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By considering suitable Poisson groupoids, we develop an ap-
proach to obtain Lie group structures on (subgroups of) the Pois-
son diffeomorphism groups of various classes of Poisson man-
ifolds. As applications, we show that the Poisson diffeomor-
phism groups of (normal-crossing) log-symplectic, elliptic symplec-
tic, scattering-symplectic and cosymplectic manifolds are regular
infinite-dimensional Lie groups.
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Introduction

A Poisson structure on a manifold M is a Lie bracket {·, ·} on the
space of smooth functions C∞(M) subject to the Leibniz rule {fg, h} =
f{g, h}+ g{f, h} for f, g, h ∈ C∞(M). Alternatively, the Poisson structure
can be described by a bivector field π ∈ Γ(∧2TM) for which the Schouten-
Nijenhuis bracket [π, π] vanishes. It induces the Lie bracket on C∞(M) via
{f, g} = π(df, dg).
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A Poisson map f : (M,πM )→ (N, πN ) between Poisson manifolds
(M,πM ) and (N, πN ) is a smooth map f for which πM is f -related to πN ,
meaning that ∧2Txf(πM,x) = πN,f(x) for all x ∈M .

A Poisson manifold (M,π) comes with a symplectic foliation, spanned
by the Hamiltonian vector fields

Xf = {f, ·}, for f ∈ C∞(M).

A symplectic leaf S comes with a symplectic stucture determined by
ωS(Xf , Xg) = −{f, g}|S for f, g ∈ C∞(M).

A Poisson diffeomorphism of (M,π) is a diffeomorphism of M that is
also a Poisson map. This defines a subgroup Diff(M,π) of Diff(M), called
the Poisson diffeomorphism group. Note that a diffeomorphism is Poisson
if and only if it sends each symplectic leaf symplectomorphically onto a
(possibly different) symplectic leaf.

The Poisson diffeomorphism group

The group of symplectomorphisms Diff(M,ω) of a symplectic manifold
(M,ω) is well-understood as an infinite-dimensional Lie group [5, 10]. Much
less is known about Diff(M,π) for general Poisson manifolds.

For an arbitrary Poisson manifold (M,π), the group of Poisson diffeo-
morphisms Diff(M,π) can have many interesting subgroups:
• Foliated Poisson diffeomorphisms Fol(M,π) are those that send each
leaf to itself. Correspondingly, one has the foliated Poisson vector fields
fol(M,π), which are the Poisson vector fields that are tangent to the
symplectic foliation.
• The group of Hamiltonian diffeomorphisms Ham(M,π) consists of
time-1 flows of Hamiltonian vector fields generated by a time-
dependent Hamiltonian function.
• The locally Hamiltonian diffeomorphisms Hamloc(M,π) are the of
time-1 flows of locally Hamiltonian vector fields generated by a time-
dependent closed one-form.

Example 0.1 (Symplectic manifolds). For a compact symplectic mani-
fold (M,ω), the group of locally Hamiltonian diffeomorphisms coincides with
the identity component of the symplectomorphism group. This follows from
the fact that every symplectic vector field is locally Hamiltonian.

Example 0.2 (Zero Poisson manifolds). For the zero Poisson manifold
(M, 0), all of the above subgroups are trivial, while Diff(M,π) = Diff(M).
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Example 0.3 (Poisson manifolds of constant rank). Let (M,π) be a
Poisson manifold for which the bivector π has constant rank, with underlying
symplectic foliation (F , ω). In general, Diff(M,π) is larger than Fol(M,π),
and Hamloc(M,π) is smaller than (the identity-component of) Fol(M,π).
The latter can be seen, if they were Lie groups, on the level of Lie algebras.
The Lie algebra fol(M,π) is isomorphic via ω♭ to the space Ω1

cl(F) of closed
foliated one-forms, while Hamloc(M,π) is isomorphic to the space of foliated
one-forms that admit a closed extension in Ω1(M).

In this paper, we investigate the existence of Lie group structures on the
group of Poisson diffeomorphisms and on its subgroups for several classes of
Poisson manifolds.

Coisotropic bisections of Poisson groupoids

When (M,ω) is a symplectic manifold, a manifold structure on Diff(M,ω)
can be obtained in the following way. First, symplectomorphisms on (M,ω)
correspond to Lagrangian submanifolds of (M ×M,−→ω −←−ω ). Second, by
means of Weinstein’s Lagrangian neighbourhood theorem, the symplectic
form −→ω −←−ω can be linearized around the graph of a symplectomorphism.
Finally, the linearization of ω around the graph also linearizes the defor-
mation space of the Lagrangian submanifold: the Lagrangian submanifolds
near the graph of a symplectomorphism form a closed subspace of the sec-
tions of the normal bundle. This ‘models’ the symplectomorphism group on
an infinite-dimensional locally convex space, namely Ω1

cl,c(M), the space of
compactly supported closed one-forms on M (see [10], section 43, for more
details).

For a general Poisson manifold (M,π), things become much more com-
plicated, partly because of the intransitive nature on both the global and
local level of the Poisson diffeomorphism groups. For example, points on
non-symplectomorphic leaves can not be permuted, as any Poisson diffeo-
morphism sends each symplectic leaf symplectomorphically onto another
leaf.

A useful framework to capture intransitive symmetries in differential
geometry is provided by Lie groupoids and Lie algebroids. The group of
bisections Bis(G) of a Lie groupoid G ⇒M naturally acts onM . Moreover, it
is well-known that Bis(G) comes with a natural Lie group structure [21, 22].
We will see in many examples that the bisection group of an appropriate
Lie groupoid corresponds to an intransitive subgroup of Diff(M).
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When (G,Π) ⇒ (M,π) is a Poisson groupoid [25], the group of
coisotropic bisections Bis(G,Π) acts by Poisson diffeomorphisms on (M,π).
This puts the object Diff(M,π) in a more general perspective: coisotropic
bisections of the pair Poisson groupoid (M ×M,←−π −−→π ) ⇒ (M,π) are in
one-to-one correspondence with Poisson diffeomorphisms of (M,π).

In [14], Mărcut, constructs an example of a compact Poisson manifold of
constant rank for which Diff(M,π) is not locally path-connected in Diff(M).
This is on itself not surprising or any problem –it only tells that Diff(M,π)
can not be embedded in Diff(M)– but it does indicate that the pair Poisson
groupoid might not be the right object to investigate, and we must broaden
our perspective to involve other Poisson groupoids. However, in general there
is no known or obvious Lie group structure on the group of coisotropic
bisections.

Example 0.4 (Lagrangian bisections). A particularly important class
of Poisson groupoids over a Poisson manifold (M,π) are, when integrable,
the symplectic groupoids. Let (G,Ω) ⇒ (M,π) be a symplectic groupoid.
Its coisotropic bisection are better known as Lagrangian bisections, studied
in [20, 26]. As explained in more detail in Section 2.3, the group of La-
grangian bisections Bis(G,Ω) has interesting but complicated interactions
with the Poisson diffeomorphism group Diff(M,π). For instance, the iden-
tity path component Bisc,0(G,Ω) acts on (M,π) by locally Hamiltonian dif-
feomorphisms! In fact, any locally Hamiltonian diffeomorphism comes from
a Lagrangian bisection. The map Bisc,0(G,Ω)→ Diff(M,π) has a non-trivial
kernel in general.

The Lie group of coisotropic bisections

Let (G,Π) ⇒ (M,π) be a Poisson groupoid. In order to build charts for a
manifolds structure on Bis(G,Π), it is necessary to describe the coisotropic
deformations of the unit manifold M ⊂ (G,Π). It turns out M is always
Lagrangian in (G,Π) (Proposition 2.2), in which case it makes sense to ask
whether the Poisson structure Π is linearizable around it. That is: does there
exists a local Poisson diffeomorphism (G,Π) 99K (NM,Πlin), that restricts
to the identity on M? Here, the Poisson structure Πlin is the linearization
of Π on the normal bundle NM of M in G, via any tubular neighbourhood
(see section 1.1.1). If the answer to this question is positive, we say that the
Poisson groupoid (G,Π) is linearizable.
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Under the additional assumption of linearizability of a Poisson groupoid,
we show that its coisotropic bisection group is a Lie group. The used frame-
work for infinite-dimensional manifolds is the “convenient setting” by Kriegl
and Michor [10]. Our first main result is the following.

Theorem 0.5 (Theorem 2.12). Let (G,Π) ⇒ (M,π) be a Poisson
groupoid with Lie bialgebroid (A,A∗). Assume that (G,Π) is linearizable
around M . Then Bis(G,Π) is a regular embedded Lie subgroup of Bis(G)
with Lie algebra Γc(A, dA∗) = {v ∈ Γc(A) : dA∗v = 0}, where dA∗ is the dif-
ferential associated to the Lie algebroid A∗ ⇒M .

This breaks up the search of Lie group structures on Poisson diffeomor-
phism groups into two steps, which are both very interesting on their own.

Step 1. Find out which Poisson groupoids are linearizable.
Step 2. Search for Poisson groupoids whose coisotropic bisections ‘com-

pute’ relevant groups of Poisson diffeomorphisms on the base.
In fact, to apply Theorem 0.5, one is often forced to look for Poisson
groupoids beyond the product, because of the following result from [23].

Theorem 0.6 ([23], Theorem 3.26). Let (M,π) be a Poisson manifold.
If (M ×M,←−π −−→π ) is linearizable around the diagonal, then π has constant
rank.

The linearization problem of Poisson groupoids has been investigated in
[23], where it is shown that integrations of triangular Lie algebroids of so-
called cosymplectic type, as well as dual integrations of arbitrary triangular
Lie bialgebroids are always linearizable. We recall these results in more detail
in Section 2.4.

Building on this work, we show in this paper that several classes of
Poisson manifolds come with relevant Poisson groupoids that turn out to
be linearizable. This way, we obtain Lie group structures on their groups of
Poisson diffeomorphisms. The results are collected in the list of examples at
the end of the introduction.

Lie groups of Poisson diffeomorphisms

When a Poisson structure π on M ‘lifts’ (in the sense of the diagram below)
to a Poisson structure πA ∈ Γ(∧2A) on a Lie algebroid A ⇒M , integrations
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of A are particularly relevant to the group of Poisson diffeomorphisms.

A∗ A

T ∗M TM

π♯
A

π♯

We mainly focus on the case that A is an almost injective Lie algebroid,
in which case we obtain two results of a different kind. The first is about
inner (Poisson) automorphisms, and the second one involves the (A-)locally
Hamiltonian diffeomorphisms.

Inner automorphisms of almost injective Lie algebroids. A Lie al-
gebroid A ⇒M is almost injective when the anchor map is injective on the
level of sections. In this case, the bisections of the holonomy groupoid of
A [1, 4] compute the inner automorphisms of A. Any automorphism of an
almost injective Lie algebroid is determined by its base map, so the inner
automorphisms InnAut(A) form a subgroup of Diff(M). These observations
combine to the following.

Theorem 0.7 (Corollary 3.4). Let A ⇒M be an almost injective Lie
algebroid. Then the group InnAutc(A) is naturally a Lie group with Lie
algebra Γc(A) for which the inclusion InnAutc(A)→ Diff(M) is a smooth
immersion.

A k-cosymplectic structure on a Lie algebroid A ⇒M consists of closed
one-forms α1, . . . , αk ∈ Ω1(A) and a closed 2-form ω ∈ Ω2(A) such that α1 ∧
· · · ∧ αk ∧ ω ̸= 0 andA = F ⊕ kerω, with F = ∩i kerαi. The subbundle F ⊂
A is involutive and thus can be regarded as a subalgebroid. Note that ω|F
is non-degenerate, and thus induces an A-Poisson structure πA via

F∗ F

A∗ A.

(ω|F )♭

πA

We call an A-Poisson structure πA of (k-)cosymplectic type if it is induced
by some (k-)cosymplectic structure on A.

Theorem 0.8 (Theorem 3.25). Let (A, πA)⇒M be a Lie algebroid
with an A-Poisson structure of cosymplectic type. Then InnAutc(A, πA)
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is an embedded Lie subgroup of InnAutc(A) with Lie algebra Γc(A, πA) =
{v ∈ Γc(A) : [πA, v] = 0}.

Under additional assumptions, the groups InnAutc(A) and
InnAutc(A, πA) are initial in Diff(M). Concretely, this means that a
curve φt in InnAutc(A) is smooth if and only if the map (t, x) 7→ φ(t, x) is.

Locally Hamiltonian diffeomorphisms. Recall from example 0.4 that
the group of Lagrangian bisections of a symplectic groupoid surjects onto
the group of locally Hamiltonian diffeomorphisms of its underlying Poisson
manifold. In case that π is non-degenerate almost everywhere, then the
surjection has a discrete kernel. This lays at the basis of the proof of the
following result.

Theorem 0.9 (Theorem 3.14). Let A ⇒M be an almost injective Lie
algebroid and let πA be a generically non-degenerate Poisson structure on
A. Then Hamloc,c(A, πA) is a Lie group with Lie algebra (Ω1

cl,c(A), [·, ·]πA
).

The bracket [·, ·]πA
on Γ(A∗) = Ω1(A) is induced by the A-Poisson struc-

ture πA (Remark 1.10), and the group Hamloc,c(A, πA) consists of A-locally
Hamiltonian Poisson automorphisms (see Section 1.3).

Note that Theorem 0.9 applies in particular to the almost-regular Pois-
son structures as studied by Androulidakis and Zambon in [1].

Applications. Concrete applications of our approach are collected in the
following list of examples.

Example 0.10 (Symplectic foliations). Let (M,π) be a Poisson man-
ifold of constant rank with associated symplectic foliation (F , ω). Then
Fol(M,π) is a initial Lie subgroup of Diff(M), with Lie algebra Ω1

cl,c(F)
of closed, compactly supported one-forms on F . Note that this is isomor-
phic via ω♭ to the Lie algebra of foliated vector fields folc(M,π). This Lie
group structure coincides with the one in [19]. The relevant groupoid is the
holonomy groupoid Hol(F) ⇒M of the foliation F .

Example 0.11 (Cosymplectic manifolds). Let (M,π) be a Pois-
son manifold of k-cosymplectic type. Its Poisson diffeomorphism group
Diff(M,π) is an embedded Lie subgroup of Diff(M), with Lie algebra
Xc(M,π) consisting of compactly supported Poisson vector fields. When
all the symplectic leaves are embedded in M , then Fol(M,π) becomes an
embedded Lie subgroup of Diff(M,π).
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For this example, the relevant groupoids are the pair Poisson groupoid
(M ×M,π × (−π)) ⇒M and the holonomy groupoid of the underlying fo-
liation.

Example 0.12 (Log-symplectic manifolds). Let (M,π) be a normal-
crossing log-symplectic manifold. All the groups Diff(M,π), Fol(M,π) and
Hamloc,c(M,π) are initial Lie subgroups of Diff(M), whose Lie algebras
are isomorphic to Xc(M,π), folc(M,π) and hamloc,c(M,π) respectively. In
fact, the space folc(M,π) is isomorphic to hamloc,c(M,π) and therefore
Hamloc,c(M,π) coincides with the identity component of Fol(M,π). The
relevant groupoids here are the integrations of the log-tangent bundle TZM
and the symplectic groupoid.

Example 0.13 (Elliptic symplectic manifolds). When (M,π) is an
elliptic symplectic manifold [3], then both Diff(M,π), Fol(M,π) and
Hamloc,c(M,π) are initial Lie subgroups of Diff(M), with Lie algebras
Xc(M,π), folc(M,π) and hamloc,c(M,π), respectively. If (M,π) has non-zero
elliptic residue, then Fol(M,π) is open in Diff(M,π). If (M,π) has zero el-
liptic residue, then Hamloc,c(M,π) coincides with the identity component of
Fol(M,π). As in the previous example, the relevant groupoids are integra-
tions of the elliptic tangent bundle as well as the symplectic groupoids.

Example 0.14 (Scattering-symplectic manifolds). The class of
scattering-symplectic Poisson structures [11] can also be treated with our
approach, with a small caveat: it requires specific linearization results. More
precisely, we prove a Lagrangian neighbourhood theorem for scattering-
symplectic manifolds in Appendix A.

Theorem 0.15 (Theorem A.5). Let (M,π) be a scattering symplectic
manifold, and i : L→M a Lagrangian submanifold transverse to the degen-
eracy locus Z ⊂M . Then π is linearizable around Z.

As a result, we show Diff(M,π) is an initial Lie subgroup of Diff(M), inte-
grating the Lie algebra Xc(M,π). Interestingly, the relevant groupoid here
is an integration of the log-tangent bundle TZM , and not an integration of
the scattering-tangent bundle.
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1. Poisson geometry: Lagrangians and diffeomorphisms

1.1. Lagrangian submanifolds

First, we recall the definition of a coisotropic submanifold.

Definition 1.1. Let (M,π) be a Poisson manifold. A submanifold C ⊂
M is coisotropic when π(α1, α2) = 0 for all α1, α2 ∈ (TC)◦, where (TC)◦ ⊂
T ∗M is the annihilator of TC. Equivalently, (TC)⊥π := π♯ ((TC)◦) ⊂ TC.

Coisotropic submanifolds play a crucial role in this paper, because of the
following proposition, which is folklore.

Proposition 1.2 ([25], Corollary 2.2.3). Let (M,πN ) and (N, πN ) be
Poisson manifolds. A map f :M → N is a Poisson map if and only if the
graph of f is coisotropic in (N ×M,πN × (−πM )).

Example 1.3. The graph of a Poisson diffeomorphism φ :M →M is a
coisotropic submanifold in (M ×M,π × (−π)). There is more to it: the in-
tersection of the graph of φ with the symplectic leaves of (M ×M,π × (−π))
is either empty or a Lagrangian submanifold of the leaf. This hints to a more
restrictive class of coisotropic submanifolds, suitable for the study of Poisson
diffeomorphisms.

Definition 1.4 ([24], Remark 7.8). Let (M,π) be a Poisson manifold.
A submanifold L ⊂M is Lagrangian when

(TL)⊥π := π♯ ((TL)◦) = TL ∩ imπ♯.

The following lemma provides practical characterizations of Lagrangian
submanifolds.

Lemma 1.5. Let (M,π) be a Poisson manifold and L ⊂M a submanifold.
The following are equivalent:
(i). The submanifold L is a Lagrangian submanifold of M .
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(ii). For every symplectic leaf (S, ωS), the intersection L ∩ S is a La-
grangian submanifold of (S, ωS) satisfying T (L ∩ S) = TL ∩ TS.

(iii). The submanifold L is coisotropic and π(α1, α2) = 0 for all α1, α2 ∈
(π♯)−1(TL).

Proof. (i). ⇔ (ii). Clearly, (ii). implies (i). For the converse, recall that,
because L is coisotropic, the annihilator (TL)◦ becomes a subalgebroid of
the cotangent algebroid T ∗M , that we call the conormal algebroid. We equip
the path-components of L ∩ S with the structure of a manifold by identi-
fying them with the leaves of the algebroid (TL)◦ ⇒ L. As (TL)◦ ⇒ is a
subalgebroid of T ∗M ⇒M , every leaf L̃ of (TL)◦ ⇒ L is contained in a
symplectic leaf S. Conversely, if γ : R→ L ∩ S is a path, it must be tangent
to L and S simultaneously, i.e. γ̇(t) ∈ Tγ(t)L ∩ Tγ(t)S = Tγ(t)L ∩ Imπ♯

γ(t) for

all t. Since π♯((TL)◦) = TL ∩ Imπ♯, it follows that γ is tangent to a leaf L̃
of the conormal algebroid (TL)◦ ⇒ L.

(i). ⇒ (iii). A Lagrangian submanifold L is clearly coisotropic. More-
over, for α1, α2 ∈ (π♯)−1(TL) there exists α̃1, α̃2 ∈ (TL)◦ with π♯(α1) =
π♯(α̃1) and π

♯(α2) = π♯(α̃2). In particular, π(α1, α2) = π(α̃1, α̃2) = 0.
(iii). ⇒ (i). To prove the converse, we have to find for α ∈ (π♯)−1(TL)

an element α̃ ∈ (TL)◦ such that π♯(α) = π♯(α̃). Since α|TL∩imπ♯ = 0, we can
construct α̃ by extending α|imπ♯ by 0 over TL. □

Remark 1.6. An analogue for (ii). in Lemma 1.5 does not exist for arbi-
trary coisotropic submanifolds. A counterexample is the following. Consider
R
3, with coordinates (x, y, z), foliated by the planes of constant z with a foli-

ated symplectic form dx ∧ dy. The graph Γ of f(x, y) = x2 + y2 is coisotropic
in R

3 with respect to this Poisson structure, but the intersection is not clean
at the origin. Indeed, the intersection of Γ with the z = 0 plane is just a point,
while the intersection of the tangent spaces is two-dimensional. This is also
the only point where the Lagrangian condition fails.

1.1.1. Linear Poisson structures and the linearization problem for
Lagrangian submanifolds. Let E → L be a vector bundle, with scalar
multiplication mt : E → E. A Poisson structure π on the total space of E is
linear when tm∗

tπ = π for all t ∈ R \ {0}. We will see as part of Proposition
2.2 that the zero section must be a Lagrangian submanifold of (E, π). If π
is any Poisson structure on the total space of E for which the zero section
L ⊂ E is a Lagrangian, we can call π linearizable around L when there is a
local Poisson diffeomorphism

(E, π) 99K (E, πlin), with πlin = lim
t→0

tm∗
tπ,
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that restricts to the identity on L. More generally, if (M,π) is any Pois-
son manifold, and L ⊂ (M,π) a Lagrangian, we can call (M,π) linearizable
around L if (NL,ψ∗π) is linearizable around L for some (hence every) tubu-
lar neighbourhood ψ : NL→ U ⊂M of L.

Question 1.7. Let L ⊂ (M,π) be a Lagrangian submanifold. When is
(M,π) linearizable around L?

We have addressed this question in more detail in [23], with emphasis on
the case that the ambient manifold is a Poisson groupoid, and the Lagrangian
is the unit section. As in [23], we adopt the following terminology.

Definition 1.8. A Poisson groupoid (G,Π) ⇒ (M,π) is linearizable when
the Poisson structure Π is linearizable around the unit space M ⊂ (G,Π).

1.2. Poisson Lie algebroids

A Lie algebroid A ⇒M overM consists of a vector bundle A →M together
with an anchor ρA : A → TM and a Lie bracket [·, ·]A on Γ(A) subject to the
Leibniz rule: [v, fw]A = f [v, w]A + LρA(v)(f)w. Due to the presence of the
bracket, a Lie algebroid behaves much like the tangent bundle of a manifold
M , and therefore it is often the case that geometry on TM can by ‘lifted’
to a Lie algebroid. In this section we introduce Poisson Lie algebroids as the
‘lifts’ of Poisson structures (see also [9]).

Recall that the bracket of a Lie algebroid A ⇒M can be extended to a
Schouten-Nijenhuis bracket on Γ(∧•A).

Definition 1.9. Let A ⇒M be a Lie algebroid. A Poisson structure on A,
or an A-Poisson structure, is a section πA ∈ Γ(∧2A) satisfying [πA, πA]A =
0. The pair (A, πA)⇒M is referred to as a Poisson Lie algebroid.

Remark 1.10. A Lie bialgebroid (A,A∗) consists of a vector bundleA with
Lie algebroid structures on A and A∗ that are compatible in the following
sense:

dA∗ [v, w]A = [dA∗v, w]A + [v, dA∗w]A

for all v, w ∈ Γ(A). Given a Poisson Lie algebroid (A, πA)⇒M , the A-
Poisson structure πA anchors A∗ to A via the sharp map determined by
β(π♯A(α)) = πA(α, β) for α, β ∈ A

∗. Also, it induces a bracket on Γ(A∗) via
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the formula

[α, β]πA
= Lπ♯

A(α)(β)− Lπ♯
A(β)(α)− dA (πA(α, β)) .

Together with the anchor map ρA∗ = ρA ◦ π
♯
A, the vector bundle A

∗ becomes
a Lie algebroid whose differential on Γ(∧•A) corresponds to [πA, ·], from
which easily follows that the pair (A,A∗) is a Lie bialgebroid. The data
(A,A∗, πA) constitutes a triangular Lie bialgebroid, introduced in [13]. In
the context of Lie bialgebras, the A-Poisson structure πA is called the r-
matrix.

Let (A, πA)⇒M be a Poisson Lie algebroid. It induces a Poisson struc-
ture π on TM via the following diagram.

A∗ A

T ∗M TM

π♯
A

ρAρ∗
A

π♯

Therefore, it is natural to refer to πA as the lift of π to A.

Definition 1.11. Let A ⇒M be a Lie algebroid. A symplectic structure
on A, or an A-symplectic structure, is a closed, non-degenerate two form
ωA ∈ Ω2(A). In this case, we call (A, ωA) is a symplectic Lie algebroid.

If πA is a non-degenerate Poisson structure on A, then the 2-from ωA ∈
Ω2(A) defined by

ω♭
A =

(
π♯A

)−1
,

with ω♭
A(v)(w) = ωA(v, w) for v, w ∈ A, is closed, and therefore symplectic.

We write ωA = π−1
A .

Lemma 1.12. Let A ⇒M be a Lie algebroid. Then there is a one-to-one
correspondence between non-degenerate A-Poisson structures and symplectic
structures on A, sending πA to ωA = π−1

A .

1.2.1. Poisson Lie algebroids of cosymplectic type. In this section
we consider a class ofA-Poisson structures of constant rank whose transverse
geometry is relatively simple. These will come back in later applications.
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Definition 1.13 ([18], Definition 3.2.23). Let A ⇒M be a Lie alge-
broid. A cosymplectic structure of type k (or k-cosymplectic structure) con-
sists of closed one-forms α1, . . . , αk ∈ Ω1(A) and a closed 2-form ω ∈ Ω2(A)
of constant rank 2n such that ωn ∧ α1 ∧ · · · ∧ αk is a nowhere vanishing
top-form on A.

A cosymplectic structure (α1, . . . , αk, ω) on A ⇒M induces an isomor-
phism

♭ : A → A∗, v 7→ ιvω +

k∑

i=1

αi(v)αi,

called the flat map. The Reeb sections of the cosymplectic structures are
given by Ri := ♭−1(αi)

The 2-form ω restricts to an F-symplectic structure ωF = ω|F on the
A-foliation F = ∩ki=1 kerαi, and thus determines an A-Poisson structure πA
via the diagram

F∗ F

A∗ A.

ω♭
F

π♯
A

Definition 1.14. Let (A, πA)⇒M be a Poisson algebroid. We call πA
of A-cosymplectic type if there exists a cosymplectic structure on A induc-
ing πA.

Remark 1.15. The Reeb sections Ri of a cosymplectic structure inducing
πA are ‘Poisson sections’ meaning that [πA, Ri] = 0.

1.3. Algebraic aspects of the Poisson diffeomorphisms group

Throughout this section, we fix a Poisson manifold (M,π). A Poisson diffeo-
morphism of (M,π) is a diffeomorphism φ ∈ Diff(M) that is also a Poisson
map, i.e. φ∗(π) = π. They form the group Diff(M,π) of Poisson diffeomor-
phisms. A vector field X ∈ X(M) is Poisson when LX(π) = 0. They form a
subalgebra X(M,π) of X(M) under the Lie bracket.

The Poisson manifold (M,π) has an underlying symplectic foliation,
leading to the group of foliated Poisson diffeomorphisms Fol(M,π), con-
sisting of the maps that send each symplectic leaf symplectomorphically to
itself. Infinitesimally, the foliated Poisson vector fields, constituting a subal-
gebra fol(M,π) of X(M,π), are those Poisson vector fields that are tangent
to the symplectic foliation.
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The Lie algebra X(M,π) has two more interesting subalgebras. Let
Ω1
cl(M) and Ω1

ex(M) be the closed and exact one-forms on M , respectively.
We introduce the Lie algebras of Hamiltonian and locally Hamiltonian vector
fields, respectively, as

ham(M,π) = π♯
(
Ω1
ex(M)

)
, and hamloc(M,π) = π♯

(
Ω1
cl(M)

)
.

A diffeomorphism is (locally) Hamiltonian if is the time-1 flow of a (locally)
Hamiltonian vector field generated by a time-dependent (closed) exact one-
form. These give rise to the group Ham(loc)(M,π) of (locally) Hamiltonian
diffeomorphisms. Clearly, there are inclusions

ham(M,π) hamloc(M,π) fol(M,π) X(M,π),

Ham(M,π) Hamloc(M,π) Fol(M,π) Diff(M,π).

Proposition 1.16. The groups Fol(M,π), Hamloc(M,π) and Ham(M,π)
are normal subgroups of Diff(M,π).

Proof. Establishing that Ham(M,π) and Hamloc(M,π) are actually sub-
groups goes via the usual argument: if φt and ψt are isotopies generated
by (locally) Hamiltonian vector fields π♯(αt) and π♯(βt), respectively, then
φt ◦ ψt is generated by

π♯(αt) + (φt)∗π
♯(βt) = π♯(αt + (φt)∗βt),

which is again (locally) Hamiltonian.
The foliated diffeomorphisms clearly form a normal subgroup of

Diff(M,π). Normality of Ham(M,π) and Hamloc(M,π) also follows from
the identity φ∗(π

♯(α)) = π♯(φ∗(α)), which holds for general φ ∈ Diff(M,π)
and α ∈ Ω1(M). □

Lemma 1.17. Let φt be an isotopy on M generated by Xt. Then φt is a
path in Diff(M,π) (resp. in Fol(M,π)) if and only if Xt is in X(M,π) (resp.
in fol(M,π)).

Remark 1.18. A similar result for the (locally) Hamiltonian groups is
hard. For symplectic manifolds, the argument relies on a flux homomor-
phism, which is not available for general Poisson manifolds. It is one of the
interesting open questions regarding the Poisson diffeomorphism group.
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There are other open questions that will not be addressed in this paper.
For instance, if a time-dependent vector field Xt is Hamiltonian for all t, is
it generated by a smooth time-dependent function?

Remark 1.19. The infinitesimal algebraic structure of X(M,π) is encoded
in the first Poisson cohomology group. For example,

X(M,π)

ham(M,π)
= H1

π(M),
hamloc(M,π)

ham(M,π)
= im

(
π♯ : H1(M)→ H1

π(M)
)
.

When π has constant rank, and induced by the symplectic foliation (F , ω),
then

fol(M,π)

ham(M,π)
= H1(F),

fol(M,π)

hamloc(M,π)
=

H1(F)

im (H1(M)→ H1(F))
.

Remark 1.20. There are many more interesting subgroups of Diff(M,π).
For instance, it is very natural to study leafwise Hamiltonian diffeomor-
phisms, which are foliated Poisson diffeomorphisms that restrict to a Hamil-
tonian diffeomorphism on each leaf. All these different subgroups illustrate
that the algebraic structure of the Poisson diffeomorphism group is more
intricate than the symplectomorphism group of a symplectic manifold: the
latter is determined by the Hamiltonian diffeomorphism and (a quotient of)
H1(M) (via a flux homomorphism, see [15], Chapter 10).

Many of the concepts introduced in this section can be defined on an
arbitrary Poisson Lie algebroid (A, πA)⇒M , as we will now briefly discuss.
A Poisson section is a section v ∈ Γ(A) such that Lv(πA) = [v, πA] = 0,
defining a subalgebra Γ(A, πA) of Γ(A). The closed A-forms, Ω1

cl(A) form a
Lie subalgebra of Ω1(A) under the bracket on A∗ (Remark 1.10). Therefore,
we obtain a subalgebra of Γ(A, πA), called the A-locally Hamiltonians, by

hamloc(A, πA) = π♯A
(
Ω1
cl(A)

)
.

An automorphism of A is A-locally Hamiltonian when it is the time-1 flow of
a A-locally Hamiltonian vector field generated by a time-dependent closed
A-form, forming the group Hamloc(A, πA) regarded as a subgroup of the
group InnAut(A) of inner automorphisms of A.
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1.4. Poisson structure of divisor type

To provide context to several central examples considered in this paper, we
give a brief summary of the Poisson structures of divisor type developed by
Klaasse in [9].

A (real) divisor on a smooth manifold M is a pair (L, σ) consisting of
a (real) line bundle L→M and a section σ ∈ Γ(L) whose zero locus Zσ is
nowhere dense.

The section σ of a divisor (L, σ) defines an evaluation map σ : Γ(L∗)→
C∞(M), and the ideal of C∞(M) associated to (L, σ) is its image Iσ =
σ(Γ(L∗)). Note that the vanishing set ZIσ of Iσ is exactly Zσ. The vanishing
ideal IZσ

of Zσ is generally larger than Iσ. An ideal I ⊂ C∞(M) that comes
from a divisor is a divisor ideal.

Every divisor ideal is locally principal, as it is generated by ⟨α, σ⟩, where
α is a local trivialization of L∗.

Definition 1.21 ([9], Definition 3.6). A Lie algebroid A ⇒M is of di-
visor type when

div(A) = (det(A∗)⊗ det(TM), det(ρA))

is a divisor, or, equivalently, when the isomorphism locus of ρA is dense in
M . The divisor ideal associated to div(A) is denoted IA.

Remark 1.22. A Lie algebroid A ⇒M is of divisor type if and only if
the isomorphism locus of the anchor ρA, which is the set on which ρA is an
isomorphism, is dense in M .

Let I ⊂ C∞(M) be an ideal and A ⇒M a Lie algebroid. Following [9],
we set

Γ(A)I = {v ∈ Γ(A) : Lv(I) ⊂ I} ,

the set of sections of A that preserve I. This is a subalgebra of Γ(A) ([9],
Lemma 3.41).

When Γ(A)I is locally finitely generated and projective, the Serre-Swan
theorem gives a vector bundle AI →M such that Γ(AI) = Γ(A)I . The inclu-
sion of sections determines a bundle map ρAAI

: AI → A. Together with the

Lie bracket on Γ(AI) inherited from Γ(A), and with anchor ρAI
= ρAAI

◦ ρA,
it becomes a Lie algebroid anchored to A.
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Definition 1.23 ([9], Definition 3.42). Let A ⇒M be a Lie algebroid
and I ⊂ C∞(M) an ideal. If it exists, the Lie algebroid AI ⇒M is called
the (primary) ideal Lie algebroid associated to (A, I).

This is often applied in the case that A = TM , for which the following
terminology is introduced in [9].

Definition 1.24 ([9], Definition 3.43). A divisor ideal I is projective
when the ideal Lie algebroid TIM := TMI exists. It is standard when it is
projective and ITIM = I.

By the Serre-Swan theorem, a divisor ideal I is projective when X(M)I
is projective as a C∞(M)-module and when it is locally finitely generated.

Definition 1.25 ([9], Definition 4.3). A Poisson structure (M2n, π) is
of divisor type when (∧2nTM,∧nπ) is a divisor. The associated divisor ideal
is denoted by Iπ.

One of the main results in [9] (Theorem 4.35) is that whenever Iπ is
projective and T ∗

Iπ
M locally admits bases of closed sections, then π lifts

to a Poisson structure on TIπM . If in addition Iπ is standard, the lift is
non-degenerate. This fact is used in the examples below.

Before we discuss some examples, we want to highlight the following
proposition, which explains the significance of the Lie algebroid TIπM (if
it exists) associated to a Poisson manifold of divisor type (M,π) from the
perspective of Poisson diffeomorphisms: because Γ(TIπM) contains all the
Poisson vector fields, an integration of TIπM can be a good starting point to
describe the Poisson diffeomorphism group as a Lie group. This observation
will be exploited in Section 3.2.

Proposition 1.26. Let (M,π) be a Poisson manifold of divisor type whose
divisor ideal Iπ is projective. Then any Poisson vector field lifts to a section
of TIπM .

Proof. Let f ∈ Iπ. Then there exists a top-form ω ∈ Ω2n(M) such that f =
⟨ω,∧nπ⟩. If X ∈ X(M) is a Poisson vector field, then

LX(f) = ⟨LX(ω),∧nπ⟩+ ⟨ω,LX(∧nπ)⟩ = ⟨LX(ω),∧nπ⟩ ∈ Iπ.

It follows that X is a section of TIπM . □
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Example 1.27 (Log-symplectic manifolds). A (normal-crossing) log-
manifold1 is a pair (M,Z) of a manifold M and a (closed) hypersurface
Z ⊂M that is allowed to have self-intersections. More precisely, around
each point z ∈ Z there are coordinates (x1, . . . , xk, xk+1, . . . , xn) for which
Z = {

∏k
i=1 xi = 0}. Note that k need not be fixed, and is allowed to vary

between different points in Z. We call such coordinates adapted to Z. When
Z is an embedded hypersurface, we refer to the pair (M,Z) as a smooth
log-manifold.

The vanishing ideal IZ is a standard divisor ideal, and a divisor (L, σ)
with Iσ = IZ is called a normal-crossing log divisor. The corresponding Lie
algebroid TZM := TIZM is called the log-tangent bundle. The space of sec-
tions of TZM , called log-vector fields, is denoted by X(M,Z) and is locally
generated by the vector fields x1∂x1

, . . . , xk∂xk
, ∂xk+1

, . . . , ∂xn
in an adapted

coordinate chart.

Definition 1.28. A Poisson structure π on M2n is log-symplectic when
(∧2nTM,∧nπ) is a normal-crossing log divisor.

By Theorem 4.35 in [9], a log-symplectic structure lifts to a symplectic
structure on the log-tangent bundle TZM .

Example 1.29 (Elliptic symplectic manifolds). A (real) divisor |D| =
(L, σ) is elliptic when D := Zσ is a codimension 2 submanifold and the
normal Hessian Hess(σ) ∈ Γ(Sym2N∗D ⊗ L) is positive-definite [3]. Its as-
sociated ideal is usually denoted by I|D|. An ideal I ⊂ C∞(M) is elliptic
when it is the ideal of some elliptic divisor.

An elliptic ideal I|D| is standard, and the associated Lie algebroid
T|D|M ⇒M is called the elliptic tangent bundle. For any elliptic divisor,
there are coordinates (x1, . . . , xn) such that I|D| = ⟨x

2
1 + x22⟩. Sections of

T|D|M are locally generated by r∂r, ∂θ, ∂x3
, . . . , ∂xn

.

Definition 1.30. A Poisson structure π on M2n is elliptic when
(∧2nTM,∧nπ) is an elliptic divisor.

Elliptic symplectic structures appear naturally as the Poisson structure
associated to a stable generalized complex structure [3]. By Theorem 4.35
in [9], an elliptic symplectic structure π on M lifts to a symplectic structure
on T|D|M , with |D| = (∧2nTM,∧nπ) (cf. [3], Lemma 3.4).

1Also called a c-manifold in [16].
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1.5. Scattering-symplectic manifolds

Let A ⇒M be a Lie algebroid. A subalgebroid of A is a Lie algebroid
B ⇒ Z together with an injective Lie algebroid homomorphism (ι, i) : B →
A that makes i : Z →֒M into a submanifold of M . Usually, we identify a
subalgebroid B ⇒ Z with its image in A.

Given a subalgebroid B ⇒ Z of A ⇒M , we consider the module of sec-
tions of A that are “tangent” to B:

Γ(A,B) = {v ∈ Γ(A) : v|Z ∈ Γ(B)} .

If Z ⊂M is a closed hypersurface, this is a locally finitely generated sub-
algebra of Γ(A) and therefore by the Serre-Swan theorem corresponds to
a vector bundle [A;B]→M that inherits a Lie algebroid structure from A
[6, 11]. The Lie algebroid [A;B]⇒M is the rescaling of A by B.

Example 1.31. Let (M,Z) be a smooth log-manifold. Then TZ ⇒ Z is a
subalgebroid of TM , and the rescaling [TM ;TZ] is exactly the log-tangent
bundle TZM from Example 1.27.

Example 1.32 (Zero-rescalings). The zero algebroid 0Z ⇒ Z is a subal-
gebroid of any Lie algebroidA ⇒M . Then [A; 0Z ] is called the zero-rescaling
of A over Z. In the case that A = TM , the resulting algebroid is called the
0-tangent bundle 0TZM . It’s sections correspond to vector fields on M that
vanish over Z.

Example 1.33 (Scattering manifolds). More interesting is the zero-
rescaling of TZM over Z. The resulting Lie algebroid scTZM = [TZM ; 0Z ]
is the scattering-tangent bundle. A Poisson structure π in M is scattering-
symplectic when it lifts to a symplectic structure ω = π−1 on scTZM . We
refer to (M,Z, ω) as a scattering-symplectic manifold.

Scattering-symplectic structures are ubiquitous. For example, every even
dimensional sphere admists a scattering-symplectic structure, whose hyper-
surface is the equator [11].

The following proposition is a consequence of the Serre-Swan theorem.

Proposition 1.34. Let A ⇒M be a Lie algebroid and B ⇒ Z a subal-
gebroid over a hypersurface Z ⊂M . Let φ : A → A be a bundle map that
restricts to a bundle map φ|B = ψ : B → B. Then φ lifts to a (unique) map
[φ;ψ] : [A;B]→ [A;B]. If φ and ψ are Lie algebroid morphisms, then so is
[φ;ψ].
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As a consequence, every morphism of the log-tangent bundle TZf :
TZM → TZM induces a morphisms of the scattering-tangent bundle scTZf :
scTZM →

scTZM .

2. Coisotropic bisections

In this section, we establish general properties of coisotropic bisections of
Poisson groupoids and their connection to Poisson diffeomorphisms. After
that, we show that they form a Lie group whenever the Poisson groupoid is
linearizable.

2.1. Coisotropic bisections of a Poisson groupoid

Let G ⇒M be a groupoid. A bisection σ ∈ Bis(G) is a section of the source
map s : G →M with the property that lσ := t ◦ σ :M →M is a diffeomor-
phism. Any bisection corresponds to and is determined by a left translation
map

Lσ : G → G, g 7→ m(σ(t(g)), g).

If X ∈ Γ(A) is a section of the Lie algebroid of A, then the flow φt of its

right-invariant vector field
−→
X gives rise to a family of bisections σt = φt|M ,

and in fact, it holds that φt = Lσt
.

Bisections of a Lie groupoid form a group, and can be multiplied: if
σ, τ ∈ Bis(G), we define σ · τ as

σ · τ(x) = m(σ(t ◦ τ(x)), τ(x)), for x ∈M ,

or, equivalently, as Lσ·τ = Lσ ◦ Lτ . Several authors already described Bis(G)
as a Lie group, e.g. in [21, 22].

A Poisson groupoid (G,Π) ⇒ (M,π) is a Lie groupoid G ⇒M with a
Poisson structure Π on the space of arrows that is multiplicative: the graph
of the multiplication map is a coisotropic submanifold of (G × G × G, (−Π)×
Π×Π) [25]. For each multiplicative Poisson structure Π on a groupoid G ⇒

M , there is a unique Poisson structure π on M for which the target map
t : (G,Π) ⇒ (M,π) is a Poisson map. This allows us to talk about Poisson
groupoids over a fixed Poisson manifold (M,π).

Definition 2.1. Let (G,Π) ⇒ (M,π) be a Poisson groupoid. A bisection
σ ∈ Bis(G) is coisotropic when imσ is a coisotropic submanifold of (G,Π).
The collection of coisotropic bisections is denoted by Bis(G,Π).
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We establish some properties of coisotropic bisections.

Proposition 2.2. Let (G,Π) ⇒ (M,π) be a Poisson groupoid.
(i). The coisotropic bisections form a subgroup Bis(G,Π) of Bis(G).
(ii). A bisection σ ∈ Bis(G) is coisotropic if and only if Lσ is a Poisson

map.
(iii). For any σ ∈ Bis(G,Π), the induced diffeomorphism on the base lσ :

M →M is a Poisson map.
(iv). The image of a coisotropic bisection is a Lagrangian submanifold.

Remark 2.3. Although every coisotropic bisection is Lagrangian for any
Poisson groupoid, we reserve the term “Lagrangian bisection” (a bisection
with Lagrangian image) for symplectic groupoids only.

Proof. The first assertion follows from the second, while (ii) and (iii) can be
proved by means of the coisotropic calculus developed in [25]. Let us briefly
sketch how. The central idea in [25] is to relax the notion of a Poisson
map from (M,πM ) to (N, πN ) to that of a Poisson relation r : (M,πM ) 99K
(N, πN ), which is a coisotropic submanifold of (N ×M,πN × (−πM )). By
Proposition 1.2, every Poisson map defines a Poisson relation via its graph.
Weinstein proved in [25] that, under a “very clean” condition (loc. cit.,
Definition 1.3.7), Poisson relations compose to Poisson relations (loc. cit.,
Theorem 1.3.9).

To prove (ii) and (iii), we only have to write the maps as a composition of
coisotropic relations, and check that they satisfy the “very clean” condition.
For instance, if σ is a coisotropic bisection, then its image can be regarded
as a relation σ : {∗} 99K (G,Π). We can write Lσ as a composition of the
Poisson relations

σ × Id = {(k, h, g) ∈ G3 : g = h, k ∈ Imσ} : G 99K G2

and the multiplication map m : G2 99K G. It is slightly tedious but straight-
forward to show that this composition is “very clean”, so that it composes to
a Poisson relation, which is exactly the map Lσ. Conversely, if Lσ is a Poisson
map, then Imσ = Lσ(M) is coisotropic because M is. Statement (iii) can
be proved in a similar fashion, using that the target map t : (G,Π)→ (M,π)
is Poisson.

As for (iv), we only have to show that the unit section M ⊂ G is a
Lagrangian, because of (ii). To do so, we apply Lemma 1.5. For α1, α2 ∈
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(Π♯)−1(TM) we can write

α1 = β1 + s∗γ1, α2 = β2 + t∗γ2,

for β1, β2 ∈ (TM)◦ and γ1, γ2 ∈ T
∗M . It follows that

Π(α1, α2) = Π(s∗γ1, t
∗γ2) + Π(α1, β2) + Π(β1, α2)−Π(β1, β2).

The first term vanishes because (kerTs)◦ and (kerTt)◦ are Poisson orthog-
onal for Poisson groupoids ([25], Proposition 4.2.6), the second and third
therm are zero because βi ∈ (TM)◦ and Π♯(αj) ∈ TM , and the last term
vanishes because M is coisotropic in (G,Π). Thus, M is Lagrangian. □

Proposition 2.4 (Curves of coisotropic bisections). Let (G,Π) ⇒M
be a Poisson groupoid with Lie bialgebroid (A,A∗). The following Lie alge-
bras are isomorphic.
(i). The Lie algebra XR(G,Π) of right-invariant Poisson vector fields,

equipped with the Lie bracket.
(ii). The Lie algebra Γ(A, dA∗) of A∗-closed sections of A, equipped with

the bracket on Γ(A).
The isomorphism is given by restricting −→v ∈ XR(G,Π) along M . Moreover,
if an isotopy σt of bisections on G is generated by vt ∈ Γ(A), then σt ∈
Bis(G,Π) for all t if and only if vt ∈ Γ(A, dA∗).

Proof. The differential dA∗ is determined by
−−→
dA∗v = [Π,−→v ] for v ∈ Γ(A)

([12], Corollary 11.4.9), which proves that the correspondence is an isomor-
phism. The second statement now follows directly from combining Proposi-
tion 2.2, (ii) with Lemma 1.17. □

Example 2.5 (Linear Poisson structures). It is well-known that there
is a duality between linear Poisson structures and Lie algebroids ([12], Chap-
ter 9). Therefore, we always think of a vector bundle A∗ →M with a lin-
ear Poisson structure πlin on its total space as the dual of a Lie algebroid
A ⇒M . Since (A∗, πlin) can be interpreted as a Poisson groupoid, a section
α :M → A∗ with coisotropic image is always a Lagrangian submanifold by
Proposition 2.2. The coisotropic bisections of (A∗, πlin) form a vector space
by Proposition 2.6 below, and will play a crucial role in the proof of Theo-
rem 2.12.

Proposition 2.6 ([23], Corollary 2.10). Let A ⇒M be a Lie algebroid.
The image of a section α ∈ Γ(A∗) is coisotropic in (A∗, πlin) if and only if
dAα = 0, in which case it is a Lagrangian submanifold.
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2.2. The Lie group of (coisotropic) bisections

The convenient setting of Kriegl and Michor [10] is a framework for infinite-
dimensional manifolds that is based on smooth curves. At it’s core lies Bo-
man’s theorem, which states that a map f :M → N between finite dimen-
sional manifolds M and N is smooth if for every smooth curve c in M ,
the curve f ◦ c is smooth in N . Likewise, smooth maps between convenient
manifolds are characterized by the same property, making smoothness easy
to check.

A (convenient) Lie group G is a convenient manifold together with a
group structure for which the multiplication m : G×G→ G and inversion
ι : G→ G are smooth. The tangent space g = TeG at the identity inherits a
Lie bracket from G.

In the following, we set C∞((R, 0), (G, e)) to be the space of smooth
curves γ : R→ G with γ(0) = e. The (right-)logarithmic derivative δr :
C∞((R, 0), (G, e))→ C∞(R, g) is defined on a smooth curve γ by

(δrγ)(t) =
d

dϵ

∣∣
ϵ=0

γ(t+ ϵ)γ(t)−1.

A Lie group is regular when the inverse of δr,

EvolrG : C∞(R, g)→ C∞((R, 0), (G, e))

exists and is bijective, and the time-1 evolution map

evolrG : C∞(R, g)→ G, evolrG(γ) = EvolrG(γ)(1)

is smooth. When restricted to constant curves in g, the evolution map coin-
cides with the usual exponential map for Lie groups. All the Lie groups in
this paper are regular. In fact, to the author’s knowledge, up until now all
known convenient Lie groups are regular.

Let G be a Lie group. An initial Lie subgroup is a Lie group H together
with an injective smooth group homomorphism i : H → G which is an initial
map, meaning that a curve γ : R→ H is smooth if and only if i ◦ γ : R→ G
is. Note that this implies that the tangent map Thi : ThH → ThG is injec-
tive. We do not consider immersed submanifolds in the context of infinite
dimensional manifolds.

An initial Lie subgroup i : H → G is embedded when H is an embedded
submanifold of G, that is, i : H → G is a topological embedding and G
admits charts (V,Φ) modelled on a convenient vector space V covering H
for which Φ(H ∩ V) =W ∩ Φ(V), where W ⊂ V is a closed subspace.
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The following lemma will be of use later.

Lemma 2.7 ([10], 38.7). Let G be a regular Lie group and i : K →֒ G
an initial subgroup with the following property: there exists an open neigh-
bourhood U of e in G and a smooth mapping p : U → E into a convenient
vector space E such that p−1(0) = K ∩ U and p is constant on the left cosets
Kg ∩ U . Then K is regular.

2.2.1. The Lie group of bisections. Interestingly, the group of bisec-
tions of a Lie groupoid can always be given the structure of a Lie group.

Theorem 2.8 ([21], Theorem 2.2). Let G ⇒M be a (not necessarily
Hausdorff) Lie groupoid with Lie algebroid A ⇒M over a Hausdorff mani-
fold M . Then Bis(G) is a regular (Hausdorff) Lie group integrating the Lie
algebra Γc(A) of compactly supported sections of A.

Remark 2.9. A more recent paper on the group of bisections of a Lie
groupoid is the work by Schmeding and Wockel [22]. While the current paper
is set up in in the convenient setting, they are using the so-called Bastiani
calculus to describe their infinite-dimensional manifolds. An fairly recent
overview of Lie theory in infinite dimensions, using the Bastiani calculus, can
be found in [17]. Although the Bastiani calculus seems to be more popular in
the literature (to the author’s awareness), we chose to work in the convenient
setting for two reasons: first, it requires a less technical setup, and second,
the paper by Rybicki [21], using the convenient setting, proves Theorem 2.8
also for non-Hausdorff Lie groupoids.

For the spaces considered in this paper, the two settings aren’t too far
off: they even agree up to the level of Fréchet spaces. Thus, one can expect
the results in this paper to be valid in the Bastiani setting.

To proceed to the group of coisotropic bisections, a description of the
smooth structure on Bis(G) is necessary. In this paper, the arrow space of a
groupoid is assumed to be finite-dimensional.

Charts. A chart of Bis(G) around a bisection σ can be obtained from any
tubular neighbourhood as follows. Identify N imσ ∼= σ∗ kerTs =: Aσ. Let
φ : Aσ ⊃ U → V ⊂ G be a tubular neighbourhood around imσ. Define the
C1-opens

U =
{
v ∈ Γc(Aσ) :

im v ⊂ U
s ◦ φ ◦ v and t ◦ φ ◦ v are diffeo’s

}
,

V =
{
τ ∈ Bisc(G) :

im τ ⊂ V
pAσ
◦ φ−1 ◦ τ is a diffeo

}
,
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and the map Φ : V → U by

Φ(τ) = φ−1 ◦ τ ◦
(
pAσ
◦ φ−1 ◦ τ

)−1
∈ U .

Then (V,Φ) is a chart modelled on Γc(Aσ) around the identity. The crux
is that any tubular neighbourhood around imσ defines a chart of Bis(G)
around σ this way.

Topological and smooth structure. Let E →M be a vector bundle.
The space of smooth sections Γ(E), together with the topology of uniform
convergence on compact subsets of each derivative separately, is a topological
vector space (which is Fréchet when M is second countable) ([10], 30.3).
A curve γ : R→ Γ(E) is smooth if and only if the associated map γ∧ :
R×M → E is smooth ([10], 27.17).

Consider a compact set K ⊂M , and denote by ΓK(E) the space of
sections of E with support in K. This is a closed subspace of Γ(E). The
space of compactly supported sections Γc(E) is endowed with the direct
limit locally convex topology inherited from ΓK(E), ranging over compact
subsets K of M ([10], 30.4).

A curve γ : R→ Γc(E) is smooth if and only if the associated map γ∧ :
R×M → E is smooth and is timely proper in the following sense: for every
bounded interval [a, b] ⊂ R there exists a compact K ⊂M for which γ(t) is
constant on M \K for all t ∈ [a, b] ([10], 42.5).

As the group of bisections of a Lie groupoid G ⇒M is modelled on
Γc(A), we have the following characterization of smooth curves in Bis(G).

Lemma 2.10 ([20], Lemma 3.3). A curve γ : R→ Bis(G) is smooth if
and only its associated map γ∧ : R×M → G is smooth and γ is timely
proper: for every bounded interval [a, b] ⊂ R there exists a compact K ⊂M
such that γ(t) is constant on M \K for all t ∈ [a, b].

Remark 2.11. Convenient manifolds are assumed to be smoothly Haus-
dorff, which means that the space of smooth functions separates points in
the manifold. The group of bisections of a Lie groupoid is smoothly Haus-
dorff, because it is topologically Hausdorff and is modeled on a convenient
vector space that admits partitions of unity ([10], 16.10).

2.2.2. The Lie group of coisotropic bisections. Under the assump-
tion of linearizability of a Poisson groupoid (G,Π) aroundM , the coisotropic
bisections form a Lie group.
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Theorem 2.12. Let (G,Π) ⇒ (M,π) be a Poisson groupoid with bialge-
broid (A,A∗). Assume that (G,Π) is linearizable around M . Then Bis(G,Π)
is a regular embedded Lie subgroup of Bis(G), whose Lie algebra corresponds
to Γc(A, dA∗) = {v ∈ Γc(A) : dA∗v = 0}, the space of closed compactly sup-
ported one-forms of A∗.

Proof. We will construct charts of Bis(G) adapted to Bis(G,Π). Choose a
linearization φ : (A, πlin) ⊃ U → V ⊂ (G,Π) around M . Let σ ∈ Bis(G,Π).
As Lσ is a Poisson map, Lσ ◦ φ linearizes Π around imσ. Additionally, let
(V,Φ) be the chart obtained from φ as described above. Then, according
to Proposition 2.6, τ ∈ V is coisotropic if and only if Φ(τ) is coisotropic in
A, which happens if and only if dA∗Φ(τ) = 0. It follows that Φ(Bis(G,Π) ∩
V) = Γc(A, dA∗) ∩ Φ(V). Hence, Bis(G,Π) is an embedded submanifold of
Bis(G), modelled on Γc(A, dA∗), that is closed with respect to the compact-
open C1-topology ([10], 41.9). This shows that Bis(G,Π) is an embedded Lie
subgroup.

By Proposition 2.4, the Lie algebra of Bis(G,Π) with this Lie group
structure is exactly Γc(A, dA∗).

For regularity, we use Lemma 2.7. Consider the map p : Bis(G)→ X2(G)
given by p(σ) = (Lσ)

∗(Π). This map is smooth: if σt is a smooth curve in
Bis(G), then the map R× G ∋ (t, g) 7→ (Lσt

)∗(Π)g ∈ ∧
2TG is smooth, so by

the discussion in section 2.2.1, Lσt
(Π) is a smooth curve in X2(G). From

Proposition 2.2 (ii) it follows that p−1(0) = Bis(G,Π). Also, p is constant on
the left cosets of Bis(G,Π). Hence Bis(G,Π) is regular by Lemma 2.7. □

2.3. Lagrangian bisections of symplectic groupoids

When (G,Ω) ⇒ (M,π) is a symplectic groupoid, the Poisson structure is al-
ways linearizable around M by Weinstein’s Lagrangian neighbourhood the-
orem. As a special case of Theorem 2.12, we recover the result by Rybicki
[20]: the group of Lagrangian bisections Bis(G,Ω) of a symplectic groupoid
is a regular Lie group, whose Lie algebra is given by closed, compactly sup-
ported one-forms. This group has many interesting connections with the
Poisson diffeomorphism group on the base.

Analogous to Hamiltonian diffeomorphisms on symplectic manifolds,
one has the notion of (compactly supported) exact Lagrangian bisections
Bisex,c(G,Ω). These are the time-one flows of (compactly supported) exact
time-dependent one-forms Ω1

ex,c(M). By means of a flux homomorphism for
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Lagrangian bisections [20, 26], the exact sequence of Lie algebras

0→ Ω1
ex,c(M)→ Ω1

cl,c(M)→ H1
c (M)→ 0

integrates, whenever a certain flux group Γ ⊂ H1
c (M) is discrete, to an exact

sequence of Lie groups

1→ Bisex,c(G,Ω)→ Bisc,0(G,Ω)→ H1
c (M)/Γ→ 1,

where Bisc,0(G,Ω) is the identity component of Bis(G,Ω), consisting of time-
1 flows of (compactly supported, time dependent) closed one-forms. In future
work we hope to investigate how the flux homomorphism for Lagrangian
bisections as described in [20, 26] extends to the setting of this paper.

In light of Proposition 2.2, the Lagrangian bisections act on (M,π) by
Poisson diffeomorphisms. The map π♯ induces surjective Lie algebra homo-
morphisms

Ω1
cl,c(M)→ hamloc,c(M,π), Ω1

ex,c(M)→ hamc(M,π).

so that it covers the exact sequence

0 Ω1
ex,c(M) Ω1

cl,c(M) H1
c (M) 0

0 hamc(M,π) hamloc,c(M,π) π♯
(
H1

c (M)
)

0.

The Lie algebra homomorphisms induced by π♯ integrate to surjective group
homomorphisms

Bisc,0(G,Ω)→ Hamloc,c(M,π), Bisex,c(G,Ω)→ Hamc(M,π).

In future work, we hope to investigate the existence of a flux homomorphism
on the locally Hamiltonian group for arbitrary Poisson manifolds.

2.4. Linearization of Poisson groupoids

Before we proceed to applications of our framework, the main results in
[23] about the linearization of Poisson groupoids are stated for later use.
Both theorems linearize integrations of a triangular bialgebroid (A,A∗, πA)
(Remark 1.10). The fundamental difference is that the first one is about
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integrations of A∗, while the second concerns integrations of A. The latter
requires theA-Poisson structure to be of cosymplectic type (Definition 1.14).

Theorem 2.13 ([23], Theorem 3.16). Let (A,A∗, πA) be a triangular
Lie bialgebroid over M . Any (local) Poisson groupoid (G∗,Π) ⇒ (M,π) in-
tegrating (A∗,A) is linearizable around M .

Theorem 2.14 ([23], Theorem 3.23). Let (A,A∗, πA) be a triangular
Lie bialgebroid, and assume that πA is of k-cosymplectic type. Then for
any (local) integration G ⇒M of A, the Poisson groupoid (G,←−πA −

−→πA) is
linearizable.

In the Appendix A we prove linearization of Poisson groupoids over
scattering manifolds, which requires a separate treatment.

3. Lie groups of Poisson diffeomorphisms

3.1. Almost injective Lie algebroids

Many interesting Lie algebroids are determined by the image of the anchor
on sections.

Definition 3.1. A Lie algebroid A ⇒M is almost injective if the anchor
is injective on sections.

Isomorphisms of almost injective Lie algebroids are uniquely determined
by the base map.

Lemma 3.2. Let A ⇒M be an almost injective Lie algebroid and f ∈
Diff(M). Then Tf extends to a (necessarily unique) Lie algebroid isomor-
phism (φ, f) : A → A if and only if f∗(ρ(Γc(A))) = ρ(Γc(A)).

Proof. One implication is obvious. For the reverse, we first recall that for
a vector field X ∈ X(M), the push-forward by f is defined by (f∗X)x =
Tf−1(x)f(Xf−1(x)). Since ρ is injective on the level of sections, there is a
unique map f∗ : Γc(A)→ Γc(A) determined by f∗ρ(v) = ρ(f∗v). This fac-
tors through a C∞(M)-linear map φ : Γc(A)→ Γc(f

∗A), defined by φ(v) =
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(f∗v) ◦ f . Thus, by the Serre-Swan theorem, we obtain bundle maps

A f∗A A

M M M.

φ

id f

The composite, that we will denote by (φ, f), clearly induces f∗ on the level
of sections. It is invertible because the same construction with f−1 gives
the inverse. Finally, it is easily checked that this map is a Lie algebroid
morphism. □

Almost injective Lie algebroids are always integrable. Moreover, the
holonomy groupoid (the final object in the category of integrations of
A ⇒M) can be recovered from any integration (cf. [4]).

Proposition 3.3 ([1], Proposition 1.9). Let G ⇒M be any integration
of an almost-injective Lie algebroid A ⇒M . Then, as a set, Hol(A) ⇒M
is given by (G/ ∼) ⇒M , where

g ∼ h ⇐⇒
there exists local bisections σg and σh

through g and h such that t ◦ σg = t ◦ σh.

The holonomy groupoid Hol(A) ⇒M carries the unique structure of a Lie
groupoid for which the map G → Hol(A) is a local diffeomorphism.

It follows that the groupoid anchor χ : Hol(A)→M ×M induces
an injective Lie group homomorphism χ∗ : Bis(Hol(A))→ Bis(M ×M) ∼=
Diff(M) which differentiates at the identity to the injective map ρ : Γc(A)→
Xc(M).

Recall that the inner automorphisms InnAut(A) of a Lie algebroid
A ⇒M are given by the time-1 flows of (time-dependent) Lie algebroid
sections. If M is not compact, we also want to consider InnAutc(A), the
inner automorphisms of A with compact support. For an almost injective
Lie algebroid, an automorphism (φ, f) : A → A is uniquely determined by
f , and can thus be regarded as an element of Diff(M).

Corollary 3.4. Let A ⇒M be an almost injective Lie algebroid. Then the
group InnAutc(A) is a regular Lie group.

Proof. The group InnAutc(A) corresponds to Bisc,0(Hol(A)), the identity
component of the group of compactly supported bisections of Hol(A), which
is a regular Lie group. □
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We expect that the inclusion InnAutc(A) →֒ Diffc(M) is an initial map.
However, we could only prove it under additional assumptions, as we will
now explain.

Definition 3.5. Let A ⇒M be an almost injective Lie algebroid. We call
A isotopically closed when Γc(A) generates all of its isotopies of inner au-
tomorphisms. That is, if an isotopy φt in Diff(M) generated by Xt is such
that φt ∈ InnAutc(A) for all t, then Xt ∈ ρ(Γc(A)) for all t.

Example 3.6. A regular foliation F ⊂ TM is always isotopically closed.
More generally, if A ⇒M is an almost injective Lie algebroid such that
X ∈ ρ(Γc(A)) if and only if X is tangent to the leaves of A, then A is
isotopically closed. In particular, the log-tangent bundle of a log-manifold is
isotopically closed.

Example 3.7. If I be a projective divisor ideal (Definition 1.24), then
TIM is isotopically closed. Indeed, if φ is an inner automorphism, then φ
is the time-1 flow of a (time-dependent) vector field that preserves I, and
so φ∗I = I. If φt is an isotopy of inner automorphisms, smooth in Diff(M)
and generated by Xt, then

d

dt
φ∗
t (I) = φ∗

t (LXt
(I)) ⊂ I,

hence Xt is in ρ(Γ(TIM)).
In particular, the (normal-crossing) log-tangent bundle (Example 1.27)

and the elliptic tangent bundle (Example 1.29) are isotopically closed.

Example 3.8. If A ⇒M is an isotopically closed almost injective Lie alge-
broid, and B ⇒ Z an (almost injective) isotopically closed subalgebroid over
a hypersurface Z ⊂M , then the rescaling [A;B] is also isotopically closed.
This applies to the scattering-tangent bundle (Example 1.33).

Remark 3.9. In all of the above examples, the anchor also provides an
embedding ρ : Γc(A)→ Xc(M) of topological vector spaces, and thus it is
an initial map. In general, when ρ(Γc(A)) is closed in Xc(M), the map ρ
is an embedding by the open mapping theorem ([8], Theorem 5.5.2) for
bornological webbed spaces to inductive limits of Baire topological vector
spaces (both of which include inductive limits of Fréchet spaces, which is
our case) .
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We expect that every almost injective Lie algebroid is isotopically closed,
at least for those for which the anchor ρ : Γc(A)→ Xc(M) is an embedding.
However, we were not able to prove it in this paper. Therefore, it is added
as a separate assumption in the proposition below.

Proposition 3.10. Let A ⇒M be an isotopically closed almost injec-
tive Lie algebroid for which ρ : Γc(A)→ Xc(M) is an embedding of topo-
logical vector spaces. Then InnAutc(A) is a regular initial Lie subgroup of
Diffc,0(M).

Proof. Let φϵ be an isotopy in InnAutc(A) that is smooth in Diffc(M),
and generated by Xϵ ∈ Xc(M). Since A is isotopically closed, it follows that
Xϵ = ρ(vϵ) for some vϵ ∈ Γc(A). Because ρ is an embedding, it is initial, and
therefore vϵ is a smooth curve in InnAutc(A) = Bisc,0(Hol(A)). By regularity
of Bis(Hol(A)), vϵ integrates to a smooth curve σϵ in Bisc,0(Hol(A)). Now,
since A is almost-injective, the curve t ◦ σϵ is generated by Xϵ, and therefore
must agree with φϵ. It follows that φϵ is smooth in InnAutc(A). □

Remark 3.11. Let G ⇒M be any integration of an almost injective Lie
algebroid A ⇒M . Since G → Hol(A) is an isomorphism in a neighbourhood
of M , the map Bisc,0(G)→ Bisc,0(Hol(A)) is surjective with discrete kernel

K = ker (Bisc,0(G)→ Bisc,0(Hol(A)) = ker ((χG)∗ : Bisc,0(G)→ Diffc,0(M))

Topological discreteness of K alone is generally not enough to prove that
Bisc,0(G)/K is a Lie group (see [10], 38.5), there still is an isomorphism of
groups

Bisc,0(G)/K → Bisc,0(Hol(A))→ InnAutc(A)

and therefore Bis(G)/K admits the structure of a convenient Lie group this
way. In the proof of Theorem 3.14 we will show directly that the quotient is
a Lie group.

Example 3.12. If the anchor of F ⇒M is injective already on the level of
the vector bundles, it corresponds to a regular (i.e. non-singular) foliation. In
this case, there is an identification InnAutc(F) = Folc,0(F), where Fol(F) is
the group of diffeomorphisms sending each leaf to itself, that equips Fol(F)
with the structure of a regular initial Lie subgroup of Diff(M). It coincides
with the one described in [19].
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Remark 3.13. Even for a (non-singular) foliation F ⇒M , the subgroup
InnAut(F) = Fol(F) may not be embedded in Diff(M). Consider for in-
stance a foliation on the torus T 2 with coordinates (θ1, θ2) whose leaves
are integral curves of a constant vector field X = ∂θ1 + a∂θ2 , where a ∈ R is
irrational. For each t ∈ R, the map φt(θ1, θ2) = (θ1 + t, θ2) preserves the fo-
liation, and for a dense subset of R, the maps φt are foliated. Hence, there is
a sequence φtn ∈ Fol(F) such that φtn converges to the identity in Diff(M),
but does not converge in Fol(F).

Another interesting application arises when we consider almost every-
where non-degenerate Poisson structures, combined with the Lagrangian
bisections of its integrating symplectic groupoid.

Theorem 3.14. Let (M,π) be a Poisson manifold whose non-degeneracy
locus is open and dense. Then the group Hamloc,c(M,π) is a regular Lie
group, which is an initial subgroup of Diff(M,π) whenever the cotangent
algebroid T ∗M is isotopically closed and π♯ : Γc(T

∗M)→ Xc(M) is an em-
bedding.

More generally, if (A, πA)⇒M is an almost injective Poisson Lie alge-
broid and πA is generically non-degenerate, then Hamloc,c(A, πA) is a regular
Lie group and and initial subgroup of Diff(M,π) whenever A∗ is isotopically
closed and ρA ◦ π

♯
A : Ω1

c(A)→ Xc(M) is an embedding.

Proof. We prove the general case. First, the dual A∗ becomes an almost-
injective Lie algebroid as in Remark 1.10. Let (G∗,Π) ⇒ (M,π) be a Poisson
groupoid integrating the bialgebroid (A∗,A). As in Remark 3.11, we set

K = ker ((χG∗)∗ : Bisc,0(G
∗)→ Diff(M)) ,

which is a discrete subgroup of Bisc,0(G
∗). Since this is the kernel of a smooth

covering map of Lie groups, we can find a neighborhood W of the identity
in Bisc,0(G

∗) satisfying

W =W−1, WW ∩ kWW = ∅ for all k ∈ K.

By Theorem 2.13, the Poisson groupoid (G∗,Π) is linearizable, and therefore
the identity component Bisc,0(G

∗,Π) of the group of coisotropic bisections
is an embedded submanifold of Bis(G∗) (Theorem 2.12), it follows that

KΠ = K ∩ Bisc,0(G
∗,Π)
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is discrete in Bisc,0(G
∗,Π). Moreover, shrinking W if necessary, we have, by

setting WΠ =W ∩ Bis(G∗,Π), an open neighborhood of the identity satis-
fying

WΠ =W−1
Π , WΠWΠ ∩ kWΠWΠ = ∅ for all k ∈ KΠ.

By [10], 38.5, the quotient Bisc,0(G
∗,Π)/KΠ

∼= Hamloc,c(A, πA) is then a
regular Lie group.

Under the additional assumptions, it becomes an initial Lie subgroup of
Diffc(M), because InnAutc(A

∗) is. □

3.2. Poisson structures of divisor type

Our approach is particularly effective for a class of generically non-
degenerate Poisson structures, namely those of divisor type considered [9]
(see Section 1.4). Let (M,π) be a Poisson structure of divisor type with
projective divisor ideal Iπ. The algebroid TIπM is almost injective, and by
Proposition 1.26, every Poisson vector field is a section of TIπM . When
T ∗
Iπ
M locally admits bases of closed sections, the Poisson structure π lifts

to a Poisson structure πI on TIπM by Theorem 4.35 in [9]. If in addition Iπ
is a standard ideal, the lift πI is non-degenerate.

Theorem 3.15. Let (M,π) be a Poisson structure of standard divisor type.
Suppose that TIπM locally admits bases of closed sections. Then Diff(M,π)
is a regular initial Lie subgroup of Diff(M).

Proof. We will equip the path component Diffc,0(M,π) of Diff(M,π) with
the structure of a regular initial Lie subgroup of Diffc,0(M). By Proposition
1.26, every Poisson diffeomorphism in Diffc,0(M,π) is an inner automor-
phism of TIπM , to which π lifts to a non-degenerate Poisson structure πI .
By Example 3.7, the Lie algebroid TIπM is isotopically closed, and there-
fore InnAutc(TIπM,πI) is a regular initial Lie subgroup of Diffc,0(M) by
Theorem 3.25. Now, the whole group Diff(M,π) becomes a Lie group by
declaring Diffc(M,π) to be open Diff(M,π) and using group multiplication
to translate the manifold structure to the entire group. This way, Diff(M,π)
is becomes an initial subgroup of Diff(M). □

3.2.1. Log-symplectic structures. Let (M,Z) be a (normal-crossing)
log-manifold (Example 1.27). Analogous to the boundary of a manifold
with corners, the hypersurface Z comes with a natural stratification Z =
∪2n−1
j=0 Zj (the Zj ’s are (unions of) the j-dimensional orbits of TZM). Note

that by the local form, each Zj is embedded (but not closed!). Because
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(M \
(
∪2n−2
i=1 Zi

)
, Z2n−1) is a smooth log-manifold, the log-symplectic struc-

ture induces a cosymplectic structure on i : Z2n−1 →֒M , whose one-form
is given by α = i∗(ιEω), where E is the Euler vector field obtained via any
tubular neighbourhood of Z2n−1 ([7], Proposition 10).

Lemma 3.16. Let (M,Z, ω) be a log-symplectic manifold with underlying
Poisson structure π. A vector field X ∈ X(M) is tangent to the symplec-
tic foliation of π if and only if there is a one-form η ∈ Ω1(M) such that
π♯(η) = X.

Proof. Any vector field of the form π♯(η) it tangent to the symplectic foli-
ation. Conversely, if X is tangent to the symplectic foliation, it is certainly
tangent to Z and thus can be regarded as a section of TZM , and thus we can
set η = ω♭(X). Since X is tangent to the symplectic foliation, it must be in
the kernel of α = i∗(ιEω) when restricted to Z2n−1. In local coordinates (xi)
adapted to Z, we have Z2n−1 = {

∏k
i=1 xi = 0 : no two xi’s are zero}. There-

fore, on Z2n−1 ∩ {xi = 0}, the Euler vector field is given by xi∂xi
. We find

that

0 = ιXα = ω

(
xi

∂

∂xi
, X

) ∣∣
Z2n−1∩{xi=0}

= −η

(
xi

∂

∂xi

) ∣∣
Z2n−1∩{xi=0}

.

By continuity, ιxi∂xi
η = 0 along {xi = 0}. Since this is true for all i =

1, . . . , k, it follows that η ∈ Ω1(M). □

Consequently, for log-symplectic manifolds, the locally Hamiltonian and fo-
liated vector fields coincide! This implies that Hamloc,c(M,π) is the identity
component of Folc(M,π).

Theorem 3.17. Let (M,Z) be a log-manifold. Then

Diff(M,Z) = {φ ∈ Diff(M) : φ(Z) = Z}

is a regular initial Lie subgroup of Diff(M) with Lie algebra Xc(M,Z).
Let (M,Z, ω) be a log-symplectic manifold with underlying Poisson struc-

ture π. Then Diff(M,π) is a regular embedded Lie subgroup of Diff(M,Z),
with Lie algebra Xc(M,π).

Finally, Hamloc,c(M,π) coincides with the identity component of
Fol(M,π), and comes with the structure of a regular Lie group for which
it is initial in Diff(M,π), with Lie algebra hamloc,c(M,π) = folc(M,π).
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Remark 3.18. If Z is a smooth hypersurface, Ebin and Marsden proved in
[5] that Diff(M,Z) is actually embedded in Diff(M) by means of a metric for
which Z is geodesically closed. This fact is not immediate from our approach.

Proof. Let G ⇒M be the holonomy groupoid of TZM . The identity path-
component of Diff(M,Z) identifies with the (compactly supported) inner
automorphisms of TZM , which is an initial subgroup of Diff(M) by Propo-
sition 3.10 after identifying Diffc,0(M,Z) = Bisc,0(G). The second statement
is a special case of Theorem 3.15. Finally, due to Lemma 3.16, the iden-
tity component of Fol(M,π) coincides with Hamloc,c(M,π). The cotangent
algebroid T ∗M is almost injective an isotopically closed by Lemma 1.17,
and therefore Hamloc,c(M,π) obtains the structure of a regular initial Lie
subgroup of Diff(M) via Theorem 3.14. □

Remark 3.19. When Z ⊂M is a smooth hypersurface, explicit integra-
tions of the log-tangent bundle TZM have been constructed in [6]. One of its
integrations, that we call the log-pair groupoid PairZ(M), can be obtained
by blowing up Z × Z inM ×M . After removing a certain subset (namely the
arrows that point into and out of Z), PairZ(M) ⇒M becomes a groupoid
integrating TZM . If ω is a log-symplectic structure on TZM , then Π−1 =
s∗ω − t∗ω is a log-symplectic structure on p!Z PairZ(M) = TH PairZ(M) (see
Proposition A.6). For the resulting Poisson groupoid (PairZ(M),Π), the
anchor to M ×M induces isomorphisms Bis(PairZ(M)) ∼= Diff(M,Z) and
Bis(PairZ(M),Π) ∼= Diff(M,π). Thus in this case, there is a very explicit
and concrete Poisson groupoid whose group of coisotropic bisections corre-
sponds exactly to the group of Poisson diffeomorphisms.

3.2.2. Elliptic symplectic structures. Let |D| be an elliptic divisor on
M . If X ∈ X(M) is a vector field with the property that [X,Y ] is elliptic
for all Y ∈ X(M, |D|), then X ∈ X(M, |D|). This implies that if φt is an
isotopy generated by Xt consisting of automorphisms of T|D|M , then Xt

is an elliptic vector field. It follows that Diffc,0(M, |D|) := Autc,0(T|D|M) ∼=
InnAutc(T|D|M).

The symplectic foliation of an elliptic symplectic manifold (M,π) de-
pends on the elliptic residue of the elliptic two-form ω ∈ Ω2(T|D|M), defined
as follows. Near the degeneracy locus i : D →֒M , we can write

ω = λd log r ∧ dθ + d log r ∧ α1 + dθ ∧ α2 + β

where λ ∈ Ω0(D; k∗), with k = det
(
ker ρT|D|M |D

)
, is locally constant. Then

λ is the elliptic residue of ω.
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Definition 3.20. Let (M,π) be an elliptic symplectic manifold with λ
defined as above. If λ ̸= 0, we say that (M,π) has non-zero elliptic residue.
If λ = 0, then we say that (M,π) has zero or vanishing elliptic residue.

If (M,π) has non-zero elliptic residue, then the symplectic foliation of
(M,π) consists of (the connected components of) M \D and D. Therefore,
every Poisson vector field is automatically foliated.

When the elliptic residue vanishes, the symplectic foliation is given by
connected components of M \D and the foliation induced by the kernels of
the closed one-forms i∗α1, i

∗α2 ∈ Ω1(D) (these are the radial and θ-residues,
respectively).

Lemma 3.21. Let (M,π) be an elliptic symplectic manifold, |D| its elliptic
divisor and ω ∈ Ω2(T|D|M) its elliptic symplectic form. Assume ω has zero
elliptic residue. Then every foliated Poisson vector field is locally Hamilto-
nian.

Proof. This proof is inspired by the proof of Lemma 1.10 in [3]. Locally, in
polar coordinates (r, θ) around D, we can write

ω = d log r ∧ α1 + dθ ∧ α2 + β.

An elliptic vector field X ∈ X(M, |D|) is Poisson if and only if ιXω ∈
Ω1(T|D|M) is closed and it is foliated if and only if ιXα1 and ιXα2 van-
ish over D. If X ∈ fol(M,π), we have to show that ιXω comes from a de
Rham form on M . It is enough to show this in the locally.

Let η = ιXω ∈ Ω1(T|D|M) be the corresponding closed elliptic form. The
first step is to show that η is cohomologous to a smooth de Rham form. As
in the proof of Lemma 1.10 in [3], we denote by ρt : U → U for t ∈ S1 the
S1-action in a tubular neighbourhood U of D, generated by ∂θ. Since this
is an elliptic vector field, ρ∗t acts trivially on the level of the cohomology of
T|D|M .

Claim. The form ρ∗t η defines a foliated Poisson vector field for all t ∈ S1.

Proof of claim. This is a direct computation. The form ρ∗t η is certainly
closed. It is foliated when the associated vector field (ω♭)−1(ρ∗t η) paired
with αi vanishes over D. For α1, this can be shown as follows. First, we
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observe that

ρ∗tω = d log r ∧ ρ∗tα1 + dθ ∧ ρ∗tα2 + ρ∗tβ.

Then

⟨α1, (ω
♭)−1(ρ∗t η)⟩ = −⟨(ω

♭)−1(α1), ρ
∗
t η⟩ = −⟨r∂r, ρ

∗
t (ιXω)⟩

= −⟨r∂r, ιρ∗
tX(ρ∗tω)⟩ = (ρ∗tω)(r∂r, ρ

∗
tX)

= ⟨ρ∗tα1, ρ
∗
tX⟩ = ρ∗t ⟨α1, X⟩,

which vanishes over D because ρt leaves D invariant. The computation with
α2 is the same. This proves the claim.

By averaging the forms ρ∗t η over S1, we obtain an θ-invariant form η for
which X = (ω♭)−1(η) is foliated. Writing

η = f1d log r + f2dθ + ζ

for smooth functions f0, f1 on U and ζ ∈ Ω1(U), we have that
• f1 and f2 are S1-invariant, and
• fi = ιXαi, so it vanishes over D.

Therefore, f1 and f2 are divisible by r2 and thus η is a smooth one-form on
U .

Finally, since η is cohomologuous to η, we can write η = η + df . Since
every exact elliptic one-form comes from a smooth one-form onM , it follows
that η is indeed a smooth one-form on U (in general, if A ⇒M is a Lie
algebroid, with differential dA, then dAf = ρ∗A(df) for any f ∈ C∞(M)).
This completes the proof. □

With this lemma out of the way, we have a complete picture of the
Poisson diffeomorphism group of elliptic symplectic manifolds.

Theorem 3.22. Let |D| be an elliptic divisor. Then Diff(M, |D|) is a reg-
ular initial Lie subgroup of Diff(M) with Lie algebra X(M, |D|).

Let (M,π) be an elliptic symplectic manifold, with elliptic divisor |D|.
Then the groups Diff(M,π), Fol(M,π) and Hamloc,c(M,π) are regular ini-
tial Lie subgroups of Diff(M) with Lie algebras Xc(M,π), folc(M,π) and
hamloc,c(M,π), respectively.

If (M,π) has non-zero elliptic residue, then Fol(M,π) is an open sub-
group of Diff(M,π). If (M,π) has zero elliptic residue, then the identity
component Folc,0(M,π) of Fol(M,π) coincides with Hamloc,c(M,π).
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Proof. Since T ∗
|D|M locally admits bases of closed sections, the following is a

special case of Proposition 3.10 and Theorem 3.15. The group Hamloc,c(M,π)
carries the structure of an initial Lie subgroup of Diff(M,π) by Theorem
3.14.

Finally, if the elliptic residue is non-zero, then Fol(M,π) coincides with
the subgroup of Diff(M,π) that sends (the components of D) to itself, which
is open in Diff(M,π). If the elliptic residue is zero, then by Lemma 3.21 every
foliated vector field is locally Hamiltonian, so we can equip Fol(M,π) with
the structure of a Lie group by declaring Hamloc,c(M,π) to be open. □

3.3. Scattering-symplectic structures

The following is a consequence of Theorem A.1.

Theorem 3.23. Let (M,Z, ω) be a scattering-symplectic manifold with un-
derlying Poisson structure π. Then Diff(M,π) is a regular initial Lie sub-
group of Diff(M), with Lie algebra Xc(M,π).

Proof. We equip the path component Diffc,0(M,π) with a Lie group struc-
ture as follows. Any Poisson vector field X must be tangent to Z, hence
it follows Diffc,0(M,π) ⊂ Diffc,0(M,Z). Recall from the proof of Theorem
3.17 that Diffc,0(M,Z) obtains its Lie group structure by identifying it with
Bisc,0(G), with G ⇒M the holonomy groupoid of TZM . By Theorem A.1,
the groupoid G ⇒M comes with a Poisson structure Π that is lineariz-
able around M , Therefore, Theorem 2.12 says that Bisc,0(G,Π) is a regu-
lar embedded Lie subgroup of Bisc,0(G). Clearly, Bisc,0(G,Π) identifies with
Diffc,0(M,π). □

3.4. Almost injective (co)symplectic Lie algebroids

An inner A-Poisson automorphism of a Poisson algebroid (A, πA)⇒M is
an inner automorphism φ ∈ InnAut(A) that preserves the bivector πA. This
gives rise to the subgroup InnAut(A, πA) of InnAut(A). Its infinitesimal
generators correspond precisely to Poisson sections, which are the sections
of A closed with respect to the Lie algebroid structure on A∗.

Proposition 3.24. Let (φt,Φt) : A → A be the flow of a time-dependent
section vt ∈ Γ(A). Then φt is a path in InnAut(A, πA) if and only if
[πA, vt] = 0 for all t.

We can now prove the following general result.
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Theorem 3.25. Let (A, πA)⇒M be an almost-injective Poisson algebroid
of cosymplectic type. The group InnAutc(A, πA) is a regular embedded Lie
subgroup of InnAutc(A) with Lie algebra Γc(A, πA).

If in addition A is isotopically closed and ρ : Γc(A)→ Xc(M) is initial,
then InnAutc(A, πA) is an initial Lie subgroup of Diff(M).

Proof. The holonomy groupoid Hol(A) integrates A, and the Poisson struc-
ture ←−πA −

−→πA on Hol(A) is linearizable by Theorem 2.14.
If σ ∈ Bis(Hol(A)), then its image in (M ×M,π × (−π)) is coisotropic

precisely when σ is coisotropic in (Hol(A),←−πA −
−→πA), because A is almost-

injective. This implies that t ◦ σ induces an A-Poisson isomorphism.
Under the additional assumptions, it becomes initial by Proposition 3.10.

□

3.5. Poisson structures of cosymplectic type

In this section we consider the symmetry group of Poisson stuctures of
cosymplectic type on the tangent bundle of a manifold.

Lemma 3.26. Let (M,π) be a Poisson manifold of cosymplectic type, with
underlying foliation F . Then F has trivial holonomy.

Proof. Choose a cosymplectic structure (α1, . . . , αk, ω) inducing π, The Reeb
vector fields R1, . . . , Rk are pairwise commuting and transverse to F , while
also preserving F . Let L be a leaf of F and x ∈ L and γ : [0, 1]→ L a
loop based at x. The flows φi

ϵ of Ri induce an embedding (ϵ1, . . . , ϵk) 7→
φ1
ϵ1 ◦ · · · ◦ φ

k
ϵk(x) of a small disc through x transverse to F . Since the image

of γ is compact, for ϵi small enough, φ1
ϵ1 ◦ · · · ◦ φ

k
ϵk ◦ γ is a loop tangent to F

starting at φ1
ϵ1 ◦ · · · ◦ φ

k
ϵk(x). Clearly, at t = 1, it has returned to its starting

point. □

It follows that Hol(F) coincides with the relation groupoid

Rel(F) = {(x, y) ∈M ×M : x and y belong to the same leaf}.

We aim to strengthen Theorem 3.25 in the case that A = TM .

Theorem 3.27. Let (M,π) be a Poisson manifold of cosymplectic type with
underlying foliation F . Then Diff(M,π) is an embedded regular Lie subgroup
of Diff(M). Furthermore, Fol(M,π) is an initial Lie subgroup of Diff(M,π).

If the relation groupoid Rel(F) is embedded in M ×M , then Fol(M,π)
is embedded in Diff(M,π).
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Note that the relation groupoid Rel(F) is embedded in M ×M when
every symplectic leaf of (M,π) is embedded.

Let (M,π) be a Poisson manifold of cosymplectic type, and choose
a cosymplectic structure (α1, . . . , αk, ω) inducing π. To obtain charts of
Diff(M,π) adapted to Fol(M,π), it is crucial to keep track of the one-forms
that are part of the cosymplectic structure in the linearization of the pair
Poisson groupoid (M ×M,←−π −−→π ) (this information is lost in the proof of
Theorem 2.14), because of the following observation.

Lemma 3.28. Suppose that M is connected. Let α1, . . . , αk be every-
where independent closed one-forms on M and set F = ∩i kerαi. The re-
lation groupoid Rel(F) is the leaf of the foliation ∩i ker(

−→αi −
←−αi) on M ×M

through the diagonal.

To keep track of the cosymplectic structure, we identify N∆ = {(−v, v) :
v ∈ TM} ⊂ TM × TM and choose a tubular neighbourhood ψ : TM →
U ⊂M ×M of ∆ that respects the splittings along M , meaning that Tψ
sends (v, w) ∈ Tx(TM) ∼= TxM ⊕ TxM to (v − w, v + w) ∈ T(x,x)(M ×M).
We let p : T ∗M →M be the bundle projection, and denote by ℓRi

: T ∗M →
R the linear function associated to the Reeb vector field Ri: ℓRi

(α) =
α(Ri(x)) for α ∈ T

∗
xM .

Lemma 3.29. Let ♭ : TM → T ∗M be the flat map induced by the cosym-
plectic structure (α1, . . . , αk, ω), with inverse ♯ = ♭−1. Then the following
equalities hold along M :

p∗αi|M = ♯∗ψ∗

(
1

2
(−→αi +

←−αi)

) ∣∣
M
, dℓRi

∣∣
M

= ♯∗ψ∗

(
1

2
(−→αi −

←−αi)

) ∣∣
M
,

(
ωcan −

k∑

i=1

d(ℓRi
p∗αi)

)
∣∣
M

= ♯∗ψ∗

(
1

2
(−→ω −←−ω )

) ∣∣
M
.

Proof. Since the map ♯ is a vector bundle map, its derivative along the zero
section is given in terms of the natural splittings by T♯(v, w) = (v, ♯(w)).

For the first two equalities, we have on one hand, for (v, β) ∈ Tx(T
∗M):

p∗αi(v, β) = αi(v), dℓRi
(v, β) = β(Ri),

while the right side evaluates to:

♯∗ψ∗

(
1

2
(−→αi +

←−αi)

)
(v, β) =

1

2
(−→αi +

←−αi) (v − ♯(β), v + ♯(β)) = αi(v),
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and the second equality goes similar. For the third one, let (v, β), (w, γ) ∈
Tx(T

∗M). Then,

♯∗ψ∗

(
1

2
(−→ω −←−ω )

)
((v, β), (w, γ))

=
1

2
(−→ω −←−ω ) (Tψ(v, ♯(β)), Tψ(w, ♯(γ)))

= ω(♯(β), w) + ω(v, ♯(γ))

= β(w)− γ(v)−

(
∑

i

β(Ri)αi(w)− γ(Ri)αi(v)

)
,

where we used that ι♯(β)ω = β −
∑

i β(Ri)αi. On the other hand,

ωcan((v, β), (w, γ)) = β(w)− γ(v)

dℓRi
∧ p∗αi ((v, β), (w, γ)) = β(Ri)αi(w)− γ(Ri)αi(v).

The third equality now follows easily. □

Remark 3.30. The cosymplectic structure (p∗α1, dℓR1
, . . . , p∗αk, dℓRk

,
ωcan −

∑
i d(ℓRi

p∗αi)) induces a linear Poisson structure on T ∗M , which
is Poisson diffeomorphic via the flat map to the linear Poisson structure
on TM dual to the cotangent algebroid. Using the cosymplectic structure
to write T ∗M = F∗ × R

k, we see that a section (η, f) ∈ Γ(F∗ × R
k) has a

coisotropic image in T ∗M if and only if dFf = 0 and dFη = 0. This is equiv-
alent to ♯(η, f) being a Poisson vector field.

Proof of Theorem 3.27. The first part is just Theorem 3.25 in the case that
A = TM . Alternatively, the Poisson pair groupoid is linearizable by Theo-
rem 2.14, and so by Theorem 2.12 its subgroup of coisotropic bisections is
embedded. Its group of foliated diffeomorphisms is an initial Lie subgroup
by Theorem 3.25, taking A = F .

Suppose now that Rel(F) is embedded in M ×M . According to
Lemma 3.29 and the Moser lemma for cosymplectic Lie algebroids ([23],
Lemma 3.1), we can find
• open neighbourhoods U ⊂ T ∗M of M and V ⊂M ×M of the diago-
nal;
• a Poisson diffeomorphism φ : U → V such that φ∗

(
1
2 (
−→αi +

←−αi)
)
= p∗∗αi

and φ∗
(
1
2 (
−→αi −

←−αi)
)
= dℓRi

.
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Identify T ∗M = F∗ × R
k as in Remark 3.30. Since Rel(F) is embedded,

and φ∗
(
1
2 (
−→αi −

←−αi)
)
= dℓRi

, we can assume by Lemma 3.28, after possi-
bly shrinking U , that φ(η, f) ∈ Rel(F) if and only if f = 0. In this tubular
neighbourhood, the C1-open

U =

{
(η, f) ∈ Γc(F

∗ × R
k) :

dFη = 0, dFf = 0, im(η, f) ⊂ U ,
s ◦ φ ◦ (η, f) and t ◦ φ ◦ (η, f) are diffeo’s

}

is the image of some chart (V,Φ) if Diff(M,π) as described in Section 2.2.
Now, a section (η, f) has image in Rel(F) if and only if f = 0. It follows
that Φ restricts to Fol(M,π) as

Fol(M,π) ∩ V
Φ
−→ Ω1

cl,c(F) ∩ U .

Hence, the chart (V,Φ) is adapted to Fol(M,π). □

Remark 3.31. Without the presence of the 2-form in a cosymplectic struc-
ture, our approach remains valid. Indeed, let α ∈ Ω1(M) be a closed nowhere
vanishing one-form, and set F = kerα. A bisection σ :M →M ×M corre-
sponds to a one-form preserving diffeomorphism if and only if σ∗(−→α ) =
σ∗(←−α ) = α. Furthermore, it corresponds to a foliation preserving diffeomor-
phism if and only if it is a foliated map σ : (M,F)→ (M ×M,F × F). The
Moser lemma ([23], Lemma 3.1) can be rephrased without the two-form.
Using these observations, we can argue similar as in the proof of Theorem
3.27 to obtain charts of Diff(M) adapted to Diff(M,α) and Diff(M,F). The
result is the following theorem.

Theorem 3.32. Let α1, . . . , αk ∈ Ω1(M) be closed, everywhere in-
dependent one-forms and set F = ∩ki=1 kerαi. Then Diff(M,F) and
Diff(M,α1, . . . , αk) are regular initial Lie subgroups of Diff(M), with Lie
algebras

Xc(M,F) = {X ∈ Xc(M) : [X,Γ(F)] ⊂ Γ(F)} and

Xc(M,α1, . . . , αk) = {X ∈ Xc(M) : LX(α1) = · · · = LX(αk) = 0},

respectively.

Appendix A. Linearization of Poisson groupoids over

scattering-symplectic manifolds

Let (M,Z, ω) be a scattering-symplectic manifold, with underling Poisson
structure π. If Gsc ⇒M is an integration of the scattering-tangent bundle
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scTZM , then it comes with a Poisson structure that is automatically lin-
earizable by Theorem 2.13, as the scattering-symplectic structure provides
a Lie algebroid isomorphism scT ∗

ZM
∼= scTZM . However, from the perspec-

tive of the Poisson diffeomorphism group, the scattering algebroid is not the
right one to consider, because the Poisson vector fields are sections of the
log-tangent bundle, and not necessarily the scattering-tangent bundle.

Denote by πZ the Poisson structure on the log-tangent bundle TZM
induced by ω:

scT ∗
ZM

scTZM

T ∗
ZM TZM.

ω♭

π♯
Z

The section πZ degenerates over Z, so it is not symplectic anymore,
and thus Theorem 2.13 does not apply to integrations of the bialgebroid
(TZM,T ∗

ZM). Yet, those integrations are linearizable, as we will show in
this section.

Theorem A.1. Let (M,Z, ω) be a scattering-symplectic manifold, with un-
derlying TZM -Poisson structure πZ . Let G ⇒M be an integration of the
log-tangent bundle TZM . Then the Poisson groupoid (G,←−πZ −

−→πZ) ⇒M is
linearizable.

A.1. Linearization of scattering-symplectic structures

Let (M,Z, ω) be a scattering-symplectic manifold, with underlying Pois-
son structure π, and i : L →֒ Z a Lagrangian submanifold transverse to Z.
Certainly, the Poisson structure is linearizable around L \ Z in M \ Z, by
Weinstein’s Lagrangian neighbourhood theorem. Moreover, the scattering
symplectic structure induces a contact structure on Z [11] which is lin-
earizable around Z̃ = Z ∩ L (which is Legendrian in Z) by the Legendrian
neighbourhood theorem in contact geometry. This gives an intuition to why
the Poisson structure should be linearizable around L.

The first step in the linearization is a Moser lemma adapted to
scattering-symplectic manifolds.

Lemma A.2 (sc-Moser lemma). Let i : L →֒ (M,Z) be a submanifold
transverse to Z. Let ω0, ω1 be two scattering symplectic forms such that
ω1|L = ω0|L. Then there exists neighbourhoods U0, U1 of L inM and a diffeo-
morphism φ : (U0, U0 ∩ Z)→ (U1, U1 ∩ Z) such that φ∗ω1 = ω0 on U0 and
φ|L = IdL.
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Remark A.3. For the scattering-symplectic forms ω0, ω1, the condition
ω1|L = ω1|L does not imply that the cohomology classes in the scattering-
cohomology agree. In fact, often they do not (see [11]). The scattering-
morphism changes the cohomology class of the symplectic form.

Proof of Lemma A.2. By the splitting theorem for Lie algebroids ([2], The-
orem 4.1), applied to the log-tangent bundle, we can assume that M = E is
a vector bundle over L and the hypersurface Z is the bundle E|Z̃ over the

hypersurface Z̃ = Z ∩ L in L. We set ωt = ω0 + t(ω1 − ω0).
On M \ Z, we can write ω1 − ω0 = dψ with

ψ =

∫ 1

0

1

t
m∗

t (ιE(ω1 − ω0))dt.

Here, E is the Euler vector field of E, and mt is scalar multiplication by t.
On Z, this is just a formal expression. We will show that there is a family
of log-vector fields Xt ∈ X(M,Z) such that

(∗) ιXt
ωt = −ψ on M \ Z.

By non-degeneracy of ωt away from Z, the family of vector fields Xt is
uniquely determined on M \ Z, and satisfies Xt|L\Z̃ = 0.

To show that this extends to a log-vector field over Z, we need to zoom
in on a neighbourhood of Z. Choose a defining function x̃ of Z̃ in L. Then
x = p∗x̃ is a defining function for Z, with the nice property that m∗

t (x) = x
(and thus ιEdx = 0). The key observation is that if Y is a scattering vector
field, then Y/x is a log-vector field.

Claim. The form x · ιE(ω1 − ω0) is a scattering one-form.

Proof of the claim. The Euler-vector field E is a log-vector field, and thus
xE is a scattering-vector field. Therefore, x · ιE(ω1 − ω0) = ιxE(ω1 − ω0) is a
scattering one-form. □

From the claim, it follows that

x · ψ = x

∫ 1

0

1

t
m∗

t (ιE(ω1 − ω0))dt =

∫ 1

0

1

t
m∗

t (x · ιE(ω1 − ω0))dt

is a scattering form (mt is a log-map and thus a scattering algebroid mor-
phism by Proposition 1.34). Hence, we can find scattering vector fields X̃t
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near Z such that ιX̃t
ωt = −x · ψ in a neighbourhood of Z. The log-vector

fields Xt = X̃t/x extend the solution to (∗) over Z.
Let φ be the time-1 flow of Xt, which is defined in a neighbourhood U of

L because Xt|L = 0. Then φ is a b-map that satisfies φ∗ω1 = ω0 outside Z
by the standard Moser argument. But since both are scattering forms, they
must agree also on Z. □

A.1.1. Scattering Lagrangian neighbourhood theorem. Let i :
(L, Z̃) →֒ (M,Z, ω) be a Lagrangian submanifold transverse to Z. As in the
proof of Lemma A.2, we can assume that (M,Z) = (NL,NL|Z̃). We can
already linearize ω on the scattering algebroid level.

Lemma A.4. The limit

ωlin = lim
t→0

m∗
tω

t

defines a linear scattering 2-form on (NL,NL|Z̃) that satisfies ωlin|L = ω|L.

Proof. For every t ∈ R, the map mt : NL→ NL is a log-morphism and thus
a scattering morphism by Proposition 1.34. Therefore, m∗

tω is scattering 2-
form for all t ∈ R. Because L is Lagrangian, m∗

0ω = 0. Since m∗
tω is smooth

in t, the limit limt→0m
∗
tω/t exists and the resulting form is again smooth.

Clearly, m∗
λωlin = λωlin, so the resulting form is indeed linear. □

Theorem A.5 (sc-Lagrangian neighbourhood theorem). Let
(M,Z, ω) be a scattering symplectic manifold with Poisson structure π and
i : L →֒ (M,Z) a Lagrangian submanifold transverse to Z. Then there are
neighbourhoods U of L in M and V of L in NL and a Poisson diffeomor-
phism on φ : (U, π)→ (V, πlin) that restricts to the identity on L.

Proof. The theorem follows from Lemma A.2 and Lemma A.4. □

A.2. Poisson groupoids over scattering-symplectic manifolds

Let (M,Z) be a smooth log-manifold, with pZ : TZM →M and psc :
scTZM →M the bundle projections. The scattering Lie algebroid scTZM
is naturally anchored to the log-tangent bundle TZM , and therefore, ac-
cording to [23], if G ⇒M is an integration of TZM , the following squares
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are a double Lie algebroid and an LA-groupoid, respectively.

p!scTZM TZM

scTZM M,

p!scG G

scTZM M.

Proposition A.6. The pair (TZM,TZM |Z) is a log-manifold. Further-
more:
(i). the prolongation algebroid p!Z(TZM)→ TZM is isomorphic to the log-

tangent bundle T(TZM |Z)(TZM),

(ii). the prolongation algebroid p!sc(TZM)→ TZM is isomorphic to the
scattering algebroid scT(TZM |Z)(TZM).

If G ⇒M is an integration of TZM , then, with H = s−1(Z) = t−1(Z) as a
critical hypersurface, the following hold:
(iii). the Lie algebroid p!ZG ⇒ G is isomorphic to the log-tangent bundle

THG.
(iv). the Lie algebroid p!scG ⇒ G is isomorphic to the scattering-tangent bun-

dle scTHG.

Proof. We follow the notation in [23], Section 2.
Recall that p!Z(TZM) has side bundles and core isomorphic to TZM .

The same is true for T(TZM |Z)(TZM).

The sections of p!Z(TZM)→ TZM are generated by the complete lifts ṽ
and vertical lifts v↑ for v ∈ Γ(TZM). Since the φt of a section v ∈ Γ(TZM)
preserves TZM |Z , it follows that ṽ is tangent to TZM |Z , and thus a section
of T(TZM |Z)(TZM). This shows that the anchor of p!Z(TZM)→ TZM factors

through T(TZM |Z)(TZM). The map p!Z(TZM)→ T(TZM |Z)(TZM) is a map of
double vector bundles, because it sends linear sections to linear sections and
core sections to core sections. Now it follows that the map is an isomorphism
as it is the identity on the side bundles and the core.

For the scattering bundles, the argument is similar. The sections of
p!sc(TZM)→ TZM are generated by TZv and the core lifts v̂ for v ∈
Γ(scTZM). The anchor sends TZv to the vector field ṽ, which vanishes (as
a log-vector field) over TZM |Z (indeed, the flow of scattering vector fields
induce the identity on TZM |Z), and is therefore a scattering-vector field.
The anchor sends v̂ to v↑, which too vanishes as a log-vector field over
TZM |Z . It follows that there is an induced map of double vector bundles
p!sc(TZM)→ scT(TZM |Z)(TZM) that is an isomorphism because it is the iden-
tity on the side bundles and the core.



✐

✐

“2-Smilde” — 2024/5/7 — 10:18 — page 935 — #47
✐

✐

✐

✐

✐

✐

Lie groups of Poisson diffeomorphisms 935

The proofs of statements (iii) and (iv) are similar. One replaces TZv by
the star sections (t∗v + s∗v, v) and the core sections by the right-invariant
core sections t∗v (whose anchor is the right-invariant vector field −→v on G)
as in the proof of Theorem 2.16 in [23]. □

Proof of Theorem A.1. Let (M,Z, ω) be a scattering-symplectic manifold
and G ⇒M an integration of the log-tangent bundle TZM . In the notation
of Proposition A.6, let s̃, t̃ : p!scG →

scTZM be the source- and target map.
Then (G,H, s̃∗ω − t̃∗ω) is a scattering-symplectic manifold with underlying
Poisson structure←−πZ −

−→πZ on G, where πZ ∈ Γ(∧2TZM) is the Poisson struc-
ture on the log-tangent bundle induced by ω. Since M ⊂ G is transverse to
the hypersurface H, the Poisson groupoid (G,Π) is linearizable around M
by the scattering-Lagrangian neighbourhood Theorem A.5. This completes
the proof. □
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Basel (1994).

[25] A. Weinstein, Coisotropic calculus and Poisson groupoids, Journal of
the Mathematical Society of Japan 40 (1988), no. 4, 705–727.

[26] P. Xu, Flux homomorphism on symplectic groupoids, Mathematische
Zeitschrift 226 (1997), no. 4, 575–597.

Department of Mathematics

University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

E-mail address: wsmilde2@illinois.edu

Received September 15, 2021

Accepted October 18, 2022


	Introduction
	Introduction
	Poisson geometry: Lagrangians and diffeomorphisms
	Coisotropic bisections
	Lie groups of Poisson diffeomorphisms
	Appendix Linearization of Poisson groupoids over scattering-symplectic manifolds
	References

