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1. Introduction

Geometric quantization deals with defining a quantum system corresponding
to a given classical system, usually given by the Hamiltonian formalism [25].
From its introduction, it has been deeply connected to representation theory
and the first application [15] was the orbit method: constructing irreducible
representations of a Lie group by quantizing its coadjoint orbits. Later on,
geometric quantization has been applied to flat bundle moduli spaces to
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produce projective representations of mapping class groups [14] [2], which
are of fundamental importance in quantum topology.

Besides these achievements, semiclassical methods for geometric quanti-
zation have been developed successfully after the seminal work [6], broaden-
ing the field of applications to any Hamiltonian of a prequantizable compact
symplectic manifold.

Our goal in this paper is to study a natural asymptotic representation
for the group of Hamiltonian diffeomorphisms, actually a central extension
of this group, defined in the context of geometric quantization. Here the ad-
jective “asymptotic” refers to the fact that our representation satisfies the
homomorphism equation up to an error small in the semiclassical limit. This
limitation is inherent to the analytical methods we use but is also meaning-
ful. Indeed, the simplicity of the group of Hamiltonian diffeomorphisms of
a compact symplectic manifold [3] imposes severe restrictions on the pos-
sible representations as was first noticed in [12]. This simplicity explains
that quasimorphisms are of big interest in symplectic topology [20]. Actu-
ally, our main result says that our asymptotic representation is controlled
at first order by a quasimorphism on the universal cover of Hamiltonian
diffeomorphism group introduced in [10], [22], [24].

1.1. The asymptotic representation

Let M be a symplectic compact manifold equipped with a prequantum line
bundle L. The quantum space will be defined as a subspace of C∞(M,L)
depending on some auxiliary data. Typically, this additional data is a holo-
morphic structure and the quantum space consists of the corresponding
holomorphic sections. The group we will work with is the group Preq of
prequantum bundle automorphisms of L. It acts naturally on C∞(M,L) by
push-forward, but without preserving the quantum space. To remedy this,
we will consider parallel transport in the bundle of quantum spaces along
some specific paths.

Recall first that L is a Hermitian line bundle over M equipped with
a connection ∇ whose curvature is 1

i
times the symplectic form ω. Any

complex structure j of M compatible with ω has a natural lift to a holo-
morphic structure of L determined by the condition that ∇ becomes the
Chern connection. Denote by Q(j) the corresponding space of holomorphic
sections of L. The prequantum bundle automorphisms of L are the vector
bundle automorphisms preserving the Hermitian structure and the connec-
tion. The push-forward by a prequantum bundle automorphism φ sends
Q(j) to Q(π(φ)∗j), where π(φ) is the diffeomorphism of M lifted by φ. The
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important observation is that if we were able to identify equivariantly the
various Q(j), we would have a representation of Preq.

One geometrical way to produce such an identification is to consider
each Q(j) as a fiber of a bundle over the space of complex structures and
to introduce a flat equivariant connection. To do this, it is more convenient
to work with the space J of almost complex structures of M compatible
with ω, because it is a smooth contractible (infinite dimensional) manifold.
Following [13], we can still define Q(j) for any j ∈ J as a sum of some
eigenspaces of a convenient Laplacian. Simplifying slightly, this defines a
vector subbundle Q → J of J × C∞(M,L). Then using the natural scalar
product of C∞(M,L), we obtain a connection of Q → J , sometimes called
the L2-connection. This connection is equivariant with respect to the action
of Preq, but unfortunately it is known not to be flat [11].

Still we will use this connection to construct a map

Ψ : Preq → U(H),(1)

where H = Q(j0), j0 being a given base point of J . We will need a partic-
ular family of paths of J which was introduced in [24]. For any two points
j0, j1 of J , for any x ∈M , j0(x) and j1(x) are linear complex structures
of (TxM,ωx). The space of linear complex structures of a symplectic vector
space has a natural Riemannian metric such that any two points are con-
nected by a unique geodesic, and in particular there is a unique geodesic
jt(x) joining j0(x) to j1(x). This defines a path (jt) of J that we call abu-
sively the geodesic from j0 to j1.

Let us now define the map Ψ. For any φ ∈ Preq, Ψ(φ) is the composi-
tion of the push-forward φ∗ : Q(j0) → Q(j1), j1 = π(φ)∗j0, with the parallel
transport along the geodesic joining j1 to j0.

The inspiration comes from the geometric construction of the quantum
representations of the mapping class group of a surface [14], [2]. The con-
nections used in these papers are projectively flat so that the resulting rep-
resentations are projective and the choice of paths does not matter. To the
contrary, our result will depend essentially on the choice of paths. The idea
to use these particular geodesics in the context of geometric quantization is
new.

Before we continue, let us introduce the semiclassical limit. For any
positive integer k, we replace in the previous definitions the bundle L by its
kth tensor power Lk, which defines Qk → J , Hk := Qk(j0) and

Ψk : Preq → U(Hk),(2)
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The semiclassical limit is the large k limit.
Let us emphasize that Qk → J is not a genuine vector bundle. But

this can be solved in the semiclassical limit [11]. Indeed, for any compact
submanifold N of J , there exists k0(N) such that the restriction of Qk to N
is a vector bundle when k ⩾ k0(N). Consequently, Ψk(φ) is well-defined only
when k ⩾ k0(φ). However for this introduction, we will keep our simplified
version.

1.2. Two invariants of symplectic geometry

Our main result regarding the mappings Ψk connects them with two in-
variants of symplectic topology, the Calabi-Weinstein morphism [28] and a
quasimorphism introduced by Shelukhin [24]. The Calabi-Weinstein mor-
phism is an invariant of automorphisms of a prequantum bundle over a
compact manifold, which is similar to the invariant introduced by Calabi [7]
for Hamiltonian diffeomorphims of an open symplectic manifold.

By the Kostant-Souriau prequantization theory [15] [25], the Lie algebra
of prequantum bundle infinitesimal automorphisms is naturally isomorphic
with the Poisson algebra of M . Let P(Preq) be the set of smooth paths of
Preq starting from the identity. To any such path (γt, t ∈ [0, 1]), we asso-
ciate a path (Ht) of C∞(M,R) representing the derivative (γ̇t) through the
Kostant-Souriau isomorphism, that we call the generating Hamiltonian of
γ.

For any path γ ∈ P(Preq) with generating Hamiltonian (Ht), we set

Cal(γ) =

∫ 1

0
dt

∫

M

Ht(x)dµ(x)(3)

where µ = ωn/n! is the Liouville measure. The map Cal factorizes to a mor-

phism from the universal cover P̃req
0
of the identity component Preq0 of

Preq, into R, already considered in [23].
The definition of the Shelukhin quasimorphism is more involved and will

be postponed to Section 4. Let us discuss its main properties. It is a map

Shj : H̃am → R(4)

defined for any compact symplectic manifold M equipped with an almost
complex structure j. Here H̃am is the universal cover of the Hamiltonian
diffeomorphism group of M . Moreover Shj is a quasi-morphism, i.e.

| Shj(αβ)− Shj(α)− Shj(β)| ⩽ C(5)
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for a constant C not depending on α, β. This condition is meaningful be-
cause the group H̃am being perfect [3], there exists no non trivial morphism

from H̃am to R. Shj is non trivial in the sense that its homogeneisation
Sh(α) := limℓ→∞ Shj(α

ℓ)/ℓ is not zero. This homogeneisation Sh is itself
a quasimorphism, it does not depend on j and it had been defined be-
fore for specific classes of symplectic manifolds in [10] and [22]. As a last
comment, the construction of Shj is soft in the sense that it does not use
pseudo-holomorphic curves. To the contrary, important quasimorphisms of
H̃am can be obtained from Floer theory [20]. For a general introduction to
quasimorphisms in symplectic topology, we refer the reader to [20].

1.3. Semiclassical results

Recall the well-known fact that the Hamiltonian diffeomorphisms of M are
precisely the diffeomorphisms that can be lifted to a prequantum bundle
automorphism isotopic to the identity. Furthermore, M being connected,
the lift is unique up to a constant rotation, so we have a central extension

1 → U(1) → Preq0
π−→ Ham → 1,(6)

where Preq0 is the identity component of Preq. So any path γ ∈ P(Preq)

defines a path π(γ) ∈ P(Ham) and consequently a class [π(γ)] in H̃am.

Theorem 1.1. Assume j0 is integrable. Then for any path γ ∈ P(Preq),
the variation vk(γ) of the argument of t 7→ detΨk(γt) is equal to

vk(γ) = −
( k

2π

)n((
k + λ′

)
Cal(γ) + 1

2 Shj0([π(γ)]) +O(k−1)
)

where 2n is the dimension of M and λ′ = n
2 [c1(M) ∪ c1(L)n−1]/[c1(L)

n
]

Interestingly, Shelukhin interpreted as well some related quasi-
morphisms on finite-dimensional Lie groups, as rotation numbers of deter-
minants [24, Section 1.9].

For the proof of Theorem 1.1, we use several remarkable results: on one
hand by [11], the curvature of Qk → J is given at first order by the scalar
curvature; on the other hand the definition of Shj is based on the action
of the group Ham of Hamiltonian diffeomorphisms on J , action which is
Hamiltonian with a momentum map given by the scalar curvature by [9].
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As a corollary, we will deduce that the lift of Ψk to the universal covers

Ψ̃k : P̃req
0
→ Ũ(Hk)(7)

is asymptotically a morphism. Introduce the geodesic distance d̃ of Ũ(Hk)
corresponding to the operator norm. This distance is controlled at large
scale by the lift of the determinant d̃et : Ũ(H) → R. More precisely, if the
dimension of H is N , then for any ũ, ṽ in Ũ(H), we have

∣∣d̃et ũ− d̃et ṽ
∣∣

N
⩽ d̃(ũ, ṽ) ⩽

∣∣d̃et ũ− d̃et ṽ
∣∣

N
+ 2π(8)

So the estimate of the argument variation in Theorem 1.1 and the fact that
Cal is a mophism and Shj a quasimorphism will show the following fact.

Corollary 1.2. There exists C > 0 such that for any γ1, γ2 ∈ P̃req
0
,

d̃(Ψ̃k(γ1)Ψ̃k(γ2), Ψ̃k(γ1γ2)) ⩽ C +O(k−1)(9)

with O(k−1) depending on γ1, γ2.

It is also interesting to compare the map Ψk with the quantum propa-
gator defined through Toeplitz quantization. For any f ∈ C∞(M,R), we let
Tk(f) be the endomorphism of Hk such that ⟨Tk(f)ψ, ψ′⟩ = ⟨fψ, ψ′⟩ for any
ψ, ψ′ ∈ Hk. Define the map

Φ̃k : P(Preq) → Ũ(Hk)(10)

as follows. Let γ ∈ P(Preq) with generating Hamiltonian (Ht). Solve the
Schrödinger equation

U ′
t =

k

i
Tk(Ht)Ut, U0 = idHk

.(11)

where (Ut) ∈ C∞([0, 1],U(Hk)). Lift the path (Ut) to a path (Ũt) of Ũ(Hk)
starting at the identity element. And set Φ̃k(γ) := Ũ1.

If we have two families (gk, hk ∈ Ũ(Hk), k ∈ N), we write gk = hk +
O(rk) to say that d̃(gk, hk) = O(rk).

Theorem 1.3. For any path γ in P(Preq), Φ̃k(γ) = Ψ̃k([γ]) +O(1) with a
O depending on γ.
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As a consequence if γ, γ′ ∈ P(γ) are homotopic with fixed endpoints,
then

Φ̃k(γ) = Φ̃k(γ
′) +O(1).(12)

Furthermore by Corollary 1.2,

Φ̃k(γ1γ2) = Φ̃k(γ1)Φ̃k(γ2) +O(1).(13)

Actually it could be possible to deduce (12) and (13) directly from the
commutator estimate

[
Tk(f), Tk(g)

]
= (ik)−1Tk({f, g}) +O(k−2).

The slight difference between Ψ̃k and Φ̃k is that the O(1) in (13) depends
on γ1, γ2, whereas in (9) only the O(k−1) depends on γ1, γ2. Actually, (12)
and (13) still hold if we modify Φ̃k by a O(1). For instance, we can use any
quantization T ′

k such that T ′
k = Tk +O(k−1). Or we can define Φ̃k through

the L2-connection by using arbitrary paths in J . On the contrary, we can
not modify Ψ̃k arbitrarily by a O(1) and still having Corollary 1.2. So we
can view Ψ̃k as a specific choice amongst all the maps in Φ̃k +O(1), such
that (9) holds.

As a last remark, observe that by composing the maps Φ̃k, Ψ̃k with the
projection Ũ(Hk) → U(Hk), we do not obtain anything interesting because
the diameter of U(N) for the geodesic distance associated to the uniform
norm, is bounded independently of N . So any family in U(Hk) is in O(1).

1.4. Structure of the article

Because our results are essentially on the quantization of prequantum bun-
dle automorphisms, Section 2 will be devoted to the group Preq and the
universal cover of its identity component. We will prove that

P̃req
0
≃ R× H̃am

the isomorphism being the product of the Calabi-Weinstein morphism and
the lift of the projection Preq0 → Ham. We will also show that the central
extension (6) is essentially controlled by the Weinstein action morphism
π1(Ham) → U(1).

Section 3 is devoted to the geodesic distance of the universal cover of
the unitary group induced by the uniform norm. We will prove estimate
(8), compute explicitly the distance, and show that the distance between
the identity and a point is always achieved by a one-parameter semi-group.
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This does not follow from general results in Finsler geometry because the
uniform norm is not sufficiently regular. Our proof is actually based on a
theorem by Thompson [26], which follows itself from the Horn conjecture.

In Section 4, we give more details on the definition of the maps Ψk.
Theorem 1.1 is proved in Section 5. Corollary 1.2 and Theorem 1.3 are
proved in Section 6.

2. Prequantum bundle automorphisms

We study the geometry of the central extension (6). In a first subsection,
we introduce a similar finite dimensional extension with genuine Lie groups,
which despite of its simplicity, already has the main features. These exten-
sions are also relevant because they appear in our setting when we restrict
the Hamiltonian diffeomorphisms group to the subgroup of isometries for
a given metric. The case of projective manifolds and more generally toric
manifolds has been studied in the literature, as will be explained in the sec-
ond subsection. In the third subsection, we prove more specific results on the
Calabi-Weinstein morphism and the universal covers of Preq0 and Ham. In
the last subsection, we explain the relation with the usual Calabi morphism.

2.1. A finite-dimensional model

Consider a central extension G of a Lie group H by U(1). In other words we
have an exact sequence of Lie group morphisms

1 → U(1) → G
π−→ H → 1.(14)

such that U(1) is sent in the center of G. We assume as well that H and
G are connected and that the corresponding exact sequence of Lie algebras
0 → R → g → h → 0 splits. So g ≃ R⊕ h with a Lie bracket of the form

[(s, ξ), (t, η)]g = (0, [ξ, η]h).

Assume for a moment that there exists a group morphism σ : H → G
integrating the Lie algebra morphism h → g, ξ 7→ (0, ξ). Then (14) splits.
Indeed, σ ◦ π = idH because the derivative of σ ◦ π is the identity of h and
H is connected. This implies that U(1)×H → G, (θ, g) → θσ(g) is an iso-
morphism with inverse the map sending g into (gσ(π(g))−1, σ(π(g))).

In general, by Lie’s second Theorem, there exists a unique Lie group
morphism σ̃ from the universal cover H̃ ofH to G integrating the Lie algebra
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morphism h → g, ξ 7→ (0, ξ). The derivative of σ̃ ◦ π being the identity of h,
σ̃ ◦ π is the projection of H̃ onto H. So there exists a unique morphism
A : π1(H) → U(1) such that the following diagram commutes.

1 −−−−→ π1(H) −−−−→ H̃ −−−−→ H −−−−→ 1
yA

yσ̃
∥∥∥

1 −−−−→ U(1) −−−−→ G
π−−−−→ H −−−−→ 1.

(15)

Observe that the previous morphism σ exists if and only if σ̃(π1(H)) = {1G}
if and only if A is trivial. If σ does not exist, introduce the subgroup K :=
σ̃(H̃) of G as a replacement of σ(H). Then by an easy diagram chase in
(15), we have first that

1 → kerA→ H̃
σ̃−→ K → 1,

so H̃ is the universal cover of K and π1(K) ≃ kerA. Second,

1 → ImA→ K
π−→ H → 1

so K is a central extension of H by ImA.
The typical example is G = U(n) with its subgroup U(1) of diagonal

matrices so that H = U(n)/U(1) = PU(n). Since the projection SU(n) →
PU(n) is the universal cover, we get an identification between the Lie alge-
bras of PU(n) and SU(n). We have u(n) = R⊕ su(n) as required and the
group morphism σ̃ : SU(n) → U(n) is merely the inclusion. So A is the em-
bedding Z/nZ →֒ U(1) and K = SU(n).

Another thing that can be done in general is to introduce the isomor-
phism of the universal covers

G̃ ≃ R× H̃(16)

corresponding to the isomorphism of Lie algebras g ≃ R⊕ h. Observe that
the morphisms σ̃ and A can be recovered from (16). Indeed σ̃ is the compo-
sition of H̃ → G̃, h→ (0, h) with the projection G̃→ G.

2.2. Diffeomorphism group

Let (M,ω) be a connected compact symplectic manifold and Ham be its
group of Hamiltonian diffeomorphism. Assume M is equipped with a pre-
quantum bundle P →M and let Preq be the the group of prequantum
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bundle automorphisms of P . The precise definition will be given in Section
2.3. For now recall the exact sequence of groups

1 → U(1) → Preq0
π−→ Ham → 1,(17)

where the projection π sends a prequantum bundle automorphism φ of P
to the diffeomorphism of M lifted by φ. Furthermore, it is a well-known
fact due to Kostant and Souriau that the Lie algebra of infinitesimal pre-
quantum bundle automorphisms of P is isomorphic with C∞(M,R), the Lie
bracket being sent to the Poisson bracket. The Lie algebra exact sequence
corresponding to (17) is

0 → R → C∞(M,R) → C∞(M,R)/R → 0.

It has a natural splitting

C∞(M,R)/R ≃ C∞
0 (M,R)

where C∞
0 (M,R) is the subalgebra of C∞(M,R) consisting of the functions

f having a null average with respect to the Liouville measure.
So we are exactly in the situation described in Section 2.1 except that

Preq and Ham are infinite-dimensional Lie groups. These groups do not
have all the good properties of Lie groups, notably they may have elements
arbitrarily close to the identity and not belonging to any one-parameter
subgroup, cf. the remarkable general introduction [19] and [21] for results
specific to Ham. However, the constructions presented in Section 2.1 can be
extended to our situation. In particular, we have an isomorphism

P̃req
0
≃ R× H̃am.(18)

Here the universal covers will be very concretely defined as quotients of path
groups of Preq and Ham, and the isomorphism will be given by integrating
the generating vector fields. The details will be given in the next section.

The morphism Cal : P̃req
0
→ R given by the projection on the first fac-

tor in (18) will be called the Calabi-Weinstein morphism and has already
been considered in [23]. Its relation with the usual Calabi morphism will be
explained in Section 2.4.

The obstruction A : π1(Ham) → U(1) to the splitting of (17) can be de-
fined from (18) as explained at the end of Section 2.1. This morphism A is
actually known in the symplectic topology literature as the Weinstein action
homomorphism and was introduced in [28].
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When M has a complex structure j compatible with ω, so that M is
Kähler, we can also introduce the subgroup H of Ham consisting of the
holomorphic Hamiltonian diffeomorphisms, and the subgroup G of Preq
consisting of the automorphisms lifting an element of H. The groups G
and H are genuine Lie groups and satisfy all the assumptions of Section
2.1. The corresponding morphism Aj : π1(H) → U(1) is the composition of
A : π1(Ham) → U(1) with the map π1(H) → π1(Ham) induced by the inclu-
sion H ⊂ Ham.

For instance, if M is the projective space CP(n) with its standard sym-
plectic, complex and prequantum structures, then we recover the example
discussed in Section 2.1 where G = U(n+ 1), H = PU(n+ 1). We deduce
that Z/(n+ 1)Z embeds into π1(Ham), a well-known fact. More generally,
the morphism Aj is discussed in [18] for toric manifolds. It is proved that in
most cases, Aj is injective and its image is not finite, [17, Corollary 2.4 and
Proposition 2.5]. So in all these cases, π1(H) ⊂ π1(Ham) and the image of
A is not finite.

2.3. P̃req
0

, H̃am and the Calabi-Weinstein morphism

Consider a compact connected symplectic manifold (M,ω). Our sign con-
vention for the Hamiltonian vector field X of f ∈ C∞(M,R) and the Poisson
bracket is

ω(X, ·) + df = 0, {f, g} = X.g.

Let µ = ωn/n! be the Liouville volume form. A Hamiltonian f ∈ C∞(M,R)
is normalised if

∫
M
f µ = 0.

Let P(Ham) be the group of smooth paths of Ham based at the identity
element, the law group being the pointwise product. Associating each path
(ϕt) of Ham to its generating vector field Xt,

d

dt
ϕt(x) = Xt(ϕt(x)), x ∈M, t ∈ [0, 1]

we obtain a one-to-one correspondence between P(Ham) and the space of
time-dependent Hamiltonians f ∈ C∞([0, 1]×M,R) which are normalised at

each time t. As customary in symplectic topology, the group H̃am is defined
as the quotient of P(Ham) by the relation of being smoothly homotopic with
fixed endpoints, cf. [20] and [4].

Assume now that M is equipped with a prequantum bundle P →M ,
that is a U(1)-principal bundle over M endowed with a connection form
α ∈ Ω1(P,R) such that dα+ π∗ω = 0. Here we identify the Lie algebra of
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U(1) with Herm(1) = R. So if ∂θ is the infinitesimal generator of the U(1)-
action corresponding to 1, we have that α(∂θ) = 1 and L∂θα = 0.

An infinitesimal automorphism of P is a vector field of P commuting
with the U(1)-action and preserving α. Any such vector field Y has the
form

Y = Xhor − (π∗f)∂θ(19)

where f ∈ C∞(M,R), X is the corresponding Hamiltonian vector field and
Xhor is the lift of X such that α(Xhor) = 0. The map sending Y to f is an
isomorphism from the space of prequantum infinitesimal automorphims of
P to C∞(M,R). The Lie bracket is sent to the Poisson bracket.

The prequantum bundle automorphisms of P are by definition the dif-
feomorphisms of P preserving α and commuting with the U(1)-action. The
identity component Preq0 is a central extension of Ham by U(1), cf. (17).
The embedding U(1) →֒ Preq is given by the action of the structure group
of P . The proofs of the previous claims starting from (19) may be found in
[5, Section 7.1].

As for the Hamiltonian diffeomorphisms, let P(Preq) be the group of
smooth paths of prequantum bundle automorphisms based at the identity.
To any (γt) in P(Preq), we associate its generating vector field (Yt) and the
corresponding time-dependent Hamiltonian (ft) through (19). This defines
a bijection between P(Preq) and C∞([0, 1]×M,R).

We define P̃req
0
as the quotient of P(Preq) by the relation of being

smoothly homotopic with fixed endpoints. To handle the difference between

P̃req
0
and H̃am, we will need the following Lemma.

Lemma 2.1. Let (γst , (t, s) ∈ [0, 1]2) be a smooth family in Preq such that
for any s ∈ [0, 1], γs0 is the identity map of P and γs1 lifts the identity map
of M . For any s ∈ [0, 1], set

C(s) =

∫ 1

0

(∫

M

f st µ
)
dt

where (f st , t ∈ [0, 1]) is the Hamiltonian generating (γst , t ∈ [0, 1]) . Then s 7→
C(s) is constant if and only if s 7→ γs1 is constant.

Proof. Let (gst ) be the smooth family in C∞(M,R) such that for any t ∈ [0, 1],
(gst , s ∈ [0, 1]) is the Hamiltonian generating (γst , s ∈ [0, 1]). Then

1) gs0 = 0 because γs0 is the identity.
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2) gs1 =: D(s) ∈ R because γs1 lifts the identity of M

3) ∂f st /∂s− ∂gst /∂t =
{
f st , g

s
t

}
, as a consequence of the differential ho-

motopy formula, cf . [3, Proposition I.1.1.]

Using that
∫
M
{f st , gst }µ = 0, we obtain

C ′(s) =

∫ 1

0

∫

M

∂f st
∂s

µ dt =

∫ 1

0

∫

M

∂gst
∂t

µ dt =

∫ 1

0

∂

∂t

(∫

M

gstµ
)
dt

=

∫

M

gs1µ−
∫

M

gs0µ = Vol(M)D(s)

which concludes the proof. □

Introduce the group morphism

R : R → P̃req
0

lifting the embedding of U(1) into Preq. More explicitly, R(τ) is the class
of the path t ∈ [0, 1] 7→ eitτ . The image of R is contained in the center of

P̃req
0
.

Define the map Cal from P(Preq) to R by

Cal(γt) =

∫ 1

0

(∫

M

ftµ
)
dt

where (ft) is the Hamiltonian generating (γt). As we will see, Cal factorizes

to P̃req
0
which defines our Calabi-Weinstein morphism.

Proposition 2.2.

1) Cal is a group morphism, which factorizes to a morphism Cal from
Preq0 to R.

2) for any τ , Cal(R(τ)) = −τ Vol(M).

3) Cal(γ) = 0 if and only if γ has a representative whose generating
Hamiltonian (ft) is normalised, that is

∫
M
ftµ = 0, for every t ∈ [0, 1].

Proof. To check that Cal(γtγ
′
t) = Cal(γt) + Cal(γ′t), one first computes the

generating Hamiltonians of (γtγ
′
t) in terms of the generating Hamiltonian of
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(γt) and (γ′t):

(ft) ⋆ (f
′
t) = (ft + f ′t ◦ α−1

t )(20)

where αt is the Hamiltonian flow of (ft). The same proof for the Calabi mor-
phism is presented in [20, Theorem 4.1.1]. The fact that Cal(γt) = Cal(γ′t)
when (γt) and (γt) are smoothly homotopic with fixed endpoints, follows
from Lemma 2.1.

By (19), the Hamiltonian generating the path R(τ) is the constant func-
tion f = −τ , so Cal(R(τ)) = −τ Vol(M).

Let (γt) ∈ P(Preq) with generating Hamiltonian (ft). Let θ : [0, 1] →
R be a smooth function. Then the generating Hamiltonian of (eiθ(t)γt) is
ft − θ′(t). This Hamiltonian is normalized if we define θ by

θ(t) =

∫ t

0

(∫

M

ftµ
)
dt.

Furthermore, when Cal(γt) = 0, we have θ(0) = θ(1) = 0, so that (γt) and
(eiθ(t)γt) are smoothly homotopic with fixed endpoints. □

The projection π : Preq0 → Ham induces a group morphism

π : P̃req
0
→ H̃am.

We can also define a left inverse

L : H̃am → P̃req
0

by sending the class of a path (φt) to the class of the path (γt) lifting (φt)
and having a normalized generating Hamiltonian.

Proposition 2.3.

1) L is well-defined, it is a group morphism,

2) π ◦ L is the identity of H̃am, the image of L is the kernel of the Calabi-
Weinstein morphism,

3) the kernel of π is the image of R.

Proof. The path (γt) certainly exists because it is the flow of the vector
field associated to the normalized generating Hamiltonian of (φt). The fact
that the class of (γt) only depends on the class of (φt) follows from Lemma
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2.1. L is a group morphism because the product of normalized Hamiltonians
corresponding to the product of P(Ham) is also given by formula (20).

The identity π ◦ L = id
H̃am

is obvious, the assertion on the image of L
is the third assertion of Proposition 2.2.

For the last point, the image of R is certainly contained in the kernel of π.
To show the converse, consider (γt) ∈ P(Preq) with generating Hamiltonian
(ft). Write ft = θ(t) + gt where for any t, θ(t) ∈ R and gt is normalized. Then
[γt] = R(τ)L(φt) with τ = −

∫ 1
0 θ(t)dt and (φt) the path of Ham generated

by (gt). Now π(γt) = 0 implies that [φt] = 0 because π ◦ L = id
H̃am

. □

We deduce that the groups P̃req
0
and H̃am× R are isomorphic.

Corollary 2.4. The group isomorphisms

P̃req
0
→ H̃am× R H̃am× R → P̃req

0

g 7→ (π(g),Cal(g)), (h, τ) 7→ L(h)R
(
−τ Vol(M)

)

are inverse of each other.

2.4. The Calabi morphism

Let x ∈M . Introduce the subgroup Hamx of Ham consisting of the Hamil-
tonian diffeomorphisms fixing x, and the subgroup Preqx of Preq consisting
of the prequantum bundle automorphisms fixing the fiber Px. We claim that
the morphism Preqx → Hamx, γ 7→ π(γ) is an isomorphism. The injectivity
follows directly from the exact sequence (17). The surjectivity is a conse-
quence of the connectedness of Hamx. This can be proved by using the long
exact sequence for homotopy groups associated to the fibration Ham →M ,
ϕ 7→ ϕ(x), and the fact that the morphism π1(Ham) → π1(M) is trivial, a
folk Theorem according to [17, Footnote 3].

Since Hamx and Preqx are isomorphic, the same holds for their universal
covers and composing with the Calabi-Weinstein morphism introduced in
Proposition 2.2, we obtain a morphism H̃amx → R.

Introduce now the open set U =M \ {x} and let Hamc(U) be the group
of compactly supported Hamiltonian diffeomorphisms of U . This group is a
subgroup of Hamx, so we get a morphism H̃amc(U) → H̃amx, which after

composition with the previous morphism gives us H̃amc(U) → R. This mor-
phism is the usual Calabi morphism, defined for instance in [20, Section 4.1].
Indeed, both are defined by the same formula.
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3. Geodesic distance induced by operator norm

We start with geodesic distance of the unitary group. The results are cer-
tainly standard but we do not know any reference. The second subsection is
devoted to the universal cover of the unitary group.

3.1. The unitary group

Let H be a finite-dimensional Hilbert space. We denote by U(H) and
Herm(H) the spaces of unitary and Hermitian endomorphisms of H respec-
tively. We consider Herm(H) as the Lie algebra of U(H). Denote by ∥A∥ the
operator norm of any endomorphism A of H. We define for any piecewise
C1 curve γ : [a, b] → U(H), its length

L(γ) =

∫ b

a

∥γ′(t)∥ dt(21)

and the corresponding distance in H

d(u, v) = inf{L(γ); γ is a piecewise C1 curve with endpoints u, v}.

Since ∥γ′(t)∥ = ∥γ(t)−1γ′(t)∥, this distance is the geodesic distance of U(H)
for the invariant Finsler metric corresponding to the operator norm. There
is a large literature on Finsler geometry, but it does not say anything about
d because the operator norm is not regular enough to apply the variational
method. So we have to study d from its definition.

We easily see that L is invariant under reparameterization and that
d is symmetric and satisfies the triangle inequality. Since ∥ · ∥ is left and
right-unitarily invariant, we have for any g ∈ U(H), L(γ) = L(γg) = L(gγ).
Furthermore L(γ) = L(γ−1). Consequently

d(u, v) = d(gu, gv) = d(ug, vg) = d(u−1, v−1).

Let us compute explicitly d(u, v), which will prove that d is non-degenerate
in the sense that d(u, v) = 0 only when u = v.

Proposition 3.1. For any u, v ∈ U(H),

d(u, v) = max | arg λi|(22)
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where the λi’s are the eigenvalues of u−1v and arg is the inverse of the map
from ]− π, π] to U(1) sending θ to eiθ. So we have

∥u− v∥ ⩽ d(u, v) ⩽
π

2
∥u− v∥(23)

As a last remark, observe that the diameter of U(H) is π.

Proof. Since d(u, v) = d(1, u−1v), without loss of generality, we may assume
that u = 1. Working with an orthonormal eigenbasis of v, we construct ξ ∈
Herm(H) such that exp(iξ) = v and ∥ξ∥ ⩽ π. The length of the curve [0, 1] ∋
t 7→ exp(itξ) is ∥ξ∥ = max |θj | with θj = arg λj . So d(1, v) ⩽ max |θj |.

Conversely, choose a normalised eigenvector Xj of v with eigenvalue eiθj .
Consider any curve γ : [a, b] → U(H) from 1 to v. Set X(t) = γ(t)Xj . Since
X(b) = eiθjX(a), the geodesic distance in the unit sphere of H between X(b)
and X(a) is |θj |. So

|θj | ⩽
∫ b

a

∥X ′(t)∥ dt ⩽
∫ b

a

∥γ′(t)∥ dt = L(γ)

So |θj | ⩽ d(1, v) for any j, so max |θj | ⩽ d(1, v).
To prove (23), we can again assume that u = 1. Clearly, ∥v − 1∥ =

max |λj − 1|. Then observe that for λ = eiθ, |λ− 1| = 2| sin(θ/2)| so if θ ∈
[−π, π], we get that |λ− 1| ⩽ |θ| ⩽ π

2 |λ− 1|. □

3.2. Universal cover of U(H)

The universal cover Ũ(H) of the unitary group U(H) of the finite-
dimensional Hilbert space H can be realised as the subgroup of U(H)× R

consisting of the pairs (u, φ) such that detu = eiφ. Note that the determi-
nant map from U(H) to U(1) lifts to the map

d̃et : Ũ(H) → R, d̃et(u, φ) = φ

Endowing Herm(H) with the operator norm, we define the length of the
curves of Ũ(H). So writing γ̃ : [a, b] → Ũ(H) in the form γ̃(t) = (γ(t), φ(t)) ∈
U(H)× R, the length of γ̃ is equal to the length (21) of γ. Then for any
ũ, ṽ ∈ Ũ(H), we define d̃(ũ, ṽ) as the infimum of the lengths of the curves
connecting ũ and ṽ. The situation is exactly the same as for d: we easily
prove that d̃ is symmetric, satisfies the triangle inequality, is left and right
invariant. But it is a priori not clear that d̃ is non degenerate.
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Let ũ = (u, φ) and ṽ = (v, ψ). The curves of Ũ(H) connecting ũ and ṽ
can be identified with the curves of U(H) connecting u and v and such that
the angle variation1 of their determinant if ψ − φ. So

d(u, v) ⩽ d̃(ũ, ṽ).(24)

Furthermore using that for any curve γ of U(H), the logarithmic derivative
of det(γ(t)) is tr(γ−1(t)γ′(t)) and that for any Hermitian matrix, | tr(A)| ⩽
N∥A∥ where N = dimH, we get

|ψ − φ|
N

⩽ d̃(ũ, ṽ).(25)

The inequalities (24) and (25) imply that d̃ is non-degenerate.
We are now going to compute explicitly the distance from ũ = (u, φ)

to ṽ = (v, ψ). Denote by λi, i = 1, . . . , N the eigenvalues of vu−1. Let (Xi)
be an associated orthonormal eigenbasis. Introduce the (N − 1)-dimensional
affine lattice of RN

R = {θ ∈ RN ; eiθj = λj , ∀j and
∑N

j=1 θj = ψ − φ
}

For any θ ∈ R, letH ∈ Herm(H) be such thatHXj = θjXj . Then exp(iH) =
vu−1 and trH = ψ − φ, so the curve

[0, 1] → Ũ(H), t 7→ (eitHu, φ+ t trH)

goes from (u, φ) to (v, ψ). Its length is ∥H∥ = max |θi|. This proves that

d̃((u, φ), (v, ψ)) ⩽ m with m = min
{

max
i=1,...,n

|θi|; θ ∈ R
}

(26)

By Proposition 3.3 below, we actually have an equality. So there exists a
length minimizing curve (γ(t), φ(t)) connecting (u, φ) to (v, ψ) such that
γ−1(t)γ′(t) is constant.

We first prove the following partial result, which is actually sufficient for
our applications.

1the angle variation of a curve z : [a, b] → U(1) is −i
∫
b

a
z′(t)/z(t) dt.
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Proposition 3.2. We have

d̃(ũ, ṽ) ⩽
π

2N
⇒ d̃(ũ, ṽ) = d(u, v) = m

with N = dimH. Furthermore

|ψ − φ|
N

⩽ d̃(ũ, ṽ) ⩽
|ψ − φ|
N

+ 2π

Proof. Assume that d̃(ũ, ṽ) ⩽ π/(2N). By Proposition 3.1, d(u, v) = max |θj |
where θj = arg λj . By (24), d(u, v) ⩽ π/2N , so |θj | ⩽ π/2N and conse-
quently |

∑
θj | ⩽ π/2. By (25), |ψ − φ| ⩽ π/2. Since ψ − φ =

∑
θj modulo

2π, we deduce that ψ − φ =
∑
θj , that is (θi) ∈ R. Since |θi| ⩽ π/2 for any

i, we have d(u, v) = max |θi| = m, which proves the first part.

The second part will follows from m ⩽
|ψ−φ|
N

+ 2π. Denote by dN the
distance of RN associated to the sup norm, so m = dN (0, R). Let α =
ψ−φ
N

(1, . . . , 1). Then m ⩽ dN (0, α) + dN (α,R) =
|ψ−φ|
N

+ dN (0, R− α). Now
R− α is an affine lattice of the hyperplane {

∑
θi = 0} having the form

R− α = β +
⊕N−1

j=1 Zfj

for some β ∈ RN , with fj = 2π(ej − ej+1), (ej) being the canonical basis of
RN . Hence R− α contains a point β′ =

∑
xifj with |xj | ⩽ 1/2. So dN (0, R−

α) ⩽ dN (0, β
′) ⩽ 2π. □

Proposition 3.3. We have d̃((u, φ), (v, ψ)) = m.

The proof is based on the Thompson theorem [26], which is not quite
an elementary result because it follows from the Horn conjecture. The idea
to apply Thompson theorem comes from the paper [1] where the geodesic
distance of the unitary group associated to the Schatten norms is computed.

Proof. We prove the result by induction on k where

d̃((u, φ), (v, ψ)) ⩽ k
π

2N

For k = 1, this was the first part of Proposition 3.2. Without loss of gener-
ality, we may assume that (u, φ) = (1, 0). Assume that

k
π

2N
< d̃((1, 0), (v, ψ)) ⩽ (k + 1)

π

2N
(27)

Let S = {g ∈ Ũ(H)| d̃((1, 0), g) = π/2N}. Endow Ũ(H) with the subspace
topology of U(H)× R. By (24) and (25), d̃ is continuous and S is compact.
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So there exists (w, ξ) in S such that d̃((w, ξ), (v, ψ)) = d̃(S, (v, ψ)). We claim
that

d̃((1, 0), (v, ψ)) =
π

2N
+ d̃((w, ξ), (v, ψ))(28)

Indeed, the left-hand side is smaller than the right-hand side by triangle
inequality. Conversely, if g(t) is any curve from (1, 0) to (v, ψ), by continuity
of the function t 7→ d̃((1, 0), g(t)), g meets S at a point g(t0). So the length
of γ is larger than d̃((1, 0), g(t0)) + d̃(g(t0), (v, ψ)) ⩾

π
2N + d̃(S, (v, ψ)), which

concludes the proof of (28).
By (27) and (28), we have that d̃((w, ξ), (v, ψ)) ⩽ kπ/2N . Assume that

the result is already proved for (w, ξ), (v, ψ). So there exists H ∈ Herm(H)
such that

∥H∥ = d̃((w, ξ), (v, ψ)), eiH = vw−1, trH = ψ − ξ.

By the first part of Proposition 3.2, there exists H ′ ∈ Herm(H) such that

∥H ′∥ =
π

2N
, eiH

′

= w, trH ′ = ξ.

So v = eiHeiH
′

. By the Thompson Theorem [26], there exists K ∈ Herm(H)
such that eiK = v and K = UHU∗ + V H ′V ∗ for two unitary endomor-
phisms U , V of H. Hence trK = trH + trH ′ = ψ. This implies by (26)
that d̃((1, 0), (v, ψ)) ⩽ ∥K∥. On the other hand, ∥K∥ ⩽ ∥H∥+ ∥H ′∥ =
d̃((1, 0), (v, ψ)) by (28). Hence

d̃((1, 0), (v, ψ)) = ∥K∥.

So the curve [0, 1] ∋ t 7→ etK is a length minimizing curve from (1, 0) to
(v, ψ). □

4. The map Ψk : Preq → U(Hk)

Space of complex structures

Let E be a finite dimensional symplectic vector space. Let J (E) be the
space of linear complex structures j of E which are compatible with the
symplectic form ω of E in the sense that ω(jX, jY ) = ω(X,Y ) for any X, Y
in E and ω(X, jX) > 0 for any X ∈ E \ {0}. The space J (E) is isomorphic
to the Siegel upper half-space Sp(2n)/U(n). It has a natural Kähler metric
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defined as follows. First J (E) is a submanifold of the vector space End(E)
and

TjJ (E) = {a ∈ End(E)| ja+ aj = 0, ω(a·, j·) + ω(j·, a·) = 0}

The symplectic form of TjJ (E) is given by σj(a, b) =
1
4 tr(jab). The complex

structure of TjJ (E) is the map sending a to ja. The corresponding Rieman-
nian metric of J (E) has the property that any two points are connected by
a unique geodesic.

Consider now a compact symplectic manifold M and J be the space
of (almost) complex structures of M compatible with the symplectic form.
Then J may be considered as an infinite dimensional manifold, whose tan-
gent space at j consists of the sections a of EndTM such that at any point
x of M , a(x) belongs to Tj(x)J (TxM). Define the symplectic product

σj(a, b) =

∫

M

σj(x)(a(x), b(x))µ(x), ∀a, b ∈ TjJ .(29)

For any j ∈ J , introduce the Hermitian scalar curvature S(j) ∈ C∞(M,R)
defined as follow. The canonical bundle ∧n,0j T ∗M has a natural connection

induced by j and ω. Then S(j)ωn = nρωn−1, where ρ is −i times the curva-
ture of ∧n,0j T ∗M . As was observed by Donaldson in [9], the action of HamM
on J is Hamiltonian with momentum −S(j). The sign convention for the
momentum is different from ours in [9].

Shelukhin quasi-morphism

Fix j0 ∈ J (M). For any [φt] ∈ H̃am with generating Hamiltonian (Ht), let
jt = (φt)∗j0. Let (gt, t ∈ [0, 1]) be the curve of J joining j1 to j0 such that
for any x ∈M , s 7→ gs(x) is the geodesic joining j1(x) to j0(x). In the sequel
we call (gt) the geodesic joining j1 to j0. Let D be any disc of J bounded
by the concatenation (ℓt) of (jt) and (gt). Set

Shj0([φt]) =

∫

D

σ +

∫ 1

0

(∫

M

S(Jt)Htµ
)
dt(30)

More precisely, viewing D as a smooth family in discs Dx ⊂ J (TxM), the
first integral is

∫
M

(∫
Dx
σx

)
µ(x) where σx is the symplectic form of J (TxM).

Observe also that J (TxM) being contractible,
∫
Dx
σx does not depend on

the choice of Dx. A possible choice for Dx is the map sending r exp(2πit) to
the point with coordinate r of the geodesic joining j0(x) to ℓt(x).
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The map introduced in [24] is n! Shj0 , and the scalar curvature is defined
with the opposite sign. By this paper, Shj0 is well-defined, that is the right-
hand side of (30) only depends on the homotopy class of (φt), and Shj0 is a
quasimorphism (5).

A quantum bundle on J

Assume now that M is endowed with a prequantum line bundle L→M , so
the connection ∇ of L has curvature 1

i
ω. Let j ∈ J and k ∈ N. Then j and

ω induce a metric on T ∗M , so that we can define the adjoint of

∇Lk

: C∞(M,Lk) → Ω1(M,Lk).

Let ∆k(j) = (∇Lk

)∗j∇Lk

be the Laplacian acting on C∞(M,Lk). Define
Qk(j) as the subspace of C∞(M,Lk) spanned by the eigenvectors of ∆k(j)
whose eigenvalue is smaller than nk +

√
k. We would like to think of Qk(j)

as the fiber at j of a vector bundle Qk →M . But Qk is not a genuine vector
bundle: for instance the dimension of Qk(j) depends on j.

Nevertheless, as shown in [11], [16], ∆k(j) has the following spectral
gap: there exists positive constants C1, C2 independent of k such that the
spectrum of ∆k − nk is contained in (−C1, C1) ∪ (kC2,∞). Here, C1 and C2

remain bounded when j runs over a bounded subset of J in C3-topology.
Furthermore, the dimension of the subspace spanned by the eigenvectors
with eigenvalue in (−C1, C1) is equal to

∫
M

exp(kω/(2π)) ToddM when k
is sufficiently large.

Now, choose any compact submanifold S of J , that is a smooth family
in J indexed by a (finite-dimensional) compact manifold (possibly with
boundary). Then by the above spectral gap, there exists a constant k(S),
such that when k is larger than k(S), the restriction of Qk to S is a vector
bundle. Furthermore Qk → S being a subbundle of the trivial vector bundle
S × C∞(M,Lk), it has a natural connection ∇Qk = Πk ◦ d where d is the
usual derivative and Πk(j) is the orthogonal projection from C∞(M,Lk)
onto Qk(j). The main result of [11] (Theorem 2.1) is that the curvature Rk
of ∇Qk has the form

Rk(a, b) = −1

2
Πkσj(a, b) +O(k−1), a, b ∈ TjJ(31)

where σj(a, b) is the symplectic product defined in (29), the O depending
on j, a and b.
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The map Ψk : Preq → U(Hk) and its lift

Consider the group Preq of prequantum bundle automorphism of L acting on
C∞(M,Lk) by push-forward. If φ ∈ Preq and j ∈ J , then φ∗ intertwines the
Laplacians ∆k(j) and ∆k(π(φ)∗(j)) where π(φ) is the symplectomorphism of
M lifted by φ. So φ∗ restricts to a unitary map from Qk(j) to Qk(π(φ)∗(j)).

Let j0 be a fixed complex integrable structure. For any k, set Hk :=
Qk(j0). Let φ ∈ Preq, j1 = π(φ)∗j0 and g be the geodesic segment joining
j0 and j1. Assume that k is larger than k(g) and let Tk : Qk(j1) → Qk(j0)
be the parallel transport from j1 to j0 along g. When k is larger than k(g),
we set Ψk(φ) := Tk ◦ φ∗ ∈ U(Hk).

We lift Ψk to a map

Ψ̃k : P(Preq) → Ũ(Hk)(32)

in such a way that for any path γ = (γt), Ψ̃k(γ) is the endpoint of the lift of
t 7→ Ψk(γt). More precisely, let jt = π(γt)∗j0 and let S be a surface of J (M)
containing the geodesic segments joining j0 to jt for any t ∈ [0, 1]. Then
when k is larger than k(S), the parallel transport in Qk along these geodesic
segments is well-defined and the resulting map Ψk(γt) depends continuously
on t ∈ [0, 1]. So it can be lifted to Ũ(Hk).

The map Ψ̃k almost factorizes to a map from P̃req to Ũ(Hk). Indeed, for
any two paths γ, γ′ which are homotopic with fixed endpoints, there exists
k(γ, γ′) such that for k ⩾ k(γ, γ′), Ψ̃k(γ) = Ψ̃k(γ

′).

5. Proof of Theorem 1.1

We will prove that for any γ ∈ P(Preq), we have

d̃et
(
Ψ̃k(γ)

)
= −

( k

2π

)n((
k + λ′

)
Cal([γ]) + 1

2 Shj0([π(γ)]) +O(k−1)
)

(33)

where the constant λ′ is

λ′ =
n

2

∫
M
ρωn−1

∫
M
ωn

=
n

2

[
c1(T

1,0M) ∪ c1(L)n−1
]

[
c1(L)n

](34)

For any t ∈ [0, 1], let jt = π(γt)∗j0 and let us introduce three unitary
maps

• Ut = (γt)∗ : Qk(j0) → Qk(jt)
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• Pt : Qk(j0) → Qk(jt) is the parallel transport along the path [0, t] ∋
s 7→ js

• Tt : Qk(jt) → Qk(j0) is the parallel transport along the geodesic join-
ing jt to j0.

Then Ψk(γt) = Tt ◦ Ut = ηt ◦ ξt where (ηt) and (ξt) are the smooth paths of
U(Hk) given by

ηt = Tt ◦ Pt, ξt = P−1
t ◦ Ut.

We denote by (η̃t) and (ξ̃t) their lifts to Ũ(Hk) starting from the identity.
Of course, Ψ̃k(γ) = η̃1ξ̃1.

Define the map S : [0, 1]2 → J , (s, t) 7→ jst such that for any t, s 7→ jst is
the geodesic joining j0 to jt. In the sequel we assume that k is larger than
k(S).

Proposition 5.1. We have

d̃et(η̃1) = −1

2

( k

2π

)n ∫

S

σ +O(kn−1)

Proof. Note that η1 is the parallel transport along the boundary of S. So

d̃et(η̃1) =

∫

[0,1]2
trRk(a

s
t , b

s
t ) ds ∧ dt

where ast = ∂jst /∂s and bst = ∂jst /∂t. By (31), we have

Rk(a
s
t , b

s
t ) = −1

2Πkσjst (a
s
t , b

s
t ) +O(k−1)

Furthermore, the O is uniform with respect to s and t. In particular
Πkσjst (a

s
t , b

s
t ) is uniformly bounded with respect to s, t and k. To conclude

we use that

trΠkfΠk =
( k

2π

)n ∫

M

fµ+O(kn−1),

the O being uniform if sup |f | remains bounded. □

Introduce now the Kostant-Souriau operators: for any f ∈ C∞(M),

Kk(f) = f +
1

ik
∇Lk

X : C∞(M,Lk) → C∞(M,Lk)

where X is the Hamiltonian vector field of f . In the next proposition, we
prove that ξ−1

t is the solution of a Schrödinger equation.
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Proposition 5.2. Let (Ht) be the Hamiltonian generating (γt) and ϕt =
π(γt). We have

i

k

d

dt

(
ξ−1
t

)
= −Πk(j0)Kk(Ht ◦ ϕt) ξ−1

t .

This result has been proved in [11, Proposition 4.3], with a mistake
however: the Hamiltonian Kk(Ht ◦ ϕt) is replaced by Kk(Ht).

In the case Ht = H is time-independent, we have H ◦ ϕt = H and ξt
commutes with Πk(j0)Kk(H), we deduce that

i

k

d

dt
ξt = Πk(j0)Kk(H)ξt.

But this does not hold for a general time dependent (Ht). However, observe
that −Ht ◦ ϕt is the generating Hamiltonian of γ−1

t .

Proof. Let Vt : C∞(M,Lk) → C∞(M,Lk) be the push-forward by γt. It is
part of Kostant-Souriau theory that

i

k
V̇t = Kk(Ht)Vt.(35)

For any φ ∈ Preq and f ∈ C∞(M), we have (φ∗)
−1Kk(f)φ∗ = Kk(f ◦ π(φ))

where we denote by φ∗ : C∞(M,Lk) → C∞(M,Lk) the push-forward by φ
and by π(ϕ) the symplectomorphism of M lifted by φ. In particular

V −1
t Kk(Ht) = Kk(Ht ◦ ϕt)V −1

t .(36)

Since Ut is the restriction of Vt to Qk(j0), we have ξ−1
t = U−1

t Pt = V −1
t Pt.

Derivating, we get

d

dt
ξ−1
t = −V −1

t V̇tV
−1
t Pt + V −1

t Ṗt.(37)

Here, to give a meaning to Ṗt, we consider that Pt takes its value in
C∞(M,Lk). Now t 7→ Pt being the parallel transport along the path t 7→
jt, we have Π(jt)Ṗt = 0. Since Π(jt)Vt = VtΠ(j0), we have V −1

t Π(jt) =
Π(j0)V

−1
t and consequently Π(j0)V

−1
t Ṗt = V −1

t Π(jt)Ṗt = 0. So by (37),

i

k

d

dt
ξ−1
t = − i

k
Π(j0)V

−1
t V̇tV

−1
t Pt = −Π(j0)V

−1
t Kk(Ht)Pt

= −Π(j0)Kk(Ht ◦ ϕt)V −1
t Pt = −Π(j0)Kk(Ht ◦ ϕt)ξ−1

t

where we have used (35) and (36). □
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Lemma 5.3. For any f ∈ C∞(M,R),

(38) tr(Πk(j0)Kk(f)Πk(j0))

=
( k

2π

)n((
1 +

λ′

k

)∫

M

fµ+
1

2k

∫

M

fS(j0)µ
)
+O(kn−2)

where λ′ is the constant (34) and f = f −
∫
M
fµ/

∫
M
µ.

Proof. Recall that tr(Tk(f)) =
∫
M
fBk(x)µ where Bk is the restriction to the

diagonal of the Schwartz kernel of Πk(j0). Recall the well-known asymptotics
([8] for a very short proof and many references):

Bk =
( k

2π

)n(
1 +

S(j0)

2k
+O(k−2)

)
,

By Tuynman formula [27] tr(Tk(f)) = tr(Πk(j0)Kk(f)Πk(j0)), we obtain

tr(Πk(j0)Kk(f)Πk(j0)) =
( k

2π

)n ∫

M

f
(
1 +

S(j0)

2k

)
µ+O(kn−2)

which rewritten with the normalised Hamiltonian f gives (38). □

Proposition 5.4. We have

d̃et(ξ̃1) = −
( k

2π

)n(
(k + λ′) Cal(Ht) +

1

2

∫ 1

0

∫

M

HtS(jt)µ dt
)
+O(kn−1)

Proof. By Proposition 5.2, we have ik−1ξ̇t = ξtΠk(j0)Kk(Ht ◦ ϕt). So

i

k

d

dt
ln(det(ξt)) =

i

k
tr(ξ−1

t ξ̇t) = trΠk(j0)Kk(Ht ◦ ϕt)Πk(j0)

=
( k

2π

)n(
(1 +

λ′

k
)

∫

M

Htµ+
1

2k

∫

M

HtS(jt)µ
)
+O(kn−2)

by (38) where we have used that µ is preserved by ϕt and S(j0) ◦ ϕ−1
t = S(jt).

To conclude, we use d̃et(ξ̃1) =
1
i

∫ 1
0

d
dt
ln(det(ξt))dt. □

Now (33) is a consequence of the definition (30) of Shj0 , Proposition 5.4,

Proposition 5.1 and the fact that Ψ̃k(γ) = η̃1ξ̃1.
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6. Proof of Corollary 1.2 and Theorem 1.3

The first consequence of (33) is Corollary 1.2: there exists C > 0 such that
for any α, β ∈ P(Preq),

d̃(Ψ̃k(α)Ψ̃k(β), Ψ̃k(αβ)) ⩽ C +O(k−1)(39)

with a O depending on α, β.

Proof. By Proposition 3.2, since d̃et is a morphism, we have

d̃(Ψ̃k(α)Ψ̃k(β), Ψ̃k(αβ)) ⩽

∣∣d̃et
(
Ψ̃k(α)

)
+ d̃et

(
Ψ̃k(β)

)
− d̃et

(
Ψ̃k(αβ)

)∣∣
dimHk

+ 2π

The result follows from (33) by using that Cal is a morphism, Shj0 a quasi-
morphism (5) and dimHk =

(
k/2π

)n
(Vol(M,ω) +O(k−1)). □

Introduce the map Φ̃KS
k : P(Preq) → Ũ(Hk) defined as Φ̃k in Section

1.3 except that we use the Kostant-Souriau operators instead of the usual
Toeplitz operator. So Φ̃KS

k (γt) = W̃1 where (W̃t) is the lift of the solution
(Wt) of the Schrödinger equation

W ′
t =

k

i
Πk(j0)Kk(Ht)Wt, W0 = idHk

(Ht) being the generating Hamiltonian of (γt).

Theorem 6.1. For any path γ in P(Preq), Φ̃KS
k (γ) = Ψ̃k(γ) +O(1).

Proof. As in Section 5, write Ψ̃k(γ) = η̃1ξ̃1. By Proposition 3.2, we have

d̃(η̃1, id) ⩽
|d̃et(η̃1)|
dimHk

+ 2π.

By Proposition 5.1, d̃et(η̃1) = O(kn). Furthermore, dimHk =
(
k
2π

)n
(Vol(M,ω) +O(k−1)). So

d̃(η̃1, id) = O(1).

Consequently, by the right-invariance of d̃,

d̃(Ψ̃k(γ), ξ̃1) = d̃(Ψ̃k(γ)ξ̃
−1
1 , id) = d̃(η̃1, id) = O(1).
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By Proposition 5.2, ξ̃−1
1 = Φ̃KS

k (γ−1), so we have proved that

d̃(Ψ̃k(γ), Ik(γ)) = O(1),(40)

where Ik(γ) := Φ̃KS
k (γ−1)−1. For any path α, β ∈ P(Preq), we have

d̃(Ik(α)Ik(β), Ik(αβ)) ⩽ d̃(Ik(α)Ik(β), Ψ̃k(α)Ψ̃k(β))

+ d̃(Ψ̃k(α)Ψ̃k(β), Ψ̃k(αβ)) + d̃(Ψ̃k(αβ), Ik(αβ))

= d̃(Ik(α)Ik(β), Ψ̃k(α)Ψ̃k(β)) +O(1)(41)

by (39) and (40). Using left and right invariance, we have d̃(ab, a′b′) =
d̃(a, a′b′b−1) ⩽ d̃(a, a′) + d̃(a′, a′b′b−1) = d̃(a, a′) + d̃(b, b′). So by (41) and
(40), we obtain

d̃(Ik(α) Ik(β), Ik(αβ)) = O(1)(42)

Consequently

d̃(Ik(γ), Φ̃
KS
k (γ)) = d̃(Ik(γ), Ik(γ

−1)−1)

= d̃(Ik(γ) Ik(γ
−1), id) by right-invariance

= d̃(Ik(id), id) +O(1) by (42)

= O(1)

Using (40) one last time, it follows that d̃(Ψ̃k(γ), Φ̃
KS
k (γ)) = O(1). □

We can now prove Theorem 1.3, that is

Φ̃k(γ) = Ψ̃k(γ) +O(1).

Proof. By Tuynman formula [27], Πk(j0)Kk(f) = Tk(f) +O(k−1). This will
imply

d̃(ΦKS
k (γ),Φk(γ)) = O(1).(43)

Then we will conclude with Theorem 6.1. To prove (43), consider two con-
tinuous paths t 7→ Ĥ(t), t 7→ δ(t) of Herm(Hk). For any ϵ ∈ [0, 1], let Uϵ(t)
be the solution of Schrödinger equation

U ′
ϵ(t) =

k
i
(Ĥ(t) + ϵk−1δ(t))Uϵ(t), Uϵ(0) = idHk

,

and let φϵ(t) be the continuous determination of detUϵ(t) = exp(iφϵ(t)) with
φϵ(0) = 0. The distance d̃((U0(1), φ0(1)), (U1(1), φ1(1))) is smaller than the
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length of the path ϵ 7→ γ(ϵ) = (Uϵ(1), φϵ(1)), which is equal to
∫ 1
0 ∥Vϵ(1)∥ dϵ

where Vϵ(t) = ∂Uϵ(t)/∂ϵ. This derivative satisfies the equation

V ′
ϵ (t) =

k
i
(Ĥ(t) + ϵk−1δ(t))Vϵ(t) + b(t), with b(t) = 1

i
δ(t)Uϵ(t).

Since Vϵ(0) = 0, by Duhamel’s principle,

Vϵ(t) =
1

i

∫ t

0
Uϵ(t)Uϵ(s)

−1δ(s)Uϵ(s) ds.

Using that Uϵ(t) is unitary, so that ∥Uϵ(t)∥ = 1, we obtain

d̃((U0(1), φ0(1)), (U1(1), φ1(1))) ⩽

∫ 1

0
∥δ(t)∥ dt

and (43) follows. □
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