1. Using det(λ⟨·, ·⟩W) =
λrdet(⟨·, ·⟩W), this reduces to showing that det⟨·, ·⟩W > 0 for any bi-
linear pairing ⟨·, ·⟩W which satisfies (29). We compute the determinant
det⟨·, ·⟩W using a formula similar to (25), with a basis of W of the form
(w1, · · · , wr/2, v · w1, · · · , v · wr/2) where v ∈ R2n is of norm one (with re-
spect to the standard scalar product of neutral signature of R2n) and
(wi)1≤i≤r/2 is a basis of the even part W 0 of W . We obtain det(⟨·, ·⟩W) =
(detA)2, where A = (Aij) ∈Mr/2×r/2(R) with Aij = ⟨wi ⊗ l, wj ⊗ l⟩W when
n is even, Aij = ⟨wi ⊗ l, v · wj ⊗ l⟩W when n > 1 is odd and l := |w1 ∧ · · · ∧
wr/2 ∧ v · w1 ∧ · · · ∧ v · wr/2|

−1/r in both cases. For n = 1 we obtain instead
det(⟨·, ·⟩W) = −(detA)2. □

Definition 11. The pairings ⟨·, ·⟩W are called canonical pairings of W.

Remark 12. There is the following tautological way to express ⟨·, ·⟩W .
Consider a bilinear pairing ⟨·, ·⟩W on W , which satisfies (29). Take a basis
(wi) of W and let l := |w1 ∧ · · · ∧ wr|

−1/r. Then

(30) ⟨w ⊗ l, w̃ ⊗ l⟩W = |detC|−1/r⟨w, w̃⟩W , C := (⟨wi, wj⟩W )i,j .

The next lemma concludes the proof of Proposition 8. It shows that the
pairings ⟨·, ·⟩S|U exist, whenever E|U is trivial (and U is open).

Lemma 13. Let U ⊂M be an open subset such that E|U is trivial. The
section of (S∗ ⊗ S∗)/± 1 defined by canonical pairings ⟨·, ·⟩Sp

(p ∈ U) lifts
to a smooth section ⟨·, ·⟩S|U of S∗|U ⊗ S∗|U , which is preserved by the E-
connection DS on S induced by any generalized connection D on E.

Proof. Consider a local frame (ei)1≤i≤2n of E|U with ⟨ei, ej⟩E = ϵiδij , where
ϵi = 1 for i ≤ n and −1 for i ≥ n+ 1. On R2n we consider the standard
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basis (vi)1≤i≤2n and metric ⟨·, ·⟩R2n defined by ⟨vi, vj⟩R2n = ϵiδij . Let W be
an irreducible Cl(R2n, ⟨·, ·⟩R2n)-module and Σ := U ×W the trivial bundle
over U with fiber W , which is an irreducible Cl(E|U )-bundle with Clifford
action γei(p, w) := (p, vi · w), for any (p, w) ∈ U ×W. Since E has neutral
signature, S|U = Σ⊗ L where L is a line bundle and

S|U = Σ⊗ |detΣ∗|1/r ⊗ L⊗ |L∗|,

where r = dimW = rankS. The bilinear pairing ⟨·, ·⟩S|U we are looking for
is given by

⟨s⊗ l, s̃⊗ l⟩S|U = ⟨s, s̃⟩Σ⊗|detΣ∗|1/r l
2,

for any s, s̃ ∈ Σ⊗ |detΣ∗|1/r and l ∈ L⊗ |L∗|, where ⟨s, s̃⟩Σ⊗|detΣ∗|1/r is the

constant pairing on Σ defined by a canonical pairing on W ⊗ |detW ∗|1/r

(see Definition 11) and l2 ∈ C∞(U) under the canonical isomorphism (L⊗
|L∗|)2 = U × R.We now prove that ⟨·, ·⟩S|U is preserved by the E-connection
DS . If

Du(ek) = 2
∑

j<p

ωpj(u)(ep ∧ ej)(ek), ∀u ∈ Γ(E|U ),

where ωpj ∈ Γ(E∗|U ), then the E-connection DΣ on Σ defined by

DΣ
u (σα) :=

1

2

∑

i<j

ωji(u)ejei · σα, 1 ≤ α ≤ r,

where (σα) is a constant frame of Σ, is compatible with D (see e.g. [12]).
From trace( eiej ·) = 0, we deduce thatDΣ(σ1 ∧ · · · ∧ σr) = 0 and that the E-
connection induced by DΣ on Σ⊗ |detΣ∗|1/r, also denoted by DΣ, satisfies

DΣ
u (σα ⊗ lΣ) =

1

2

∑

i<j

ωji(u)(ejei · σα)⊗ lΣ,

where lΣ := |σ1 ∧ · · · ∧ σr|
−1/r. Since ⟨·, ·⟩Σ⊗|detΣ∗|1/r is constant in the frame

(σα ⊗ lΣ) and the Clifford action of eiej is skew-symmetric with respect
to ⟨·, ·⟩Σ⊗|detΣ∗|1/r (from the property (27) of ⟨·, ·⟩Σ⊗|detΣ∗|1/r), we obtain

that DΣ preserves ⟨·, ·⟩Σ⊗|detΣ∗|1/r . Let D
L be an E-connection on L. Then

DΣ ⊗DL is an E-connection on S|U , compatible with D, with the property
that the induced connection on S|U preserves ⟨·, ·⟩S|U (easy check). The
latter coincides with DS |U . □

Remark 14. Let E = T ∗M ⊕ G ⊕ TM be a standard Courant alge-
broid defined by a quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G) and data
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(∇, R,H). Let SG be an irreducible Cl(G)-bundle. The same argument as in
Proposition 8 shows that for any U ⊂M open and sufficiently small, there
is a smooth C∞(U)-bilinear pairing

(31) ⟨·, ·⟩SG |U : Γ(SG |U )× Γ(SG |U ) → C∞(U)

of normalized determinant (i.e. equal to 1 if rkG > 2 and equal to −1 if
rkG = 2), which satisfies

(32) ⟨u · s, u · s̃⟩SG |U = ⟨u, u⟩G⟨s, s̃⟩SG |U ,

for any s, s̃ ∈ Γ(SG |U ) and u ∈ Γ(G|U ). Such a pairing is unique up to mul-
tiplication by ±1 and is preserved by the connection ∇SG induced by any
connection ∇SG on SG compatible with ∇.

Definition 15. The pairings ⟨·, ·⟩SG |U are called canonical pairings of SG |U .

As a consequence of Proposition 8 we obtain, for any U ⊂M open and
sufficiently small, a (unique modulo ±1) C∞(U)-bilinear pairing on the
canonical weighted spinor bundle of S of E determined by S (see relation (1))

(33) ⟨·, ·⟩S|U : Γ(S|U )× Γ(S|U ) → |detT ∗U |, ⟨s⊗ l, s̃⊗ l⟩S|U := ⟨s, s̃⟩S|U l
2,

where s, s̃ ∈ Γ(S|U ) and l ∈ Γ(|detT ∗U |1/2). It satisfies

(34) ⟨u · (s⊗ l), u · (s̃⊗ l̃)⟩S|U = ⟨u, u⟩E⟨s⊗ l, s̃⊗ l̃⟩S|U ,

for any u ∈ Γ(E|U ) and s⊗ l, s̃⊗ l̃ ∈ Γ(S|U ).

Definition 16. The pairings ⟨·, ·⟩S|U are called canonical pairings of S|U .

Remark 17. When M is oriented, ⟨·, ·⟩S|U takes values in the bundle
detT ∗U of forms of top degree on U . A pairing with similar properties
(but with values in det (T ∗U)⊗ C) was constructed in Proposition 3.14 of
[16].

Lemma 18. Assume that E = T ∗M ⊕ G ⊕ TM is a standard Courant al-
gebroid over an oriented manifold M , defined by a quadratic Lie alge-
bra bundle (G, [·, ·]G , ⟨·, ·⟩G) and data (∇, R,H). Let SG be an irreducible
Cl(G)-bundle, SG = SG ⊗ |detS∗

G |
1/r the canonical spinor bundle of SG and

S = Λ(T ∗M)⊗̂SG the canonical weighted spinor bundle of E determined by
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the spinor bundle Λ(T ∗M)⊗̂SG . For any U ⊂M open and sufficiently small,
a canonical pairing ⟨·, ·⟩S|U is given by

(35) ⟨ω ⊗ s, ω̃ ⊗ s̃⟩S|U = (−1)|s|(|ω|+|ω̃|)(ωt ∧ ω̃)top⟨s, s̃⟩SG |U ,

where ⟨·, ·⟩SG |U is a canonical bilinear pairing of SG |U .

Proof. The claim is a consequence of the following general statement: if
(Vi, ⟨·, ·⟩i) are pseudo-Euclidean vector spaces with metrics of neutral sig-
nature and Si are irreducible Z2-graded Cl(Vi)-modules of ranks ri, with
canonical pairings ⟨·, ·⟩Si

on Si = Si ⊗ |detS∗
i |

1/ri , then the graded tensor
product S := S1⊗̂S2 is an irreducible Cl(V1 ⊕ V2)-module, with canonical
spinor module S = S1⊗̂S2 and a canonical bilinear pairing on S is given by

(36) ⟨s1 ⊗ s2, s̃1 ⊗ s̃2⟩S = (−1)|s2|(|s1|+|s̃1|)⟨s1, s̃1⟩S1
⟨s2, s̃2⟩S2

.

Indeed, the scalar product (36) satisfies (27) (easy check). In order to show
that it has normalized determinant, we remark that

(37) det ⟨·, ·⟩S = det ⟨·, ·⟩′S = (det ⟨·, ·⟩S1
)r2(det ⟨·, ·⟩S2

)r1 = 1,

where

⟨s1 ⊗ s2, s̃1 ⊗ s̃2⟩
′
S := ⟨s1, s̃1⟩S1

⟨s2, s̃2⟩S2
.

The first relation in (37) can be checked using that the scalar products ⟨·, ·⟩S
and ⟨·, ·⟩′S differ only by a sign (dependent on degrees) when restricted to
tensor products of homogeneous elements. (Recall that the even and odd
parts of Si are orthogonal or isotropic with respect to ⟨·, ·⟩Si

.) □

The next corollary will be used in Section 4.3.

Corollary 19. In the setting of Lemma 18, let ∇SG be the connection on
SG induced by an arbitrary connection ∇SG on SG, compatible with ∇. For
any U ⊂M open and sufficiently small, define E ∈ EndΓ(S|U ) by

(38) E(ω ⊗ s) := (dω)⊗ s+
∑

i

(αi ∧ ω)⊗∇SG

Xi
s,
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for any ω ∈ Ω(U) and s ∈ Γ(SG |U ), where (Xi) is a local frame of TU , with
dual frame (αi). Then, for any products ω ⊗ s, ω̃ ⊗ s̃ ∈ Γ(S|U ) of homoge-
neous elements,

⟨E(ω ⊗ s), ω̃ ⊗ s̃⟩S|U + ⟨ω ⊗ s, E(ω̃ ⊗ s̃)⟩S|U

= (−1)|s|(|ω|+|ω̃|+1)+|ω|d
(
⟨s, s̃⟩SG |U (ω

t ∧ ω̃)m−1

)
.(39)

Here m is the dimension of M and ωm−1 denotes the degree (m− 1)-
component of a form ω ∈ Ω(U).

Proof. We use the expression (35) of the canonical pairing ⟨·, ·⟩S|U . Since

d(ωt) = (−1)|ω|(dω)t we obtain

⟨(dω)⊗ s, ω̃ ⊗ s̃⟩S|U =

(40)

(−1)|s|(|ω|+|ω̃|+1)+|ω|⟨s, s̃⟩SG |U

(
d((ωt ∧ ω̃)m−1) + (−1)|ω|+1(ωt ∧ dω̃)top

)
.

Similarly, since (αi ∧ ω)
t = ωt ∧ αi and using that ∇SG preserves ⟨·, ·⟩SG |U

and the grading of S|G , we obtain

⟨(αi ∧ ω)⊗∇SG

Xi
s, ω̃ ⊗ s̃⟩S|U =

(−1)|s|(|ω|+|ω̃|+1)(ωt ∧ αi ∧ ω̃)top

(
Xi⟨s, s̃⟩SG |U − ⟨s,∇SG

Xi
s̃⟩SG |U

)
.(41)

By adding (40) with (41) we obtain (39). □

4. Dirac generating operator and operations on spinors

4.1. Behavior of canonical Dirac generating operators under

isomorphisms

Lemma 20. Let IE : E1 → E2 be an isomorphism of transitive Courant
algebroids over a manifold M and Si irreducible Cl(Ei)-bundles (i = 1, 2).
Then, for any U ⊂M open and sufficiently small, there is a unique (up
to multiplication by a smooth non-vanishing function) isomorphism IS|U :
S1|U → S2|U such that

(42) IS|U ◦ γu = γIE(u) ◦ IS|U , ∀u ∈ E1|U .
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The map IS|U is homogeneous (i.e. even or odd). If /d1 ∈ EndΓ(S1|U ) is a
Dirac generating operator of E1|U then

(43) /d2 := IS|U ◦ /d1 ◦ I
−1
S|U

∈ EndΓ(S2|U )

is a Dirac generating operator of E2|U .

Proof. Assume that E1|U admits an orthonormal frame (ei) and let (ẽi) :=
(IE(ei)) be the corresponding orthonormal frame of E2|U . Like in the
proof of Lemma 13, Si|U = Σi ⊗ Li where Σi := U ×W are Cl(Ei)-bundles,
constructed using an irreducible Cl(R2n, ⟨·, ·⟩R2n)-module W and the or-
thonormal frames (ei) and (ẽi) respectively, and Li are line bundles over
U . Restricting U if necessary, we may assume that Li are isomorphic.
Let IL : L1 → L2 be an isomorphism. Then IS|U : S1|U → S2|U defined by
IS|U (σ ⊗ l) := σ ⊗ IL(l), for any σ ∈ Σ1 and l ∈ L1, satisfies (42). The even

and odd parts of S1 are given by S0
1 = 1

2(1 + ϵγω)S and S1
1 = 1

2(1− ϵγω)S,
where ϵ ∈ {±1} and ω = e1 · · · e2n, and similarly for the even and odd parts
of S2 (with ω replaced by ω̃ = ẽ1 · · · ẽn). Therefore the statement that IS|U
is homogeneous follows from (42), which implies that IS|U ◦ γω = γω̃ ◦ IS|U .
Since IS|U is homogeneous and /d2 is odd, we obtain that also /d1 is odd. It is

clear that /d
2
2 ∈ C∞(U), as /d

2
1 ∈ C∞(U). The statement that /d2 satisfies the

condition

[[/d, γe1 ], γe2 ] = γ[e1,e2], ∀e1, e2 ∈ Γ(E)

from the definition of Dirac generating operators (see e. g. Definition 39 of
[12]) follows from (42) and (43), which imply

[/d2, γIE(u)] = IS|U ◦ [/d1, γu] ◦ I
−1
S|U
, ∀u ∈ Γ(E1|U ),

and from the properties of /d1. The remaining condition

[[/d2, f ], γe] = π2(e)(f), ∀e ∈ Γ(E2), f ∈ C∞(M)

follows similarly. □

Remark 21. i) In general, the isomorphisms IS|U do not glue together
to give an isomorphism IS : S1 → S2 compatible with IE . However, as-
sume that E1 = E2 = E and let S1 = S2 = S be an irreducible spinor bun-
dle over Cl(E). If IE ∈ Aut(E) is of the form IE(u) = α · u · α−1, where
α ∈ Γ(Pin(E)), then IS ∈ Aut(S) defined by IS(s) := α · s, s ∈ Γ(S), satis-
fies (42) (and is globally defined).
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ii) For example, if E = T ∗M ⊕ G ⊕ TM is in the standard form, SG is
an irreducible Cl(G)-bundle and β ∈ Ω2(M), then

IE(ξ + r +X) = ξ + iXβ + r +X

can be written as IE(u) = α · u · α−1 for α := e−β and the induced action on
the spinor bundle S := Λ(T ∗M)⊗̂SG is given by IS(ω ⊗ r) := (e−β ∧ ω)⊗ r
and is globally defined. If, moreover, dβ = 0 then IE is a Courant al-
gebroid automorphism (see relations (10)). Similarly, any automorphism
K ∈ ΓAut(G) of the quadratic Lie algebra bundle G, which belongs to the
connected component ΓAut(G, ⟨·, ·⟩G)0 and is parallel with respect to the
connection ∇ from the data which defines E, defines a Courant algebroid
automorphism of E whose action on spinors is globally defined.

An isomorphism IS|U : S1|U → S2|U like in Lemma 20 induces an iso-
morphism IS|U : S1|U → S2|U between the canonical spinor bundles of S1|U
and S2|U , given by

(44) IS|U (s⊗ |s1 ∧ · · · ∧ sr|
−1/r) := (ISs)⊗ |ISs1 ∧ · · · ∧ ISsr|

−1/r,

where s1 ∧ · · · ∧ sr ∈ Γ(Λr(S1|U )) is non-vanishing.

Lemma 22. For any U ⊂M open and sufficiently small, the isomorphism
IS|U preserves the canonical pairings ⟨·, ·⟩Si|U of Si|U , i.e.

⟨ISs, IS s̃⟩S2|U = ϵ⟨s, s̃⟩S1|U ,

for all s, s̃ ∈ Γ(S1|U ), where ϵ ∈ {±1} is independent of s, s̃.

Proof. From relation (42) and the fact that IE is an isometry, we obtain that
bilinear pairing ⟨s, s̃⟩′S1|U

:= ⟨IS(s), IS(s̃)⟩S2|U on S1|U satisfies (27). Also,

det ⟨·, ·⟩′S1|U
= det ⟨·, ·⟩S2|U = 1, if rkE1 > 2 (and = −1 if rkE1 = 2). □

From Lemma 22, IS|U := IS|U ⊗ Id|detT ∗U |1/2 : S1|U → S2|U satisfies

(45) ⟨IS|U (s), IS|U (s̃)⟩S2|U = ϵ⟨s, s̃⟩S1|U , ∀s, s̃ ∈ Γ(S1|U )

where ⟨·, ·⟩Si|U are canonical pairings of the canonical weighted spinor bun-
dles Si|U of Ei|U determined by Si|U and ϵ ∈ {±1}.

Definition 23. The isomorphisms IS, IS|U and IS|U are called isomor-
phisms induced by I (or compatible with I) on the spinor bundle S,
canonical spinor bundle S and canonical weighted spinor bundle S.
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Notation 24. Since the isomorphism IS|U is unique up to a multiplicative
factor, the isomorphism IS|U (hence also IS|U ) is independent of the choice
of IS|U , modulo multiplication by ±1 (see also Remark 55 of [12]). In our
computations we will often choose (without repeating it each time) one IS|U ,
or IS|U , and refer to it as the isomorphism induced by I (or compatible with
I) on the canonical spinor bundle and canonical weighted spinor bundle
respectively.

Remark 25. In the setting of Lemma 20, assume that Ei = T ∗M ⊕ Gi ⊕
TM (i = 1, 2) are standard Courant algebroids. Let SGi

be irreducible
Cl(Gi)-bundles of rank r and Si := Λ(T ∗M)⊗̂SGi

, which are irreducible
Cl(Ei)-bundles. Recall that Si := Λ(T ∗M)⊗̂SGi

are the canonical weighted
spinor bundles of Ei determined by Si, where SGi

are the canonical spinor
bundles of SGi

. For simplicity, we assume that IS : S1 → S2 is defined glob-
ally. Using (20), one can show that the isomorphism IS : S1 → S2 induced
by I : E1 → E2 is given in terms of IS : S1 → S2 by
(46)

IS(ω ⊗ s⊗ |s∗1 ∧ · · · ∧ s∗r |
1

r ) = |det (IS)|
− 1

Nr IS(ω ⊗ s)⊗ |s̃∗1 ∧ · · · ∧ s̃∗r |
1

r ,

where ω ⊗ s ∈ Γ(S1), (s
∗
i ) and (s̃∗i ) are local frames of S∗

G1
and S∗

G2
respec-

tively, N := rkΛ(TM), r := rkSGi
, and det (IS) is the determinant of the

representation matrix of IS in the local frames (Ωi ⊗ sj) and (Ωi ⊗ s̃j) re-
spectively, where (Ωi) is the local frame of Λ(T ∗M) induced by a local frame
of TM and (si), (s̃i) are the frames dual to (s∗i ) and (s̃∗i ) respectively. We
shall refer to det (IS) as the determinant of IS with respect to the local
frames (si) and (s̃i).

Proposition 26. In the setting of Lemma 20, let Si be the canonical
weighted spinor bundles of Ei determined by Si. If /d1 ∈ EndΓ(S1|U ) is the
canonical Dirac generating operator of E1|U then

(47) /d2 = IS|U ◦ /d1 ◦ I
−1
S|U

∈ EndΓ(S2|U )

is the canonical Dirac generating operator of E2|U .

Proof. Let ∇(1) be a metric connection on E1|U and ∇S1 a connection on
S1|U compatible with ∇(1). Let D(1) and DS1 be the generalized connection
on E1|U and the E1|U -connection on S1|U defined by ∇(1) and ∇S1 respec-
tively. Let ∇(2) := IE ◦ ∇(1) ◦ I−1

E and ∇S2 := IS|U ◦ ∇S1 ◦ (IS|U )
−1. Then

∇(2) is a metric connection on E2|U and ∇S2 is compatible with ∇(2). Let
D(2) and DS2 be the generalized connection on E2|U and the (compatible)
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E2|U -connection on S2|U , defined by ∇(2) and ∇S2 respectively. As formula
(2) for the canonical Dirac generating operator is independent of the choice
of generalized connection and compatible E-connection, we can (and will)
choose to compute /d1 and /d2 using the pairs (D(1), DS1) and (D(2), DS2)
respectively.

A straightforward computation using (3) shows that

(48) (D(2))LIE(u)µ = (D(1))Luµ, ∀u ∈ Γ(E1|U ), µ ∈ Γ(L|U )

and
(49)
(DS2 ⊗ (D(2))L)u = IS|U ◦ (DS1 ⊗ (D(1))L)I−1

E (u) ◦ (IS|U )
−1, ∀u ∈ Γ(E1|U ),

where DSi are the Ei|U -connections on Si|U induced by DSi . Relation (49)

implies that the Dirac operators /D
(2)

on S2|U and /D
(1)

on S1|U computed
with DS2 ⊗ (D(2))L and DS1 ⊗ (D(1))L respectively, are related by

(50) /D
(2)

= IS|U ◦ /D
(1)

◦ (IS|U )
−1.

On the other hand, it is easy to see that

TD(2)

(u, v, w) = TD(1)

(I−1
E u, I−1

E v, I−1
E w), ∀u, v, w ∈ Γ(E2|U )

which implies that

(51) TD(2)

= IE(T
D(1)

)

where TD(i)

∈ Γ(Λ3Ei|U ) ⊂ ΓCl(Ei|U ) and IE : Cl(E1|U ) → Cl(E2|U ) de-
notes the map induced by the isometry IE . Relations (42) and (51) imply
that

γ
TD(2) = IS|U ◦ γ

TD(1) ◦ (IS|U )
−1

which, together with (2) and (50), implies our claim. □

4.2. Pullback of spinors

Following [17], we recall the definition of pullback Courant algebroid. Let
f :M → N be a submersion and E a transitive Courant algebroid over N .
Let TM := T ∗M ⊕ TM be the generalized tangent bundle with its standard
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Courant algebroid structure, i.e. anchor the natural projection from TM to
TM , Dorfman bracket given by

(52) [ξ +X, η + Y ] := LXη − iY dξ + LXY,

for any X,Y ∈ X(M), ξ, η ∈ Ω1(M) and scalar product

⟨ξ +X, η + Y ⟩ :=
1

2
(ξ(Y ) + η(X)).

Consider the direct product Courant algebroid E × TM and let a : E ×
TM → T (N ×M) be its anchor. Then C := a−1(TMf ) is a coisotropic sub-
bundle of E × TM over the graphMf ⊂ N ×M of f , which we identify with
M . Its fiber over p ∈M is given by

(53) Cp := {(u, ξ +X) ∈ Ef(p) × TpM | π(u) = (dpf)(X)}

and its orthogonal complement (with respect to the scalar product of E ×
TM) is

(54) C⊥
p := {(

1

2
π∗γ,−(dpf)

∗γ) | γ ∈ T ∗
f(p)N} ⊂ Cp,

where π∗ : T ∗N → E is the dual of the anchor π : E → TN composed with
the natural identification E∗ ∼

→ E induced by the scalar product ⟨·, ·⟩ of
E. The quotient C/C⊥ is a Courant algebroid over M ∼=Mf with anchor,
scalar product and Courant bracket induced from E × TM (see [17]). The
Courant algebroid C/C⊥ was called in [17] the pullback of E by the map
f . We denote it by f !E.

Lemma 27. i) Let E = T ∗N ⊕ G ⊕ TN be a standard Courant alge-
broid, defined by a quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G) and data
(∇, R,H). Then f !E is isomorphic to the standard Courant algebroid de-
fined by the quadratic Lie algebra bundle

(f∗G, [·, ·]f∗G := f∗[·, ·]G , ⟨·, ·⟩f∗G := f∗⟨·, ·⟩G)

and data (f∗∇, f∗R, f∗H).
ii) Let I : E1 → E2 be an isomorphism between two transitive Courant

algebroids over N and ai : Ei × TM → T (N ×M) the anchors of the direct
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product Courant algebroids Ei × TM (i = 1, 2). Then I induces an isomor-
phism between the pullback Courant algebroids If : f !E1 → f !E2 defined by

(55) If [(u, ξ +X)] := [(I(u), ξ +X)], ∀(u, ξ +X) ∈ (C1)p,

where Ci = (ai)
−1(TMf ) and [(I(u), ξ +X)] denotes the class of (I(u), ξ +

X) ∈ (C2)p modulo (C2)
⊥
p .

iii) Let E be a transitive Courant algebroid over N . Any dissection of E
induces a dissection of f !E. Moreover, if Ii : E → T ∗N ⊕ Gi ⊕ TN are two
dissections of E, related by (β,K,Φ), then the induced dissections of f !E
are related by (f∗β, f∗K, f∗Φ).

Proof. i) We claim that the quadratic Lie algebra bundle
(f∗G, [·, ·]f∗G , ⟨·, ·⟩f∗G) together with (f∗∇, f∗R, f∗H) define a stan-
dard Courant algebroid. The proof reduces to the verification of
the conditions stated in Section 2.2.1. The form f∗R is defined by
(f∗R)(X,Y ) = R((dpf)X, (dpf)Y ) ∈ Gf(p) = (f∗G)p, for any X,Y ∈ TpM
and p ∈M . To show, for instance, that

(56) [df
∗∇(f∗R)](X,Y, Z) = 0, ∀X,Y, Z ∈ X(M),

cf. equation (7), we notice that it holds for any projectable vector fields
X,Y, Z ∈ X(M), since

(f∗∇)X [(f∗R)(Y, Z)] = f∗[∇f∗XR(f∗Y, f∗Z)],

(f∗R)(LXY, Z) = f∗[R(Lf∗Xf∗Y, f∗Z)]

and that it is C∞(M)-linear in all arguments X,Y, Z. Here f∗X ∈ X(N)
is the projection of a projectable vector field X ∈ X(M). Relation (56) fol-
lows. In a similar way we prove that (f∗G, [·, ·]f∗G , ⟨·, ·⟩f∗G) together with
(f∗∇, f∗R, f∗H) satisfy the remaining conditions for standard Courant al-
gebroids.

One can show that the map
(57)
F : T ∗M ⊕ f∗G ⊕ TM → f !E, F (ξ + r +X) := [(r + (dpf)X, ξ +X)]

where ξ ∈ T ∗
pM , r ∈ Gf(p), X ∈ TpM and p ∈M is arbitrary, is a Courant

algebroid isomorphism between the standard Courant algebroid defined by
the quadratic Lie algebra bundle (f∗G, [·, ·]f∗G , ⟨·, ·⟩G) and (f∗∇, f∗R, f∗H),
and f !E.
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ii), iii) Claim ii) is an easy check and claim iii) follows by combining
claims i) and ii) and using (9). □

Notation 28. Owing to Lemma 27 i), we shall often identify (sometimes,
when it is clear from the context, without stating it explicitly), the pullback
f !E of a standard Courant algebroid E defined by a quadratic Lie algebra
bundle (G, [·, ·]G , ⟨·, ·⟩G) and data (∇, R,H), with the standard Courant al-
gebroid defined by the quadratic Lie algebra bundle (f∗G, f∗[·, ·]G , f

∗⟨·, ·⟩G)
and data (f∗∇, f∗R, f∗H).

Our next aim is to define a pullback from spinors of E to spinors of
f !E. At first, we assume that E = T ∗N ⊕ G ⊕ TN is a standard Courant
algebroid, defined by a quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G) and
data (∇, R,H). As mentioned above, we identify f !E with the standard
Courant algebroid T ∗M ⊕ f∗G ⊕ TM defined by the quadratic Lie alge-
bra bundle (f∗G, f∗[·, ·]G , f

∗⟨·, ·⟩G) and data (f∗∇, f∗R, f∗H). We fix an
irreducible Cl(G)-bundle SG . Then Sf∗G := f∗SG is an irreducible Cl(f∗G)-
bundle and its canonical spinor bundle is the pullback of the canonical spinor
bundle of SG : Sf∗G = f∗SG . The canonical weighted spinor bundles of E and
f !E determined by the irreducible Cl(E) and Cl(f !E)-bundles Λ(T ∗N)⊗̂SG
and Λ(T ∗M)⊗̂f∗SG are given by

(58) SN := Λ(T ∗N)⊗̂SG , SM := Λ(T ∗M)⊗̂f∗SG .

Definition 29. The (degree-preserving) natural map

f∗ : Γ(SN ) → Γ(SM ), ω ⊗ s 7→ f∗(ω)⊗ f∗(s),

where ω ∈ Ω(N) and s ∈ Γ(SG), is called the pullback on spinors.

Remark 30. In the above setting, assume that f :M → N is endowed
with a horizontal distribution. For any X ∈ X(N), we denote by X̂ ∈ X(M)
the horizontal lift of X. We define

(59) f∗ : Γ(E) → Γ(f !E), f∗(ξ + r +X) := f∗(ξ + r) + X̂.

Let ⟨·, ·⟩E and ⟨·, ·⟩f !E be the scalar products of E and f !E. As

⟨f∗(u), f∗(v)⟩f !E = ⟨u, v⟩E ◦ f, ∀u, v ∈ Γ(E),

we obtain an induced map f∗ : ΓCl(E) → ΓCl(f !E), which satisfies

(60) f∗(u · v) = f∗(u) · f∗(v), ∀u, v ∈ ΓCl(E)
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and

(61) f∗(u · s) = f∗(u) · f∗(s), ∀u ∈ ΓCl(E), s ∈ Γ(SN ).

Assume now that E is a transitive, but not necessarily standard, Courant
algebroid and let SE and Sf !E be canonical weighted spinor bundles of E
and f !E, determined by irreducible spinor bundles SE and Sf !E respectively.
In order to define a pullback map from Γ(SE) to Γ(Sf !E), the spinor bundles
SE and Sf !E need to be related in a suitable way. This relation is expressed
in the next definition.

Definition 31. An admissible pair for SE and Sf !E is a pair (I, SG) formed
by a dissection I : E → EN = T ∗N ⊕ G ⊕ TN of E and an irreducible Cl(G)-
bundle SG, such that I and the induced dissection

If : f !E → EM = T ∗M ⊕ f∗G ⊕ TM

of f !E (see Lemma 27 iii)) induce global isomorphisms

IS : SE → Λ(T ∗N)⊗̂SG , I
f
S : Sf !E → Λ(T ∗M)⊗̂f∗SG

between spinor bundles.

Assume that SE and Sf !E admit an admissible pair (I, SG). In the nota-
tion of Definition 31 let

(62) IS : SE → SN = Λ(T ∗N)⊗̂SG , I
f
S
: Sf !E → SM = Λ(T ∗M)⊗̂f∗SG

be the (global) isomorphisms induced by I and If on the canonical weighted
spinor bundles determined by SE , Λ(T

∗N)⊗̂SG , Sf !E and Λ(T ∗M)⊗̂f∗SG .

Lemma 32. The map

(63) f ! : Γ(SE) → Γ(Sf !E), f
! := (If

S
)−1 ◦ f∗ ◦ IS

is well defined (i.e. independent on the choice of admissible pair) up to mul-
tiplication by ±1.
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Proof. Consider an isomorphism

(64) I : E1 = T ∗N ⊕ G1 ⊕ TN → E2 = T ∗N ⊕ G2 ⊕ TN

between standard Courant algebroids and

If : f !E1 = T ∗M ⊕ f∗G1 ⊕ TM → f !E2 = T ∗M ⊕ f∗G2 ⊕ T ∗M

the induced isomorphism between their pullbacks. Let SGi
be irreducible

Cl(Gi)-bundles, such that I and If induce global isomorphisms

ISN
: S1

N → S2
N , I

f
SM

: S1
M → S2

M

between spinor bundles

(65) Si
N := Λ(T ∗N)⊗̂SGi

, Si
M := Λ(T ∗M)⊗̂f∗SGi

.

By considering two admissible pairs for SE and Sf !E the claim reduces to
showing that

(66) If
SM

◦ f∗ = ϵf∗ ◦ ISN

where ϵ ∈ {±1},

(67) ISN
: S1N → S

2
N , I

f
SM

: S1M → S
2
M

are the isomorphisms induced by ISN
and IfSM

on the canonical weighted
spinor bundles

S
i
N = Λ(T ∗N)⊗̂SGi

, SiM = Λ(T ∗M)⊗̂f∗SGi

determined by Si
N and Si

M and f∗ : SiN → SiM are defined by (59). In order
to prove (66) we fix a distribution D ⊂ TM complementary to Ker df and
we decompose orthogonally f !Ei = V +

i ⊕ V −, where V +
i and V − are given

by

(V +
i )p = D∗

p ⊕ (Gi)f(p) ⊕Dp

(V −)p = (Ker dpf)
∗ ⊕Ker dpf,

for any p ∈M. Consider the spinor bundles

(68) S+
i := ΛD∗⊗̂f∗SGi

, S− = Λ(Ker df)∗
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of V +
i and V −. Then

(69) S̄i
M := S+

i ⊗̂S
−

is a spinor bundle of f !Ei = V +
i ⊕ V−, isomorphic to the spinor bundle Si

M

(defined in (65)) via the Cl(f !Ei)- bundle isomorphism

(70) Ti : S̄
i
M → Si

M , Ti((ω ⊗ s)⊗ η) = (−1)|s||η|(ω ∧ η)⊗ s

where ω ∈ ΛD∗ and s ∈ f∗SGi
, η ∈ S− are homogeneous.

Assume that I is defined by (β,K,Φ) as in Section 2.2.1. Then, from
Lemma 27 iii), If is defined by (f∗β, f∗K, f∗Φ) and acts as the identity on
V − while its restriction If+ := If |V +

1
: V +

1 → V +
2 satisfies

(71) (If+)p(f
∗u) = f∗(If(p)(u)), ∀u ∈ (E1)f(p), p ∈ N,

where f∗ : (Ei)f(p) → (V +
i )p are given by (59), constructed using the distri-

bution D. We deduce that the isomorphism If
S̄M

: S̄1
M → S̄2

M induced by If

is given by

(72) If
S̄M

(s⊗ η) = (−1)
|η||I

f+
S+

|
I
f+
S+

(s)⊗ η, ∀s ∈ S+
1 , η ∈ S−

where I
f+
S+

: S+
1 → S+

2 is the isomorphism induced by If+ : V +
1 → V +

2 . Com-
bining (70) and (72) we obtain an isomorphism

IfSM
: S1

M → S2
M , I

f
SM

:= T2 ◦ I
f
S̄M

◦ T−1
1

compatible with If . Since it maps S+
1 onto S+

2 we can define

(73) ISN
:= (f∗)−1 ◦ IfSM

◦ f∗ : S1
N → S2

N .

where f∗ : S1
N → S+

1 and (f∗)−1 : S+
2 → S2

N are induced by pullback. It is
easy to check that ISN

is compatible with I. We will show that the iso-
morphisms If

SM
: S1M → S2M and ISN

: S1N → S2N induced by IfSM
and ISN

are
related by (66). For this, we use Remark 25. Let (si), (s̃i) be local frames of
SG1

, SG2
and (s∗i ), (s̃

∗
i ) the dual frames. From Remark 25,

If
SM

((ω ⊗ s)⊗ |f∗s∗1 ∧ · · · ∧ f∗s∗r |
1/r)

= IfSM
(ω ⊗ s)⊗ |f∗s̃∗1 ∧ · · · ∧ f∗s̃∗r |

1/r|det(IfSM
)|
− 1

rNhNv(74)

where ω ∈ Λ(T ∗M), s ∈ f∗SG1
, Nh := rk (ΛD), Nv := rk (ΛKer df), r :=

rkSGi
and det(IfSM

) denotes the determinant of IfSM
with respect to the
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local frames (f∗si) and (f∗s̃i). Similarly,

ISN
((ω ⊗ s)⊗ |s∗1 ∧ · · · ∧ s∗r |

1/r)

= ISN
(ω ⊗ s)⊗ |s̃∗1 ∧ · · · ∧ s̃∗r |

1/r|det(ISN
)|
− 1

rNh(75)

where ω ∈ Λ(T ∗N), s ∈ SG1
and det(ISN

) denotes the determinant of ISN

with respect to the local frames (si) and (s̃i). Relation (66) follows from
(74) and (75), by noticing that

(76) det(IfSM
) = det(ISN

)Nv ◦ f

In order to prove the latter relation we remark, from If |T ∗M = IdT ∗M , the
compatibility of IfSM

with If and relation (73), that
(77)
IfSM

(η ∧ f∗(ω ⊗ s)) = η ∧ f∗ISN
(ω ⊗ s), ∀η ∈ Λ (Ker df)∗, ω ⊗ s ∈ S1

N .

The above relation implies that IfSM
is block diagonal when we decompose

Si
M =

∑nv

k=0 Λ
k (Ker df)∗ ⊗ f∗Si

N (where nv := rkKer(df)) and, restricted to
each block Λk (Ker df)∗ ⊗ f∗S1

N , it is given by IdΛk (Ker df)∗ ⊗ f∗ISN
. Relation

(76) follows. □

Definition 33. The map f ! : Γ(SE) → Γ(Sf !E) defined by (63) is called the
pullback on spinors.

Proposition 34. Let f :M → N be a submersion, E a transitive Courant
algebroid over N and SE, Sf !E canonical weighted spinor bundles of E
and f !E such that the pullback f ! : Γ(SE) → Γ(Sf !E) is defined. Let /dE ∈
EndΓ(SE) and /df !E ∈ EndΓ(Sf !E) be the canonical Dirac generating oper-
ators of E and f !E. Then

(78) f ! ◦ /dE = /df !E ◦ f !.

Proof. From the invariance of the canonical Dirac generating operators un-
der isomorphisms (see Proposition 26) and the definition (63) of the map f !,
it is sufficient to prove (78) in the setting of standard Courant algebroids.
With the notation before Definition 29, we need to show that

(79) f∗ ◦ /dN = /dM ◦ f∗ : Γ(SN ) → Γ(SM ),

where /dN and /dM are the canonical Dirac generating operators of the stan-
dard Courant algebroids E and f !E, which can be computed using (22). Let
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m and n be the dimensions of M and N respectively. Let (Xi)1≤i≤m be a
local frame of TM such that (Xi)1≤i≤n are projectable and their projec-
tions (f∗Xi)i≤n form a local frame of TN and (Xi)n+1≤i≤m are vertical. Let
(αi)1≤i≤n be the dual frame of (f∗Xi)1≤i≤n. Then, using f∗Xi = 0 for any
i ≥ n+ 1,

R̄f !E(f∗(ω ⊗ s))

=
1

2

∑

i,j≤n

⟨f∗(R(f∗Xi, f∗Xj)), f
∗rk⟩f∗Gf

∗(αi ∧ αj ∧ ω)⊗ (f∗(rk) · f
∗(s))

that is,

(80) (R̄f !E ◦ f∗)(ω ⊗ s) = (f∗ ◦ R̄E)(ω ⊗ s), ∀ω ⊗ s ∈ Γ(SN ).

On the other hand, if ∇SG is compatible with ∇ then ∇Sf∗G := f∗∇SG is
compatible with f∗∇. The induced connections on Sf∗G and SG are related
similarly by pullback

(81) ∇Sf∗G = f∗∇SG .

Relations (80), (81), Cf∗G = f∗CG and the expression of the canonical Dirac
generating operator (22) imply (79). □

4.3. Pushforward on spinors

Let f :M → N be a fiber bundle with compact fibers and M , N oriented.
Let E be a transitive Courant algebroid over N . In this section we define
a pushforward from spinors of f !E to spinors of E. As for the pullback,
we assume first that E is a standard Courant algebroid over N defined
by a quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G) and data (∇, R,H). We
preserve the notation introduced before Definition 29. As we did there, we
choose an irreducible Cl(G)-bundle SG , with canonical spinor bundle SG .
Consider an open cover U = {Ui} of N and, for any Ui ∈ U , a canonical
pairing ⟨·, ·⟩SG |Ui

on SG |Ui
. We define ⟨·, ·⟩f∗SG |f−1(Ui)

:= f∗⟨·, ·⟩SG |Ui
, which is

a canonical pairing on Sf∗G |f−1(Ui). We denote by ⟨·, ·⟩SN |Ui
and ⟨·, ·⟩SM |f−1(Ui)

the corresponding canonical pairings on SN |Ui
and SM |f−1(Ui), see Lemma 18.

For any Ui ∈ U , let

(82) fUi
∗ : Γ(SM |f−1(Ui)) = Ω(f−1(Ui), f

∗SG) → Γ(SN |Ui
) = Ω(Ui,SG)
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be defined by

(83)

∫

Ui

⟨fUi
∗ s1, s2⟩SN |Ui

=

∫

f−1(Ui)
⟨s1, f

∗s2⟩SM |f−1(Ui)
,

for all s1 ∈ Γ(SM |f−1(Ui)) and s2 ∈ Γc(SN |Ui
), where Γc(V ) denotes the space

of compactly supported sections of a vector bundle V . Using the maps fUi
∗

and a partition of unity {λi} of U we obtain a map

(84) f∗ : Γ(SM ) → Γ(SN ), f∗s :=
∑

i

λif
Ui
∗ (s|f−1(Ui)),

for any s ∈ Γ(SM ). This map is well-defined (i.e. independent of choices, see
Lemma 37 below).

Definition 35. The map (84) is called the pushforward on spinors.

Remark 36. Recall that the pushforward on forms f∗ : Ω(M) → Ω(N) has
the properties

(85) f∗ ◦ d = d ◦ f∗, f∗((f
∗α) ∧ β) = α ∧ f∗β,

∫

M
(f∗α) ∧ β =

∫

N
α ∧ f∗β.

Let U be a local chart over which the fiber bundle f :M → N is trivial. Then
we can identify f−1(U) with U × F , where F is the compact fiber. The
decomposition U × F induces a bigrading on ΛT ∗

pM = ΛT ∗
xU ⊗ ΛT ∗

t F =⊕
k,ℓ Λ

kT ∗
xU ⊗ ΛℓT ∗

t F for all p = (x, t) ∈ U × F . Then f∗ω = 0 for every
differential form ω on U × F of type (k, ℓ), ℓ ̸= r = dimF . Choosing a pos-
itively oriented volume form volF on the fiber F , we can write every differ-
ential form of type (k, r) as ω = hωU ∧ volF , where h is a function on U × F
and ωU is a differential form on U . Then

(86) f∗ω = ωU

∫

F
h(x, t)volF (t).

So f∗ is simply integration over the fibers.

The next lemma provides a concrete formulation for the pushforward on
spinors in terms of the pushforward on forms.
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Lemma 37. For any ω ⊗ f∗s ∈ Γ(SM ) such that s is homogenous,

(87) f∗(ω ⊗ f∗s) = (−1)r|s|+nr+ r(r−1)

2 (f∗ω)⊗ s,

where n and r are the dimensions of N and the fibers of f , respectively. In
particular, the map f∗ is well-defined (i.e. independent on the choice of U ,
partition of unity {λi} and canonical pairings ⟨·, ·⟩SG |Ui

).

Proof. We show that for any ω ⊗ f∗s ∈ Γ(SM |f−1(Ui)) with s homogeneous
and ω̃ ⊗ s̃ ∈ Γc(SN |Ui

),
∫

Ui

⟨(f∗ω)⊗ s, ω̃ ⊗ s̃⟩SN |Ui

= (−1)r|s|+nr+ r(r−1)

2

∫

f−1(Ui)
⟨ω ⊗ f∗s, f∗(ω̃ ⊗ s̃)⟩SM |f−1(Ui)

.(88)

In order to prove (88), we assume, without loss of generality, that ω, ω̃ and
s̃ are also homogeneous. If |ω|+ |ω̃| ≠ m (where m := n+ r) both terms in
(88) vanish. Assume now that |ω|+ |ω̃| = m. Then, applying (35),

∫

f−1(Ui)
⟨ω ⊗ f∗s, f∗(ω̃ ⊗ s̃)⟩SM |f−1(Ui)

= (−1)|s|m+|ω||ω̃|

∫

f−1(Ui)
f∗(⟨s, s̃⟩SG

ω̃) ∧ ωt

= (−1)|s|m+|ω||ω̃|

∫

Ui

⟨s, s̃⟩SG
ω̃ ∧ f∗(ω

t)

= (−1)r(m− r+1

2
−|s|)

∫

Ui

⟨(f∗ω)⊗ s, ω̃ ⊗ s̃⟩SN |Ui
,

where we used f∗(ω
t) = (f∗ω)

t(−1)
r(r−1)

2
+r(|ω|−r), which can be checked using

(86) and the third property (85) of the pushforward on forms. Relation (88)
is proved and implies (87). □

Remark 38. In the above setting, assume that f is endowed with a hori-
zontal distribution, like in Remark 30. Then the pullback map f∗ : ΓCl(E) →
ΓCl(f !E) is defined (see relation (59)) and

(89) f∗(f
∗(u) · s) = u · f∗s, ∀u ∈ ΓCl(E), s ∈ Γ(SM ).

Relation (89) with u ∈ Γ(E) follows from the definition (18) of the Clifford
action and for arbitrary u ∈ ΓCl(E) by iteration. Relation (89) with u ∈
ΓΛ(T ∗N ⊕ G) is independent of the horizontal distribution.
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Assume now that E is a transitive, but not necessarily standard, Courant
algebroid. Then we can define the pushforward f! : Γ(Sf !E) → Γ(SE) for any
canonical weighted spinor bundles SE and Sf !E , for which the pullback f ! :
Γ(SE) → Γ(Sf !E) is defined.

Definition 39. Assume there is an admissible pair (I : E → T ∗N ⊕ G ⊕
TN, SG) for the canonical weighted spinor bundles SE and Sf !E. The map

(90) f! : Γ(Sf !E) → Γ(SE), f! := (IS)
−1 ◦ f∗ ◦ I

f
S

is called the pushforward on spinors. Above f∗ : Γ(SM ) → Γ(SN ) is the
map (84) and

IS : SE → Λ (T ∗N)⊗̂SG , I
f
S
: Sf !E → Λ (T ∗M)⊗̂f∗SG

are the (globally defined) isomorphisms induced by I and If .

In particular, (90) is well defined, up to multiplication by ±1.

Proposition 40. The pushforward f! : Γ(Sf !E) → Γ(SE) commutes with
the canonical Dirac generating operators /dE ∈ EndΓ(SE) and /df !E ∈
EndΓ(Sf !E), i. e.

f! ◦ /df !E = /dE ◦ f!.

Proof. Like in the proof of Proposition 34, it is sufficient to show that

(91) f∗ ◦ /dM = /dN ◦ f∗,

where we preserve the notation from the proof of that proposition. Using the
expression (24) of the canonical Dirac generating operator and relation (89)
with u := H, CG and r̃k · αi · αj , we obtain that

(92) /dNf∗(ω̃ ⊗ f∗s) = f∗/dM (ω̃ ⊗ f∗s), ∀ω̃ ∈ Ω(M), s ∈ Γ(SG)

reduces to

(93) f∗EM (ω̃ ⊗ f∗s) = ENf∗(ω̃ ⊗ f∗s), ∀ω̃ ∈ Ω(M), s ∈ Γ(SG),
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where

EN (ω ⊗ s) := (dω)⊗ s+
∑

i

(αi ∧ ω)⊗∇SG

Xi
s

EM (ω̃ ⊗ f∗s) := (dω̃)⊗ f∗s+
∑

i

((f∗αi) ∧ ω̃)⊗ f∗(∇SG

Xi
s),

for any ω ∈ Ω(N), ω̃ ∈ Ω(M) and s ∈ Γ(SG), where (Xi) is a local frame of
TN with dual frame (αi). In order to show (93) it is sufficient to show that
for any U ⊂ N open and sufficiently small and β ∈ Γc(SN |U ),

(94)

∫

U
⟨ENf

U
∗ (ω̃ ⊗ f∗s), β⟩SN |U =

∫

f−1(U)
⟨EM (ω̃ ⊗ f∗s), f∗β⟩SM |f−1(U)

.

From Corollary 19 and f∗ ◦ EN = EM ◦ f∗ we have

∫

U
⟨ENf

U
∗ (ω̃ ⊗ f∗s), β⟩SN |U = −

∫

U
⟨fU∗ (ω̃ ⊗ f∗s), EN (β)⟩SN |U

= −

∫

f−1(U)
⟨ω̃ ⊗ f∗s, f∗EN (β)⟩SM |f−1(U)

= −

∫

f−1(U)
⟨ω̃ ⊗ f∗s, EM (f∗β)⟩SM |f−1(U)

=

∫

f−1(U)
⟨EM (ω̃ ⊗ f∗s), f∗β⟩SM |f−1(U)

,

which proves (94). Here fU : f−1(U) → U denotes the restriction of f to
f−1(U). □

5. Actions on transitive Courant algebroids

5.1. Basic properties

In this section we consider a class of actions on a transitive Courant algebroid
which generalizes torus actions on exact and, more generally, on heterotic
Courant algebroids. For the latter types of Courant algebroids, a notion of
T -duality has been developed in [10] and [2] respectively.

Let E be a transitive Courant algebroid over a manifoldM , with anchor
π : E → TM , Dorfman bracket [·, ·] and scalar product ⟨·, ·⟩. Recall that the
automorphism group Aut(E) of E is the group of orthogonal automorphisms
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F : E → E which cover a diffeomorphism f :M →M , such that

π(F (u)) = (dpf)π(u), ∀u ∈ Ep, p ∈M

and the natural map induced by F on the space of sections of E preserves
the Dorfman bracket. The Lie algebra of Aut(E) is the Lie algebra Der(E) of
derivations of E. This is the subalgebra of EndΓ(E) of first order linear dif-
ferential operators D : Γ(E) → Γ(E) which satisfy, for any s, s1, s2 ∈ Γ(E),

D[s1, s2] = [Ds1, s2] + [s1, Ds2]

X⟨s1, s2⟩ = ⟨Ds1, s2⟩+ ⟨s1, Ds2⟩

π ◦D(s) = LXπ(s),(95)

where X ∈ X(M) is a vector field on M , uniquely determined by D (from
the second relation (95)) and usually denoted by π(D).

Let g be a Lie algebra acting on M by an infinitesimal action

ψ : g → X(M), a 7→ ψ(a) = Xa.

We will always assume (without repeating it each time) that all the infinites-
imal actions considered are free, which means that the fundamental vector
fields Xa are non-vanishing, for all a ∈ g \ {0}.

Definition 41. i) An (infinitesimal) action of g on E which lifts ψ is an
algebra homomorphism Ψ : g → Der(E) which satisfies πΨ(a) = Xa for any
a ∈ g.

ii) Let Ψ : g → Der(E) be an action which lifts ψ. An invariant dissec-
tion of E is a dissection I : E → T ∗M ⊕ G ⊕ TM for which the action

g ∋ a 7→ I ◦Ψ(a) ◦ I−1 ∈ Der(T ∗M ⊕ G ⊕ TM)

preserves the summands T ∗M , G and TM.

We will only consider (without repeating it each time) infinitesimal ac-
tions on Courant algebroids for which there is an invariant dissection. The
next proposition shows that this is automatically the case if the infinitesimal
action is induced from an action of a compact group.

Proposition 42. Let Ψ : G→ Aut(E) be an action of a compact group G
by automorphisms of a Courant algebroid E overM , covering a group action
ψ : G→ Diff(M). Then E admits a dissection invariant under Ψ.
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Proof. By compactness of G there exists a G-invariant positive definite met-
ric h in E. Using the auxiliary metric h we can define a G-invariant splitting
σ0 : TM → E of the anchor π : E → TM , where σ0(TM) is the h-orthogonal
complement of Kerπ. The section σ0 of π can be modified to a G-invariant
totally isotropic section σ defined by

⟨σ(X), v⟩ = ⟨σ0(X), v −
1

2
σ0(π(v))⟩

for all X ∈ TpM , v ∈ Ep, p ∈M . Let π∗ : T ∗M → E∗ be the adjoint of the
anchor π. Identifying E with E∗ using the scalar product of E, we con-
sider π∗T ∗M as a subbundle of E. If we define G as the ⟨·, ·⟩-orthogonal
complement of π∗T ∗M ⊕ σ(TM), then the natural isomorphism between
E = π∗T ∗M ⊕ G ⊕ σ(TM) and T ∗M ⊕ G ⊕ TM is a G-invariant dissec-
tion. □

In the remaining part of this section we assume that

(96) E = T ∗M ⊕ G ⊕ TM

is a standard Courant algebroid, defined by a quadratic Lie algebra bundle
(G, [·, ·]G , ⟨·, ·⟩G) and data (∇, R,H) and we consider in detail the class of
actions Ψ : g → Der(E) which lift ψ : g → X(M) and preserve the factors
T ∗M , G and TM of E. From the third condition (95), the restriction of Ψ
to TM is given by

(97) Ψ(a)(X) = LXa
X, ∀a ∈ g, X ∈ X(M).

Since Xa (with a ∈ g \ {0}) are nowhere vanishing we can define

(98) ∇Ψ
Xa(p)

r := (Ψ(a)(r)) (p), ∀a ∈ g, r ∈ Γ(G), p ∈M,

which is a partial connection on G.

Lemma 43. There is a one to one correspondence between actions Ψ : g →
Der(E) which lift ψ and preserve the factors T ∗M , G, TM of E and partial
connections ∇Ψ on G such that the following conditions are satisfied:

i) ∇Ψ is flat and preserves [·, ·]G and ⟨·, ·⟩G;
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ii) H and R are invariant, i.e. for any a ∈ g,

(99) LXa
H = 0, LΨ(a)R = 0

where

(100) (LΨ(a)R)(X,Y ) := ∇Ψ
Xa

(R(X,Y ))−R(LXa
X,Y )−R(X,LXa

Y )

for any X,Y ∈ X(M);
iii) for any a ∈ g, the endomorphism Aa := ∇Ψ

Xa
−∇Xa

satisfies

(101) (∇XAa)(r) = [R(Xa, X), r]G ,

for any X ∈ X(M) and r ∈ Γ(G).
If i), ii) and iii) are satisfied, then the corresponding action Ψ acts nat-

urally (by Lie derivative) on the subbundle T ∗M ⊕ TM of E, i.e.

(102) Ψ(a)(ξ +X) = LXa
(ξ +X),

for any a ∈ g, ξ ∈ Ω1(M) and X ∈ X(M), and on G by

(103) Ψ(a)(r) = ∇Ψ
Xa
r, ∀r ∈ Γ(G).

Moreover, for any a ∈ g, the endomorphism Aa is a skew-symmetric deriva-
tion of G.

Proof. Let Ψ be an action as in the statement of the lemma. From the second
relation (95) applied to D := Ψ(a), we obtain

(104) Xa⟨X, η⟩ = ⟨Ψ(a)(X), η⟩+ ⟨X,Ψ(a)(η)⟩

for any a ∈ g, X ∈ X(M) and η ∈ Ω1(M). Using (97), (104), and Ψ(a)(η) ∈
Ω1(M) we obtain that Ψ(a)(η) = LXa

η. Relation (102) follows. From our
comments above, ∇Ψ defined by (103) is a partial connection on G. Using
(5) we obtain that the relations (95) satisfied by Ψ are equivalent to the
following conditions: R and H are invariant, ∇Ψ is flat, preserves [·, ·]G and
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⟨·, ·⟩G , and

∇Ψ
Xa

∇Xr −∇X∇Ψ
Xa
r −∇LXaXr = 0

LXa
⟨iXR, r⟩G = ⟨iLXaXR, r⟩G + ⟨iXR,∇

Ψ
Xa
r⟩G

LXa
⟨∇r, r̃⟩G = ⟨∇(∇Ψ

Xa
r), r̃⟩G + ⟨∇r,∇Ψ

Xa
r̃⟩G ,(105)

for any a ∈ g, X ∈ X(M) and r, r̃ ∈ Γ(G). Using R∇(Xa, X)r =
[R(Xa, X), r]G we obtain that the first relation (105) is equivalent to
(101). Since both ∇ and ∇Ψ preserve ⟨·, ·⟩G and [·, ·]G , the endomorphism
Aa is a skew-symmetric derivation. The second relation (105) follows from
the invariance of R and the fact that ∇Ψ preserves ⟨·, ·⟩G . The third relation
(105) follows by writing ∇Ψ

Xa
= ∇Xa

+Aa and using that ∇ preserves ⟨·, ·⟩G ,

relation (101), and again R∇(Xa, X)r = [R(Xa, X), r]G . □

Corollary 44. The skew-symmetric derivations Aa from Lemma 43 satisfy

(106) ∇Ψ
Xb

(Aa) = A[b,a], ∀a, b ∈ g.

Proof. From ∇Ψ
Xa

= ∇Xa
+Aa, the flatness of ∇Ψ and the expression (6) of

R∇, we obtain, for any r ∈ Γ(G),

(107) [R(Xa, Xb), r]G + (d∇A)(Xa, Xb)(r) + [Aa, Ab](r) = 0, ∀a, b ∈ g,

where [Aa, Ab] := AaAb −AbAa is the commutator of Aa and Ab. But

(d∇A)(Xa, Xb)(r) =
(
∇Xa

Ab −∇Xb
Aa −A[a,b]

)
r

= 2[R(Xb, Xa), r]G −A[a,b](r)

where we used relation (101) and [Xa, Xb] = X[a,b]. From (107) we obtain

(108) [R(Xb, Xa), r]G −A[a,b]r + [Aa, Ab](r) = 0, ∀a, b ∈ g, r ∈ G.

On the other hand,

∇Ψ
Xb

(Aa)(r) = ∇Ψ
Xb

(Aa(r))−Aa(∇
Ψ
Xb
r)

= ∇Xb
(Aa)(r) + [Ab, Aa](r) = [R(Xa, Xb), r]G − [Aa, Ab](r)(109)

where in the second equality we used ∇Ψ
Xb

= ∇Xb
+Ab and in the third

equality we used again relation (101). Combining (108) with (109) we obtain
(106). □
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Remark 45. i) The first relation (105) implies that ∇ is invariant, i.e. its
Lie derivative LΨ(a)∇, defined by

(LΨ(a)∇)Xr := Ψ(a)(∇Xr)−∇LXaXr −∇X(Ψ(a)r),

for any X ∈ X(M), r ∈ Γ(G), vanishes, for any a ∈ g.
ii) Like for R, we define the Lie derivative

(LΨ(a)α)(X1, · · · , Xk) := Ψ(a)(α(X1, · · · , Xk))

− α(LXa
X1, · · · , Xk)− · · · − α(X1, · · · ,LXa

Xk),

for any form α ∈ Ωk(M,G). The Lie derivative so defined can be extended
in the usual way to forms with values in the tensor bundle T (G) of G. In
particular, for α ∈ Ωk(M) we simply define LΨ(a)α := LXa

α. A T (G)-valued
form α is called invariant if LΨ(a)α = 0 for any a ∈ g.

iii) Relation (106) can be written in the equivalent way

(110) LΨ(b)(Aa) = A[b,a], ∀a, b ∈ g.

In particular, the endomorphisms Aa are invariant when g is abelian.

Let Ei (i = 1, 2) be two transitive Courant algebroids over M and
Ψi : g → Der(Ei) actions which lift ψ. A fiber preserving Courant algebroid
isomorphism F : E1 → E2 is called invariant if

(111) Ψ2(a)(F (u)) = FΨ1(a)(u), ∀a ∈ g, u ∈ Γ(E1).

Lemma 46. Let Ei = T ∗M ⊕ Gi ⊕ TM (i = 1, 2) be standard Courant al-
gebroids over M defined by quadratic Lie algebra bundles (Gi, [·, ·]Gi

, ⟨·, ·⟩Gi
)

and data (∇(i), Ri, Hi). Assume that Ei are endowed with actions Ψi :
g → Der(Ei) which lift ψ : g → X(M) and preserve the factors T ∗M , Gi

and TM of Ei, and that a fiber preserving Courant algebroid isomorphism
F : E1 → E2, defined by (β,Φ,K), where β ∈ Ω2(M), Φ ∈ Ω1(M,G2) and
K ∈ Γ Isom(G1,G2), is given, as in (9). Let ∇Ψi (i = 1, 2) be the partial con-
nections defined by Ψi. Then F is invariant if and only if K maps ∇Ψ1 to
∇Ψ2 (i.e. ∇Ψ2 = K ◦ ∇Ψ1

◦K−1) and the forms β and Φ are invariant.

Proof. The proof uses the expression (5) for the Dorfman bracket. □

5.1.1. A class of T
k-actions. Let (E = T ∗M ⊕ G ⊕ TM, ⟨·, ·⟩, [·, ·]) be

a standard Courant algebroid over the total space of a principal T k-bundle
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π :M → B, where T k = Rk/Zk denotes the k-dimensional torus. We assume
that E is defined by a quadratic Lie algebra bundle (G, ⟨·, ·⟩G , [·, ·]G) and data
(∇, R,H), where ∇ is a connection on the vector bundle G compatible with
the tensor fields ⟨·, ·⟩G and [·, ·]G , R ∈ Ω2(M,G) and H ∈ Ω3(M). Recall that
these data satisfy the compatibility equations

(112) dH = ⟨R ∧R⟩G , d∇R = 0 , R∇ = adR.

The Dorfman bracket, scalar product and anchor of E are then expressed
by the usual formulas (5) in terms of the above data.

We assume that the vertical parallellism of π is lifted to an action of
tk := Lie(T k) on E,

Ψ : tk = R
k → Der(E) ,

a 7→ Ψ(a) = (ξ + r +X 7→ LXa
ξ +∇Ψ

Xa
r + LXa

X),

where Xa is the fundamental vector field of π determined by a ∈ tk and
∇Ψ is a partial flat connection on G. We recall (see Lemma 43) that ∇Ψ

preserves [·, ·]G and ⟨·, ·⟩G and that, for any a ∈ tk, X ∈ X(M) and r ∈ Γ(G),

(113) LXa
R = 0, LXa

H = 0, (∇XAa)(r) = [R(Xa, X), r]G ,

where Aa := ∇Ψ
Xa

−∇Xa
∈ End(G) is a skew-symmetric derivation, which is

invariant since tk is abelian (see Remark 45 iii)). Recall also that LΨ(a)∇ = 0
(from Remark 45 i)).

We consider

Ωs
b(M,G) := {α ∈ Ωs(M,G) | LΨ(a)α = 0 , iXa

α = 0, ∀a ∈ tk},

the space of basic G-valued s-forms on M . The space Ωs
b(M) of basic scalar

valued s-forms onM can be defined similarly and coincides with π∗Ωs(B) ∼=
Ωs(B). The analogous fact for Ωs

b(M,G) is stated in the next proposition.

Proposition 47. Ωs
b(M,G) ∼= π∗Ωs(B)⊗ Γtk(G), where Γtk(G) denotes the

space of tk-invariant (i.e. ∇Ψ-parallel) sections.

Proof. Let U ⊂ B be an open set such that ΛsT ∗B|U is trivial. Then
any horizontal form α ∈ Ωs(π−1(U),G) (i.e. iXa

α = 0 for any a ∈ tk) can
be written as α =

∑
i(π

∗βi)⊗ si where (βi) is a basis of ΛsT ∗B|U and
si ∈ Γ(G|π−1(U)). Then LΨ(a)α =

∑
i(π

∗βi)⊗ LΨ(a)si from where we deduce
that Ωs

b(π
−1(U),G) = π∗Ωs(U)⊗ Γtk(G|π−1(U)). Using a partition of unity in

B one can deduce that the same holds globally for U = B. □
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In the following we will always identify ΛsT ∗M ⊗ G with G ⊗ ΛsT ∗M ,
which allows to freely write decomposable elements as ω ⊗ r or as r ⊗ ω. Let
(ei) be a basis of tk, Xi := Xei ∈ X(M) the associated fundamental vector
fields and Ai := Aei = ∇Ψ

Xi
−∇Xi

∈ End(G). We choose a connection H on

the principal bundle π :M → B, with connection form θ =
∑k

i=1 θiei. We
introduce the connection

(114) ∇θ := ∇+

k∑

i=1

θi ⊗Ai

on the vector bundle G. Since ∇ preserves [·, ·]G and ⟨·, ·⟩G and Ai are skew-
symmetric derivations, we obtain that ∇θ preserves [·, ·]G and ⟨·, ·⟩G . The
curvature R∇ of ∇ and Rθ of ∇θ are related by
(115)

R∇ = Rθ −

k∑

i=1

(dθi)⊗Ai +

k∑

i=1

θi ∧ adR(Xi,·) −
1

2

∑

i,j

(θi ∧ θj)⊗ [Ai, Aj ],

where for any form ω ∈ Ωs(M,G) (in particular ω := R(Xi, ·)) we define
adω ∈ Ωs(M,EndG) by

(adω)(Y1, · · · , Ys)(r) := [ω(Y1, · · · , Ys), r]G , ∀Yi ∈ X(M), r ∈ Γ(G).

Lemma 48. For any invariant section r ∈ Γtk(G), the G-valued 1-form ∇θr
is basic.

Proof. The form ∇θr is horizontal, since

∇θ
Xi
r = ∇Ψ

Xi
r = LΨ(ei)r = 0, ∀1 ≤ i ≤ k.

On the other hand, as ∇, θ and Ai are tk- invariant, so is ∇θ and

(116) LΨ(a)(∇
θr) = LΨ(a)(∇

θ)r +∇θLΨ(a)r = 0,

which implies that ∇θr is tk-invariant. □

Assumption 49. From now on we will assume that the partial connection
∇Ψ has trivial holonomy. Then we can define a bundle GB → B whose fiber
over p ∈ B is

GB|p := Γtk(G|π−1(p)),

the vector space of∇Ψ-parallel sections of G over the torus π−1(p). Note that
by working locally in a flow box for the vertical foliation of M → B, we can
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always assume that ∇Ψ has trivial holonomy. (We recall that a flow box is
a domain V ⊂M such that for all p ∈ π(V ) ⊂ B the manifolds π−1(p) ∩ V
are diffeomorphic to Rk).

Notation 50. We will identify G = π∗GB, Γtk(G) = π∗Γ(GB) and

(117) Ωs
b(M,G) = π∗Ωs(B)⊗ π∗Γ(GB) ∼= Ωs(B,GB).

For a basic form α ∈ Ωs
b(M,G) we will denote by αB ∈ Ωs(B,GB) the corre-

sponding form in the identification (117).

Lemma 51. i) The bundle GB inherits a bracket [·, ·]GB
and a scalar product

⟨·, ·⟩GB
which make (GB, [·, ·]GB

, ⟨·, ·⟩GB
) into a quadratic Lie algebra bundle.

ii) The connection ∇θ induces a connection ∇θ,B on GB, which preserves
[·, ·]GB

and ⟨·, ·⟩GB
. The curvature Rθ of ∇θ is the pullback of the curvature

Rθ,B of ∇θ,B, i.e. (Rθ)B = Rθ,B.

Proof. i) The claim follows from Lemma 43 i) and the definition of GB.
ii) From Lemma 48, ∇θ induces a connection ∇θ,B on GB, defined by

∇θ,Br = (∇θπ∗r)B, ∀r ∈ Γ(GB).

Since Ai are skew-symmetric derivations, and ∇ preserves [·, ·]G and ⟨·, ·⟩G ,
we obtain that ∇θ preserves these tensor fields as well. We deduce that ∇θ,B

preserves [·, ·]GB
and ⟨·, ·⟩GB

. The statement on curvatures is trivial. □

Notation 52. We shall denote by dθ,B : Ω∗(B,GB) → Ω∗+1(B,GB) the ex-
terior covariant derivative defined by ∇θ,B.

In order to describe the Courant algebroid E together with the action
Ψ : tk → Γ(E) in terms of structures on the base manifold B of the torus
bundle, we need to interpret equations (112) and (113) on B. The first two
equations (113) mean that H and R are invariant, i.e. they are of the form

H = H(3) + θi ∧H
i
(2) + θi ∧ θj ∧H

ij
(1) +H ijs

(0)θi ∧ θj ∧ θs

R = R(2) + θi ∧R
i
(1) +Rij

(0)θi ∧ θj(118)

where H(3), H
i
(2), H

ij
(1), H

ijk
(0) , R(2), R

i
(1), R

ij
(0) are basic and for simplicity of

notation we omit the summation signs.
Let AB

a be the section of End(GB) defined by the invariant section Aa ∈
End(G), where a ∈ tk.
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Lemma 53. i) The compatibility equations listed in (112) are satisfied if
and only if the following conditions hold:

dHB
(3) +H i,B

(2) ∧ (dθi)
B = ⟨RB

(2) ∧R
B
(2)⟩GB

(119)

dHp,B
(2) + 2Hpi,B

(1) ∧ (dθi)
B = −2⟨RB

(2) ∧R
p,B
(1) ⟩GB

(120)

dHpq,B
(1) + 3H ipq,B

(0) (dθi)
B = 2⟨Rpq,B

(0) , RB
(2)⟩GB

− ⟨Rp,B
(1) , R

q,B
(1) ⟩GB

(121)

3dHpqs,B
(0) +2(⟨Rpq,B

(0) , Rs,B
(1) ⟩GB

+⟨Rsp,B
(0) , Rq,B

(1) ⟩GB
+⟨Rqs,B

(0) , Rp,B
(1) ⟩GB

) = 0(122)

⟨Rij,B
(0) , R

pq,B
(0) ⟩θi ∧ θj ∧ θp ∧ θq = 0(123)

dθ,BRB
(2) +Ri,B

(1) ∧ (dθi)
B = 0(124)

dθ,BRp,B
(1) +AB

p ∧RB
(2) + 2Rpi,B

(0) (dθi)
B = 0(125)

AB
p ∧Rq,B

(1) −AB
q ∧Rp,B

(1) = 2∇θ,BRpq,B
(0)(126)

AB
s R

pq,B
(0) +AB

q R
sp,B
(0) +AB

p R
qs,B
(0) = 0(127)

Rθ,B = (dθi)
B ⊗AB

i + adRB
(2)

(128)

adRij,B
(0)

=
1

2
[AB

i , A
B
j ],(129)

where

(130) ad : GB → Der(GB), adu(v) = [u, v]GB

is the adjoint representation into the bundle of skew-symmetric derivations
of the quadratic Lie algebra bundle bundle (GB, [·, ·]GB

) (see Notation 4) and
1 ≤ p, q, s ≤ k are arbitrary.

ii) If the compatibility relations (112) are satisfied, then the third equa-
tion (113) is satisfied as well if and only if

(131) ∇θ,B
X AB

i = [Ri,B
(1) (X), r]GB

, ∀X ∈ X(B).

Proof. i) The equations (119)-(123) are obtained from the first relation
(112), by comparing

dH = dH(3) + (dθi) ∧H
i
(2) − θi ∧ dH

i
(2) + 2(dθi) ∧ θj ∧H

ij
(1)

+ θi ∧ θj ∧ dH
ij
(1) + 3H ijs

(0)(dθi) ∧ θj ∧ θs + (dH ijs
(0)) ∧ θi ∧ θj ∧ θs
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with

⟨R ∧R⟩G = ⟨R(2) ∧R(2)⟩G + 2θi ∧ ⟨R(2) ∧R
i
(1)⟩G + 2θi ∧ θj ∧ ⟨R(2), R

ij
(0)⟩G

− θi ∧ θj ∧ ⟨Ri
(1) ∧R

j
(1)⟩G + 2θi ∧ θj ∧ θs ∧ ⟨Rij

(0), R
s
(1)⟩G

+ ⟨Rij
(0), R

pq
(0)⟩Gθi ∧ θj ∧ θp ∧ θq,

using dθi ∈ Ω2(B), that the exterior derivative maps basic forms to basic
forms, that the operation (α, β) 7→ ⟨α ∧ β⟩G maps a pair of G-valued basic
forms to a basic scalar valued form and then interpreting the resulting rela-
tions on B. The equations (124)-(127) are obtained from the second relation
(112), by computing

0 = d∇R

= d∇R(2) + (dθi) ∧R
i
(1) − θi ∧ d

∇Ri
(1) + (∇Rij

(0)) ∧ θi ∧ θj

+ 2Rij
(0) ⊗ (dθi) ∧ θj

= d∇
θ

R(2) − (θi ⊗Ai) ∧R(2) +Ri
(1) ∧ dθi

− θj ∧
(
d∇

θ

Rj
(1) − (θi ⊗Ai) ∧R

j
(1)

)

+ (∇θRij
(0)) ∧ θi ∧ θj −Ai(R

js
(0))θi ∧ θj ∧ θs + 2Rij

(0) ⊗ (dθi) ∧ θj ,(132)

identifying the horizontal and vertical parts in the last expression of (132)
and interpreting the result on B. The remaining equations (128) and (129)
are obtained from the third relation (112), by writing R∇ in terms of Rθ as
in (115) and identifying the horizontal and vertical parts.

ii) The third equation (113) is equivalent to relation (131), together with
relation (129). □

Since∇θ,B preserves [·, ·]GB
and ⟨·, ·⟩GB

, the endomorphism Rθ,B(X,Y ) of
GB is a skew-symmetric derivation, for any X,Y ∈ X(B). Recall that AB

i ∈
ΓEnd(GB) is also a skew-symmetric derivation. Therefore, if the adjoint
representation (130) is an isomorphism, then

(133) AB
i = adrBi , R

θ,B(X,Y ) = adrθ,B(X,Y )

for rBi ∈ Γ(GB) and rθ,B ∈ Ω2(B,GB). From the Bianchi identity we obtain
that rθ,B is dθ,B-closed. In Corollary 55 below we will prove that the condi-
tions from Lemma 53 simplify considerably when the adjoint representation
(130) is an isomorphism.
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Remark 54. i) Consider the class C of quadratic Lie algebras (g, ⟨·, ·⟩) for
which the adjoint representation is an isomorphism onto the Lie algebra
of skew-symmetric derivations of g. Every semi-simple Lie algebra endowed
with its Killing form (or any other invariant scalar product) belongs to this
class. Since the center of (g, ⟨·, ·⟩) coincides with [g, g]⊥, there is no non-zero
solvable Lie algebra in C. Nevertheless, the class C is strictly larger than the
class of semi-simple quadratic Lie algebras. For instance, the affine Lie al-
gebra so(3)⋉ so(3)∗ ∼= so(3)⋉R3 can be endowed with the invariant scalar
product of neutral signature defined by duality. The adjoint representation
is faithful and one can easily check that all skew-symmetric derivations are
inner. There exist solvable Lie algebras with faithful adjoint representation
for which all derivations are inner [19]. However these do not admit any
invariant scalar product as we have already remarked.

ii) The adjoint representation of (GB, [·, ·]GB
, ⟨·, ·⟩GB

) is an isomorphism
onto the bundle Der(GB) of skew-symmetric derivations if and only if the
same is true for the quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G) of the
Courant algebroid E. Courant algebroids with this property will be described
in Proposition 90.

Corollary 55. Let π :M → B be a principal T k-bundle and H a principal
connection on π, with connection form θ =

∑k
i=1 θiei ∈ Ω1(M, tk), where (ei)

is a basis of tk. There is a one to one correspondence between

1) standard Courant algebroids E = T ∗M ⊕ G ⊕ TM for which the ad-
joint representation of the quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G)
is an isomorphism onto the bundle of skew-symmetric derivations, to-
gether with an action Ψ : tk → Der(E) which lifts the vertical paral-
lelism of π, preserves the factors T ∗M , G and TM of E, and for
which the flat partial connection ∇Ψ has trivial holonomy

and

2) quadratic Lie algebra bundles (GB, ⟨·, ·⟩GB
, [·, ·]GB

) over B, whose ad-
joint action is an isomorphism onto the bundle of skew-symmetric
derivations, together with a connection ∇B on the vector bundle GB

which preserves ⟨·, ·⟩GB
and [·, ·]GB

, sections rBi ∈ Γ(GB) (1 ≤ i ≤ k), a

3-form HB
(3) ∈ Ω3(B), 2-forms H i,B

(2) ∈ Ω2(B), 1-forms H ij,B
(1) ∈ Ω1(B)

and constants cijp ∈ R (1 ≤ i, j, p ≤ k) such that
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dHB
(3) = ⟨rB ∧ rB⟩GB

− (H i,B
(2) + 2⟨rB, rBi ⟩GB

− ⟨rBi , r
B
j ⟩GB

(dθj)
B) ∧ (dθi)

B,

dHp,B
(2) = 2(⟨∇BrBp , r

B
i ⟩GB

−Hpi,B
(1) ) ∧ (dθi)

B − 2⟨rB ∧∇BrBp ⟩GB
,

dHpq,B
(1) = −3cipq(dθi)

B + ⟨rB, [rBp , r
B
q ]GB

⟩GB
− ⟨∇BrBp ∧∇BrBq ⟩GB

,(134)

where rB ∈ Ω2(B,GB) is related to the curvature RB of the connection
∇B by RB(X,Y ) = adrB(X,Y ) for any X,Y ∈ X(B).

Proof. The claim follows from Lemma 53, by letting∇B := ∇θ,B, AB
i = adrBi

for some sections rBi ∈ Γ(GB) and simplifying the relations from this lemma.

More precisely, relations (129), (131) and (128) determine Rij,B
(0) , Ri,B

(1) and

RB
(2) respectively by

(135) Rij,B
(0) =

1

2
[rBi , r

B
j ]GB

, Ri,B
(1) = ∇BrBi , R

B
(2) = rB − (dθi)

B ⊗ rBi .

Relation (122) with Rij,B
(0) and Ri,B

(1) given by (135) implies that

(136) Hpqs,B
(0) = −

1

3
⟨[rBp , r

B
q ]GB

, rBs ⟩GB
+ cpqs

for some constants cpqs. Written in terms of rB rather than RB
(2), relations

(119), (120), (121) become relations (134). The remaining relations from
Lemma 53, with Rij,B

(0) , R
i,B
(1) , R

B
(2) and Hpqs,B

(0) as above and Ai = adrBi are
satisfied. □

Example 56. Let π :M → B be a principal T k-bundle and H a principal
connection on π, with connection form θ =

∑k
i=1 θiei, like in Corollary 55.

Let (GB, ⟨·, ·⟩GB
, [·, ·]GB

) be a quadratic Lie algebra bundle over B, whose
adjoint action is an isomorphism onto the bundle of skew-symmetric deriva-
tions, together with a connection ∇B on the vector bundle GB which pre-
serves ⟨·, ·⟩GB

and [·, ·]GB
. Choose arbitrary sections rBi ∈ Γ(GB) (1 ≤ i ≤ k)

and define, for any i, j, s,

(137) cijp := 0,

and

(138) H ijs,B
(0) := −

1

3
⟨[rBi , r

B
j ]GB

, rBs ⟩GB
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and

(139) H ij,B
(1) :=

1

2

(
⟨∇BrBi , r

B
j ⟩GB

− ⟨∇BrBj , r
B
i ⟩GB

)
.

With these choices, the third relation (134) is satisfied. For any forms HB
(3)

and H i,B
(2) , such that

(140) Ki := H i,B
(2) + 2⟨rB, rBi ⟩GB

− ⟨rBi , r
B
j ⟩GB

(dθj)
B

is closed and

(141) dHB
(3) = ⟨rB ∧ rB⟩GB

−Ki ∧ (dθi)
B

the relations (134) are satisfied and we thus obtain a standard Courant
algebroid on M together with an action Ψ : tk → Der(E) lifting the vertical
parallelism of the principal torus bundle π :M → B. Note that 2-forms H i,B

(2)
as required in the above construction do always exist and are unique up to
addition of closed forms whereas HB

(3) exists if and only if the closed form

⟨rB ∧ rB⟩GB
−Ki ∧ (dθi)

B is exact. It is also unique up to addition of a closed
form.

5.2. Invariant spinors

Let E be a transitive Courant algebroid over an oriented manifold M and
Ψ : g → Der(E) an action on E, which lifts an action ψ : g → X(M), a 7→ Xa

of g on M . Let S be the canonical weighted spinor bundle of E determined
by an irreducible Cl(E)-bundle S. Our aim in this section is to define an
action of g on Γ(S). In order to find a proper definition we assume that Ψ
integrates to a Lie group action

G→ Aut(E), g 7→ IgE : E → E

such that IgE induces a globally defined isomorphism Ig
S
: S → S, for any

g ∈ g. Recall that

Ig
S
◦ γu = γIg

E(u) ◦ I
g
S
, ∀g ∈ G, u ∈ E.

Consider a curve g = g(t) of G with g(0) = e and ġ(0) = a. We choose I
g(t)
S

depending smoothly on t and such that I
g(0)
S

= IdS. Replacing in the above
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relation g by g(t) and taking the derivative at t = 0 we obtain that ΨS(a) :=
d
dt

∣∣
t=0

I
g(t)
S

∈ EndΓ(S) satisfies

(142) ΨS(a)γus = γΨ(a)(u)s+ γuΨ
S(a)s, ∀u ∈ Γ(E), s ∈ Γ(S), a ∈ g.

In the following we do not assume that Ψ integrates to an action of G.

Proposition 57. i) There is a unique linear map

ΨS : g → EndΓ(S)

which satisfies relation (142), the Leibniz rule

(143) ΨS(a)(fs) = fΨS(a)(s) +Xa(f)s

for any f ∈ C∞(M), s ∈ Γ(S) and a ∈ g, and, for any U ⊂M open and
sufficiently small, preserves the canonical pairing ⟨·, ·⟩S|U of S|U , i.e.

(144) LXa
⟨s, s̃⟩S|U = ⟨ΨS(a)s, s̃⟩S|U + ⟨s,ΨS(a)s̃⟩S|U ,

for any s, s̃ ∈ Γ(S|U ) and a ∈ g.
ii) The map ΨS : g → EndΓ(S) satisfies

(145) [ΨS(a),ΨS(b)] = ΨS[a, b], ∀a, b ∈ g.

It is called the action on spinors induced by Ψ.

The remaining part of this section is devoted to the proof of Propo-
sition 57. For uniqueness, let ΨS and Ψ̃S be two maps which satisfy the
required conditions. Then F (a) := ΨS(a)− Ψ̃S(a) ∈ EndΓ(S) is C∞(M)-
linear and commutes with the Clifford action. Hence F (a) = λ(a)IdS, for
λ(a) ∈ C∞(M). Since F (a) is skew-symmetric with respect to ⟨·, ·⟩S|U , we
obtain λ(a) = 0. The uniqueness follows. To prove the existence we start
with the next lemma.

Lemma 58. Let Ei (i = 1, 2) be two transitive Courant algebroids over
M with canonical weighted spinor bundles Si and actions Ψi : g → Der(Ei)
which lift ψ. Assume there is an invariant isomorphism I : E1 → E2 and a
map ΨS1 : g → EndΓ(S1) which satisfies the properties from Proposition 57.
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Then the map ΨS2 : g → EndΓ(S2) given by

(146) ΨS2(a)(s)|U = IS|U ◦ΨS1(a) ◦ (IS|U )
−1(s|U ),

for any a ∈ g and s ∈ Γ(S2), is well-defined and satisfies the properties of
Proposition 57. Above U ⊂M is any sufficiently small open subset of M and
IS|U : S1|U → S2|U is the isomorphism induced by I.

Proof. In order to show that ΨS2 is well defined we use that IS|U are uniquely
determined up to multiplication by ±1 and that if s ∈ Γ(S1) satisfies s|U = 0,
then ΨS1(a)(s)|U = 0 (from relation (143) satisfied by ΨS1). The map ΨS2

obviously satisfies (143) and (145) and, from (45), it satisfies (144) as well.
Using IS|U ◦ γu = γIE(u) ◦ IS|U and relation (142) satisfied by ΨS1 , we obtain

(147) ΨS2(a)γu(s) = γIEΨ1(a)I
−1
E (u)s+ γuΨ

S2(a)s,

for any a ∈ g, u ∈ Γ(E2|U ) and s ∈ Γ(S2|U ). Since IE is invariant, Ψ2(a) =
IE ◦Ψ1(a) ◦ I

−1
E and we obtain that ΨS2 satisfies (142) too. □

Owing to Lemma 58, we can assume in Proposition 57 (by choosing an
invariant dissection of E), that E = EM = T ∗M ⊕ G ⊕ TM is a standard
Courant algebroid defined by a quadratic Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G)
and data (∇, R,H), with action

(148) Ψ : g 7→ Der(EM ), Ψ(a)(ξ + r +X) := LXa
ξ +∇Ψ

Xa
r + LXa

X

which lifts an action

ψ : g 7→ X(M), a 7→ Xa

of g onM . We can also assume that S = SM := Λ(T ∗M)⊗̂SG is the canonical
weighted spinor bundle of E determined by S = SM := Λ(T ∗M)⊗̂SG , where
SG is an irreducible Cl(G)-bundle. The next lemma concludes the proof of
Proposition 57.

Lemma 59. The map ΨSM : g → EndΓ(SM ) defined by

(149) ΨSM (a)(ω ⊗ s) := (LXa
ω)⊗ s+ ω ⊗∇Ψ,SG

Xa
s,

for any a ∈ g, ω ∈ Ω(M) and s ∈ Γ(SG), satisfies the conditions from Propo-
sition 57. Above ∇Ψ,SG is the partial connection on SG induced by any partial
connection ∇Ψ,SG on SG, compatible with the partial connection ∇Ψ.



✐

✐

“4-Cortes” — 2023/12/21 — 18:01 — page 824 — #50
✐

✐

✐

✐

✐

✐

824 V. Cortés and L. David

Proof. Relation (143) is obviously satisfied. To prove relation (144) we recall
that ⟨·, ·⟩SM |U is given by (35), where ⟨·, ·⟩SG |U is a canonical pairing of SG |U .
We remark that

(150) Xa⟨s, s̃⟩SG |U = ⟨∇Ψ,SG

Xa
s, s̃⟩SG |U + ⟨s,∇Ψ,SG

Xa
s̃⟩SG |U ,

which follows from the fact that ∇Ψ preserves ⟨·, ·⟩G , which is of neutral
signature, and ∇Ψ,SG is induced by ∇Ψ,SG . (The argument is similar to the
one used in the proof of Lemma 13). Relation (144) follows from (35), (150)
and the fact that ∇Ψ,SG preserves the degree of sections of SG . In order to
prove (142), let u ∈ Γ(EM ) and decompose it as u = ξ + r +X. Then

Ψ(a)(u) = LXa
ξ +∇Ψ

Xa
r + LXa

X,

from where we deduce that

γΨ(a)(u)(ω ⊗ s) = γLXa (ξ+X)(ω ⊗ s) + γ∇Ψ
Xa

r(ω ⊗ s)

= (iLXaXω + (LXa
ξ) ∧ ω)⊗ s+ (−1)|ω|ω ⊗ (∇Ψ

Xa
r) · s.(151)

Similar computations show that

ΨSM (a)γu(ω ⊗ s) = LXa
(iXω + ξ ∧ ω)⊗ s+ (iXω + ξ ∧ ω)⊗∇Ψ,SG

Xa
s

+ (−1)|ω|(LXa
ω ⊗ (r · s) + ω ⊗∇Ψ,SG

Xa
(r · s))(152)

γuΨ
SM (a)(ω ⊗ s) = (iXLXa

ω + ξ ∧ LXa
ω)⊗ s+ (−1)|ω|(LXa

ω)⊗ (r · s)

+ (iXω + ξ ∧ ω)⊗∇Ψ,SG

Xa
s+ (−1)|ω|ω ⊗ (r · ∇Ψ,SG

Xa
s).(153)

Combining relations (151), (152) and (153) and using that ∇Ψ,SG is com-
patible with ∇Ψ we obtain (142). Relation (145) follows from the definition
of the map ΨSM and the flatness of ∇Ψ,SG (which is a consequence of the
flatness of ∇Ψ). □

Definition 60. In the setting of Proposition 57, a section of the canonical
weighted spinor bundle S is an invariant spinor if it is annihilated by the
operators ΨS(a), for all a ∈ g.

Notation 61. Given an action Ψ : g → Der(E) on a transitive Courant
algebroid E, we shall denote by Γg(S) the vector space of invariant spinors
and by Γg(E) the vector space of invariant sections of E.

The next corollary is a consequence of Lemma 58.
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Corollary 62. Let Ei (i = 1, 2) be two transitive Courant algebroids over
M with canonical weighted spinor bundles Si and actions Ψi : g → Der(Ei)
which lift ψ. Any invariant isomorphism I : E1 → E2 (if it exists) induces a
isomorphism IS : Γg(S1) → Γg(S2).

We end this section with a compatibility property between Dirac gener-
ating operators and actions on spinors.

Lemma 63. In the setting of Proposition 57,

(154) /d ◦ΨS(a) = ΨS(a) ◦ /d, ∀a ∈ g,

where /d ∈ EndΓ(S) is the canonical Dirac generating operator of E.

Proof. From Proposition 26 and Lemma 58, it is sufficient to prove the
statement for E = EM a standard Courant algebroid defined by a quadratic
Lie algebra bundle (G, [·, ·]G , ⟨·, ·⟩G) and data (∇, R,H), with action (148),
canonical weighted spinor bundle SM = Λ(T ∗M)⊗̂SG and action on spinors
given by (149). We need to show that for any a ∈ g, ω ∈ Ω(M) and s ∈ Γ(SG)

(155) /dMΨSM (a)(ω ⊗ s) = ΨSM (a)/dM (ω ⊗ s)

where /dM ∈ EndΓ(SM ) is the Dirac generating operator of EM , which can
be computed using (22). We consider an invariant local frame (Xi) of TM .
Since ∇Ψ is flat we may (and will) take the local frame (rk) of G to be
∇Ψ-parallel. Since ∇Ψ preserves the scalar product ⟨·, ·⟩G , the ⟨·, ·⟩G- dual
frame (r̃k) is also ∇Ψ-parallel. Since ∇Ψ preserves the Lie bracket [·, ·]G , the
Cartan form CG ∈ Γ(Λ3G∗) is ∇Ψ-parallel.

Since R, Xi and rk are invariant, from the second relation (95) applied
to D := Ψ(a) we obtain

(156) LXa
⟨R(Xi, Xj), rk⟩G = 0, ∀a ∈ g.

From (156), ∇ΨCG = 0, the fact that ∇Ψ,SG is compatible with ∇Ψ and the
expressions (22), (149) for /dM and ΨS, we see that relation (155) reduces to

(157) ∇Ψ,SG

Xa
∇SG

Xi
s = ∇SG

Xi
∇Ψ,SG

Xa
s, ∀a ∈ g, s ∈ Γ(SG),

where, we recall, ∇SG is the connection on SG induced by any connection on
SG compatible with ∇ and ∇Ψ,SG is the partial connection on SG induced
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by any partial connection on SG compatible with ∇Ψ. For any a ∈ g, let
Aa := ∇Ψ

Xa
−∇Xa

. Then

(158) ∇Ψ,SG

Xa
s = ∇SG

Xa
s−

1

2
Aa · s

where Aa · s denotes the Clifford action of Aa ∈ Γ(Λ2G) ⊂ ΓCl(G) on s ∈
Γ(SG) (see e.g. Proposition 53 of [12] for more details). From (158), (101)
and LXa

Xi = 0 we deduce that (157) is equivalent to

(159) R∇SG

(Xa, Xi)s+
1

2
(adR(Xa,Xi)) · s = 0,

where (adR(Xa,Xi)) · s means the Clifford action of adR(Xa,Xi) :=
[adR(Xa,Xi), ·]G ∈ Γ(Λ2G) ⊂ ΓCl(G) on s. In order to prove (159) we remark

first that both endomorphisms R∇SG (Xa, Xi) and (adR(Xa,Xi)) of SG are

trace free (the statement for R∇SG (Xa, Xi) follows from the fact that ∇SG is
induced by a connection ∇SG on SG). On the other hand, since ∇SG is com-
patible with ∇, we obtain that T := R∇SG (Xa, Xi) ∈ ΓEnd(SG) satisfies

(160) T (r · s) = (R∇(Xa, Xi)r) · s+ r · T (s), ∀r ∈ Γ(G), s ∈ Γ(SG).

The same relation is satisfied by T := −1
2adR(Xa,Xi) acting by Clifford

multiplication (here we use that R∇(Xa, Xi)r = adR(Xa,Xi)(r) and relation

ω(r) = −1
2 [ω, r]Cl, for any ω ∈ Λ2G ⊂ Cl(G), where [ω, r]Cl = ω · r − r · ω de-

notes the commutator of ω and r in the Clifford algebra and ω(r) the action
of ω ∈ Λ2G ∼= so(G) on r ∈ G).

To summarize: both R∇SG (Xa, Xi) and −1
2(adR(Xa,Xi)) are trace-free

and satisfy (160). Since ⟨·, ·⟩G has neutral signature, they coincide. □

5.3. Pullback actions and spinors

Let f :M → N be a submersion and

ψM : g → X(M), a 7→ XM
a

ψN : g → X(N), a 7→ XN
a

be f -related infinitesimal actions, i.e. XN
a ◦ f = dfXM

a for all a ∈ g. Let E
be a transitive Courant algebroid over N with anchor π : E → TN and

g ∋ a 7→ Ψ(a) ∈ Der(E)
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be an action on E which lifts ψN . Recall that the pullback Courant algebroid
f !E is the quotient bundle C/C⊥ over M (identified with the graph Mf of
f), where, for any p ∈M ,

Cp := {(u, ξ +X) ∈ Ef(p) × TpM | π(u) = (dpf)(X)}

C⊥
p := {(

1

2
π∗γ,−(dpf)

∗γ) | γ ∈ T ∗
f(p)N} ⊂ Cp

with the Courant algebroid structure defined at the beginning of Sec-
tion 4.2. For U ⊂ N open, a section of C|f−1(U) (and the induced section of

(f !E)|f−1(U)) of the form (f∗u, ξ +X) where u ∈ Γ(E|U ), X ∈ X(f−1(U))
is f -projectable with f∗X = π(u) and ξ ∈ Ω1(f−1(U)), will be called dis-
tinguished. Let U = {Ui} be an open cover of N , with sufficiently small
sets Ui. Any section of C|f−1(Ui) is a C∞(f−1(Ui))-linear combination of
distinguished sections. For each Ui we define

(161) Ψ̂Ui : g → EndΓ(C|f−1(Ui)),

which satisfies the Leibniz rule

(162) Ψ̂Ui(a)(fs) = XM
a (f)s+ fΨ̂Ui(a)(s),

for any a ∈ g, f ∈ C∞(f−1(Ui)), s ∈ Γ(C|f−1(Ui)) and on distinguished sec-
tions is given by

(163) Ψ̂Ui(a)(f∗u, ξ +X) := (f∗(Ψ(a)u),LXM
a
(ξ +X)).

Lemma 64. The map Ψ : g → EndΓ(C) given by

(164) Ψ̂(a)(s)|f−1(Ui) = Ψ̂Ui(a)(s|f−1(Ui)),

for any a ∈ g and s ∈ Γ(C), is well defined, preserves Γ(C⊥), and induces
an action

(165) f !Ψ : g → Der(f !E)

which lifts ψM . It is called the pullback action of Ψ.
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Proof. The statement that Ψ̂ is well defined reduces to showing that for any
Uk, Up ∈ U , if

∑

i

λi(f
∗ui, ξi +Xi) = 0

where λi ∈ C∞(f−1(Uk ∩ Up)) and (f∗ui, ξi +Xi) are distinguished sections
on f−1(Uk ∩ Up), then

(166)
∑

i

(
XM

a (λi)f
∗ui + λif

∗Ψ(a)(ui)
)
= 0.

This follows by writing ui ∈ Γ(E|Uk∩Up
) in terms of a frame of E|Uk∩Up

and using the Leibniz rule for Ψ(a) and that XM
a projects to XN

a . For any
distinguished section (f∗u, ξ +X) of C,

Ψ̂(a)(f∗(u), ξ +X) = (f∗(Ψ(a)u),LXM
a
(ξ +X))

is also a section of C, because

f∗LXM
a
X = LXN

a
(f∗X) = LXN

a
(π(u)) = π(Ψ(a)u),

where in the last equality we used the third relation (95) applied to the
derivation Ψ(a). We proved that Ψ̂(a) is an endomorphism of Γ(C). For any
distinguished sections w1 := (f∗u, ξ +X) and w2 := (f∗v, η + Y ) of C, the
following relation

(167) ⟨Ψ̂(a)w1, w2⟩E×TM + ⟨w1, Ψ̂(a)w2⟩E×TM = XM
a ⟨w1, w2⟩E×TM

holds, where ⟨·, ·⟩E×TM is the scalar product of the direct product Courant
algebroid E × TM. The above relation implies that Ψ̂(a) preserves Γ(C⊥).
We obtain an induced endomorphism (f !Ψ)(a) of Γ(C/C⊥). It is easy to see
that the map a 7→ (f !Ψ)(a) is an action of g on f !E. □

Assume now that the Courant algebroid E from the beginning of this
section is a standard Courant algebroid defined by a quadratic Lie algebra
bundle (G, [·, ·]G , ⟨·, ·⟩G) and data (∇, R,H) and that the action Ψ preserves
the factors of E. Recall that f !E is isomorphic, by means of the isomor-
phism F given by (57), to the standard Courant algebroid EM defined by
(f∗G, f∗[·, ·]G , f

∗⟨·, ·⟩G) and data (f∗∇, f∗R, f∗H) (see Lemma 27 i)). The
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pullback action f !Ψ induces an action

ΨM : g → Der(EM ), ΨM (a) := F−1 ◦ (f !Ψ)(a) ◦ F

of g on EM . It turns out that ΨM preserves the factors of EM and that the
partial connection which corresponds to ΨM (according to Lemma 43) is
just the pullback of the partial connection which corresponds to Ψ. These
statements are proved in the next lemma.

Lemma 65. In the above setting, let

(168) Ψ(a)(ξ + r +X) := LXN
a
ξ +∇Ψ

XN
a
r + LXN

a
X,

where ξ ∈ Ω1(N), r ∈ Γ(G) and X ∈ X(N). Then

(169) ΨM (a)(ξ + r +X) = LXM
a
ξ + (f∗∇Ψ)XM

a
r + LXM

a
X,

where ξ ∈ Ω1(M), r ∈ Γ(f∗G) and X ∈ X(M). Above f∗∇Ψ is the partial
connection on f∗G defined along spanC∞(M){X

M
a } by

(170) (f∗∇Ψ)XM
a
(f∗r) = f∗(∇Ψ

XN
a
r), ∀a ∈ g, r ∈ Γ(G).

Proof. The isomorphism F given by (57) induces an isomorphism F :
Γ(EM ) → Γ(f !E) which satisfies

(171) F (ξ + f∗r +X) = [(f∗(r + f∗X), ξ +X)]

where r ∈ Γ(G), X ∈ X(M) is f -projectable and ξ ∈ Ω1(M). (In the
right hand side of (171) r + f∗X ∈ Γ(G ⊕ TN) ⊂ Γ(E) and f∗(r + f∗X) ∈
Γ(f∗E)). Then

(f !Ψ)(a) ◦ F (ξ + f∗r +X) = [(f∗(∇Ψ
XN

a
r + LXN

a
f∗X),LXM

a
(ξ +X))],

and, applying F−1, we obtain (169). □

Remark 66. In terms of the partial connections ∇Ψ and (f∗∇)Ψ
M

on G
and f∗G which correspond to the actions Ψ and ΨM (according to Lemma
43), relation (169) can be written in the equivalent way

(172) (f∗∇)Ψ
M

= f∗∇Ψ,

where f∗∇Ψ is defined by (170). We deduce a similar relation for the cor-
responding compatible partial connections on an irreducible Cl(G)-bundle
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SG and its pullback Sf∗G := f∗SG , or between the partial connections which
they induce on the canonical spinor bundles SG and Sf∗G = f∗SG of SG and
Sf∗G respectively:

(173) (f∗∇)Ψ
M ,Sf∗G = f∗∇Ψ,SG .

The next proposition states several compatibilities between pullback ac-
tions, isomorphisms, pullback and pushforward on spinors.

Proposition 67. Let f :M → N be a submersion and ψM : g → X(M),
ψN : g → X(N) f -related actions.

i) Let (Ei,Ψi) (i = 1, 2) be transitive Courant algebroids over N with
actions Ψi : g → Der(Ei) which lift ψN . If I : E1 → E2 is an isomorphism
which is invariant with respect to Ψi, then the isomorphism If : f !E1 → f !E2

is invariant with respect to f !Ψi.
ii) Let E be a transitive Courant algebroid over N with an action

Ψ : g → Der(E) which lifts ψN . Let ΨS : g → EndΓ(SE) and (f !Ψ)S : g →
EndΓ(Sf !E) be the actions on canonical weighted spinor bundles, induced by
the actions Ψ : g → Der(E) and f !Ψ : g → Der(f !E). Assume that there is
an admissible pair (I : E → T ∗N ⊕ G ⊕ TN, SG) for SE and Sf !E (see Defi-
nition 31) such that I is invariant, cf. Section 4.2. Then

(174) f ! ◦ΨS(a) = (f !Ψ)S(a) ◦ f !, ∀a ∈ g.

If, in addition, f :M → N has compact fibers and M , N are oriented, then
also the pushforward f! : Γ(Sf !E) → Γ(SE) is defined and

(175) f! ◦ (f
!Ψ)S(a) = (−1)r|s|+nr+ r(r−1)

2 ΨS(a) ◦ f!, ∀a ∈ g,

where m, n and r are the dimension of M , N and the fibers of f .

Proof. i) We need to check that

(176) If ◦ f !Ψ1(a)[(f
∗u, ξ +X)] = f !Ψ2(a) ◦ I

f [(f∗u, ξ +X)], ∀a ∈ g

for any distinguished section [(f∗u, ξ +X)] of f !E1. From the definition of
If (see relation (55)), we obtain

(177) If [(f∗u, ξ +X)] = [f∗I(u), ξ +X)]

Relation (176) follows from (177), the definition of f !Ψi and the invariance
of I.
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ii) The claim follows from the definition of f ! and f!, Lemma 59, relation
(173) and f∗X

M
a = XN

a for any a ∈ g. □

6. T -duality

6.1. Definition of T -duality

Let π :M → B and π̃ : M̃ → B be principal bundles over the same manifold
B with structure group the k-dimensional torus T k. For notational conve-
nience, we will denote the structure group of π̃ by T̃ k and its Lie algebra by
t̃k. We assume that M , M̃ and B are oriented. Let

Lie (T k) = tk ∋ a 7→ ψM (a) := XM
a , t̃k ∋ a 7→ ψM̃ (a) := XM̃

a ,

be the vertical parallellism of π and π̃. We denote by

N :=M ×B M̃ := {(m, m̃) ∈M × M̃ | π(m) = π̃(m̃)}

the fiber product of M and M̃ and by πN : N →M and π̃N : N → M̃ the
natural projections. The actions of T k on M and T̃ k on M̃ induce naturally
an action of T 2k = T k × T̃ k on N , with infinitesimal action

Lie (T 2k) = t2k ∋ a 7→ ψN (a) = XN
a ,

where, for any a ∈ tk := tk ⊕ 0 ⊂ t2k,

(πN )∗X
N
a = XM

a , (π̃N )∗X
N
a = 0,

and for any a ∈ t̃k := 0⊕ tk ⊂ t2k,

(πN )∗X
N
a = 0, (π̃N )∗X

N
a = XM̃

a .

Let E and Ẽ be transitive Courant algebroids over M and M̃ , and
assume they come with actions

Ψ : tk → Der(E), Ψ̃ : t̃k → Der(Ẽ),

which lift ψM and ψM̃ , such that there are invariant dissections

I : E → EM = T ∗M ⊕ G ⊕ TM

Ĩ : Ẽ → ẼM̃ = T ∗M̃ ⊕ G̃ ⊕ TM̃
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with the property that the partial connections ∇Ψ and ∇̃Ψ̃ on G and G̃,
which correspond to the induced actions Ψ ◦ I ◦Ψ−1 and Ψ̃ ◦ Ĩ ◦ Ψ̃−1 on
EM and ẼM̃ have trivial holonomy (it is easy to see that this condition is
independent of the choice of invariant dissections). The pullback Courant
algebroids π!NE and π̃!N Ẽ inherit the pullback actions (see Lemma 64)

(178) π!NΨ : tk → Der(π!NE), π̃!N Ψ̃ : t̃k → Der(π̃!N Ẽ)

which lift the infinitesimal actions tk ∋ a 7→ XN
a and t̃k ∋ a→ XN

a respec-
tively. The situation is summarized in the following commutative diagram,
in which the arrows pointing down are quotient maps with respect to prin-
cipal T k-actions: B =M/T k = M̃/T̃ k = N/T 2k, M = N/T̃ k, M̃ = N/T k

(T 2k = T k × T̃ k).

tk ↷ π!NE
// N

πN

zz

π̃N

$$

π̃!N Ẽ ↶ t̃koo

tk ↷ E //M

%%

M̃

yy

Ẽ ↶ t̃koo

B

In the next lemma we extend the tk-action π!NΨ to a t2k-action.

Lemma 68. i) The map

π!!NΨ : t2k → Der(π!NE)

which on tk coincides with π!NΨ and the evaluation of which on any b ∈ t̃k

satisfies the Leibniz rule

(π!!NΨ)(b)(fs) = f(π!!NΨ)(b)(s) +XN
b (f)s, ∀f ∈ C∞(N), s ∈ Γ(π!NE)

and on distinguished sections [(π∗N (u), ξ +X)] of π!NE is given by

(179) (π!!NΨ)(b)[(π∗N (u), ξ +X)] = [(0,LXN
b
(ξ +X))]

is a well defined action on π!NE.
ii) Let (E1,Ψ1) be another transitive Courant algebroid over M with an

action Ψ1 : t
k → Der(E1) which lifts ψM . If I : E → E1 is an isomorphism

invariant with respect to Ψ and Ψ1, then the pullback isomorphism IπN :
π!NE → π!NE1 is invariant with respect to the t2k-actions π!!NΨ and π!!NΨ1.
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Proof. Claim i) follows from arguments similar to the proof of Lemma 64.
To prove claim ii), we need to show that

(180) IπN ◦ (π!!NΨ)(a)(s) = (π!!NΨ1)(a) ◦ I
πN (s), ∀a ∈ t2k, s ∈ Γ(π!NE).

Relation (180) with a ∈ tk, follows from Proposition 67 i). Relation (180)
with a ∈ t̃k follows by taking s = [(π∗N (u), ξ +X)] a distinguished section of
π!NE. Then both sides of (180) equal [(0,LXN

a
(ξ +X)] (we use (179) together

with (177)). □

Since∇Ψ has trivial holonomy, the quadratic Lie algebra bundle GB from
Assumption 49 is defined.

Lemma 69. i) If E = T ∗M ⊕ G ⊕ TM is a standard Courant algebroid
and Ψ preserves the summands of E, then π!!NΨ preserves the summands
of π!NE = T ∗N ⊕ π∗NG ⊕ TN . The partial connection (π∗N∇)π

!!
NΨ on π∗NG

which corresponds to π!!NΨ (according to Lemma 43) is the pullback of the
partial connection ∇Ψ on G which corresponds to Ψ:

(181) (π∗N∇)
π!!
NΨ

XN
a

(π∗Nr) = π∗N∇Ψ
XM

a
r, (π∗N∇)

π!!
NΨ

XN
b

(π∗Nr) = 0,

for any r ∈ Γ(G), a ∈ tk and b ∈ t̃k.
ii) A section of π∗NG is (π∗N∇)π

!!
NΨ-parallel if and only if it is the pullback

by πN of a ∇Ψ-parallel section of G or the pullback by Π := π ◦ πN of a
section of GB.

Proof. The first relation (181) follows from relation (172). The second re-
lation (181) follows by noticing that the section π∗N (r) ∈ Γ(π∗NG) of π∗NG ⊂
T ∗N ⊕ π∗NG ⊕ TN corresponds, under the isomorphism (171) to the dis-
tinguished section [(π∗N (r), 0)] of π!NE and using relation (179). Claim ii)
follows from claim i). □

In a similar way, we construct an action π̃!!N Ψ̃ : t2k → Der(π̃!N Ẽ) which
extends π̃!N Ψ̃. Analogous considerations as above hold for π̃ : M̃ → B and Ẽ.

Assumption 70. From now on the Courant algebroids π!NE and π̃!N Ẽ will
be considered with the t2k-actions π!!NΨ and π̃!!N Ψ̃. In particular, in the next
definition the invariance is meant with respect to these t2k-actions.
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Definition 71. The Courant algebroids E and Ẽ are called T -dual if there
is an invariant fiber preserving Courant algebroid isomorphism

F : π!NE → π̃!N Ẽ

such that the following non-degeneracy condition is satisfied. Let

I : E → T ∗M ⊕ G ⊕ TM,

Ĩ : Ẽ → T ∗M̃ ⊕ G̃ ⊕ TM̃,

be dissections of E and Ẽ, and

IπN : π!NE → T ∗N ⊕ π∗NG ⊕ TN,

Ĩ π̃N : π̃!N Ẽ → T ∗N ⊕ π̃∗N G̃ ⊕ TN

the induced dissections of π!NE and π̃!N Ẽ (according to Lemma 27 iii)). Let
(β,Φ,K), where β ∈ Ω2(N), Φ ∈ Ω1(N, π̃∗N G̃) and K ∈ Γ Isom(π∗NG, π̃∗N G̃),
be the data which defines the Courant algebroid isomorphism

(182) Ĩ π̃N ◦ F ◦ (IπN )−1 : T ∗N ⊕ π∗NG ⊕ TN → T ∗N ⊕ π̃∗N G̃ ⊕ TN

(according to relation (9) from Section 2.2.1). Then

(183) β − Φ∗Φ : Ker (dπN )×Ker (dπ̃N ) → R

is non-degenerate.

Definition 72. The above definition is independent of the choice of dissec-
tions.

Proof. Let Ii : E → T ∗M ⊕ Gi ⊕ TM (i = 1, 2) be two dissections of E and
F̂i the maps (182) constructed using the dissections Ii rather than I, i. e.

F̂i := Ĩ π̃N ◦ F ◦ (IπN

i )−1 : T ∗N ⊕ π∗NGi ⊕ TN → T ∗N ⊕ π̃∗N G̃ ⊕ TN.

Then

(184) F̂2 = F̂1 ◦ (I1 ◦ I
−1
2 )πN .

Assume that the dissections I1 and I2 are related by (β,K,Φ). Then,
from Lemma 27 iii), the induced dissections of π!NE are related by
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(π∗Nβ, π
∗
NK,π

∗
NΦ), i.e. the Courant algebroid isomorphism

(I1 ◦ I
−1
2 )πN : T ∗N ⊕ π∗NG2 ⊕ TN → T ∗N ⊕ π∗NG1 ⊕ TN

is given by (9), with (β,K,Φ) replaced by (π∗Nβ, π
∗
NK,π

∗
NΦ). The indepen-

dence of the non-degeneracy condition (183) on the dissection of E follows
from (17). The independence on the dissection of Ẽ can be proved simi-
larly. □

Remark 73. As opposed to the T -duality for exact Courant algebroids, the
definition of T -dual transitive Courant algebroids E and Ẽ is not symmetric
with respect to E and Ẽ, in general. This follows from the lack of symmetry
in the non-degeneracy condition from Definition 71.

Lemma 74. Let (E1,Ψ1) and (Ẽ1, Ψ̃1) be transitive Courant algebroids
over M and M̃ , together with actions

Ψ1 : t
k → Der(E1), Ψ̃1 : t̃

k → Der(Ẽ1)

which lift ψM and ψM̃ respectively. Assume that

(185) G : E1 → E, G̃ : Ẽ1 → Ẽ

are invariant, fiber preserving Courant algebroid isomorphisms. If E and Ẽ
are T -dual, then also E1 and Ẽ1 are T -dual.

Proof. Let F : π!NE → π̃!N Ẽ be an isomorphism with the properties from
Definition 71. Then the isomorphism

(186) F1 := (G̃π̃N )−1 ◦ F ◦GπN : π!NE1 → π̃!N Ẽ1.

has the same properties. (For the invariance of G̃π̃N and GπN we use Lemma
68 ii)). □

The next lemma states the conditions that two standard Courant al-
gebroids are T -dual. Let E = T ∗M ⊕ G ⊕ TM and Ẽ = T ∗M̃ ⊕ G̃ ⊕ TM̃ be
standard Courant algebroids overM and M̃ , defined by a quadratic Lie alge-
bra bundle (G, [·, ·]G , ⟨·, ·⟩G) and data (∇, R,H) and, respectively, a quadratic
Lie algebra bundle (G̃, [·, ·]G̃ , ⟨·, ·⟩G̃) and data (∇̃, R̃, H̃). Let Ψ : tk → Der (E)

and Ψ̃ : t̃k → Der (Ẽ) be actions which lift ψM and ψM̃ and preserve the fac-
tors of E and Ẽ.
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Lemma 75. The standard Courant algebroids E and Ẽ are T -dual if
and only if there are invariant forms β ∈ Ω2(N) and Φ ∈ Ω1(N, π̃∗N G̃) and
a quadratic Lie algebra bundle isomorphism K ∈ Γ Isom(π∗NG, π̃∗N G̃) which

maps (π∗N∇)π
!!
NΨ to (π̃∗N∇̃)π̃

!!
N Ψ̃ such that the non-degeneracy condition (183)

and the following relations hold:

(π̃∗N∇̃)Xr = K(π∗N∇)X(K−1r) + [r,Φ(X)]π̃∗
N G̃ ,(187)

Kπ∗NR− π̃∗N R̃ = dπ̃
∗
N∇̃Φ+ c2,(188)

π∗NH − π̃∗NH̃ = dβ + ⟨(Kπ∗NR+ π̃∗N R̃) ∧ Φ⟩π̃∗
N G̃ − c3,(189)

where c2 ∈ Ω2(N, π̃∗N G̃) and c3 ∈ Ω3(N) are defined by

c2(X,Y ) := [Φ(X),Φ(Y )]π̃∗
N G̃ ,

c3(X,Y, Z) := ⟨Φ(X), [Φ(Y ),Φ(Z))]π̃∗
N G̃⟩π̃∗

N G̃ ,

for any X,Y, Z ∈ X(N).

Proof. An invariant isomorphism F : π!NE → π̃!N Ẽ between the standard
Courant algebroids π!NE and π̃!N Ẽ is defined by a triple (β,K,Φ) (accord-
ing to relation (9)) where β ∈ Ω2(N) and Φ ∈ Ω1(N, π̃∗N G̃) are invariant

and K ∈ Γ Isom(π∗NG, π̃∗N G̃) satisfies (π̃∗N∇̃)π̃
!!
N Ψ̃ ◦K = K ◦ (π∗N∇)π

!!
NΨ (see

Lemma 46). The relations from the statement of the lemma coincide with
relations (10), applied to F . □

We end this section with a simple lemma on the existence of preferred
dissections of T -dual transitive Courant algebroids.

Lemma 76. Let E and Ẽ be T -dual transitive Courant algebroids. Then E
and Ẽ admit invariant dissections of the form

I : E → T ∗M ⊕ π∗GB ⊕ TM,

Ĩ : Ẽ → T ∗M̃ ⊕ π̃∗GB ⊕ TM̃,(190)

where (GB, ⟨·, ·⟩GB
, [·, ·]GB

) is a quadratic Lie algebra bundle on B.

Proof. Let I : E → EM = T ∗M ⊕ G ⊕ TM and I ′ : Ẽ → ẼM̃ = T ∗M̃ ⊕ G̃ ⊕

TM̃ be invariant dissections of E and Ẽ, where EM and ẼM̃ are standard
Courant algebroids defined by (G, [·, ·]G , ⟨·, ·⟩G) and (∇, R,H) and, respec-

tively, by (G̃, [·, ·]G̃ , ⟨·, ·⟩G̃) and (∇̃, R̃, H̃). Let ΨM and Ψ̃M̃ be the induced

actions on EM and ẼM̃ . Since the corresponding partial connections have
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trivial holonomy, G = π∗GB and G̃ = π̃∗G̃B for some quadratic Lie algebra
bundles GB and G̃B on B. From Lemma 74, EM and ẼM̃ are T -dual.

In particular, there is a quadratic Lie algebra bundle isomorphism
K : π∗NG → π̃∗N G̃ which maps (π∗N∇)π

!!
NΨM

to (π̃∗N∇̃)π̃
!!
N Ψ̃M̃

. From Lemma 69
ii), K = Π∗KB where KB : GB → G̃B is a quadratic Lie algebra bundle iso-

morphism. Consider the standard Courant algebroid Ẽ
(1)

M̃
:= T ∗M̃ ⊕ π̃∗GB ⊕

TM̃ defined by the quadratic Lie algebra bundle π̃∗GB and data

∇̃
(1)
X := (π̃∗K−1

B ) ◦ ∇̃X ◦ (π̃∗KB), R̃
(1) := (π̃∗K−1

B ) ◦ R̃, H̃(1) := H

for any X ∈ X(M̃). Then Ĩ(1) : ẼM̃ → Ẽ
(1)

M̃
defined by Ĩ(1)|T ∗M̃⊕TM̃ = Id

and Ĩ(1)|π̃∗GB
= π̃∗K−1

B is a fiber preserving Courant algebroid isomorphism

and Ĩ := Ĩ(1) ◦ I ′ : Ẽ → Ẽ
(1)

M̃
is a dissection like in (190). □

6.2. T -duality and spinors

Assume that E and Ẽ are T -dual transitive Courant algebroids and let

F : π!NE → π̃!N Ẽ

be an invariant isomorphism as in Definition 71. Let SE , SẼ , Sπ!
NE and Sπ̃!

N Ẽ

be canonical weighted spinor bundles of E, Ẽ, π!NE and π̃!N Ẽ respectively,
such that the pullbacks π!N : Γ(SE) → Γ(Sπ!

NE) and π̃
!
N : Γ(SẼ) → Γ(Sπ̃!

N Ẽ)

are defined. We consider an admissible pair (I, SG) for SE and Sπ!
NE , and an

admissible pair (Ĩ , SG̃) for SẼ and Sπ̃!
N Ẽ , such that the dissections

I : E → EM = T ∗M ⊕ π∗GB ⊕ TM,

Ĩ : Ẽ → ẼM̃ = T ∗M̃ ⊕ π̃∗G̃B ⊕ TM̃

are invariant, SG = π∗SB and SG̃ = π̃∗S̃B, where SB is an irreducible Cl(GB)-

bundle and S̃B is an irreducible Cl(G̃B)-bundle. The Courant algebroids EM

and ẼM̃ are defined by quadratic Lie algebra bundle π∗(GB, [·, ·]GB
, ⟨·, ·⟩GB

)

and data (∇, R,H), respectively by π̃∗(G̃B, [·, ·]G̃B
, ⟨·, ·⟩G̃B

) and (∇̃, R̃, H̃),

where (GB, [·, ·]GB
, ⟨·, ·⟩GB

) and (G̃B, [·, ·]G̃B
, ⟨·, ·⟩G̃B

) are quadratic Lie alge-

bra bundles over B. They will be considered with the actions ΨM : tk →
Der (EM ) and Ψ̃M̃ : t̃k → Der (ẼM̃ ) induced by the tk and t̃k-actions on E

and Ẽ respectively.

Assumption 77. We assume that the isomorphism FS : Sπ!
NE → Sπ̃!

N Ẽ in-
duced by F is globally defined. This is equivalent to assuming that the
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isomorphism

(F1)S : SN → S̃N , (F1)S = (Ĩ π̃N )S ◦ FS ◦ (I
πN )−1

S

is globally defined, where

(191) SN := Λ(T ∗N)⊗̂Π∗SB, S̃N := Λ(T ∗N)⊗̂Π∗S̃B

are the canonical weighted spinor bundles of π!NEM = T ∗N ⊕Π∗GB ⊕ TN
and π̃!N ẼM̃ = T ∗N ⊕Π∗G̃B ⊕ TN determined by the spinor bundles

SN := Λ(T ∗N)⊗̂Π∗SB, S̃N := Λ(T ∗N)⊗̂Π∗S̃B

respectively, Π = π ◦ πN = π̃ ◦ π̃N , and

(IπN )S : Sπ!
NE → SN , (Ĩ

π̃N )S : Sπ̃!
N Ẽ → S̃N

are induced by the isomorphisms IπN : π!NE → π!NEM and Ĩ π̃N : π̃!N Ẽ →
π̃!N ẼM̃ respectively. Remark that (F1)S is compatible with the isomorphism

F1 := Ĩ π̃N ◦ F ◦ (IπN )−1 : π!NEM → π̃!N ẼM̃ .

Remark 78. When GB = G̃B as quadratic Lie algebra bundles (see
Lemma 76) and SB = S̃B as Cl(GB)-bundles, F1 is an automorphism of the
vector bundle

π!NEM = π̃!NEM̃ = T ∗N ⊕Π∗GB ⊕ TN

with scalar product

(192) ⟨ξ +Π∗(r1) +X, η +Π∗(r2) + Y ⟩ =
1

2
(ξ(Y ) + η(X)) + Π∗⟨r1, r2⟩GB

and (F1)S is an automorphism of SN = S̃N . If F1 belongs to the image of
the exponential map exp : so(T ∗N ⊕Π∗GB ⊕ TN) → SO0(T

∗N ⊕Π∗GB ⊕
TN), then (F1)S is automatically globally defined (cf. Remark 21). In fact, in
that case F1 can be lifted to (F1)S using the exponential map for spin(T ∗N ⊕
Π∗GB ⊕ TN).

Theorem 79. i) The map

(193) τ := (π̃N )! ◦ FS ◦ π
!
N : Γ(SE) → Γ(SẼ)

intertwines the canonical Dirac generating operators of E and Ẽ and maps
invariant spinors to invariant spinors. In particular, there is the following
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commutative diagram

Γt2k(Sπ!
NE)

FS // Γt2k(Sπ̃!
N Ẽ)

(π̃N )!
��

Γtk(SE)

π!
N

OO

τ // Γt̃k(SẼ)

ii) There is an isomorphism ρ : Γtk(E) → Γt̃k(Ẽ) of C∞(B)-modules
which preserves Courant brackets, scalar products and is compatible with
τ , i.e.

(194) τ(γus) = γρ(u)τ(s), [ρ(u), ρ(v)]Ẽ = ρ[u, v]E , ⟨ρ(u), ρ(v)⟩Ẽ = ⟨u, v⟩E ,

for any u, v ∈ Γtk(E) and s ∈ Γtk(SE).

The claim from Theorem 79 i) concerning the canonical Dirac generating
operators follows from Propositions 26, 34 and 40. The remaining claims
from Theorem 79 will be proved in the next two lemmas.

Lemma 80. In the above setting, EM and ẼM̃ are T -dual. The assertions

of Theorem 79 hold for the pair (E, Ẽ) and canonical weighted spinor bundles
SE and SẼ if and only if they hold for the pair (EM , ẼM̃ ) and canonical
weighted spinor bundles

SM := Λ(T ∗M)⊗̂π∗SB, SM̃ := Λ(T ∗M̃)⊗̂π̃∗S̃B

of EM and ẼM̃ respectively.

Proof. The fact that EM and ẼM̃ are T -dual follows from Lemma 74. We

now assume that the assertions of Theorem 79 hold for (E, Ẽ) and we show
that they hold for (EM , ẼM̃ ) as well. The same arguments prove also the
converse statement. Using relation (186), we obtain that the map τ1 defined
for the pair (EM , ẼM̃ ) as is defined τ for the pair (E, Ẽ), that is,

(195) τ1 := (π̃N )∗ ◦ (F1)S ◦ π
∗
N : Γ(SM ) → Γ(SM̃ ),

where π∗N : Γ(SM ) → Γ(SN ) and (π̃N )∗ : Γ(S̃N ) → Γ(SM̃ ) are the pullback

and pushforward maps (59) and (84), and SN and S̃N are defined by (191),
is related to τ by τ1 = ϵĨS ◦ τ ◦ (IS)

−1. Here ϵ ∈ {±1} and IS : SE → SM ,
ĨS : SẼ → SM̃ are induced by I : E → EM and Ĩ : Ẽ → ẼM̃ . As I and Ĩ

are invariant, IS and ĨS map invariant spinors to invariant spinors (from
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Corollary 62). By our hypothesis, this is true also for τ. We obtain that τ1
maps invariant spinors to invariant spinors. Define

ρ1 : Γtk(EM ) → Γt̃k(ẼM̃ ), ρ1 := Ĩ ◦ ρ ◦ I−1.

Since (τ, ρ) satisfy (194), so do (τ1, ρ1). □

The next lemma concludes the proof of Theorem 79.

Lemma 81. The statements from Theorem 79 hold for the pair (EM , ẼM̃ )
and canonical weighted spinor bundles SM and SM̃ .

Proof. In agreement with our notation from the previous sections, various
partial connections will be denoted as follows (we shall use similar conven-
tions for their tilde analogue):

• ∇ΨM

is the partial connection on π∗GB which corresponds to the tk-
action ΨM on EM ;

• (π∗N∇)π
!!
NΨM

is the partial connection on Π∗GB which corresponds to
the t2k-action π!!NΨM on π!NEM ;

• ∇ΨM ,π∗SB is the partial connection on π∗SB induced by any partial
connection on π∗SB compatible with ∇ΨM

.
• (π∗N∇)π

!!
NΨM ,Π∗SB is the partial connection on Π∗SB induced by any

partial connection on Π∗SB compatible with (π∗N∇)π
!!
NΨM

.
From Lemma 69, (π∗N∇)π

!!
NΨM

is the pullback by πN of ∇ΨM

(see rela-
tion (181)) and similarly for the partial connections which they induce on
the spinor bundles Π∗SB and π∗SB:

(196) (π∗N∇)
π!!
NΨM ,Π∗SB

XN
a

(π∗Ns) = π∗N

(
∇ΨM ,π∗SB

(πN )∗(XN
a )s

)
,

for any a ∈ t2k and s ∈ Γ(π∗SB).
i) We prove that the map τ1 defined by (195) maps invariant spinors to

invariant spinors. For this, we show first that if ω ⊗ s ∈ Γ(SM ) is tk-invariant
then π∗N (ω ⊗ s) ∈ Γ(SN ) is t2k-invariant. The tk-invariance of π∗N (ω ⊗ s) fol-
lows from Proposition 67 ii) and (π!!NΨM )(a) = (π!NΨM )(a) for any a ∈ tk,
which implies that (π!!NΨM )SN (a) = (π!NΨM )SN (a) for any a ∈ tk, where we
recall that (π!!NΨM )SN and (π!NΨM )SN are the actions on spinors (sections
of Γ(SN )) induced by the t2k, respectively tk-actions π!!NΨM and π!NΨM

on π!NEM respectively. In order to prove that π∗N (ω ⊗ s) is t̃k-invariant, we
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apply the formula

(π!!NΨM )SN (a) (π∗N (ω ⊗ s))(197)

= LXN
a
(π∗Nω)⊗ π∗Ns+ (π∗Nω)⊗ (π∗N∇)

π!!
NΨM ,Π∗SB

XN
a

(π∗Ns),

see relation (149). If a ∈ t̃k then

(198) LXN
a
(π∗Nω) = π∗NL(πN )∗XN

a
ω = 0,

since (πN )∗X
N
a = 0. From (196), we deduce that (π∗N∇)

π!!
NΨM ,Π∗SB

XN
a

(π∗Ns) =

0 by using again (πN )∗X
N
a = 0. It follows that π∗N (ω ⊗ s) is t̃k-invariant.

We have proven that π∗N (ω ⊗ s) is t2k-invariant. From Corollary 62 and
the invariance of F1, we deduce that (F1)Sπ

∗
N (ω ⊗ s) is t2k-invariant (in

particular, t̃k-invariant) and from Proposition 67 ii) we obtain that τ1(ω ⊗
s) = (π̃N )∗(F1)Sπ

∗
N (ω ⊗ s) is t̃k-invariant, as needed.

ii) Let u = ξ + r +X ∈ Γtk(EM ). Then X and ξ are invariant with re-
spect to the standard (by Lie derivatives) action of tk on M and r is ∇ΨM

-
parallel. We obtain

(199) LXN
a
(π∗Nξ) = 0, ∀a ∈ t2k, (π∗N∇)π

!!
NΨM

(π∗Nr) = 0,

where in the second relation we used (181). We claim that there is a unique
t2k-invariant lift X̂0 ∈ Xt2k(N) of X with the property that

(200) prT ∗NF1(π
∗
N (ξ + r) + X̂0) = π̃∗N (ξ̃)

for an (invariant) 1-form ξ̃ ∈ Ω1(M̃). To prove the claim we assume that
the isomorphism F1 is defined by data (β,K,Φ) as in Section 2.2.1, where
β ∈ Ω2(N), K ∈ Γ Isom(Π∗GB,Π

∗G̃B) and Φ ∈ Ω1(N,Π∗G̃B). Let X̂ be an
arbitrary t2k-invariant lift of X. Then

prTNF1(π
∗
N (ξ + r) + X̂) = X̂,

prπ̃∗
N G̃F1(π

∗
N (ξ + r) + X̂) = K(π∗Nr) + Φ(X̂)

prT ∗NF1(π
∗
N (ξ + r) + X̂) = π∗N (ξ)− 2Φ∗K(π∗Nr) + iX̂β − Φ∗Φ(X̂).(201)

From (199), π∗N (ξ + r) is t2k-invariant and we obtain that F1(π
∗
N (ξ + r) + X̂)

is also t2k-invariant. On the other hand, from the non-degeneracy condi-
tion (183), we can choose a t2k-invariant lift X̂0 of X such that

(202) (β − Φ∗Φ)(X̂0, Y ) = ξ((dπN )(Y ))− 2⟨K(π∗Nr),Φ(Y )⟩, ∀Y ∈Ker dπ̃N .
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The third relation (201) together with (202) imply that the (invariant) form
prT ∗NF1(π

∗
N (ξ + r) + X̂0) is horizontal with respect to π̃N , hence basic. Con-

sidering the lift X̂0 we obtain relation (200).
Since F1(π

∗
N (ξ + r) + X̂0) is t

2k-invariant, its projection to Π∗G̃B is par-

allel with respect to (π̃∗N∇̃)π̃
!!
N Ψ̃M̃

and is therefore the π̃N -pullback of a ∇̃Ψ̃M̃

-
parallel section r̃ of π̃∗G̃B. To summarize,

(203) F1(π
∗
N (ξ + r) + X̂0) = π̃∗N (ξ̃ + r̃) + X̂0

where ξ̃ ∈ Ω1(M̃) is t̃k-invariant and ∇̃Ψ̃M̃

r̃ = 0. We define

(204) ρ1(u) := ξ̃ + r̃ + (π̃N )∗X̂0.

Obviously, ρ1(u) is t̃k-invariant and the resulting map ρ1 : Γtk(EM ) →
Γt̃k(ẼM̃ ) is C∞(B)-linear. It remains to prove that (ρ1, τ1) satisfy rela-
tions (194). In order to prove the first relation (194), let u := ξ + r +X ∈
Γtk(EM ), ρ1(u) = ξ̃ + r̃ + (π̃N )∗X̂0 constructed as above, s ∈ Γtk(SM ) and
σ ∈ Γ(S̃N ). The lifts X̂0 (for any X ∈ X(M)) define a distribution D on N
and we can apply Remark 30 with f replaced by πN and distribution D.
Using (61) and Remark 38,

(205) π∗Nγu(s) = γπ∗
N (ξ+r)+X̂0

π∗Ns, (π̃N )∗γπ̃∗
N (ξ̃+r̃)+X̂0

σ = γρ1(u)(π̃N )∗σ,

and we write

τ1γu(s) = (π̃N )∗(F1)S(πN )∗γu(s) = (π̃N )∗(F1)Sγπ∗
N (ξ+r)+X̂0

π∗Ns

= (π̃N )∗γπ̃∗
N (ξ̃+r̃)+X̂0

(F1)Sπ
∗
N (s) = γρ1(u)(π̃N )∗(F1)S(πN )∗(s)

= γρ1(u)τ1(s),

where in the third equality we used the compatibility of (F1)S with F1 and
relation (203). The first relation of (194) is proved. The second relation (194)
follows from the next computation, which uses the first relation (194), the
defining property

γ[u,v] = [[/d, γu], γv]

for Dirac generating operators and τ1 ◦ /dM = /dM̃ ◦ τ1 proved in part i) of
Theorem 79 (where /dM and /dM̃ are the Dirac generating operators of EM
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and ẼM̃ acting on Γ(SM ) and Γ(SM̃ ) respectively). Namely,

γρ1[u,v]EM
τ1(s) = τ1γ[u,v]EM

(s) = τ1[[/dM , γu], γv](s)

= [[/dM̃ , γρ1(u)], γρ1(v)]τ1(s)

= γ[ρ1(u),ρ1(v)]Ẽ
M̃

τ1(s),

for any u, v ∈ Γtk(EM ) and s ∈ Γtk(SM ). In order to prove the third relation
of (194), we remark that for any u ∈ Γtk(EM ), ⟨u, u⟩EM

is tk-invariant and
hence is the pullback of a function g ∈ C∞(B). Similarly, ⟨ρ1(u), ρ1(u)⟩ẼM̃

is the pullback of a function g̃ ∈ C∞(B). We need to show that g = g̃. This
follows from the next computation which uses the first relation (194): for
any s ∈ Γ(SM ),

π̃∗(g)τ1(s) = τ1(π
∗(g)s) = τ1(⟨u, u⟩EM

s) = τ1γ
2
u(s) = γ2ρ1(u)

τ1(s)

= ⟨ρ1(u), ρ1(u)⟩ẼM̃
τ1(s) = π̃∗(g̃)τ1(s).

From the third relation of (194) we obtain that ρ1 is an isomorphism (of
vector spaces and even of C∞(B)-modules). □

The proof of the theorem is completed.

Corollary 82. The map

(206) τ := (π̃N )! ◦ FS ◦ π
!
N : Γtk(SE) → Γt̃k(SẼ)

is an isomorphism of C∞(B)-modules.

Proof. This follows from the irreducibility of the spinor bundles together
with the fact that τ is C∞(B)-linear, is not the zero map and intertwines
the Clifford multiplications in the commutative diagram

Γtk(E)× Γtk(SE) //

ρ×τ
��

Γtk(SE)

τ

��
Γt̃k(Ẽ)× Γt̃k(SẼ)

// Γt̃k(SẼ).

□

Remark 83. As in the T -duality for exact or heterotic Courant algebroids,
the map ρ constructed in Theorem 79 can be interpreted as an isomorphism
between Courant algebroids over B (see [2] and [10]).
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In the next remark we discuss Theorem 79 without the assumption that
FS is globally defined.

Remark 84. i) We claim that the isomorphism (F1)S introduced be-
fore Remark 78 (hence also FS) is always defined on subsets of N of
the form Π−1(V ), where V ⊂ B is open and sufficiently small. Indeed,
(F1)S|U ∈ Isom(SN |U , S̃N |U ) is defined, whenever U ⊂ N is open and suf-
ficiently small (see Lemma 20). Letting V := Π(U), we can find (reducing
V if necessary) invariant frames (si) and (s̃i) of SN and SÑ on Π−1(V ) and
write

(207) (F1)S|U (si) =
∑

j

Cjis̃j

for some functions Cji ∈ C∞(U). From the invariance of (F1)S|U , we deduce
that Cji = Π∗(cji)|U where cji ∈ C∞(V ). Then

(208) (F1)S|Π−1(V )
(si) :=

∑

j

Π∗(cji)s̃j ,

defines an invariant extension of (F1)S|U to Π−1(V ) compatible with
F1|Π−1(V ).

ii) From the above, the map

τV := (π̃N )! ◦ FS ◦ π
!
N : Γ(SE |π−1(V )) → Γ(SẼ |π̃−1(V ))

is defined. Theorem 79 still holds, the only difference being that τ is replaced
by the locally defined maps τV , for any V ⊂ B open and sufficiently small.
(The isomorphism ρ remains globally defined.)

6.3. Existence of a T -dual

Let π :M → B be a principal T k-bundle and H a principal connection on
π, with connection form θ =

∑k
i=1 θiei ∈ Ω1(M, tk), where (ei) is a basis of

tk. Let (E,Ψ) be a standard Courant algebroid with an action Ψ : tk →
Der(E) which lifts the vertical parallellism of π, defined by a quadratic Lie
algebra bundle (GB, [·, ·]GB

, ⟨·, ·⟩GB
) whose adjoint representation ad : GB →

Der(GB) onto the bundle of skew-symmetric derivations is an isomorphism,
a connection ∇B on GB which preserves [·, ·]GB

and ⟨·, ·⟩GB
, a 3-form HB

(3),

2-forms H i,B
(2) and sections rBi ∈ Γ(GB) (1 ≤ i ≤ k) as in Example 56 (see also
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Corollary 55). Recall that the curvature RB of ∇B is of the form RB = adrB ,
where rB ∈ Ω2(B,GB). We denote by (ei) the dual basis of (ei).

Theorem 85. Assume that the closed forms Ki defined by (140) represent
integral cohomology classes in H2(B,R) and let π̃ : M̃ → B be a principal
T̃ k-bundle with connection form θ̃ =

∑k
i=1 θ̃ie

i, such that (dθ̃i)
B = Ki for

any i. Then E admits a T -dual Ẽ defined on M̃ and

(209)

[
k∑

i=1

(dθi)
B ∧ (dθ̃i)

B

]
= [⟨rB ∧ rB⟩GB

] ∈ H4(B,R).

Proof. From the expression (140) of Ki = (dθ̃i)
B, we have

(210) (dθ̃i)
B = H i,B

(2) + 2⟨rB, rBi ⟩GB
− ⟨rBi , r

B
j ⟩GB

(dθj)
B.

We consider the data formed by the quadratic Lie algebra bundle

(G̃B, [·, ·]
˜
GB
, ⟨·, ·⟩˜GB

) := (GB, [·, ·]GB
, ⟨·, ·⟩GB

),

connection ∇̃B := ∇B, sections r̃Bi ∈ Γ(GB) (arbitrarily chosen), 3-form
H̃B

(3) := HB
(3) and 2-forms

(211) H̃ i,B
(2) := (dθi)

B − 2⟨rB, r̃Bi ⟩GB
+ ⟨r̃Bi , r̃

B
j ⟩GB

(dθ̃j)
B.

From (211), the 2-form

K̃i := H̃ i,B
(2) + 2⟨rB, r̃Bi ⟩GB

− ⟨r̃Bi , r̃
B
j ⟩GB

(dθ̃j)
B = (dθi)

B

is closed. Since

dH̃(3) = dH(3) = ⟨rB ∧ rB⟩GB
−Ki ∧ (dθi)

B = ⟨rB ∧ rB⟩GB
− K̃i ∧ (dθ̃i)

B,

we obtain from Example 56 a standard Courant algebroid Ẽ with an action
Ψ̃ which lifts the vertical parallellism of π̃, such that

H̃pqs,B
(0) := −

1

3
⟨[r̃Bp , r̃

B
q ]GB

, r̃Bs ⟩GB

H̃ ij,B
(1) :=

1

2

(
⟨∇B r̃Bi , r̃

B
j ⟩GB

− ⟨∇B r̃Bj , r̃
B
i ⟩GB

)

and the GB-valued forms R̃ij,B
(0) , R̃i,B

(1) and R̃B
(2) given by the tilde analogue of

(135) (i.e. (135) with rBi replaced by r̃Bi and θi replaced by θ̃i). The quadratic
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Lie algebra bundles of E and Ẽ are the pullbacks of (GB, [·, ·]GB
, ⟨·, ·⟩GB

) and,
as vector bundles with scalar products,

π!NE = π̃!N Ẽ = T ∗N ⊕Π∗GB ⊕ TN,

where the scalar products are given by (192) and Π = π ◦ πN = π̃ ◦ π̃N .
We claim that E and Ẽ are T -dual, i.e. not only that π!NE and π̃!N Ẽ

are isomorphic as Courant algebroids but that one can choose the isomor-
phism to be invariant and such that the non-degeneracy condition (183) is
satisfied. Such an isomorphism F : π!NE → π̃!N Ẽ (if it exists) is given by a
triple (β,K,Φ), where β ∈ Ω2(N), Φ ∈ Ω1(N,Π∗GB) and K = Π∗KB where
KB ∈ ΓAut(GB) is a quadratic Lie algebra bundle automorphism (see the
proof of Lemma 76). Let

∇θ := ∇+ θi ⊗ adri = π∗∇B

∇θ̃ := ∇̃+ θ̃i ⊗ adr̃i = π̃∗∇B

be the connections on E and Ẽ defined before Lemma 48, where ri := π∗(rBi ),
r̃i := π̃∗(r̃Bi ) and to simplify notation we continue to omit the summation
sign and we denote by the same symbol ‘ad’ the adjoint action in the Lie
algebra bundles GB, G, G̃ or their pullbacks to N . Then

π∗N∇ = Π∗∇B − (π∗Nθi)⊗Π∗(adrBi )

π̃∗N∇̃ = Π∗∇B − (π̃∗N θ̃i)⊗Π∗(adr̃Bi ).(212)

With these preliminary remarks, we now consider separately the relations
from Lemma 75 and we look for (β,K = Π∗KB,Φ) such that these relations
are satisfied. Relation (187) can be written in the equivalent way

Π∗
(
KB(∇

B)K−1
B −∇B

)
= (π∗Nθi)⊗Π∗(adKB(rBi ))

− (π̃∗N θ̃i)⊗ (Π∗adr̃Bi ) + ad ◦ Φ.(213)

Letting

(214) KB := IdGB
, Φ := (π̃∗N θ̃i)⊗Π∗(r̃Bi )− (π∗Nθi)⊗Π∗(rBi ),

relation (213) is obviously satisfied. Relation (188) is satisfied from Lemma 5
and our hypothesis that the adjoint representation ad : GB → Der(GB) onto
the bundle of skew-symmetric derivations is an isomorphism. It remains to
find an invariant 2-form β ∈ Ω2(N) such that relation (189) is satisfied. Now,
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a straightforward computation which uses the definition of Φ shows that the
3-form

c3(X,Y, Z) := ⟨Φ(X), [Φ(Y ),Φ(Z)]Π∗GB
⟩Π∗GB

, ∀X,Y, Z ∈ X(N)

is given by

c3 =
1

6

(
⟨[r̃Bs , r̃

B
i ]GB

, r̃Bj ⟩θ̃s ∧ θ̃i ∧ θ̃j − ⟨[rBs , r
B
i ]GB

, rBj ⟩θs ∧ θi ∧ θj

)

+
1

2

(
⟨[rBi , r

B
j ]GB

, r̃Bs ⟩θ̃s ∧ θi ∧ θj − ⟨[r̃Bj , r̃
B
s ]GB

, rBi ⟩θi ∧ θ̃j ∧ θ̃s

)
,(215)

where we identify forms on M , M̃ or B with their pullback to N (we omit
the pullback signs) and we denote ⟨·, ·⟩GB

by ⟨·, ·⟩ for simplicity. On the other
hand,

π∗NR = RB
(2) + θi ∧R

i,B
(1) +Rij,B

(0) ⊗ (θi ∧ θj),

π̃∗N R̃ = R̃B
(2) + θ̃i ∧ R̃

i,B
(1) + R̃ij,B

(0) ⊗ (θ̃i ∧ θ̃j),(216)

where we recall (from the proof of Corollary 55) that

(217) Rij,B
(0) =

1

2
[rBi , r

B
j ]GB

, Ri,B
(1) = ∇BrBi , R

B
(2) = rB − dθi ⊗ rBi

and similarly for R̃ij,B
(0) , R̃i,B

(1) and R̃
B
(2), with r

B
i replaced by r̃Bi and θi replaced

by θ̃i. From (216) and (217) we obtain that

⟨(π∗NR+ π̃∗N R̃) ∧ Φ⟩Π∗GB
= −θi ∧ θ̃j ∧ d⟨r

B
i , r̃

B
j ⟩

+ ⟨(2rB − (dθi)⊗ rBi − (dθ̃i)⊗ r̃Bi ) ∧ r̃j⟩ ∧ θ̃j

− ⟨(2rB − (dθi)⊗ rBi − (dθ̃i)⊗ r̃Bi ) ∧ rj⟩ ∧ θj

+
1

2

(
⟨[rBi , r

B
j ], r̃

B
p ⟩θi ∧ θj ∧ θ̃p − ⟨[r̃Bi , r̃

B
j ], r

B
p ⟩θ̃i ∧ θ̃j ∧ θp

)

+
1

2

(
⟨[r̃Bi , r̃

B
j ], r̃

B
p ⟩θ̃i ∧ θ̃j ∧ θ̃p − ⟨[rBi , r

B
j ], r

B
p ⟩θi ∧ θj ∧ θp

)

+ ⟨∇BrBi , r
B
j ⟩ ∧ θi ∧ θj − ⟨∇B r̃Bi , r̃

B
j ⟩ ∧ θ̃i ∧ θ̃j .(218)

We write the 2-form β as

β = β(2) + θi ∧ β
i
(1) + θ̃i ∧ β̃

i
(1) + fijθi ∧ θ̃j
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where β(2), β
i
(1), β̃

i
(1) and fij are defined on B, so that

dβ = dβ(2) + dθi ∧ β
i
(1) + dθ̃i ∧ β̃

i
(1) − θi ∧ (dβi(1) + fijdθ̃j)

+ θ̃i ∧ (−dβ̃i(1) + fjidθj)− dfij ∧ θ̃j ∧ θi.(219)

Finally, we write, as in Section 5.1.1,

π∗NH = HB
(3) + θi ∧H

i,B
(2) + θi ∧ θj ∧H

ij,B
(1) +H ijs,B

(0) θi ∧ θj ∧ θs

π̃∗NH̃ = H̃B
(3) + θ̃i ∧ H̃

i
(2) + θ̃i ∧ θ̃j ∧ H̃

ij,B
(1) + H̃ ijs,B

(0) θ̃i ∧ θ̃j ∧ θ̃s.(220)

Using the expressions ofH ijs,B
(0) and H̃ ijs,B

(0) , and (215), (218), (219) and (220),

we obtain that relation (189) reduces to the following relations:

HB
(3) − H̃B

(3) − dβ(2) − (dθi)
B ∧ βi(1) − (dθ̃i)

B ∧ β̃i(1) = 0

(221)

dβi(1) + fij(dθ̃j)
B = −H i,B

(2) + ⟨rBi , r̃
B
j ⟩(dθ̃j)

B − 2⟨rB, rBi ⟩+ ⟨rBi , r
B
j ⟩(dθj)

B

dβ̃i(1) − fji(dθj)
B = H̃ i,B

(2) − ⟨r̃Bi , r̃
B
j ⟩(dθ̃j)

B + 2⟨rB, r̃Bi ⟩ − ⟨r̃Bi , r
B
j ⟩(dθj)

B

dfij = d⟨rBi , r̃
B
j ⟩.

Recall now that HB
(3) = H̃B

(3) and

(dθ̃i)
B = H i,B

(2) + 2⟨rB, rBi ⟩ − ⟨rBi , r
B
j ⟩(dθj)

B

(dθi)
B = H̃ i,B

(2) + 2⟨rB, r̃Bi ⟩ − ⟨r̃Bi , r̃
B
j ⟩(dθ̃j)

B.

It follows that β(2) := 0, βi(1) := 0, β̃i(1) := 0 and fij := ⟨rBi , r̃
B
j ⟩ − δij satisfy

relations (221), We obtain that the 2-form

β := (⟨rBi , r̃
B
j ⟩ − δij)θi ∧ θ̃j

satisfies (189). The existence of F is proved. It is clear that F is invariant.
The non-degeneracy condition (183) is satisfied, since

β(Xã, Xb) = −⟨r̃Ba , r
B
b ⟩+ δab, (Φ

∗Φ)(Xã, Xb) = −⟨r̃a, rb⟩,

for any ã ∈ t̃k and b ∈ tk. □
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6.4. Examples of T -duality

In this section we apply Theorem 85 to various classes of transitive Courant
algebroids. In particular, we recover, in our setting, the T -duality for ex-
act Courant algebroids [10] and the T -duality for heterotic Courant alge-
broids [2].

6.4.1. T -duality for exact Courant algebroids. Let E = T ∗M ⊕ TM
be an exact Courant algebroid over the total space of a principal T k-bundle
π :M → B, with Dorfman bracket [·, ·]H twisted by an invariant, closed,
3-form H ∈ Ω3(M), that is,

(222) [ξ +X, η + Y ]H := LXη − iY dξ + iY iXH + LXY

for any X,Y ∈ X(M), ξ, η ∈ Ω1(M), scalar product

⟨ξ +X, η + Y ⟩ :=
1

2
(ξ(Y ) + η(X))

and anchor the natural projection from E to TM. The action of T k onM lifts
naturally to an action on E. Assuming that (iXH)|Λ2(Kerπ) = 0 for any X ∈
TM , we obtain a Courant algebroid of the type described in Example 56.
Choose a connection H on π, with connection form θ =

∑k
i=1 θiei (where

(ei) is a basis of tk) and write

H = H(3) +

k∑

i=1

θi ∧H
i
(2),

where H(3) and H i
(2) are basic. If [H] ∈ H3(M,R) is an integral cohomol-

ogy class, then so is [H i,B
(2) ] ∈ H2(B,R) (for any i) and Theorem 85 can be

applied. We recover the existence of a T -dual for exact Courant algebroids,
which was proved in [9] (see also Proposition 2.1 of [10]).

6.4.2. Heterotic T -duality. Let G be a compact semi-simple Lie group,
with a fixed invariant scalar product of neutral signature ⟨·, ·⟩g on g =
Lie(G). Let σ : P →M be a principal G-bundle and H a connection on σ.
By definition, the heterotic Courant algebroid defined by the principal G-
bundle σ : P →M , connection H and 3-form H ∈ Ω3(M) is the standard
Courant algebroid E = T ∗M ⊕ G ⊕ TM with the following properties:

1) (G, [·, ·]G , ⟨·, ·⟩G), as a quadratic Lie algebra bundle, is given by the
adjoint bundle gP := P ×Ad g. Recall that sections r ∈ Γ(gP ) are in-
variant vertical vector fields on P and can be identified with functions
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f : P → g which satisfy the equivariance condition f(pg) = Adg−1f(p)
for any p ∈ P and g ∈ G. We shall use the notation r ≡ f to denote
this identification. Since the Lie bracket [·, ·]g and scalar product ⟨·, ·⟩g
of g are Ad-invariant, they induce a Lie bracket [·, ·]gP

and a scalar
product ⟨·, ·⟩gP

on gP , which make gP a quadratic Lie algebra bundle.
The Lie bracket of gP so defined coincides with the usual Lie bracket
of invariant, vertical vector fields on P .

2) The connection∇ which is part of the data (∇, R,H) which defines the
standard Courant algebroid E is induced by H, R = RH ∈ Ω2(M, gP )
is the curvature of H and the 3-form H satisfies dH = ⟨RH ∧RH⟩gP

.

The following proposition describes all invariant scalar products on com-
pact semi-simple Lie algebras. A similar description can be given for arbi-
trary reductive Lie algebras. Recall that a semi-simple Lie algebra is called
compact it it is the Lie algebra of a compact group.

Proposition 86. Let g =
⊕s

i=1 kigi be the decomposition of a real semi-
simple Lie algebra into its simple ideals gi, of multiplicity ki ≥ 1. Assume
that g is compact (or, more generally, that none of the gi has an invariant
complex structure). Then every invariant scalar product on g is of the form

(223)
∑

Bi ⊗ bi,

where Bi is the Killing form of gi and bi is a scalar product on Rki. The
scalar product (223) is of neutral signature if and only if

∑
(dim gi)pi =∑

(dim gi)qi, where (pi, qi) is the signature of bi.

Proof. We compute the space of invariant symmetric bilinear forms on g as

(Sym2g∗)g =
⊕

(Sym2gi
∗)gi ⊗ Sym2(Rki)∗ ⊕

⊕
(Λ2gi

∗)gi ⊗ Λ2(Rki)∗.

Since gi is simple and not complex, every invariant bilinear form on gi is
a multiple of Bi and the right-hand side reduces to

⊕
Bi ⊗ Sym2(Rki)∗.

This implies the first claim. The second claim follows by observing that the
signature (p, q) of (223) is given by p = −

∑
(dim gi)pi, q = −

∑
(dim gi)qi.

□

Assume that M is the total space of a principal T k-bundle π :M → B
and that σ : P →M is the pullback of a principal G-bundle σ0 : P0 → B.
Then, for any m ∈M and g ∈ T k there is a natural identification between
the fibers Pm := σ−1(m), Pmg := σ−1(mg) and (P0)π(m) := σ−1

0 (π(m)). The
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T k-action on M lifts naturally to an action on P (such that g acts as the
identity map between Pm and Pmg in the above identification). We deduce
that on any heterotic Courant algebroid E = T ∗M ⊕ gP ⊕ TM there is an
induced action

(224) Ψ : tk → Der(E),Ψ(a)(ξ + r +X) := LXM
a
ξ + LXP

a
r + LXM

a
X

where XM
a and XP

a denote the fundamental vector fields of the T k-action on
M and P defined by a ∈ tk and r ∈ Γ(gP ) is viewed as an invariant vertical
vector field on P . If r ≡ f , then LXP

a
r ≡ XP

a (f).
Following [2], we shall be interested in heterotic Courant algebroids de-

fined by principal bundles σ = π∗σ0 given by pullback as above and a par-
ticular class of connections H := Hσ on σ. More precisely, we consider a
connection Hπ on the principal T k-bundle π :M → B, with connection form
θ =

∑k
i=1 θiei ∈ Ω1(M, tk) (where (ei) is a basis of tk), a connection Hσ0 on

the principal G-bundle σ0 : P0 → B, with connection form A0 ∈ Ω1(P0, g)
and a G× T k-equivariant function v̂ : P → (tk)∗ ⊗ g. They define a connec-
tion Hσ on σ, with connection form

(225) A := π∗0A0 − ⟨σ∗θ, v̂⟩ = π∗0A0 −

k∑

i=1

σ∗θi ⊗ v̂i,

where π0 : P → P0 is the natural projection, ⟨·, ·⟩ denotes the natural con-
traction between tk and (tk)∗, and v̂i = ⟨v̂, ei⟩ : P → g. From the equivari-
ance of v̂, the functions v̂i define sections of gP = π∗gP0

which are pullback
of sections of gP0

, i.e. v̂i = π∗v̂Bi for v̂Bi ∈ Γ(gP0
) (we use the same notation

for the functions v̂i , v̂
B
i and the corresponding sections of gP and gP0

re-

spectively). We shall denote by X̃A0 ∈ X(P0), Ỹ
π∗
0A0 ∈ X(P ) and Ỹ A ∈ X(P )

the horizontal lifts of X ∈ X(B) and Y ∈ X(M) with respect to Hσ0 , π∗0H
σ0

and Hσ respectively. Here π∗0H
σ0 ⊂ TP denotes the G-invariant horizontal

distribution in σ : P →M defined by (π∗0H
σ0)p = (dpπ0)

−1Hσ0

π0(p)
, p ∈ P . It

coincides with the kernel of the connection form π∗0A0.

Lemma 87. Let (E = T ∗M ⊕ gP ⊕ TM,Ψ) be the heterotic Courant alge-
broid defined by σ : P →M , the connection Hσ with connection form (225)
and a 3-form H ∈ Ω3(M) such that dH = ⟨RHσ

∧RHσ

⟩gP
, together with the

tk-action (224). Then the connection ∇θ on gP = π∗(gP0
) defined in (114)

is the pullback of the connection ∇A0 on gP0
induced by Hσ0 (equivalently,

in the notation of Corollary 55, GB = gP0
and ∇θ,B = ∇A0).
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Proof. We claim that the horizontal lift X̃M
a

π∗
0A0

∈ X(P ) of the π-vertical
vector field XM

a ∈ X(M) determined by a ∈ tk coincides with the funda-
mental vector field XP

a of the T k-action on P , i.e.

(226) X̃M
a

π∗
0A0

= XP
a , ∀a ∈ tk.

In order to prove (226), let U ⊂ B be open and sufficiently small such that,
over U , σ0 is the trivial G-bundle and

π0 : P |π−1(U) = π−1(U)×G→ P0|U = U ×G, π0(p, g) = (π(p), g).

For any X ∈ X(π−1(U)),

(227) X̃π∗
0A0 = X − ⟨(π∗0A0)(X), f∗i ⟩X

P
fi ,

where (fi) is a basis of g with dual basis (f∗i ) and for f ∈ g, XP
f is the

left invariant vector field on G determined by f (viewed as a vector field
on P |π−1(U) = π−1(U)×G). On the other hand, XM

a ∈ X(π−1(U)), viewed
as a vector field on P |π−1(U), satisfies (π0)∗X

M
a = 0, since π∗X

M
a = 0 and

π0 = π × Id in our trivializations. Applying (227) to X := XM
a and using

(π0)∗X
M
a = 0 we obtain X̃M

a

π∗
0A0

= XM
a . On the other hand, the action of

T k on P = π−1(U)×G is given by Rg(m, g̃) = (mg, g̃) which implies that
XP

a = XM
a . Relation (226) follows.

Let ∇ be the connection on gP induced by Hσ. It is given by

(228) ∇Xr ≡ X̃A(f) = X̃π∗
0A0(f)− θi(X)adv̂i

◦ f, X ∈ X(M),

where r ∈ Γ(gP ) and r ≡ f. Here we have used relation (225), which implies
that

(229) X̃A = X̃π∗
0A0 + θi(X)XP

v̂i

and the G-equivariance of f , which implies XP
v (f) = −adv ◦ f for all v ∈

g. (In relation (229) the vector field XP
v̂i

at p ∈ P is equal to (XP
v̂i(p)

)p).

Applying relation (228) to X := XM
a and using (226) we obtain

(230) ∇XM
a
r ≡ XP

a (f)− ⟨a, e∗i ⟩adv̂i
◦ f, ∀a ∈ tk,

which implies that the skew-symmetric derivation Aa of gP , from Lemma
43, is given by

(231) Aa(r) = (LXP
a
−∇XM

a
)r ≡ ad⟨v̂,a⟩ ◦ f, ∀a ∈ tk,
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where in the equality we used the definition of the endomorphism Aa. From
its definition (114) and relations (228), (231), ∇θ is given by

(232) ∇θ
Xr = ∇Xr +

k∑

i=1

θi(X)Ai(r) ≡ X̃π∗
0A0(f),

which implies that ∇θ = π∗∇A0 as needed. □

Since ∇A0 preserves the Lie bracket and scalar product of gP0
, its cur-

vature takes values in the bundle of skew-symmetric derivations of gP0
and

is of the form adrA0 where rA0 ∈ Ω2(B, gP0
) (since g is semi-simple). Like in

(118), we decompose H ∈ Ω3(M) using the connection θ.

Proposition 88. In the above setting, assume that

H ijs,B
(0) = −

1

3
⟨[v̂Bi , v̂

B
j ]g, v̂

B
s ⟩g

H ij,B
(1) =

1

2

(
⟨∇A0 v̂Bi , v̂

B
j ⟩g − ⟨∇A0 v̂Bj , v̂

B
i ⟩g

)
(233)

and that the (closed) forms

(234) H i,B
(2) + 2⟨rA0 , v̂Bi ⟩g − ⟨v̂Bi , v̂

B
j ⟩g(dθj)

B

represent integral cohomology classes. Then (E,Ψ) admits a T -dual which
is a heterotic Courant algebroid.

Proof. The conditions (233) mean that (E,Ψ) belongs to the class of stan-
dard Courant algebroids with tk-action described in Example 56 (in the
notation of that example, ri = v̂i and r

B
i = v̂Bi ). Let (Ẽ, Ψ̃) be a T -dual of

(E,Ψ), provided by Theorem 85. Then (Ẽ, Ψ̃) is defined on the total space
of a principal T k-bundle π̃ : M̃ → B, with connection form θ̃ =

∑k
i=1 θ̃ie

i, in
terms of arbitrarily chosen sections r̃Bi ∈ Γ(gP0

). Let σ̃ : P̃ → M̃ be the pull-
back of the principal bundle σ0 : P0 → B by the map π̃. The arguments from
Theorem 85 and the above lemma show that Ẽ is the heterotic Courant al-
gebroid defined by the principal G-bundle σ̃, connection Hσ̃ with connection
form

(235) Ã = π̃∗0A0 −

k∑

i=1

σ̃∗θ̃i ⊗ r̃i
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where π̃0 : P̃ → P0 is the natural projection, r̃i = π̃∗(r̃Bi ) ∈ Γ(gP̃ ) and 3-

form H̃ is constructed as in Theorem 85 (in particular, H̃ ijs,B
(0) and H̃ ij,B

(1) are

given by (233) with v̂Bi replaced by r̃Bi ). □

Remark 89. The above treatment provides an alternative view-point for
the heterotic T -duality developed in [2]. Heterotic Courant algebroids can be
obtained from exact Courant algebroids by a reduction procedure described
in [2] and the heterotic T -duality from [2] was obtained as a reduction of
the T -duality for exact Courant algebroids [10]. Our approach is more direct
and makes no reference to exact Courant algebroids.

In our setting it is natural to relax the definition of a heterotic Courant
algebroid [2] by allowing as structure groups of the principal bundle not only
compact semi-simple Lie groups but any connected Lie group G such that

P1) Ad : G→ Aut(g, ⟨·, ·⟩g)0 is a covering for some invariant scalar product
⟨·, ·⟩g on g = LieG. (Equivalently, ad : g → Der(g, ⟨·, ·⟩g) is an isomor-
phism onto the Lie algebra of skew-symmetric derivations, cf. Remark
54.) As before, we restrict to scalar products of neutral signature.

The resulting Courant algebroids are transitive and the corresponding bun-
dles of quadratic Lie algebras G have the property

P2) ad : G → Der(G) is an isomorphism.

Proposition 90. The class of transitive Courant algebroids E →M over
simply connected manifolds for which the bundle of quadratic Lie algebras
G has the property P2 coincides with the above (relaxed) class of heterotic
Courant algebroids.

Proof. We first remark that the fibers (G, [·, ·]G , ⟨·, ·⟩G)|p, p ∈M , are all iso-
morphic to a fixed quadratic Lie algebra (g, ⟨·, ·⟩g). In fact, for a transitive
Courant algebroid E, any two fibers of G are related by parallel transport,
which preserves the tensor fields [·, ·]G and ⟨·, ·⟩G . Note that G satisfies P2 if
and only if g satisfies P1.

Let us fix a basis a basis in g. The connection ∇ in the bundle G
induces a connection in the bundle P of standard frames of G. A frame
is called standard if its structure constants and the Gram matrix of the
scalar product coincide with those of the underlying quadratic Lie alge-
bra (g, ⟨·, ·⟩g) with respect to the fixed basis in g. The structure group
of P is Aut(g, ⟨·, ·⟩g) and can be always reduced to the connected group
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Aut(g, ⟨·, ·⟩g)0 by holonomy reduction if M is simply connected. The prop-
erty P2 implies LieAut(g, ⟨·, ·⟩g)0 ∼= g and then G := Aut(g, ⟨·, ·⟩g)0 satisfies
P1. In that case we can rewrite the bundle G as the adjoint bundle with con-
nection induced from the connection in the principalG-bundle P . This shows
that E belongs to the (relaxed) class of heterotic Courant algebroids. □
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[13] M. Garćıa-Fernández: Ricci flow, Killing spinors and T-duality in gen-
eralized geometry, Adv. Math. 350 (2019), 1059–1108.

[14] M. Gualtieri, Generalized complex geometry, Ann. Math. 174 (1)
(2011), 75–123.

[15] M. Gualtieri, Generalized complex geometry, Ph.D thesis, University of
Oxford, 2004.
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