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Spectral convergence in geometric

quantization — the case of non-singular

Langrangian fibrations
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This paper is a sequel to [11]. We develop a new approach to geo-
metric quantization using the theory of convergence of metric mea-
sure spaces. Given a family of K&hler polarizations converging to a
non-singular real polarization on a prequantized symplectic man-
ifold, we show the spectral convergence result of d-Laplacians, as
well as the convergence result of quantum Hilbert spaces. We also
consider the case of almost Kéahler quantization for compatible
almost complex structures, and show the analogous convergence
results.
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1. Introduction

In this paper, we develop a new approach to geometric quantization using
the theory of convergence of metric measure spaces. This work is the first
step in this project, where we deal with the case of symplectic manifolds
admitting non-singular Lagrangian fibrations. In the subsequent papers [13]
and [12], we deal with more singular settings (toric case and the K3-case,
respectively).

On a closed symplectic manifold (X,w), the prequantum line bundle is
a triple (L, V,h) of a complex line bundle 7: L — X equipped with a her-
mitian metric » and a hermitian connection V whose curvature form FV is
equal to —v/—1w. Given a prequantized symplectic manifold (X,w, L, V, h),
the geometric quantization is a procedure to give a representation of the
Poisson algebra consisting of functions on (X,w) on a Hilbert space H,
called the quantum Hilbert space.

There are several known ways to construct quantum Hilbert spaces. In
the approach by Kostant and Souriau, it is given by choosing a polarization
on X . By definition, polarization is an integrable Lagrangian subbundle P of
TX ® C, and naively, the quantum Hilbert space H is thought as the space
of sections on L which are covariantly constant along P. One fundamental
problem in geometric quantization is to find relations among quantizations
given by different choices of polarizations. In this paper we consider two
classes of polarizations, Kahler polarizations and real polarizations, as we
now explain.

A Kaéhler polarization is given by choosing an w-compatible complex
structure J on X = X ;. This gives a polarization P = T5°X ;. In this case
L becomes a holomorphic line bundle over X ;, and the quantum Hilbert
space obtained by this polarization is H = H%(X, L), the space of holo-
morphic sections of L. On the other hand, a real polarization is given by
choosing a Lagrangian fibration p: X?" — B™. This gives a polarization
P = kerdyu ® C. Given a Lagrangian fibration, a point b € B is called a Bohr-
Sommerfeld point if the space of parallel sections on (L, V)[;-1(), denoted
by HY(7=1(b);(L,V)), is nontrivial. The set of Bohr-Sommerfeld points,
B; C B, is a discrete subset. In this case, the quantum Hilbert space is
defined by H = @pep, HO(771(b); (L, V)). More generally we can also use
LF := L®* instead of L in the above, and we get the corresponding quan-
tum Hilbert spaces Hy, = H(Xs; L¥) and Hy, = @pep, HO(771(); (LF, V),
where By, C B is the set of Bohr-Sommerfeld points with respect to the pre-
quantum bundle L*. So the question is to find a relation between these two
quantizations, and the problem can be formulated at some different levels.
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The first natural problem is whether the dimensions of H coincide or
not. Given a compatible complex structure J and a Lagrangian fibration pu,
the equality

(1) dim H(X;, L¥) = #B

has been observed in many examples. In the case that the Lagrangian fibra-
tion is nonsingular, the equality holds when the Kodaira vanishing holds
(see Andersen [I], Furuta-Fujita-Yoshida [6], and Kubota [18]). Another ex-
ample is when p is the moment map for a toric symplectic manifold. In this
case, the base B is a Delzant polytope in R", and the set of Bohr-Sommerfeld
points is the set of lattice points on the polytope. A more nontrivial exam-
ple includes the case of the moduli space of SU(2)-flat connections on a
closed surfaces. Jeffrey and Weitsman [16] considered real polarizations and
a Kahler polarization on this moduli space, and showed that the both sides
of the equality are given by the same Verlinde formula.

These interesting phenomena lead us to the next problem: Why they
coincide? Can we provide a canonical isomorphism between the quantum
Hilbert spaces obtained by two quantizations? One way to answer this prob-
lem is to construct a one-parameter family of w-compatible complex struc-
tures {Js}s>0 on (X,w) and show that the spaces H°(X ., L*) converge
to the space @pep, HO(m1(b); (L¥,V)) in an appropriate sense. This has
been worked out in several examples. On smooth toric varieties with the La-
grangian fibrations given by the moment maps, Baier, Florentino, Mourao
and Nunes have constructed a one parameter family of the pairs of the com-
plex structures and the basis of the spaces of holomorphic sections of L,
then showed that the holomorphic sections converge to the distributional
sections of L whose support is contained in the Bohr-Sommerfeld fibers in
[2]. The similar phenomena were observed in the case of the abelian vari-
eties by Baier, Mourao and Nunes in [3] and the flag varieties by Hamilton
and Konno in [I0]. In these examples, the family of complex structures and
holomorphic sections are described concretely. In [23], Yoshida studied the
above phenomena in the prequantized symplectic manifolds with the nonsin-
gular Lagrangian fibrations by only using the local description of the almost
complex structures. From the viewpoint of polarizations, the one-parameter
families of complex structures given in the above papers are taken so that
the corresponding families of polarizations converge to the polarizations cor-
responding to the Lagrangian fibration.

The purpose of this paper is to give a new approach to this problem
using the theory of convergence of metric measure spaces. We investigate
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the behavior of the spectrum of d-Laplacians, in particular that of the holo-
morphic sections, from the viewpoint of the spectral convergence of the
Laplace operators on metric measure spaces. Here the appropriate notion of
convergence is that of spectral structures introduced by Kuwae and Shioya
[19]. A spectral structure is given by a pair (H, A) of Hilbert space H and
a (possibly unbounded) self-adjoint operator A. There are several types of
convergence for a net {(Hy, Aqa)}a of spectral structures, and compact con-
vergence is the strongest one. In particular compact spectral convergence
implies the convergence of spectral set o0(Ay) — 0(Ax), as well as conver-
gence of eigenspaces in an appropriate sense. The most fundamental example
is given by Cheeger and Colding [5]. They showed the compact convergence
of spectral structures of Laplacians, under a measured Gromov-Hausdorff
convergence of Riemannian manifolds with a uniform lower bound for Ricci
curvatures and a uniform upper bound for diameters.

We now explain our results. Denote by Ak the 0-Laplacian on L* with
respect to the holomorphic structure 1nduced by J and V. Since we sup-
pose that X is closed, we have HY(X, Lk) = Ker Ag . The main result of
this paper is the compact convergence of the family of spectral structures
{(L3(X, LF), Ak )}s>0 as s — 0 to an explicit spectral structure given by
a direct sum of fhat of the Laplacian on the Gaussian space, where {Js}s
is a one-parameter family of w-compatible complex structures whose corre-
sponding polarization converges to a given real polarization. Here we suppose
{Js}s satisfies asymptotically semiflatness defined in Definition 2.3. Under
this assumption, the diameters of the fibers y~!(b) tend to 0 and the dis-
tance between the distinct fibers tends to co as s — 0 with respect to the
Kahler metrics g5, = w(+, Js-). Assuming the semiflatness condition, by Fact
2.4, the Ricci curvatures of (X, gy ) are bounded from below. For instance,
if {gs.}s tends to the adiabatic limit with normalized volume considered in
[23], then it satisfies asymptotically semiflatness. Moreover, the neighbor-
hood of the nonsingular fiber of the large complex structure limit appearing
in [8] and [2] also satisfy asymptotically semiflatness.

Let (R™,tdy - dy, e*k”ynzdﬁRn) be the Gaussian space, where Lg» is the
Lebesgue measure on R" and denote by Aﬁ%n the Laplacian of this metric
measure space. This operator is explicitly written as

- 0% dp

=1
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The main theorem of this paper is the following.

Theorem 1.1. Let (X,w) be a closed symplectic manifold of dimension
2n, (L,V,h) be a prequantum line bundle and k > 1 be a positive integer.
Assume that we are given a non-singular Lagrangian fibration u: X — B.
Consider any asymptotically semiflat family of w-compatible complex struc-
tures {Js}s>0. Then we have a compact convergence of spectral structures

(LA(X,L%), A% ) Ry <H’“,;Akn> :
’ be B,

in the sense of Kuwae-Shioya [19].

We have a concrete description of the spectrum of the Laplacian on the
Gaussian space. Namely, it is easy to see that the operator Aﬂ’“W acting on H*
has a compact resolvent, the set of eigenvalue is 2kZ>o and the eigenvalue

. e o (Ndn—1)! . . . N (ptn—1) N+n)!
2k N is of multiplicity W Noting the identity szo ((pn_”l)!p)! = (n! ]\?!) ,
we have the following.

Corollary 1.2. Under the assumptions in Theorem 1.1, let M be the j-th
eigenvalue (j > 1) of Ag} acting on L?(X; L*), counted with multiplicity.
Forj>1,let N(j) € Zzos be such that the following inequality is satisfied.

(N(G) —1+n)!
nl(N(j) — 1)!

(N(j) +n)!
(NG

#Bj: - <J<#By-

Then we have
lim M = k- N(j).
s—0
In particular, the number of eigenvalues converging to 0 is equal to # Bj,.

However, the compact spectral convergence in Theorem 1.1 is not suf-
ficient to give the desired convergence of quantum Hilbert spaces, because
of the possiblility of the existence of nonzero eigenvalues of A%J converging
to zero. In our second main result, Theorem 6.1, we show that we have the
desired convergence result of quantum Hilbert spaces if k is large enough.
For the precise statement, see Theorem 6.1. In particular, this means that,
for k large enough and s > 0 small enough, we get the equality .

Now we explain the strategy for the proof of Theorem 1.1. If we have an
almost w-compatible complex structure J, it associates a Riemannian metric
on X defined by g; := w(:,J-). The metric ¢gs, together with the hermitian
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connection V on L, defines a Riemannian metric gy on the frame bundle S
of L. We have a canonical isomorphism

L*(X, g5; L*) = (L*(S. gs) © C)*

where py, is the S' action given by principal S'-action on L?(S,g;) and by
the formula eV~ .z = ¢*V=It; on C. Now suppose that J is integrable.
Under this isomorphism, we have an identification of operators,

2AF = ALY — (K + nk),

where Ap denotes the metric Laplacian on (S, gs) restricted to the space
(L2(S, g J) ® C)P*. In this way, we reduce the problem to the analysis of the
spectral structure given by ((L%(S,§s) ® C)pk,Ag’;). So the basic strategy
is to consider the family {(S,§s.)}s>0 of Riemannian manifolds with iso-
metric S'-actions, analyze its Gromov-Hausdorff limit space and guarantee
the spectral convergence to the operator on the limit space. However, we
have diam(S, §s,) — oo in our situation, and this is why we cannot apply
the known criteria for spectral convergence directly.

As for the limit space, we already have the convergence result in [I1].
Since the diameter is unbounded, we have to consider the convergence as
pointed metric measure spaces. For a point b € B, take any lift u, € S. By
[11, Theorem 7.16 and Theorem 1.2], we have

R Vg, St-pmGH n
4) {(S,gJS,K"ﬁn,uQ} = (R x5, gioo, dydt, (0,1))
it b€ By \ (UpZ, Br), and

. Vg, S'pmGH .
(5> {<S79J57.[{i]/:§n’Ub>} p—> (R 7‘dy‘27dy7 0)

if b ¢ By, for any positive integer k. Here K > 0 is some normalizing constant
(which does not affect on the spectrum of the Laplacians), and we use the
coordinate y € R™ and eV=1 € §1. The metric Jk,c0 18 given by the formula

Jk,c0 ‘= dt + dyz
K2(1+ [ly[l?) ||y|| Z

On the right hand sides, the S* acts on R™ trivialy and on R™ x S by the
formula (y, eV=1) . eV=17 .= (y, eV 1A for V=17 € S, If we denote the
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limit space by (S%, g2, %, ), we see that (L?(S%)® C)Px = {0} if b ¢
By, and if b € By, the Laplacian restricted to (L?(S%,) ® C)?* is equivalent to
AL, + (k? + nk) (see Subsection 2.5 for detailed explanation, and especially

see (14))). So the Theorem 1.1 is shown by the following.

Theorem 1.3. Let (X,w) be a closed symplectic manifold of dimension
2n, (L,V,h) be a prequantum line bundle and k > 1 be a positive integer.
Assume that we are given a non-singular Lagrangian fibration u: X — B.
Consider any asymptotically semiflat family of w-compatible almost com-
plex structures {Js}s>o and assume that there is a constant k € R such that
Ricy, > kg, . Let

b b b b
(S0 o0 Voos Poo)

be the pointed S'-equivariant measured Gromov-Hausdorff limit space of the
frame bundle {(S, §s.,up)}s>0 as in . Put

H,= (1?5 -2 c)”

= (2 (55 o)

He= P (L2(s’;o,yoo)®<c)pk’,
be By,

and consider the spectral structures Y5 and Yoo associated to the Laplacians
restricted on Hg and Ho, respectively. Then we have X3 — Yoo compactly
as s — 0 in the sense of Kuwae-Shioya.

Now we explain how to prove the desired spectral convergence. The
strong convergence of the spectral structures, which is weaker than the com-
pact convergence, follows easily (Proposition 3.14). This is a general feature
for pointed measured Gromov-Hausdorff convergences with lower bound for
Ricci curvatures, and does not require an upper bound for diameters. How-
ever it is not enough for our purposes; for example a family { fs}s of normal-
ized eigenfunctions with converging eigenvalues {As}s, As = Ao, may not
have a convergent subsequene, because the eigenfunctions go away from the
basepoint as s — 0.

In order to show the compact spectral convergence, what we need to
show is, roughly speaking, that any family of functions which are H“2-
bounded stays close to u~!(Bg) as s — 0. This is our localization result,
Proposition 4.4. The idea of the localization argument in Section 4 comes
from the localization argument by Furuta, Fujita and Yoshida [6]. There,
they showed a localization result for indices of Dirac-type operator using an



1198 K. Hattori and M. Yamashita

“infinite-dimensional analogue” of Witten deformation, the argument orig-
inating from Witten’s proof of Morse inequality [2I]. In our situations, the
fiberwise Laplacian of the Lagrangian fibration plays a role of the differential
of a Morse function.

We have so far concentrated on the case where (X,w) admits a Kahler
structure. However, it is not necessarily true that a symplectic manifold
admits a Kéhler structure. Throughout this paper, we consider geometric
quantizations on symplectic manifolds with w-compatible almost complex
structures. There have been several ways to generalize Kahler quantization
to the case where J is not integrable. In Section 5 we consider almost Kahler
quantization by Borthwick and Uribe [4]. In this approach, we use the op-
erator A?,k as in Definition 4.7, and the quantum Hilbert space is given by
the eigenspaces which stays bounded as k£ — oo. It turns out our approach
applies to this operator exactly in the same way as in Kahler case. In fact,
we obtain the spectral convergence and the convergence of the quantum
Hilbert spaces without the integrability in Theorems 4.8 and 5.7, which are
the generalization of Theorems 1.1 and 6.1 respectively.

The paper is organized as follows. In Section 2, we explain our settings for
the problem and recall the result of the previous work of one of the authors
in [11]. In Section 3, we recall the general notion of spectral convergences and
equivariant measured Gromov-Hausdorff convergences, and prove the strong
convergence of spectral structures in our settings. Section 4 is the heart of
our proof of the main theorem, where we show the compact convergence by
localization argument. Combined with the spectral gap result in Sections 5,
6, this gives the desired picture, namely the space of holomorphic sections
converges to the space @pcp, C. In Section 6, we also show the examples of
almost complex structures to which we can apply the main results.

2. Settings

Let (X,w) be a closed symplectic manifold of dimension 2n and (L, V,h)
be a prequantum line bundle, that is, (7: L — X, h) is a complex hermitian
line bundle and V is a connection on L preserving h whose curvature form
FV is equal to —/—1w. Put

S:=S(L,h):={ue€ L; h(u,u) =1}

and denote by /—1A € Q!(S,v/—1R) the connection form correspond-

ing to V. Then A induces a horizontal distribution H = J,c g Hu, where
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Hy := Ker(A,) C TS, and dmy|n,: Hy — Ty X gives a bundle isomor-
phism drg: H —» 7*TX.

2.1. Almost complex structures

An almost complex structure J is w-compatible if
w(J,J)=w, gj:=w(,J)>0.
We define a Riemannian metric §g; on S(L, h) by
Gy =A® A+ (dr|g)*gs.

Note that S is a principal S'-bundle over X and the S'-action preserves §;.
Denote by I'(L) the C*®-sections of L and denote by LF the k-times
tensor product of L. Then L* can be reconstructed as the associate bun-
dle Lk = S x,, C, where pj is a 1-dimensional unitary representation of S*
defined by pi(c) = o* for o € S'. There is the natural identification

(6)  T(LF)=(C™(S)@C)™
:{f:S@C;VueS,VaeSl,ka(UU)Zf(U)}‘

Now, the laplace operator Ag, of g; induces the operator
Agi: (C(9) @ C)Pr — (C(S5) ® C)P*

since S' acts on (S, §) isometrically. Then we have ViV = Agi — k? under
the identification @ by [I7, Section 3], where V}, is the connection on L*
induced by V.

Next we suppose J is integrable. Then w is automatically a Kahler form
on the complex manifold X := (X,.J), and L*¥ becomes a holomorphic line
bundle since FV is of type (1,1). Put

k * k k
Aé] = (ng) Vali F(L ) — F(L ),
where (V3 )* is the formal adjoint of V : [(LF) — Q%L(L*). By the
Bochner-Weitzenbock fromula, we have

(7) 205 = ViVi —nk = AL — (K + nk).

In particular, the space of holomorphic sections HY(X;, L*) is identified
with the (k? 4+ nk)-eigenspace of Agﬁ.
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2.2. Bohr-Sommerfeld fibers

A C* map p from X to a smooth manifold B of dimension n is called a
non-singular Lagrangian fibration if u is surjective, all the points in B are
regular values and p~1(b) are Lagrangian submanifolds for all b € B. It is
known that if the fiber is connected and compact, then it is diffeomorphic
to n-dimensional torus 7. Note that the fibers are always compact since we
assume that X is compact. By the definition of the prequantum line bundle,
the restriction Lk|ﬂ—1(b) — p~1(b) is a flat complex line bundle.

Definition 2.1. (1) For a Lagrangian fibration p: X — B with connected
fibers, ~1(b) is a Bohr-Sommerfeld fiber of level k if Lk‘u—l(b) — p~1(b) has
a nonzero flat section. (2) b € B is a Bohr-Sommerfeld point of level k if
p~1(b) is a Bohr-Sommerfeld fiber of level k. (3) b€ B is a strict Bohr-
Sommerfeld point of level k if b is a Bohr-Sommerfeld point of level k and
never be a Bohr-Sommerfeld point of level £’ for any &' < k.

2.3. Polarizations

To treat complex structures and Lagrangian fibrations uniformly, we review
the notion of polarizations in the sense of [22].

Let Vg be a real vector space of dimension 2n with symplectic form
a € /\2 Vz and put V = Vg ® C. Then o extends C-linearly to a complex
symplectic form on V. A Lagrangian subspace Wof V is a complex vector
subspace of V such that dim¢ W = n and a(u,v) =0 for all u,v € W. Put

Lag(V,a) := {W C V; W is a Lagrangian subspace} ,

which is a submanifold of Grassmannian Gr(n, V).
For a symplectic manifold (X, w), put

Lag,, := |_| Lag(T, X ® C,wy),
zeX

which is a fiber bundle over X. A section P of Lag,, is called a polarization
of X if

[C(Plv), T(Plv)] € T(Plv)

holds for any open set U C X.
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For instance, the subbundle
Py=TY'X cTX®C

is called a Kdhler polarization, where J is an w-compatible integrable com-
plex structure. In this paper, we also consider P; with an almost complex
structure J. In this case, Py may be non-integrable.

Another example is given by Lagrangian fiber bundles. Let u: X — B
be a Lagrangian fiber bundle. Then

P, :=Ker(dy) ®CCcTX®C

is called a real polarization.

Define [: Lag(V,a) — {0,1,...,n} by (W) := dimc(W N W). Then for
any Kéahler polarization P; we have I((Ps),) = 0, and for any real polariza-
tion P, we have [((P,)z) = n.

Conversely, for a polarization P such that [(P,) = 0 for all z € X, there
is a unique complex structure J such that w(J-,J-) = w and P = T}’OX. For
a polarization P such that [(P,) = n for all z € X, we obtain the Lagrangian
foliation.

Next we observe the local structure of Lag(V,«a). For W € Lag(V, «),
we can take a basis {w1,...,w,} C W and vectors u',...,u™ € V such that
{wi,...,wp,ut, ..., u"} is a basis of V and

a(w;,w;) = a(u’,w) =0,  alul,w;) = 6

hold. Put W’ := spanc{u',...,u"} and take A € Hom(W,W’). Then the
subspace

Wy ={w+AweV;weW}

is Lagrangian iff the matrix (4;;) defined by Aw; = A;ju’ is symmetric.
Consequently, we have the identification

(8) TwLag(V,a) = {A € Hom(W,W'); Aij = Aji}.

Now, we fix W such that [(W) = n. Then wy, ..., wn, u', ..., u" can be taken
to be real vectors, hence

[(Wa) = dimKer(A — A) = n — rank(A4 — A)

holds. Moreover W4 comes from an almost complex structure which makes
« the positive hermitian iff ImA € M,,(R) is the positive definite symmetric
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matrix. We define
TwLag(V,a)4 := {A € Hom(W,W’); A;; = Aj;, ImA > 0}

under the identification (§). If W; is a smooth curve in Lag(V,«) such
that [(Wy) = n and %Wth:o € Tw,Lag(V, )4, then there is § > 0 such that
(W) =0 and a(w,w) > 0 for any w € Wy \ {0} and 0 < ¢ < 4. Conversely,
even if W, satisfies [(Wp) = n and

(W) =0, a(w,w) >0 for any w e W;\ {0}

for all t > 0, %Wth:o is not necessary to be in Ty, Lag(V, a)+ since the
closure of positive definite symmetric matrices contains semi-positive definite
symmetric matrices.

From now on we consider one parameter families of w-compatible almost
complex structures {Js}o<s<s on (X,w). We assume the following condition
& for {Js}. Let pr: X x [0,6) — X be the projection and pr*Lag, be the
pullback bundle.

& There is a smooth section P of pr*Lag, — X x [0,d) such that
P(-,s) =Py |u for s >0, P(-,0) = P,|y and

d
%P(l‘v S) s=0 € TP“(m)Lag(TxX ® (Cawx)Jr

for any z € X.

2.4. Local descriptions

Here, we describe w-compatible almost complex structure J, hermitian met-
ric g7 = w(+, J-) and the metric g locally under the action-angle coordinate.
For any b € B there is a contractible open neighborhood U C B of b and
action-angle coordinate

(z,0) = (z1,...,2,,0%,...,0™)
on X|y :=p Y(U) =2 U x T" Then we may write

w\X|U =dx; A d@i,
= .
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If P; is close to P, as polarizations, then the frame of Tg’lX on X|y is
given by

) 06
for some
A(z,0) = (Aij(2,0)), ; € C7(X|v) @ Mn(C).
Then the w-compatibility of J; is equivalent to
Ajj = Ay, ImA>0.

Conversely, if a complex matrix valued function A satisfies above properties,
then we can recover the w-compatible alomost complex structure J on X|y.
The integrability of J is equivalent to

DA OAu

(10) 0 06’

+ Ay

If we put A;; = P;j + v/ —1Q;;, where Py, Q;; € C*°(X|y; R), and denote
by (Q%) the inverse of (Q;;), then one can see

(11) gslv = g4 := (Qij + PuQ" Pij)do'dt’ — 2P Q7" d6' dz; + QY dw;d;.

Next we describe (L, V,h) on X|y. Since the first Chern class of L|x|,
vanishes, it is trivial as a C'°°-hermitian line bundle. The identification

L|X|U :X’UXC

satisfying h((p,w), (p,w)) = |w|? for (p,w) € X|y x C is given by a smooth
section £ € I'(L|x/,) with h(E, E) = 1. Put

Sly = S(L|x),,h) = X|v x S

The points in X |y x S! are written as (z, 6, eﬁt), which give the coordi-
nate on S|y.
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Let v; € H1(1~1(b)) be the homology class represented by
{(6,0,...,0,6°,0...,0); 0 < 6" < 2r}.

Denote by eV~1% € S the element of the holonomy group Hol(L, V) gener-
ated by ;. Now, performing a parallel translation on the base if necessary,

we take an action-angle coordinate such that z;(b) = —5-a; (mod Z).

Proposition 2.2. Under some local trivializations L|x|, = X|y x C, V =
d — /—1x;d0" holds, where d is the connection such that p — (p,0) € X|y X
C is a flat section. In particular,

9sls), = (dt — z;d0")* + ga
holds.

Proof. Fix E € I'(L|x|,) such that h(E,E)=1. Then we have VE =
V—1la ® E for some a € Q*(X|y). Since

=v—1lda = \/7w
then we may write
o= —z;d0" + o
for some closed form o/ € Q!(X|y). Since
HY(X|y) = span{d#*, ..., do"},

hence there are constants «; € R and a smooth function f € C*°(X|y) such
that

o = —xz;df° + a;do + df.

Since we can see q; = f7 a = 27(—xz;(b) + o;) modulo 27Z, hence «o; € Z
holds. If we put £’ := e_\/jl(aieiJrf)E, then we have

—V/—1z;d0' @ F',

therefore, V = d — v/—1z;df" holds by the trivialization L|x, = X|y x C
given by E’. By the argument in [I1], Section 3], we have the local description
of QJ. O
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Given a family {Js}s of w-compatible (almost) complex structures, de-
note by A(s,-) the local description of Js| x|, - For simplicity, we often write
A = A(s,-) if there is no fear of confusion. By assuming &, there are a
constant K > 0 and A° € C*°(X|y) ® M,,(C) such that sup, ; [|Ay;(s,-) —
SA?j”CQ(X‘U) < Ks* and sup, ||A?j\|cz(X|U) < 00. Moreover, we can show
that

A = AY

Ji

Im(A%) > 0.
By putting A° = P° + /=1Q" and 6% = Q° + P%(Q")~'1PY, we have
(12)  grlx, =s-'d0{0°+O(s)} do — 2'd0 { P°(Q°) " + O(s)} du
+ % dz {(Q%) !+ O(s) } da.

Consider the following condition for the family {Js}s.

Definition 2.3. A family of w-compatible almost complex structures
{Js}o<s<s satisfying @ is called an asymptotically semiflat family if Tm(A°)
is independent of § in the local description (12)).

This definition does not depend on the choice of action-angle coordinate.
This condition is equivalent to the lower-boundedness of Ricci curvatures for
{97. }o<s<s if we assume that J is integrable. Namely, we have the following.

Fact 2.4 ([11, Proposition 7.6]). Assume a family of w-compatible
complex structures {Js}o<s<s satisfies #. Then, there is k € R such that
Ricy, > kgy, for any s >0, if and only if {Js}o<s<s is an asymptotically
semiflat family.

Remark 2.5. Actually, it is possible to weaken the assumption # for the
family of w-compatible complex structures {Js}s. All we need for our argu-
ment below are the convergence of the frame bundle as in Fact 2.6 and the
lower-boundedness of Ricci curvatures as in Fact 2.4. However, without as-
suming #, the condition for lower-boundedness of Ricci curvatures becomes
complicated. To avoid this technical difficulty, in the below we work under
the asymptotically semiflatness assumption (in particular the condition #).

2.5. The structure of the limit spaces

Now we review the result in [11], on the pointed S!-equivariant measured
Gromov-Hausdorff limits of {(S, §s) }o<s<s under the deformation satisfying
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#®. Let gi o and vs be a Riemannian metric and a measure on R" x S 1
defined by

(13) 9k,00 ‘= dt + dyz ,
E2(1+ [lyll?) ||y|| Z
AV := dy1 - - - dypdt,

where k is a positive integer, y = (y1,...,yn) € R" and eVl ¢ 1 We de-
fine the isometric S'-action on (R™ x S, gk 0, Vo) by (v, eVl eV-lr .o
(y, eV=1EHED)Y for ¢V=17 € §1. The followings are the main results of [I1].

Fact 2.6 ([11, Theorem 7.16]). In the above situations, assume we
are given an asymptotically semiflat family of almost complex structures
{Js}o<s<s satisfying the condition #. Let b € B, k be a positive integer and
fix up € (7o pu)~L(b). Assume that u=1(b) is a Bohr-Sommerfeld fiber of level
k and not a Bohr-Sommerfeld fiber of level k' for any 0 < k' < k. Let vy,
be the Riemannian measure of gj.. We assume that there is Kk € R such
that Ricy, > kgj, holds for all 0 < s < §. Then for some positive constant
K >0, the family of pointed metric measure spaces with the isometric S*-

action
S ~ V.@Js
b} s? = ) u

converges to (R" X Sl,gk,oo, Voo, (0, 1)) as s — 0 in the sense of the pointed
St-equivariant measured Gromov-Hausdorff topology.

Remark 2.7. We should remark that [11, Theorem 7.16] was proven under
the assumption that Js are integrable. However, we can replace the integra-
bility of Jg by the asymptotic semiflatness of {J;} without any change of
the proof.

The Laplacian Ay o, on the metric measure space (R” x S L Gk 005 Hoo) 1S
defined so that

/ (Ao /1) fodpine = / (dfy. dfs)g, . dpioe
Rn xSt

Rn xSt
holds for any f1, fa € C°(R"™ x S1) (see [15) p.3]). We have

f

Ak,oof = AR”f - k2(1 + ”3/”2) o2’
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2
where ARn = — Z?:l 8873/2

The relation betweeri the above operator and the Laplacian on the Gaus-
sian space, (H7, A%,) in and (3), is explained as follows. Let us fix k,
and in the rest of this subsection, R™ x S denotes the limit space at strict
Bohr-Sommerfeld point of level k. For a positive integer j € kZ, if we write
j = kl we have

(L*R" x SH e C)"” = {@(y)e‘ﬁ“; e L2(R”)}
This induces the isomorphism
LARY, e WP dLg.) @ C = (L2(R™ x S, dpuos) ® €)™
%) — P - 6_%_\/_71”
and the identification of the operators
AL, =AY — (2 + jn).
In this way, we identify the spectral structures,

(14)  (HI,AL,) = <(L2(R” x SY), dpiss) ©C)” L AP~ (5 —|—jn)>

On the other hand, (L?(R" x ) @ C)” = {0} if j ¢ kZ.

Since the spectrum and the eigenspaces of the operator Al on HY is
well-known, by we have the following eigenspace decompositions for
these spaces.

Fact 2.8 ([11, Theorem 8.1]). Letl € Z~q, j =kl and
WG A) = {f € (C®R" x 1) @ C)"; (Apee — 5 —jn) f = 2Af}.
Then there is an orthogonal decomposition

(LR x SY) & C) = ) W(j,jd),

where

W (). jd) = spang {eb'—ﬁ“ (;y) (W), N € (Zso)", |N| = d} .
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3. Spectral convergence
3.1. Convergence of spectral structures

In [19], Kuwae and Shioya introduced the notion of spectral structures for
the Laplacian which enabled us to treat the convergence of eigenvalues in
the systematic way. In this subsection we review the framework developed
n [19]. In this paper, Hilbert spaces are always assumed to be separable,
and to be over K= R or C.

Let A be a directed set, and let us fix an element co € A. The typical
examples used in this paper are A = Zo Ll {oo} and A = R>( with 0 € R>¢
regarded as the element oo € A.

Definition 3.1. Let {H,}aca be a net of Hilbert spaces. We say the net
{Ha}o converges to Hoo, or { Hy }o is a convergent net of Hilbert spaces if it is
equipped with a dense subspace C C Hy and linear operators ®,: C — H,
which satisfy

(15) Tim @), = lullr
for any u € C.

Definition 3.2 ([19, Definition 2.4 and 2.5]). Let {H,}qc4 be a con-
vergent net of Hilbert spaces and assume we are given u, € H, for a € A.

(1) A net {uq}a converges to us strongly as a — oo if there exists a net
{tg}pep C Hxo tending to us such that

lim lim sup || @ (25) — vallH, = 0.
B a—oo

(2) A net {uq}a converges to us weakly as o — oo if

lim (ta, Va)H, = (Uoo: Vo)
a—r00

holds for any net {vy }aca such that v, — v strongly.

Next we define the notion of convergence of bounded operators. Suppose
{Ha}aeA is a convergent net, and we have a net of bounded operators { B, €

L(Ha)}OcE.A-
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Definition 3.3 ([19, Definition 2.6]). We say that a net {Ba}aca
strongly converges to Boo if Baua — Boolso strongly for any sequence
{uoaca with u, € H, strongly converging to us, € Ho. We say that
{Ba}taca compactly converges to Boo if Byua — Boolieo strongly for any
sequence {uq }aca With u, € H, weakly converging to us, € Huo.

Note that when B, — B, compactly, B is necessarily a compact op-
erator.
Next, we define the notion of spectral structure, which is crucial in our

paper.

Definition 3.4. A spectral structure is a pair (H, A), where H is a Hilbert
space and A: D(A) — H is a densely defined self-adjoint linear operator on
H. We say that a spectral structure (H, A) is positive if A is a nonnegative
operator.

Remark 3.5. The readers should note that the notion of spectral structure
defined in Definition 3.4 is more general than that in [19, Section 2.6]; their
definition corresponds to positive spectral structures in Definition 3.4. More
precisely, for a Hilbert space H, they define a spectral structure on H to be
a set of data

Y= (A4,& E {T:}i>0, {RC}Cep(A))’

where A is a densely defined positive selfadjoint operator on H which is
called the infinitesimal generator, £ is a quadratic form associated with A,
E is the spectral measure of A, T;:=e ', Re = (¢ — A)~! and p(A) is
the resolvent set of A. However, the data above is completely determined
only by the operator A, so their spectral structures are in one to one corre-
spondence with positive spectral structures in our paper. Since we need to
consider spectral convergence of operators which are not necessarily positive
in Section 6, we generalize the notion as above.

If we have a spectral structure (H,, Ay ), for a Borel subset I C R, let
E,(I) € B(H,) be the corresponding spectral projection of the selfadjoint
operator A, on H,. Let us define n, (1) := dim E,(I)Hy € Z>o U {o0}.

Now we define the convergence of spectral structures. In the below, when
we talk about a net of spectral structure {X,}q = {(Hqa, Aa) }a, we always
assume that {H,}, is a convergent net of Hilbert spaces.

Definition 3.6 ([19, Theorem 2.4 and Definition 2.14]). Given a net
of spectral structures {X, }aea = {(Ha, Aa) }aca, we say that {X, }a strongly
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(resp. compactly) converges to Yoo if Eq((A, p1]) = Eoo((A, p]) strongly (resp.
compactly) for any real numbers A < p which are not in the point spectrum
of As.

In terms of the spectrum of A,, the followings hold.

Fact 3.7 ([19, Proposition 2.6 and Remark 2.8]). Let a <b be two
numbers which are not in the point spectrum of Ass. If Yoo — Yoo strongly,
we have

limainf na((a,b]) > neo((a,bl).

Fact 3.8 ([19, Theorem 2.6 and Remark 2.8]). Assume that ¥, — Y
compactly. Then for any a,b € R\ 0(As) with a < b, we have ny((a,b]) =
Neo((a, b)) for a sufficiently close to co. In particular, the limit set of o(Ag)
coincides with 0(Aso).

Next, we focus on the case of positive spectral structures. If (H, A)
is a positive spectral structure, its associated quadratic form &: H —
[0,00] is defined by &(u) := |[VAu|?% for u € D(VA) and E(u) := oo for
u € H\D(V/A). Since A is a closed operator, we see that & is closed,
namely, D(v/A) is complete with respect to the norm defined by ||ul|g :=

lul|?, + €(u). We also have a notion of convergence for quadratic forms,
as follows.

Definition 3.9 ([19, Definition 2.11 and 2.13]). Let {H,}qca be a
convergent net of Hilbert spaces. A net of closed quadratic forms {€,: H, —
[0,00]}o Mosco converges to Eao: Hoo — [0,00] as a — oo if

(1) Eooltoo) < liminf,yoo En(ug) for any {uqta with uy — us weakly,
and

(2) for any us, € Hoo there exists {uq}o strongly converging to ue, such
that Eoo(Uao) = liMg—y00 Ea(ta)-

Moreover, {€,}a compactly converges to Ex as a — oo if

(3) {€a}ta Mosco converges to o as a — 0o, and
(4) for any {uq}e with limsup, . ([uall?; + Ea(ua)) < 0o, there exists
a strongly convergent subnet.

The spectral convergences of positive spectral structures have equivalent
definitions in terms of convergence of associated quadratic forms, as follows.
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Fact 3.10 ([19, Theorem 2.4]). Given a net of positive spectral structures
{Za}a = {(Ha, An) }a let us denote the corresponding net of quadratic forms
by {Ea}a. Then the followings are equivalent.

1) We have a Mosco convergence E, — Exo (resp. Ea — Exo compactly).

2) {Xa}a strongly (resp. compactly) converges to Yo

Note that when A =R with 0 € R>¢ regarded as the limit element
oo € A, we see that any convergence of a net {X;}s~¢ is equivalent to the
convergence of subsequence { X, }icz_, for all {s;}icz., with lim; o s; = 0.
Thus in the below, we mainly work in the case where A = Z+ U {0}, i.e.,
we work with sequences.

3.2. Lie group actions on Spectral structures

Let ¥ be a spectral structure on H whose infinitesimal generator is
A: D(A) —» H and G be a compact Lie group. Suppose that G acts on
H linearly and isometrically, and G - D(A) C D(A) and suppose that A is
G-equivariant. For a finite dimensional unitary representation (p, V) of G,
we define the spectral structure 3 on

HP .= (H®V)’

{Zm@szH@V Zv ui) @ p(y)v = Zm@vz}

as follows. Since

ARidy: D(A) @V - HRV,

is G-equiavariant, we obtain the map
AP = (A & idV)|(D(A)®V)P: (D(A) & V)p — (H & V),D

Then we have the spectral structure ¥¥ whose infinitesimal generator is A”.
Let E, E” be the spectral measures of A, A?, respectively. Then one can
see

E((\ u]) = B(O\ i) @ idy: H? = HP.

Let (H,,Yqa) be the net of spectral structures and {H,}, converge to
Hy.Let ®,: C — H, be as in Definition 3.1. We suppose that G acts linearly
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and isometrically on all of H, and A, are all G-equivariant. Moreover we
also assume that G - C C C and ®,, are G-equivariant. Put

CP:=(Cx V),
Of = b, ®@idy|e.: CP — HE,

then we can see that {HA}, converges to HS. One can show the following
proposition.

Proposition 3.11. If ¥, — Yo strongly (resp.compactly), then ¥6 — X5
strongly (resp.compactly).

3.3. Strong spectral convergence of equivariant Laplacians

In this subsection, we explain how to apply the general theory of subsec-
tion 3.1 to our situations.
The following notion is the special case of [7, Definition 4.1].

Definition 3.12. Let GG be a compact Lie group.

(1) Let (P',d') and (P, d) be metric spaces with isometric G-action. A map
¢ : P' — P is an G-equivariant e-approximation if ¢ is G-equivariant
and e-approximation. Here, e-approximation means that |d'(2,y’) —
d(¢(x'), p(y"))| < € holds for all ',y € P' and P C B(¢(P'),e). More-
over if ¢ is a Borel map then it is called a Borel G-equivariant e-
approximation.

(2) Let {(P;,d;,vi,pi)}i be a sequence of pointed metric measure spaces
with isometric G-action. (P, doo, Voo, Do) 18 said to be the pointed G-
equivariant measured Gromov-Hausdorff limit of {(P;,d;,v;,p;)}i, or

G-pmGH

(Radivyiapi) (Pomdoo;Voo;poo)a

if G acts on Py, isometrically and there are positive numbers {e;};,
{Ri}i, {R;}Z with

. . . /
limeg; =0, lim R; = lim R; = oo,

and Borel G-equivariant g;-approximation

¢i: (m {(B(Bi, BD)),pi) = (7 (B(Pss, Ri)), pc)
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for every i such that

=0

lim sup
1—00

/meduoo—/afo@dui

for any f € C.(Px). Here, m;: P, — P;/G is the quotient map and
pi = mi(pi)-

Theorem 3.13. Let G be a compact Lie group. Let n € Z~g and Kk €
R. Assume that we have a family of pointed Riemannian manifolds
{(P;, gi,pi) }icz., with isometric G-actions, and each of them satisfies the
condition

dim P; = n and Ric(g;) > kg;.
Assume there exists a pointed metric measure space (Pso,doo, Voos Poo) With
an isometric measure-preserving G-action, and we have

(Pz'7 di7 Viapi) CrpmCH (P007 d007 Vompoo)-

Here (P;,d;,v;) is the Riemannian manifold (P;,g;) regarded as a metric
measure space. Let (p, V') be a finite dimensional representation of G. Set
HY := (L*(P,v;) @ V)P and A? := A; @ idy|gr and let 3 be the spectral
structure induced by A? for each i € Zso U {co}. Then we have ¥f — X5
strongly.

Proof. Put HY := L3(P;,v;), A; :== A; and let ¥; be the spectral structure
induced by A; for each i € Z~o U {oo}. Then by [19, Theorem 1.3], one can
see that ¥; — Y strongly. Recall that

®;: C:= Cc(Poo) — H;
was defined by

o f Fodw) e (B RY)
v ={ 175 )

for f € C. Since ¢; is G-equivariant, ®; is also G-equivariant. Then by Propo-
sition 3.11, X — 3%, strongly. O

Next we consider the following situation. We have a family of closed
Riemannian manifolds {(P;, g;) }ien with isometric G-actions and suppose
that the dimension of P; is independent of . We have a fixed positive integer



1214 K. Hattori and M. Yamashita

N > 0, and points p{ € P, for each i € N and 1 < j < N. We also assume
that for each j # I, we have lim;_, d;(p?, pi) = 0o. We assume that for each
1 < j < N, there exists a pointed metric measure space (Pgo, d%o, ugo, péo)
with isometric measure-preserving G-action such that

(Pl do, v, 1),

Here (P;,d;,v;) is the Riemannian manifold (F;, g;) regarded as a metric
measure space. We also assume that there is x € R such that Ricy, > kg,
then the Laplacian AL, acting on L? (Pgo, Voo) makes sense by [5].

Fix a positive integer k > 1. The Hilbert spaces we consider are

(16) (Py.di, vy, pl) S22CH,

H; == L*(P;, vy),
Hoo = ®74 L*(PL, v4,).
Then we obtain HY and HE in the same way as Subsection 3.2. Now we
explain the natural choice of C and ®;. In the case of N =1, put C and ®;
as in the proof of Theorem 3.13.

If N>2, we can modify the above constructions as follows. By
the convergence , we can choose positive numbers ¢;, R, R; such
that lim; o &; = 0 and lim; o R; = lim;_, R} = 0o and G—equwarlant €i-
approximation

¢l TN (BB, R)) — 7o (B(Pho, Ri))

such that ¢;(p;) = poo. Moreover, by the assumption that lim; . d; (pi , pﬁ) =
oo for j # 1, we may assume that for each i, the sets {m; '(B(p}, R})) é\le
are mutually disjoint. Thus we can set

C:= @J 1Cc(P Zf] € EBJ LC(PL); supp(f;) is compact. o ,
j=1

(P = Fedlw  wer (B RY)
q)z(f)(u) = { 0 u ¢ Wﬁl(B(ﬁg,R,v)) for any j

for f € C. Then the same procedure in Subsection 3.2 yields C? and ®7.

Set A; :=A; and Ay, := @N AL.. Then we obtain ¥? and Y% in the
same way as Subsection 3.2.

Now we show that, under the lower bound of Ricci curvature of
{P;}icz.,, we have the strong convergence X! — X%, as follows.
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Proposition 3.14. Under the convergence , assume moreover that
there exist n € Z~q and k > 0 such that for all i € Z~go, we have

dim P, = n and Ric(g;) > kgi.
Then we have $f — X5, strongly.

Proof. Take any two real numbers A < p which are not in the point spec-
trum of A%,. Then we must show that E?((\, u]) = E5%((A, u]) strongly. To
simplify notations, we write E; := E?((\, u]) in this proof. Take a strongly
convergent sequence u; — U, where u; € H f . We must show F;u; — FsolUso
strongly. ‘ o ‘

We write H5 1= (L*(P, V) ® V)P so that HS, = 69;-\7:1[-[55]. The spec-
tral structure decompose accordingly, and we write corresponding objects
for each component as X2 and E57. We decompose 1o, = Zjvzl ul, where
ul, € HEY. A

We may decompose the sequence {u;}; into sequences {u}}; (1 < j < N),

where u; = Zjv L ul and u! — ul, strongly for each j. By the lower bound

for Ricci curvature, we can apply Theorem 3.13 and we know that Zp — X8
strongly as i — co. Thus we have E;ju] — Elul, strongly. We take a sum
over j and get the result. O

3.4. Ricci curvature

In this subsection let (X, g) be a Riemannian manifold and 7: S — X be a
principal S'-bundle. Suppose that an S* connection v/—14 € Q'(S,/—1R)
is given. We define a Riemannian metric § on S from A and g similarly as
in Subsection 2.1. Here, we compute the Ricci curvature of g.

Let 2%, ..., 2" be alocal coordinate of X and denote by d; the horizontal
lift of 6?67.,. Denote by & € C®°(X;TX) the vector field generated by & €
Lie(S1). Put e := y/—1 € Lie(S!), define F;; by

Fije = FA(éi, é])

and let Fk be the Christoffel symbols of ¢. Since F is a basic 2-form on S,
and since S1 is abelian, we can see that Fj; is Slinvariant and F4 is the
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pullback of 3 Fy;da’ A dx? € Q?(X). In this situation we have

[

R 1 khF' R
F%ak—iﬂjeﬁ, Vde —Vena g 5 Zhék.

9;,0;] = —Fijef, Vet =[e?, ef] = [9;, €] = 0,
Vs 8
Put

(VF)rij = O(Fij) — FzzF — BT,
then the 2nd Bianchi identity implies

0= dFA(8;,05,00) = {0i(Fji) — 0;(Fux) + 9(Fy) e
= {(VF)le + (VF)]kz ( )]{:7,]} =0.

Now we denote by R the curvature tensor of g, and by R that of g. Then
we have

PPN A VF)ii
R(0i,0)0r = R0, + (Q)Weﬁ
gt .
+ T(2F1-J-Fkh — FjpFin, — FiiFjp)0),
. . Ih . khF. I eﬁ
R(9;,¢")0; = %(VF)z‘jhal - g%’
. khp G p,

Now, define F*F € I'(Symmy(H™*)) ® Symm,(g) by
F*F = gklEijléi (=) éj XeRe
where H* is the dual bundle of the horizontal distribution H C TP and

{9}, is the dual basis of {9;};. Note that {(dV)*F}; = —g"*(VF)p;;. Then
we have

Ric(d;, 0y) = Ricjp — (2)”
A \Y%4 *
Ric(d;, ) = {(d;}a,
g/F(F*F) i

Ric(e?, ef) = 1
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Here, (dV)*F is given by the pullback of d*(F;;dz'dxz?).

Proposition 3.15. Let (X?",w) be a symplectic manifold and (L, h, V) is
the prequantum line bundle. In the above setting, if S = S(L,h), g = gy for
some w-compatible almost complex structure and A is the S*-connection on
S corresponding to V, then

RAic(éj,ék) = Ricj, — %k, RAic(éj,en) =0, Ric(ef,e) = g

Proof. By the assumption F' = —y/—17*w holds. Then we have F*F = g,
hence

Rﬁc(@-, ék) = RiCjk — 937']4’

Ric(el ety = 2.

ic(e*, e*) 5
To show (dV)*F =0, it suffices to show d*w = 0. Since w = g(J-,-) holds
and ¢ is hermitian with respect to J, *w = cw™ ! holds for some constant

c. Since d * w = cd(w™t) = 0, we have the assertion. O

4. The compact spectral convergence

In this section, we prove our first main theorem of this paper, Theorem
1.1. By the identifications of spectral structures given by and , this
is equivalent to Theorem 1.3. Since we know the strong convergence by
Proposition 3.14, in order to show the compact convergence, what we need
to show is the item (4) of Definition 3.9, i.e., that given any sequence {f; €
(L*(S;§..,) ® C)P*}; with limsup; ., (1 fill7> + [|dfi]l7.) < oo, we can find a
strongly convergent subsequence. In order for this, what we need to prove is,
roughly speaking, that given any such sequence { f;}i, they stay in a certain
distance from the set By of Bohr-Sommerfeld points of level k.

In subsection 4.1, as a preparation for the localization argument, we
show a local estimate of the lower bound for the laplacian Ag? with Dirichlet
boundary conditions (Proposition 4.3). Using this, in subsection 4.2, we show
the localization of H'?-bounded sequence to the set of Bohr-Sommerfeld
points of level k (Proposition 4.4). Combining this result with the lower
boundedness of Ricci curvatures, in subsection 4.3, we prove Theorem 1.3.
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4.1. A local estimate

Lemma 4.1. Let g be an inner product on a finite dimensional vector space
T and W C T be a subspace. we have

9 e, a) > (glw)~(alw, alw)
for any o € T*.

Proof. Along the orthogonal decomposition T' = W @ W, we decompose §

into
. (9w 0 )
g < 0 glwe -

Then it induces the orthogonal decomposition 7% = W* @ (W+)* and

= (N G )

which gives the assertion. O

Let (X" w) be a closed symplectic manifold with a prequantum line
bundle (L, V, h), u: (X,w) — B be a possibly singular Lagrangian fibration,
and J be an w-compatible almost complex structure. We denote the frame
bundle of L by m: § — X. Let V C B be an open subset on which u is
non-singular with connected torus fibers, equipped with a fixed action-angle
coordinate on U := u~ (V). For each b€V, put X; := p~(b) and Sj :=
7~1(X3), and denote by g, the metric on Sj induced by §;.

Now denote the action-angle coordinate x1,...,z,, 0%, ...,0™ on U such
that 1, ..., 7, is a coordinate on V and V = d — /—12;d#". Put b; := x;(b).
Then one can see that pu~!(b) is a Bohr-Sommerfeld fiber of level k iff
(b1,...,by) € +Z.

Now fix b € V, put g = g;;d0"'d6’ and

(17)
N == sup {Ny(0) € Ry; Np(6) is the maximum eigenvalue of (g;;(6))i;},
oeTn

(18)
A(k,b) := inf {Z(mi + kb))% ma, ..., my, € Z} .

=1
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Here, N and A(k,b) may depend on the choice of the action-angle coordi-
nates.

Proposition 4.2. For any ¢ € C>*(T",C),

0p -\ ij A(k,b) / 9
/ <(99’ +Vv- kbzgo) <899 V lkbjg0> g”dl > N, ) lo|“do

holds, where df = d@' - - - do™.

Proof. Since

/1 op T =\ g
S 1/ P kb ) (22 kb ) side
=N, BY 067 i

1 . 2
:/ 5’3(— 0% 5/ k:bj——I—kbb )@d@,
Tn

Ny 061007

it suffices to evaluate the lowest eigenvalue of the operator

. 52
= 0" | = — 2V/—1kb; k2(|b]|.
Ly =2 ( 067007 i 967 ) i

If we put @, (0) = eV for m = (my,...,my) € Z, then

Liem = (|m|* + 2km - b+ E*|[b]|*) ¢
=||m + k:b||2g0m,

which gives the assertion. O

Proposition 4.3. Let b€ V., N, and A(k,b) be as above and put K =
A(k b)
infpey We have

/S g 2 2502 1 1) /S P

for all f € (C*(S) ® C)r»
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Proof. Let f € (C*(S) ® C)P*. By Lemma 4.1,
| > [l dug
S|U SlU

holds. We have

9o = (dt — z;d0")* + gs,
dpg = dt - w" = dtdxdd

where g, = gs]x,. On Sy, we may write f|g, = eV T*p(0) for some ¢ €
C*(T™;C). Then

[ atisans = [ ([ ilaldea0) a
Slo vV \JSixX,

B 0% N
!#sﬁﬁzWWP+< @+V—Mmm><(p—viumw>%ﬂ

Since

00 007

one can see

/ hm&;ﬁw
S1x X,

0 0@ g
= 2”/ {k2|¢|2 + (8(96 + v—lkxi90> <a;€ - \/jk‘%'@) gbj} de.

By Proposition 4.2, we obtain

/ Ty = 2067+ K) / Py

4.2. Localization of H'2-bounded functions to
Bohr-Sommerfeld fibers

Suppose we are given a closed symplectic manifold (X, w) and a prequantum
line bundle (L, V, h) as in Section 2. Suppose also that we have a nonsingu-
lar Lagrangian fibration p: X — B. We consider an asymptotically semiflat
family of w-compatible almost complex structures {Js}o<s<s. Put gs = gs

s



Spectral convergence in geometric quantization 1221

and gs = gs.. Recall that we have given a local description of these metrics
in subsection 2.4.

Let us denote By, C B the set of Bohr-Sommerfeld points of level k. In
this subsection, using the local estimate in the last subsection, we show the
following.

Proposition 4.4. Under the above settings, assume that for each 0 <
s <6, a function fs € (C®(S)®C)P* is chosen so that ||fs||lrz =1 and
SUPg< <5 ||dfs||z2 < 0o. Then for any € > 0, there exists C > 0 such that for
all 0 < s < 9§, we have

sl ool > 1 -
Here BS(Bk7C) = {b € B ’ infl-eBk dgs (H_l(b),lu,_l({]j)) < C}

Proof. Let A := supg s ||dfs|22. Let us fix a finite open cover V of B along
with a fixed action-angle coordinate on p~1(V) for each V € V so that L is
trivialized as V = d — /—1z;d#".

First we focus on one element V' € V. Let us denote the action-angle co-
ordinate on U := u~Y(V) by z1,...,2,,0,...,0". By and [11, Propo-
sition 7.2], there exist positive constants c¢1, M > 0 such that

(19) c1l[br — bal| > V/sgs (™ (b1), 7" (b2)),
(20) Ny(s) < sM

holds for all 0 < s < é and all b, b1,b2 € V. Although the integrability of J,
is assumed in [I1], Proposition 7.2], this assumption is not essential and we
can obtain the same inequality without integrability. Here we denoted the
Euclidean distance on V' given by the action-angle coordinate by || - ||, and
Ny(s) is the positive number defined in with respect to the metric gs.
Take Cy := VvV MAci/(y/ek). Then for any point b € V' \ Bs(Bj, Cy) we have
Ak, b) > k%(y/sCy /e1)?. Thus we have

Ak,b) _ K2sC3 A

n = —.
beV\Bls(Bk,CV) Ny(s) = sMc? €

Take any open subset V/ C V and denote U’ := u~1(V’). Applying Propo-
sition 4.3 we have

@) [

A
\dfs|%, dug, > 2m <k2 + ) /S FAR

i € i
lonu=1(B4(By,.6) lonu—1(84 (81,
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forany0<s<5andC'ZCv.

Next we work globally. We take C' := maxy ¢y Cy . Take any finite parti-
tion W of X into manifolds with corners such that for each element W € W
there exist an element V € V such that W C V. If we apply the inequality
on each W € W and add them together, we get the inequality

J

Since we have

/ df,

Ix\u=1(Ba (B0

A
A2 duy, > o <k2+ ) / FuPdu

€
‘X\M*I(Bs(Bka)) ‘X\H*I(Bs(BkC))

2 g, < /S (dfl2. dpg, < A,

we get

2 €
”fs‘u*l(BS(Bk,C))HLz >1- %

This proves the proposition. U

Remark 4.5. The above localization argument can be regarded as an ana-
logue of Witten deformation, the argument originating from Witten’s proof
of Morse inequality [2I]. In our situations, the fiberwise Laplacian of the
Lagrangian fibration plays the role of the differential of a Morse function,
which puts a potential term to the Laplacians. This idea is essentially the one
used by Furuta, Fujita and Yoshida in [6]. There, they showed a localization
result for indices of Dirac-type operator on fibrations, and the invertibility
of fiberwise operators play the role of the potential term. The argument is
more elementary in our situations, because we only have to consider the ze-
roth degree part of 9-Laplacians. In particular, in contrast to their settings,
we do not need to assume that the family of metrics {gs}s are submersion
metrics.

4.3. Convergence of H12-bounded sequences

In this section, we consider an asymptotically semiflat family {Js}o<s<s of
w-compatible almost complex structures. Denote by Sgo :=R" x S! be the
limit space appearing in Theorem 2.6 for each b € By.
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Take s; > 0 such that lim; - s; = 0. Put

e (5o ) )
Hoo = €D (13(8%,v) @ C) "

beBy,

c=P (CC(S’;O,VOO) ®<c>

beBy

Pk

Proposition 4.6. Let s; > 0 and lim;_,», s; = 0. Take f; € (C*(S) @ C)Px
such that

lim sup (|fZH2 (5,2

1
1—00 YK 5 )

R, ><oo.
L (S’W)

Then there is a subsequence {f; ])} °, C{fi}2, and f% € (L*(S%) ® C)P*
for every b € By, such that f;j (foo)b as j — oo strongly.

Proof. Put

1fill e == I fillZe + lldfillZe,

then we have sup; || fi||gr2 < co. First of all we apply [14, Theorem 4.9]
to this sequence. Denote by B;(up, R) and B ( % R) the open ball
with respect to gs, and g oo, respectively. Here, ul, = (0,1) is the base
point in S% . Then the H?-norms of f;| Bi(ub, R) are bounded accordingly
[14, Theorem 4.9] 1mphes that there is f2ff € H'2(By (u’,,R)) ® C and
fi) By (un,R) = £21 strongly for some subsequence {fihyi € {fiki-

By taking subsequences inductively and by the diagonal argument, the
subsequence can be taken such that the above convergence holds for any
R=1,23,...

Therefore, we obtain

Fol = 2R 5w Ry,

for any R’ > R. Define f% € L2 (S%)® C by f% | r) = f2" then

b .
1 foll7 = lim |27 = i Yim [} i)l B, (w1 R ll72
R—o0 —00 j—

be By, be By, bEBk



1224 K. Hattori and M. Yamashita

holds. Since B;(up, R) N B;(uy, R) is empty for b # b’ and sufficiently small
s;, then one can see

2 . . 2
B ngnoojhm 1fith)| B.y w172 < ngl(l)ojgrgonfi(j)HL?
k

= lim [ fi ylI72 < oo,

accordingly, foo := (f3)b € @pep, (L* (8%, voo) @ C).
Next we show that f;;) = foo strongly.

By the strong convergence f;(;)|p, ) (up,R) = fgg,R, we have

=0
L2

lim lim sup Hfbi(j)(fl’b’R) — iy

Bi) (u,R) ‘

for some {fl’b’R}in C Cu(Boo(ul,, R)) such that lim;_, || f40F — Fol . =

[oop)

0. Then for any R > 0 there is a sufficiently large integer Iz > 0 such that

lim sup H@ (fLOR) — fit)

j—)OO

-R Fb,R ;bR -R
A IR EU Y

holds for any [ > lg. Since X is compact then By, is a finite set, consequently,
we may take [ independently of b. Now put fbF := (fLbR), e C.

In order to show the strong convergence f;(;) — f, it is enough to show
the followings.

. ~ZR,R o _
@) Jim 75 = ], =0
(23) lim lim sup H(I)i(j)(flR,R) _

0 j 00
For (22)), one can see

-

=Y | 2
b “llee
~ 2
IR (bR b
< Z <Hf T — [ HL2 + Hfoo’Bm(u’;o,R)C

2
<272 #Bk+ZHf o (ut R

2
L2

—>0
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as R — oo. Next for , we can see

2
thHPH@z(] (ffef) — fi(j)‘
Jj—00 L
2

+ Hfl |B(7>(“b, R)e )

< Z <11rnsup H‘I’ flR’b R) fith) By (u,

J—00

L2

i)

<92k, # By, + lim sup ’

_]*)OO

i(j)(BkvR)c L2 ’

By Proposition 4.4, for any € > 0 there is R. > 0 such that
”fZHLZ(B BoR)e) S EHfz‘H%z(s),

where By := {up | b € B} C S, which gives

2
limsup @) (f7 ) = figy| | <272 B+ esup il
Jj—o0 L2 %
By taking £ — 0, we obtain ([23]).
So we see the strong convergence f;;) = fe as j — oco. Since each of
fij) are S Lequivariant, fa is also S'-equivariant, hence foo € Hoo. O

Now we can prove the main theorem.

Definition 4.7. Let (X?",w) be a closed symplectic manifold and (L, V, h)
be a prequantum line bundle. Let J be a compatible almost complex struc-
ture on X. For k € Z~(, define

AY = ViV, — kn: T(LF) = T(LY),

where
Vi: T(LF) = QY(LF)

is the connection on L* induced by V. We have A?,k = 2Ak When J is an
integrable complex structure, as we have already ment1oned in

Theorem 4.8. Let (X,w) be a closed symplectic manifold of dimension
2n, (L,V,h) be a prequantum line bundle and k > 1 be a positive integer.
Assume that we are given a non-singular Lagrangian fibration u: X — B.
Consider any asymptotically semiflat family of w-compatible almost complex
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structures {Js}s>0 and assume that there is k € R with Ricy, > kgy, . Then
we have a compact convergence of spectral structures

(L2(x, %), 8%) =% P (B*, Ak, ).
be By,

in the sense of Kuwae-Shioya [19)].

Proof. By the identification , it suffices to show Theorem 1.3. Take any
sequence of positive numbers s; > 0 such that lim; .o, s; = 0. Let 3; be
the spectral structure given by Ap . It is enough to show that ¥; — Y

compactly. By Proposition 3.15, We know that uniform lower bound of the
Ricci curvatures of {(S,§,)}o<s<s are given by the assumption Ricy, >
kgj.. So by Proposition 3.14, we see that ¥; — ¥ strongly. By Fact 3.10, we
need to show that, for any {u;}; with limsup, . ([|ull3;, + dui|l%;.) < oo,
there exists a strongly convergent subsequence. If u; € (C*°(S) ® C)** for
all 7, this is true by Proposition 4.6. In general for not necessarily smooth
{u;};i, we can approximate {u;}; by a sequence {u.}; with v, € (C*(S) ®
C)Px, lim; [Ju; — uff| = 0 and limsup;_, . ([[ufl|7;, + [lduf]|F;,) < oo, so we get
the result. O

Proof of Theorem 1.1. By . 2Ak —Aﬁk if Jg is integrable. By the

asymptotic semiflatness of {Js}s, We “can give the uniform lower bound of
Ricy, by Fact 2.4. Then we have Theorem 1.1 by Theorem 4.8. U

As a consequence of Theorem 4.8, we have the following result.

Corollary 4.9. Under the assumptions in Theorem 1.3, let M be the j-th
eigenvalue (7 > 1) of A{i]’z acting on L*(X;LF), counted with multiplicity.
For j > 1, let N(j) € Z>¢ be such that the following inequality is satisfied.

(N(G)—1+mn)!
nl(N () — 1)!

(N() +n)!

#Br (NG

<j<#By-

Then we have
lim M = k- N(j).
lim A ()
In particular, the number of eigenvalues converging to 0 is equal to # Bjy.

We obtain Corollary 1.2 by applying Corollary 4.9 to the case that all
of J, are integrable.
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5. Convergence of quantum Hilbert spaces

We have so far proved the compact spectral convergence result of A , under
asymptotically semiflat deformations of integrable complex structures How-
ever, actually this does not imply that the quantum Hilbert spaces obtained
by the Kéhler quantizations, {H°(X ;L*)}4s0, converge to the quantum
Hilbert space obtained by the real quantization, ®pc Bk(C This is because,
there may exist a family of eigenvalues {As}s>0 of {A }s>0 with A\s # 0
for all s > 0 such that \; = 0 as s — 0. In such cases, "the dimensions of
quantum Hilbert spaces can jump at s =0 as s — 0.

In this and the following sections, we show that, if k is large enough, the
spaces {H%(X.; L*)}s>0 indeed converge to the space @pcp, ker AE,. The
lower bound of k is given by the Ricci curvatures of (X, gs). Moreover, we
also consider the case that J; are not integrable, using the small eigenspaces
of A?,k instead of HO(X ,; L¥).

5.1. Almost Kahler quantization

In this subsection, we consider geometric quantization for symplectic mani-
folds (X, w), which do not necessarily admit a K&hler structure.

In general, any symplectic manifold admits compatible almost complex
structures, and there are several known ways to generalize Kahler quanti-
zation to the quantization of symplectic manifolds equipped with almost
complex structures. In this paper we consider the almost Kahler quantiza-
tion introduced by Borthwick and Uribe in [4, Section 3] and we discuss
it based on [20]. This is done by generalizing the J-Laplacian A(’%J by A?]k
which is defined in Definition 4.7.

Guillemin and Uribe showed in [9] that A{i,k has the spectral gap between
large eigenvalues and the other finitely many eigenvalues if k is sufficiently
large, and the dimension of the direct sum of the eigenvectors associated
with the latter eigenvalues is equal to the Riemann-Roch number of LF.
Here, we will discuss this idea in the case of k is not large but J is close to
the integrable one in some sense.

Let TX @ C = T"X @ T%' X be the decomposition into eigenspaces of
J such that J|710x = v/—1 and J|7o1x = —v/—1. Denote by V¢ the Levi-

Civita connection of gz, then we obtain the following connections

vio.— 3(1 —V=1J) o VEC o (1 — V/=1J),

1
vl = 7+ V=1J) o VEC o (1 + /1),
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on THOX, TO1 X respectively. Define Ay := VEC — V10 —vOl ¢ I(T*X ®
T*X @ TX), then Ay = 0 if and only if J is integrable. From now on, for a
tensor T € I'(T*X® @ TX®™) and z € X, the norm |T}| is defined naturally
by (97). and we put ||T| s :=sup,ex [T%|. Let Ei,..., E, € To°X be an
orthonormal basis with respect to gy and E', ..., E™ € AY°T* X be the dual
basis.

Put A% := Do A%4T*X . Then the Clifford action on A%® @ L¥ is de-
fined by

c(E;) = \/ifi/\, c(E;) = —\/ZE.

If we denote by V¢ the Clifford connection on A%® @ L*, then the Spin®
Dirac operator Dy, acting on Q%°(L¥) is defined by

2n
Dk = Zc(ei)vgl,
i=1
where e, ..., eo, form the orthonormal basis of T,, X with respect to g;. In

[20], the Clifford connection is written as V' = VO @ 174 4+ 1p0e @ Vi +
Al ® 1px, where Al is given by

1 — = i )
A/2 = 5 Z {gJ(AQ(EZ),EJ>E A\ E] A\ +gJ(A2(Ei)’Ej)LE,iLEj} .
.J

Denote by R the curvature tensor of V€.

Definition 5.1. Let § > 0. J is a d-almost complex structure if it is w-
compatible almost complex structure such that

sup {sup [R(E5 By sup [R(E: By, 423, 197 42l | <5

2,7 2,7

Remark 5.2. J is a 0-almost complex structure iff J is integrable.

Under the assumption that J is a d-almost complex structure for 0 < § <
1, if we have an estimate ||T'||; < C§ for some constant C' > 0 depending only
on n, we write T'= O(J). For a > 0 and b € R, if we have —C'da < b < Cda,
then we also write b = O(d)a.
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Lemma 5.3. Let J be a §-almost complex structure. Then we have

D} = (V) VO — kn + 2k 3" qll, + Ricd @ 11 + 0(9),
q=0

where T,: A% ® LF - A% @ LF is the natural projection and Rict =
Zj’k Ric(Ej,Ek)Ek Nig, - Moreover, if we put Vocfl = ZZEZ ® V%, then
we have '

D} =2 (VGh) VEL+ 2k all, + 2Ricf @ 10 + 0(0),
q=0

Proof. First of all we can see

cl

* 1
D} = (V) 94 23 elea)elen) FT (earep),

)

for any orthonormal basis eq,...,eq, € T, X. It is known that if J is inte-
grable, then we have

1 n
3 E c(ea)c(eB)FVCl(ea, eg) = —kn + 2k E qIT, + Ric* @ 1.
a,B q=0

If J is not integrable, we can also see that the difference between the left-
hand side and the right-hand side are written by the linear combination of
the coefficients of AS? V€A, and (2,0) or (0,2) component of the curva-
ture R, hence we have the first equality. We can also obtain it from [20)]
Theorem 2.2].

The second equality is given by comparing (VCZ)* V¢ and (VOCZI)* Vg ll
We take Ei,...,E, such that VIOE;|, = V*'E;|, = 0. Then we can see
ZZ(V%CEJH = ZZ(V%CEI)M = 0 by the coclosedness of w with respect to
g7, hence we have

2 (V64) Vil = (V) V= Y FY (BB — kY FY(E, B+ 00)
- (vc")* VO _Rict ® 116 — kn + O(6),

which gives the second equality. O
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Lemma 5.4. Let J be a d-almost complex structure. We have

(Dp, )1z = (AT, 0) 12 + O()|¢ll7-
for any ¢ € QUO(LF).

Proof. By the definition of V!, we can see that ||V |2, = ||[Viep| 2. +
O(9)||¢||%2. Then we obtain the result by Lemma 5.3. O

Theorem 5.5. There is a positive constant C' depending only onn such that
for any k >0,k € R with k+ x>0 and 6 >0, if J is a §-almost complex
structure with Ricg, > (k — §)gy, then we have

Spec(A) € (—C8,C8) U (2k + 2k — O, +00).

Proof. The idea of the proof is essentially based on [20]. Take A € R and
¢ € C>®(L*) with A?]knp = Ap and |||z = 1. By Lemma 5.4, we can see
Mlel2: = || Drel|2: + O(6), hence we obtain A > O(J). Next we have

(DR(Dwp), Drg)re = IDgollz: < (A + 0(8))? ||l

Moreover, since Dy € Q%°49(L*) then the second equation of Lemma 5.3
implies

(DR(Drp), D)2 > |V Diplliz + (2k + 26+ O(8)) || Diel|7 -
> (2k + 2k + O(6)) (A + 0(8)) |l 72

if ¢ is sufficiently small such that k + x + O(9) > 0. Therefore, there exists
a constant C' > 0 depending only on n such that

M4 (306 — 2k — 2r)A + (2k + 2r)C6 > 0

if 2k 4 2k — Cd > 0, which implies A < Cé or A > 2k + 2k — Cd by tak-
ing C larger. If 2k + 2k — Cd < 0, then we also have the conclusion since
(—=C6,Co) U (2k 4 2k — C§, +00) = (—C6, +00). O

Now, define the Riemann-Roch number by
RR(X,L*) := ind(Dy) = dimKerD} — dimKerD;,

where D} = Dy |qo.even(pry and Dy = Dy|go,eaa(zr). The Riemann-Roch num-
ber is independent of J.
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Let C be a constant appearing in Theorem 5.5. For a constant § > 0,
put

M5 = spang {90 € C°°(LF)| 3 € (04, CY), Aujkgo = Ago} .

Theorem 5.6. Let k be a positive integer and k € R be a constant such
that k + x> 0. There is a constant 6, 1., > 0 depending only on n, k, Kk such
that for any 6 <k, and any d-almost complex structure J with Ricy, >
(k —60)gs, we have C6 < 2k + 2k — Cd and

RR(X, L*) = dim H,, 5.

Proof. We follow the argument in [20]. Let J be a §-almost complex structure
with Ricy, > (k — 0)gy. Since C°(LF) C QO*(LF), we regard H, 5 as a sub-
space of Q%*(L¥). Denote by P: Ker(Dy) — Hy.s and Q: Hy s — Ker(Dy)
the orthogonal projections with respect to the L? inner product. It suffices
to show that both of P,(Q are injective.

Note that D? preserves the decomposition Q0®(LF) = Q0even(Lk) g
QOedd(IF) " By the second equation in Lemma 5.3, we can see
that Spec(D7|qocaa(r)) C [2(k 4 K) + O(6), +00). Next we show that
Spec(D3 |qo.even(rr)) C {0} U (2k + 264+ O(0),+00). Let A€R and ¢ €
Q%*(L*) satisfy D2p = Ay and suppose A # 0. Then we have DZ(Dyp) =
ADy. and Dy € Q%°4(LF) then A > 2(k + k) + O(9).

Now, let ¢ € Hy . and Q¢ = 0. Then we have

(Diw,0)2 < (C8 +0(9)) ez

by Lemma 5.4. Since Qp =0 implies that (DZp,¢)r: > (2k + 2k +
O(9))]|¢]|2: by the above argument, we obtain

2k + 2k < O(0)

for ¢ # 0. Therefore, if we assume ¢ is sufficiently small, then ¢ = 0.

Next we take ¢ € Ker(Dy) such that Pp =0. Put ¢ =3 ¢, where
g € QVI(LF). If we put ¢ = >_q>1¥q: then the second formula of Lemma
5.3 gives

0= (Dip, )2 > |VGholl7: + (2k + 26+ O(0))[¥]7= + O©) @0l 7z,
hence we have

(24) 111Z2 < AdllollZ
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for some constant A depending only on n, k, &, if § is sufficiently small. In the
following argument, replace A by the larger one if it is necessary. Moreover
the first formula of Lemma 5.3 gives

0= (Dip, ¢) 12
> |[V%13. — nkllell7: + (2k + &+ O6)) P32 + O0)|lwoll3

Here, we may suppose 2k + £ + O(6) > 0. Then by combining (24),
(25) IV lIFs < k(1 + Ad)|lollZ:-

Now, we may write Vo = Voo + Abps + a, where « is the higher de-
gree term. Then we have ||[Volr2 > [|[Vipo + Abpallre > || Vieollre —
| Abpa| 2|, hence by (24))(25), we have

IVkpollze < IVl + O(VO) |12
< Vnk(V1+ Ad + Ad)lleoll 2,

which gives
IVkgollZ: — nklleollZ: < AdllgollZ:
if 9 is sufficiently small. This means <A{j]k<p0, vo)r2 < Ad||pol|%., therefore, if

we take & > 0 such that 4§ < 2k + 2k — C9, then Py = 0 implies ¢ = 0 by
Theorem 5.5. O

5.2. Convergence of the quantum Hilbert spaces
Now, fix k, x with k + x > 0 and let C, ,, 1, be as in Theorems 5.5 and 5.6.
Theorem 5.7. Let (X,w,L,h,V) be a closed symplectic manifold with a

prequantum bundle, and let Js be a family of o, i -almost complex structures
with Ricy, > (K — Op k)97, . Define

Hi,s := span {go ’ N e (=Copi, Coniir), A?,’j(p = )\go}
and denote by Py s: LQ(X7 ng;Lk) — Hys the orthogonal projection. We

also consider Ker(Aﬁ,,L) C H* and denote by P, the orthogonal projec-
tion onto this space. Then, under the convergence of Hilbert spaces
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L*(Xy; Lk) — @beBka as s — 0, we have a compact convergence
s—0
Py s — @eB, P,

as a family of bounded operators on this family. In particular, for such k we
have

RR(X,L*) = #B;.

Proof. Let us denote the spectral projection for (L?(X, g ; L¥), A{j]k) by Ej
and for @pep, (H k,AI’?&,L) by F+. By the compact spectral convergence in
Theorem 4.8 and the definition of compact convergence in Definition 3.6,
we have Es((—e,e]) = Ex((—¢,¢]) compactly as s — 0 for any € > 0. Put
€ = Cbp k- By Theorems 5.5 and 5.6, we see that, for s > 0 small enough,
we have FEg((—¢,¢]) = Py 5. Moreover we also have Es((—¢,€]) = ®pep, Pr-
Thus we get the desired result. (

6. Examples

In this section we apply Theorem 5.7 to the following two cases.

6.1. Kahler quantization

In this subsection, we apply Theorem 5.7 in the case of all of J; are in-
tegrable. We assume that {Js}s is asymptotically semiflat family of w-
compatible complex structures. Then by Fact 2.4, there is x € R such that
Ricy, > kg, . Take a positive integer k such that k + x > 0 and let Hy s be
as in Theorem 5.7. We can apply Theorem 5.5 to this case for any § > 0,
hence we can see Spec(A%J ) € {0} U [2k + 2K, 400). Since 0y, is taken

such that Coy 1. < 2k 42k — Cop i < 2k + 2k, then Hy o = KerA% =
Js

HY(X ;. , LF). Therefore, we obtain the following conclusion.

Theorem 6.1. Let (X,w,L,h,V) be a closed symplectic manifold with
a prequantum bundle, and let Js be an asymptotically semiflat fam-
ily of w-compatible complex structures. Denote by P : L*(X,g5.; LF) —
HY(X ., L*) the orthogonal projection. We also consider Ker(Ak,) c H*
and denote by Py the orthogonal projection onto this space. Then for suffi-
ciently large k > 0, under the convergence of Hilbert spaces L?(Xj ; LF) —
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Oen, HF as s — 0, we have a compact convergence
s—0
Py, s — ®pen, Pr,

as a family of bounded operators on this family. In particular, for such k we
have

RR(X,L¥) = #B;.
6.2. Almost Kahler quantization

Here, we show an example of one parameter families of w-compatible almost
complex structures {Js}g<s<s on (X,w) to which we can apply Theorems 1.3
and 5.7. We assume the following condition on {Js}s.

Q In the local description as in @D, the coeflicient A;; does not depend
on the fiber coordinate 6 and linear in s, i.e., we have a local frame of
T}S’OX of the form

0 0
w + SAij(JJ)aixj,

i=1,...,n

for some A;; € C*(U) ® M,(C).

Note that this condition is independent of the choice of action-angle coordi-
nate. Obviously, {Js}s is asymptotically semiflat.

Proposition 6.2. Fizd > 0 arbitrarily. If a family of almost complex struc-
ture {Js}s>0 satisfies the condition Q, there exist ss > 0 such that Js is a
d-almost complex structure and Ricy, > —dg;, for all 0 < s < sp.

Proof. This follows by straightforward estimates for curvature tensors and
some other quantities as follows. We take a finite covering of X by open sets
with action-angle coordinates (x1,- -+ , 2y, 0%, - ,6"). Put

1 0 0
El:=— = +s4;jx)— ),
BRVE <39’ i ](x)aﬂ?)
Pij = Re(Aij), Qij = Im(4;5).
By and the condition ©, the metric tensor satisfies the condition

9s. (B} E}) =2Qij, g4, (B}, E) =gy, (E;,E;) =0
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. -3 ¥ _ .
From now on we write E? := E; and let o, 8,7,7=1,...,n,1,...,n. Since

ng([EgW EEL E’f/) = \/§9J1([Eé7 Eé}v E%/)v
B (90,5, B3) = V/sEq (94,(E, E5))

we can see
LC
VECE) = V5T 4(2)ES

for some function I'? 5(z) depending only on z, where V€ is the Levi-Civita
connection of g . Moreover we have

LOGLC LOGLC pl 7l
g, (VE; VEs Ei,Ei) = 59, (VEé Vi EWET> :

Therefore, we can see that all of the geometric quantities appearing in Defi-
nition 5.1 are bounded by C's from the above, where C' is a positive constant
independent of s. Since the curvature tensor is bounded, the uniform lower
bound of the Ricci curvature also exists. 0

Thus we may apply Theorems 1.3 and 5.7 to {Js}s with ©. In particular,
Theorem 5.7 can be applied by putting x = 0, hence for any positive k.

Acknowledgment

The authors are grateful to Shouhei Honda for useful discussions. K.Hattori
is supported by Grant-in-Aid for Scientific Research (C) Grant Number
19K03474. M. Yamashita is supported by Grant-in-Aid for JSPS Fellows
Grant Number 19J22404.

References

[1] J. E. Andersen, Geometric quantization of symplectic manifolds with re-
spect to reducible non-negative polarizations, Communications in math-
ematical physics 183 (1997), no. 2, 401-421.

[2] T. Baier, C. Florentino, J. M. Mourao, and J. a. P. Nunes, Toric Kdhler
metrics seen from infinity, quantization and compact tropical amoebas,
J. Differential Geom. 89 (2011), no. 3, 411-454.

[3] T. Baier, J. M. Mourao, and J. a. P. Nunes, Quantization of abelian
varieties: distributional sections and the transition from Kdhler to real
polarizations, J. Funct. Anal. 258 (2010), no. 10, 3388-3412.



1236 K. Hattori and M. Yamashita

[4] D. Borthwick and A. Uribe, Almost complex structures and geometric
quantization., Math. Res. Lett. 3 (1996), no. 6, 845-861.

[5] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci
curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1,
37-74.

[6] H. Fujita, M. Furuta, and T. Yoshida, Torus fibrations and localization
of index I-Polarization and acyclic fibrations, J. Math. Sci. Univ. Tokyo
17 (2010), no. 1, 1-26.

[7] K. Fukaya and T. Yamaguchi, Isometry groups of singular spaces, Math.
Z.216 (1994), no. 1, 31-44.

[8] M. Gross and P. M. H. Wilson, Large complex structure limits of K3
surfaces, J. Differential Geom. 55 (2000), no. 3, 475-546.

[9] V. Guillemin and A. Uribe, The Laplace operator on the nth tensor
power of a line bundle: eigenvalues which are uniformly bounded in n,
Asymptotic Anal. 1 (1988), no. 2, 105-113.

[10] M. D. Hamilton and H. Konno, Convergence of Kdihler to real polar-
izations on flag manifolds via toric degenerations, J. Symplectic Geom.
12 (2014), no. 3, 473-5009.

[11] K. Hattori, The geometric quantizations and the measured Gromouv-
Hausdorff convergences, Journal of Symplectic Geometry 18 (2020),
no. 6, 1575-1627.

[12] K. Hattori, Spectral convergence in geometric quantization on K3 sur-
faces, Asian J. of Math. 27 (2023), no. 3, 315-374.

[13] K. Hattori and M. Yamashita, Spectral convergence in geometric quan-
tization — the case of toric symplectic manifolds, arXiv:2002.12495,
(2020).

[14] S. Honda, Ricci curvature and LP-convergence, J. Reine Angew. Math.
705 (2015), 85-154.

[15] S. Honda, Elliptic PDEs on compact Ricci limit spaces and applications,
Mem. Amer. Math. Soc. 253 (2018), no. 1211, v+92.

[16] L. C. Jeffrey and J. Weitsman, Bohr-Sommerfeld orbits in the moduli
space of flat connections and the Verlinde dimension formula, Comm.
Math. Phys. 150 (1992), no. 3, 593-630.



Spectral convergence in geometric quantization 1237

[17] A. Kasue, Spectral convergence of Riemannian vector bundles, Sci. Rep.
Kanazawa Univ. 55 (2011), 25-49.

[18] Y. Kubota, The joint spectral flow and localization of the indices of
elliptic operators, Ann. K-Theory 1 (2016), no. 1, 43-83.

[19] K. Kuwae and T. Shioya, Convergence of spectral structures: a func-
tional analytic theory and its applications to spectral geometry, Comm.
Anal. Geom. 11 (2003), no. 4, 599-673.

[20] X. Ma and G. Marinescu, The Spin® Dirac operator on high tensor
powers of a line bundle, Math. Z. 240 (2002), no. 3, 651-664.

[21] E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17
(1982), no. 4, 661-692.

[22] N. M. J. Woodhouse, Geometric quantization, Oxford Mathematical
Monographs, The Clarendon Press, Oxford University Press, New York,
second edition (1992), ISBN 0-19-853673-9. Oxford Science Publica-
tions.

[23] T. Yoshida, Adiabatic limits, Theta functions, and geometric quantiza-
tion, arXiv:1904.04076, (2019).

DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY
YOKOHAMA 223-8522, JAPAN
E-mail address: hattori@math.keio.ac.jp

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY
KyoTto 606-8502, JAPAN
E-mail address: yamashita.mayuko.2n@kyoto-u.ac.jp

RECEIVED AuGuUSsT 9, 2021
ACCEPTED APRIL 5, 2023






	Introduction
	Settings
	Spectral convergence
	The compact spectral convergence
	Convergence of quantum Hilbert spaces
	Examples
	Acknowledgment
	References

