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1. Introduction

In this paper, we develop a new approach to geometric quantization using
the theory of convergence of metric measure spaces. This work is the first
step in this project, where we deal with the case of symplectic manifolds
admitting non-singular Lagrangian fibrations. In the subsequent papers [13]
and [12], we deal with more singular settings (toric case and the K3-case,
respectively).

On a closed symplectic manifold (X,ω), the prequantum line bundle is
a triple (L,∇, h) of a complex line bundle π : L→ X equipped with a her-
mitian metric h and a hermitian connection ∇ whose curvature form F∇ is
equal to −

√
−1ω. Given a prequantized symplectic manifold (X,ω, L,∇, h),

the geometric quantization is a procedure to give a representation of the
Poisson algebra consisting of functions on (X,ω) on a Hilbert space H,
called the quantum Hilbert space.

There are several known ways to construct quantum Hilbert spaces. In
the approach by Kostant and Souriau, it is given by choosing a polarization
on X. By definition, polarization is an integrable Lagrangian subbundle P of
TX ⊗ C, and naively, the quantum Hilbert space H is thought as the space
of sections on L which are covariantly constant along P. One fundamental
problem in geometric quantization is to find relations among quantizations
given by different choices of polarizations. In this paper we consider two
classes of polarizations, Kähler polarizations and real polarizations, as we
now explain.

A Kähler polarization is given by choosing an ω-compatible complex
structure J on X = XJ . This gives a polarization P = T 1,0XJ . In this case
L becomes a holomorphic line bundle over XJ , and the quantum Hilbert
space obtained by this polarization is H = H0(XJ , L), the space of holo-
morphic sections of L. On the other hand, a real polarization is given by
choosing a Lagrangian fibration µ : X2n → Bn. This gives a polarization
P = kerdµ⊗ C. Given a Lagrangian fibration, a point b ∈ B is called a Bohr-
Sommerfeld point if the space of parallel sections on (L,∇)|π−1(b), denoted
by H0(π−1(b); (L,∇)), is nontrivial. The set of Bohr-Sommerfeld points,
B1 ⊂ B, is a discrete subset. In this case, the quantum Hilbert space is
defined by H = ⊕b∈B1

H0(π−1(b); (L,∇)). More generally we can also use
Lk := L⊗k instead of L in the above, and we get the corresponding quan-
tum Hilbert spaces Hk = H0(XJ ;L

k) and Hk = ⊕b∈Bk
H0(π−1(b); (Lk,∇)),

where Bk ⊂ B is the set of Bohr-Sommerfeld points with respect to the pre-
quantum bundle Lk. So the question is to find a relation between these two
quantizations, and the problem can be formulated at some different levels.
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The first natural problem is whether the dimensions of H coincide or
not. Given a compatible complex structure J and a Lagrangian fibration µ,
the equality

(1) dimH0(XJ , L
k) = #Bk

has been observed in many examples. In the case that the Lagrangian fibra-
tion is nonsingular, the equality (1) holds when the Kodaira vanishing holds
(see Andersen [1], Furuta-Fujita-Yoshida [6], and Kubota [18]). Another ex-
ample is when µ is the moment map for a toric symplectic manifold. In this
case, the base B is a Delzant polytope in Rn, and the set of Bohr-Sommerfeld
points is the set of lattice points on the polytope. A more nontrivial exam-
ple includes the case of the moduli space of SU(2)-flat connections on a
closed surfaces. Jeffrey and Weitsman [16] considered real polarizations and
a Kähler polarization on this moduli space, and showed that the both sides
of the equality (1) are given by the same Verlinde formula.

These interesting phenomena lead us to the next problem: Why they
coincide? Can we provide a canonical isomorphism between the quantum
Hilbert spaces obtained by two quantizations? One way to answer this prob-
lem is to construct a one-parameter family of ω-compatible complex struc-
tures {Js}s>0 on (X,ω) and show that the spaces H0(XJs

, Lk) converge
to the space ⊕b∈Bk

H0(π−1(b); (Lk,∇)) in an appropriate sense. This has
been worked out in several examples. On smooth toric varieties with the La-
grangian fibrations given by the moment maps, Baier, Florentino, Mourão
and Nunes have constructed a one parameter family of the pairs of the com-
plex structures and the basis of the spaces of holomorphic sections of L,
then showed that the holomorphic sections converge to the distributional
sections of L whose support is contained in the Bohr-Sommerfeld fibers in
[2]. The similar phenomena were observed in the case of the abelian vari-
eties by Baier, Mourão and Nunes in [3] and the flag varieties by Hamilton
and Konno in [10]. In these examples, the family of complex structures and
holomorphic sections are described concretely. In [23], Yoshida studied the
above phenomena in the prequantized symplectic manifolds with the nonsin-
gular Lagrangian fibrations by only using the local description of the almost
complex structures. From the viewpoint of polarizations, the one-parameter
families of complex structures given in the above papers are taken so that
the corresponding families of polarizations converge to the polarizations cor-
responding to the Lagrangian fibration.

The purpose of this paper is to give a new approach to this problem
using the theory of convergence of metric measure spaces. We investigate
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the behavior of the spectrum of ∂̄-Laplacians, in particular that of the holo-
morphic sections, from the viewpoint of the spectral convergence of the
Laplace operators on metric measure spaces. Here the appropriate notion of
convergence is that of spectral structures introduced by Kuwae and Shioya
[19]. A spectral structure is given by a pair (H,A) of Hilbert space H and
a (possibly unbounded) self-adjoint operator A. There are several types of
convergence for a net {(Hα, Aα)}α of spectral structures, and compact con-
vergence is the strongest one. In particular compact spectral convergence
implies the convergence of spectral set σ(Aα) → σ(A∞), as well as conver-
gence of eigenspaces in an appropriate sense. The most fundamental example
is given by Cheeger and Colding [5]. They showed the compact convergence
of spectral structures of Laplacians, under a measured Gromov-Hausdorff
convergence of Riemannian manifolds with a uniform lower bound for Ricci
curvatures and a uniform upper bound for diameters.

We now explain our results. Denote by ∆k
∂J

the ∂̄-Laplacian on Lk with
respect to the holomorphic structure induced by J and ∇. Since we sup-
pose that X is closed, we have H0(XJ , L

k) = Ker∆k
∂J

. The main result of
this paper is the compact convergence of the family of spectral structures
{(L2(X,Lk),∆k

∂Js

)}s>0 as s→ 0 to an explicit spectral structure given by

a direct sum of that of the Laplacian on the Gaussian space, where {Js}s
is a one-parameter family of ω-compatible complex structures whose corre-
sponding polarization converges to a given real polarization. Here we suppose
{Js}s satisfies asymptotically semiflatness defined in Definition 2.3. Under
this assumption, the diameters of the fibers µ−1(b) tend to 0 and the dis-
tance between the distinct fibers tends to ∞ as s→ 0 with respect to the
Kähler metrics gJs

= ω(·, Js·). Assuming the semiflatness condition, by Fact
2.4, the Ricci curvatures of (X, gJs

) are bounded from below. For instance,
if {gJs

}s tends to the adiabatic limit with normalized volume considered in
[23], then it satisfies asymptotically semiflatness. Moreover, the neighbor-
hood of the nonsingular fiber of the large complex structure limit appearing
in [8] and [2] also satisfy asymptotically semiflatness.

Let (Rn, tdy · dy, e−k∥y∥2

dLRn) be the Gaussian space, where LRn is the
Lebesgue measure on Rn and denote by ∆k

Rn the Laplacian of this metric
measure space. This operator is explicitly written as

∆k
Rnφ =

n
∑

i=1

(

−∂
2φ

∂y2i
+ 2kyi

∂φ

∂yi

)

.(2)

Put

Hk := L2
(

R
n, e−k∥y∥2

dLRn

)

⊗ C.(3)
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The main theorem of this paper is the following.

Theorem 1.1. Let (X,ω) be a closed symplectic manifold of dimension
2n, (L,∇, h) be a prequantum line bundle and k ≥ 1 be a positive integer.
Assume that we are given a non-singular Lagrangian fibration µ : X → B.
Consider any asymptotically semiflat family of ω-compatible complex struc-
tures {Js}s>0. Then we have a compact convergence of spectral structures

(L2(X,Lk),∆k
∂Js

)
s→0−−−→

⊕

b∈Bk

(

Hk,
1

2
∆k

Rn

)

.

in the sense of Kuwae-Shioya [19].

We have a concrete description of the spectrum of the Laplacian on the
Gaussian space. Namely, it is easy to see that the operator ∆k

Rn acting on Hk

has a compact resolvent, the set of eigenvalue is 2kZ≥0 and the eigenvalue

2kN is of multiplicity (N+n−1)!
(n−1)!N ! . Noting the identity

∑N
p=0

(p+n−1)!
(n−1)!p! = (N+n)!

n!N ! ,
we have the following.

Corollary 1.2. Under the assumptions in Theorem 1.1, let λjs be the j-th
eigenvalue (j ≥ 1) of ∆k

∂̄Js

acting on L2(X;Lk), counted with multiplicity.

For j ≥ 1, let N(j) ∈ Z≥0 be such that the following inequality is satisfied.

#Bk ·
(N(j)− 1 + n)!

n!(N(j)− 1)!
< j ≤ #Bk ·

(N(j) + n)!

n!(N(j))!
.

Then we have

lim
s→0

λjs = k ·N(j).

In particular, the number of eigenvalues converging to 0 is equal to #Bk.

However, the compact spectral convergence in Theorem 1.1 is not suf-
ficient to give the desired convergence of quantum Hilbert spaces, because
of the possiblility of the existence of nonzero eigenvalues of ∆k

∂Js

converging

to zero. In our second main result, Theorem 6.1, we show that we have the
desired convergence result of quantum Hilbert spaces if k is large enough.
For the precise statement, see Theorem 6.1. In particular, this means that,
for k large enough and s > 0 small enough, we get the equality (1).

Now we explain the strategy for the proof of Theorem 1.1. If we have an
almost ω-compatible complex structure J , it associates a Riemannian metric
on X defined by gJ := ω(·, J ·). The metric gJ , together with the hermitian
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connection ∇ on L, defines a Riemannian metric ĝJ on the frame bundle S
of L. We have a canonical isomorphism

L2(X, gJ ;L
k) ≃ (L2(S, ĝJ)⊗ C)ρk ,

where ρk is the S1 action given by principal S1-action on L2(S, ĝJ) and by
the formula e

√
−1t · z = ek

√
−1tz on C. Now suppose that J is integrable.

Under this isomorphism, we have an identification of operators,

2∆k
∂J

= ∆ρk

ĝJ
− (k2 + nk),

where ∆ρk

ĝJ
denotes the metric Laplacian on (S, ĝJ) restricted to the space

(L2(S, ĝJ)⊗ C)ρk . In this way, we reduce the problem to the analysis of the
spectral structure given by ((L2(S, ĝJ)⊗ C)ρk ,∆ρk

ĝJ
). So the basic strategy

is to consider the family {(S, ĝJs
)}s>0 of Riemannian manifolds with iso-

metric S1-actions, analyze its Gromov-Hausdorff limit space and guarantee
the spectral convergence to the operator on the limit space. However, we
have diam(S, ĝJs

) → ∞ in our situation, and this is why we cannot apply
the known criteria for spectral convergence directly.

As for the limit space, we already have the convergence result in [11].
Since the diameter is unbounded, we have to consider the convergence as
pointed metric measure spaces. For a point b ∈ B, take any lift ub ∈ S. By
[11, Theorem 7.16 and Theorem 1.2], we have

{(

S, ĝJs
,
νĝJs

K
√
s
n , ub

)}

s

S1-pmGH−−−−−−→
(

R
n × S1, gk,∞, dydt, (0, 1)

)

(4)

if b ∈ Bk \ (
⋃k−1

k′=1Bk′), and

{(

S, ĝJs
,
νĝJs

K
√
s
n , ub

)}

s

S1-pmGH−−−−−−→
(

R
n, |dy|2, dy, 0

)

(5)

if b /∈ Bk for any positive integer k. HereK > 0 is some normalizing constant
(which does not affect on the spectrum of the Laplacians), and we use the
coordinate y ∈ Rn and e

√
−1t ∈ S1. The metric gk,∞ is given by the formula

gk,∞ :=
1

k2(1 + ∥y∥2)(dt)
2 +

n
∑

i=1

(dyi)
2.

On the right hand sides, the S1 acts on Rn trivialy and on Rn × S1 by the
formula (y, e

√
−1t) · e

√
−1τ := (y, e

√
−1(t+kτ)) for e

√
−1τ ∈ S1. If we denote the
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limit space by (Sb
∞, g

b
∞, ν

b
∞, p

b
∞), we see that (L2(Sb

∞)⊗ C)ρk = {0} if b /∈
Bk, and if b ∈ Bk, the Laplacian restricted to (L2(Sb

∞)⊗ C)ρk is equivalent to
∆k

Rn + (k2 + nk) (see Subsection 2.5 for detailed explanation, and especially
see (14)). So the Theorem 1.1 is shown by the following.

Theorem 1.3. Let (X,ω) be a closed symplectic manifold of dimension
2n, (L,∇, h) be a prequantum line bundle and k ≥ 1 be a positive integer.
Assume that we are given a non-singular Lagrangian fibration µ : X → B.
Consider any asymptotically semiflat family of ω-compatible almost com-
plex structures {Js}s>0 and assume that there is a constant κ ∈ R such that
RicgJs

≥ κgJs
. Let

(Sb
∞, g

b
∞, ν

b
∞, p

b
∞)

be the pointed S1-equivariant measured Gromov-Hausdorff limit space of the
frame bundle {(S, ĝJs

, ub)}s>0 as in (4). Put

Hs =

(

L2

(

S,
νĝs

K
√
s
n

)

⊗ C

)ρk

,

H∞ =
⊕

b∈Bk

(

L2(Sb
∞, ν∞)⊗ C

)ρk

,

and consider the spectral structures Σs and Σ∞ associated to the Laplacians
restricted on Hs and H∞, respectively. Then we have Σs → Σ∞ compactly
as s→ 0 in the sense of Kuwae-Shioya.

Now we explain how to prove the desired spectral convergence. The
strong convergence of the spectral structures, which is weaker than the com-
pact convergence, follows easily (Proposition 3.14). This is a general feature
for pointed measured Gromov-Hausdorff convergences with lower bound for
Ricci curvatures, and does not require an upper bound for diameters. How-
ever it is not enough for our purposes; for example a family {fs}s of normal-
ized eigenfunctions with converging eigenvalues {λs}s, λs → λ∞, may not
have a convergent subsequene, because the eigenfunctions go away from the
basepoint as s→ 0.

In order to show the compact spectral convergence, what we need to
show is, roughly speaking, that any family of functions which are H1,2-
bounded stays close to µ−1(Bk) as s→ 0. This is our localization result,
Proposition 4.4. The idea of the localization argument in Section 4 comes
from the localization argument by Furuta, Fujita and Yoshida [6]. There,
they showed a localization result for indices of Dirac-type operator using an



✐

✐

“2-Hattori” — 2024/5/7 — 9:44 — page 1198 — #8
✐

✐

✐

✐

✐

✐

1198 K. Hattori and M. Yamashita

“infinite-dimensional analogue” of Witten deformation, the argument orig-
inating from Witten’s proof of Morse inequality [21]. In our situations, the
fiberwise Laplacian of the Lagrangian fibration plays a role of the differential
of a Morse function.

We have so far concentrated on the case where (X,ω) admits a Kähler
structure. However, it is not necessarily true that a symplectic manifold
admits a Kähler structure. Throughout this paper, we consider geometric
quantizations on symplectic manifolds with ω-compatible almost complex
structures. There have been several ways to generalize Kähler quantization
to the case where J is not integrable. In Section 5 we consider almost Kähler
quantization by Borthwick and Uribe [4]. In this approach, we use the op-
erator ∆♯k

J as in Definition 4.7, and the quantum Hilbert space is given by
the eigenspaces which stays bounded as k → ∞. It turns out our approach
applies to this operator exactly in the same way as in Kähler case. In fact,
we obtain the spectral convergence and the convergence of the quantum
Hilbert spaces without the integrability in Theorems 4.8 and 5.7, which are
the generalization of Theorems 1.1 and 6.1 respectively.

The paper is organized as follows. In Section 2, we explain our settings for
the problem and recall the result of the previous work of one of the authors
in [11]. In Section 3, we recall the general notion of spectral convergences and
equivariant measured Gromov-Hausdorff convergences, and prove the strong
convergence of spectral structures in our settings. Section 4 is the heart of
our proof of the main theorem, where we show the compact convergence by
localization argument. Combined with the spectral gap result in Sections 5,
6, this gives the desired picture, namely the space of holomorphic sections
converges to the space ⊕b∈Bk

C. In Section 6, we also show the examples of
almost complex structures to which we can apply the main results.

2. Settings

Let (X,ω) be a closed symplectic manifold of dimension 2n and (L,∇, h)
be a prequantum line bundle, that is, (π : L→ X,h) is a complex hermitian
line bundle and ∇ is a connection on L preserving h whose curvature form
F∇ is equal to −

√
−1ω. Put

S := S(L, h) := {u ∈ L; h(u, u) = 1}

and denote by
√
−1A ∈ Ω1(S,

√
−1R) the connection form correspond-

ing to ∇. Then A induces a horizontal distribution H =
⋃

u∈S Hu, where
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Hu := Ker(Au) ⊂ TuS, and dπu|Hu
: Hu → Tπ(u)X gives a bundle isomor-

phism dπH : H → π∗TX.

2.1. Almost complex structures

An almost complex structure J is ω-compatible if

ω(J ·, J ·) = ω, gJ := ω(·, J ·) > 0.

We define a Riemannian metric ĝJ on S(L, h) by

ĝJ := A⊗A+ (dπ|H)∗gJ .

Note that S is a principal S1-bundle over X and the S1-action preserves ĝJ .
Denote by Γ(L) the C∞-sections of L and denote by Lk the k-times

tensor product of L. Then Lk can be reconstructed as the associate bun-
dle Lk = S ×ρk

C, where ρk is a 1-dimensional unitary representation of S1

defined by ρk(σ) = σk for σ ∈ S1. There is the natural identification

Γ(Lk) ∼= (C∞(S)⊗ C)ρk(6)

=
{

f : S
C∞
→ C; ∀u ∈ S, ∀σ ∈ S1, σkf(uσ) = f(u)

}

.

Now, the laplace operator ∆ĝJ of ĝJ induces the operator

∆ρk

ĝJ
: (C∞(S)⊗ C)ρk → (C∞(S)⊗ C)ρk

since S1 acts on (S, ĝJ) isometrically. Then we have ∇∗
k∇k = ∆ρk

ĝJ
− k2 under

the identification (6) by [17, Section 3], where ∇k is the connection on Lk

induced by ∇.
Next we suppose J is integrable. Then ω is automatically a Kähler form

on the complex manifold XJ := (X, J), and Lk becomes a holomorphic line
bundle since F∇ is of type (1, 1). Put

∆k
∂J

:= (∇∂J
)∗∇∂J

: Γ(Lk) → Γ(Lk),

where (∇∂J
)∗ is the formal adjoint of ∇∂J

: Γ(Lk) → Ω0,1(Lk). By the
Bochner-Weitzenböck fromula, we have

2∆k
∂J

= ∇∗
k∇k − nk ∼= ∆ρk

ĝJ
− (k2 + nk).(7)

In particular, the space of holomorphic sections H0(XJ , L
k) is identified

with the (k2 + nk)-eigenspace of ∆ρk

ĝJ
.
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2.2. Bohr-Sommerfeld fibers

A C∞ map µ from X to a smooth manifold B of dimension n is called a
non-singular Lagrangian fibration if µ is surjective, all the points in B are
regular values and µ−1(b) are Lagrangian submanifolds for all b ∈ B. It is
known that if the fiber is connected and compact, then it is diffeomorphic
to n-dimensional torus Tn. Note that the fibers are always compact since we
assume that X is compact. By the definition of the prequantum line bundle,
the restriction Lk|µ−1(b) → µ−1(b) is a flat complex line bundle.

Definition 2.1. (1) For a Lagrangian fibration µ : X → B with connected
fibers, µ−1(b) is a Bohr-Sommerfeld fiber of level k if Lk|µ−1(b) → µ−1(b) has
a nonzero flat section. (2) b ∈ B is a Bohr-Sommerfeld point of level k if
µ−1(b) is a Bohr-Sommerfeld fiber of level k. (3) b ∈ B is a strict Bohr-
Sommerfeld point of level k if b is a Bohr-Sommerfeld point of level k and
never be a Bohr-Sommerfeld point of level k′ for any k′ < k.

2.3. Polarizations

To treat complex structures and Lagrangian fibrations uniformly, we review
the notion of polarizations in the sense of [22].

Let VR be a real vector space of dimension 2n with symplectic form
α ∈

∧2 V ∗
R

and put V = VR ⊗ C. Then α extends C-linearly to a complex
symplectic form on V . A Lagrangian subspace Wof V is a complex vector
subspace of V such that dimCW = n and α(u, v) = 0 for all u, v ∈W . Put

Lag(V, α) := {W ⊂ V ; W is a Lagrangian subspace} ,

which is a submanifold of Grassmannian Gr(n, V ).
For a symplectic manifold (X,ω), put

Lagω :=
⊔

x∈X
Lag(TxX ⊗ C, ωx),

which is a fiber bundle over X. A section P of Lagω is called a polarization
of X if

[Γ(P|U ),Γ(P|U )] ⊂ Γ(P|U )

holds for any open set U ⊂ X.
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For instance, the subbundle

PJ := T 0,1
J X ⊂ TX ⊗ C

is called a Kähler polarization, where J is an ω-compatible integrable com-
plex structure. In this paper, we also consider PJ with an almost complex
structure J . In this case, PJ may be non-integrable.

Another example is given by Lagrangian fiber bundles. Let µ : X → B
be a Lagrangian fiber bundle. Then

Pµ := Ker(dµ)⊗ C ⊂ TX ⊗ C

is called a real polarization.
Define l : Lag(V, α) → {0, 1, . . . , n} by l(W ) := dimC(W ∩W ). Then for

any Kähler polarization PJ we have l((PJ)x) = 0, and for any real polariza-
tion Pµ we have l((Pµ)x) = n.

Conversely, for a polarization P such that l(Px) = 0 for all x ∈ X, there
is a unique complex structure J such that ω(J ·, J ·) = ω and P = T 1,0

J X. For
a polarization P such that l(Px) = n for all x ∈ X, we obtain the Lagrangian
foliation.

Next we observe the local structure of Lag(V, α). For W ∈ Lag(V, α),
we can take a basis {w1, . . . , wn} ⊂W and vectors u1, . . . , un ∈ V such that
{w1, . . . , wn, u

1, . . . , un} is a basis of V and

α(wi, wj) = α(ui, uj) = 0, α(ui, wj) = δij

hold. Put W ′ := spanC{u1, . . . , un} and take A ∈ Hom(W,W ′). Then the
subspace

WA := {w +Aw ∈ V ; w ∈W}

is Lagrangian iff the matrix (Aij) defined by Awi = Aiju
j is symmetric.

Consequently, we have the identification

TWLag(V, α) =
{

A ∈ Hom(W,W ′); Aij = Aji

}

.(8)

Now, we fixW such that l(W ) = n. Then w1, . . . , wn, u
1, . . . , un can be taken

to be real vectors, hence

l(WA) = dimKer(A−A) = n− rank(A−A)

holds. Moreover WA comes from an almost complex structure which makes
α the positive hermitian iff ImA ∈Mn(R) is the positive definite symmetric
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matrix. We define

TWLag(V, α)+ :=
{

A ∈ Hom(W,W ′); Aij = Aji, ImA > 0
}

under the identification (8). If Wt is a smooth curve in Lag(V, α) such
that l(W0) = n and d

dt
Wt|t=0 ∈ TW0

Lag(V, α)+, then there is δ > 0 such that
l(Wt) = 0 and α(w, w̄) > 0 for any w ∈Wt \ {0} and 0 < t ≤ δ. Conversely,
even if Wt satisfies l(W0) = n and

l(Wt) = 0, α(w, w̄) > 0 for any w ∈Wt \ {0}

for all t > 0, d
dt
Wt|t=0 is not necessary to be in TW0

Lag(V, α)+ since the
closure of positive definite symmetric matrices contains semi-positive definite
symmetric matrices.

From now on we consider one parameter families of ω-compatible almost
complex structures {Js}0<s<δ on (X,ω). We assume the following condition
♠ for {Js}. Let pr : X × [0, δ) → X be the projection and pr∗Lagω be the
pullback bundle.

♠ There is a smooth section P of pr∗Lagω → X × [0, δ) such that
P(·, s) = PJs

|U for s > 0, P(·, 0) = Pµ|U and

d

ds
P(x, s)

∣

∣

∣

s=0
∈ TPµ(x)Lag(TxX ⊗ C, ωx)+

for any x ∈ X.

2.4. Local descriptions

Here, we describe ω-compatible almost complex structure J , hermitian met-
ric gJ = ω(·, J ·) and the metric ĝJ locally under the action-angle coordinate.
For any b ∈ B there is a contractible open neighborhood U ⊂ B of b and
action-angle coordinate

(x, θ) = (x1, . . . , xn, θ
1, . . . , θn)

on X|U := µ−1(U) ∼= U × Tn. Then we may write

ω|X|U = dxi ∧ dθi,
µ = x.
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If PJ is close to Pµ as polarizations, then the frame of T 0,1
J X on X|U is

given by

∂

∂θi
+ Āij(x, θ)

∂

∂xj
, i = 1, . . . , n(9)

for some

A(x, θ) = (Aij(x, θ))i,j ∈ C∞(X|U )⊗Mn(C).

Then the ω-compatibility of Js is equivalent to

Aij = Aji, ImA > 0.

Conversely, if a complex matrix valued function A satisfies above properties,
then we can recover the ω-compatible alomost complex structure J on X|U .
The integrability of J is equivalent to

∂Ajk

∂θi
− ∂Aik

∂θj
+Ail

∂Ajk

∂xl
−Ajl

∂Aik

∂xl
= 0.(10)

If we put Aij = Pij +
√
−1Qij , where Pij , Qij ∈ C∞(X|U ;R), and denote

by (Qij) the inverse of (Qij), then one can see

gJ |U = gA := (Qij + PikQ
klPlj)dθ

idθj − 2PikQ
jkdθidxj +Qijdxidxj .(11)

Next we describe (L,∇, h) on X|U . Since the first Chern class of L|X|U
vanishes, it is trivial as a C∞-hermitian line bundle. The identification

L|X|U = X|U × C

satisfying h((p, w), (p, w)) = |w|2 for (p, w) ∈ X|U × C is given by a smooth
section E ∈ Γ(L|X|U ) with h(E,E) ≡ 1. Put

S|U := S(L|X|U , h) = X|U × S1.

The points in X|U × S1 are written as (x, θ, e
√
−1t), which give the coordi-

nate on S|U .
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Let γi ∈ H1(µ
−1(b)) be the homology class represented by

{(b, 0, . . . , 0, θi, 0 . . . , 0); 0 ≤ θi ≤ 2π}.

Denote by e
√
−1ai ∈ S1 the element of the holonomy group Hol(L,∇) gener-

ated by γi. Now, performing a parallel translation on the base if necessary,
we take an action-angle coordinate such that xi(b) ≡ − 1

2πai (mod Z).

Proposition 2.2. Under some local trivializations L|X|U = X|U × C, ∇ =

d−
√
−1xidθ

i holds, where d is the connection such that p 7→ (p, 0) ∈ X|U ×
C is a flat section. In particular,

ĝJ |S|U = (dt− xidθ
i)2 + gA

holds.

Proof. Fix E ∈ Γ(L|X|U ) such that h(E,E) = 1. Then we have ∇E =√
−1α⊗ E for some α ∈ Ω1(X|U ). Since

F∇ =
√
−1dα = −

√
−1ω,

then we may write

α = −xidθi + α′

for some closed form α′ ∈ Ω1(X|U ). Since

H1(X|U ) = span{dθ1, . . . , dθn},

hence there are constants αi ∈ R and a smooth function f ∈ C∞(X|U ) such
that

α = −xidθi + αidθ
i + df.

Since we can see ai =
∫

γi
α = 2π(−xi(b) + αi) modulo 2πZ, hence αi ∈ Z

holds. If we put E′ := e−
√
−1(αiθ

i+f)E, then we have

∇E′ = −
√
−1xidθ

i ⊗ E′,

therefore, ∇ = d−
√
−1xidθ

i holds by the trivialization L|X|U = X|U × C

given by E′. By the argument in [11, Section 3], we have the local description
of ĝJ . □
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Given a family {Js}s of ω-compatible (almost) complex structures, de-
note by A(s, ·) the local description of Js|X|U . For simplicity, we often write
A = A(s, ·) if there is no fear of confusion. By assuming ♠, there are a
constant K > 0 and A0 ∈ C∞(X|U )⊗Mn(C) such that supi,j ∥Aij(s, ·)−
sA0

ij∥C2(X|U ) ≤ Ks2 and supi,j ∥A0
ij∥C2(X|U ) <∞. Moreover, we can show

that

A0
ij = A0

ji, Im(A0) > 0.

By putting A0 = P 0 +
√
−1Q0 and Θ0 = Q0 + P 0(Q0)−1P 0, we have

gJs
|X|U = s · tdθ

{

Θ0 +O(s)
}

dθ − 2tdθ
{

P 0(Q0)−1 +O(s)
}

dx(12)

+
1

s
· tdx

{

(Q0)−1 +O(s)
}

dx.

Consider the following condition for the family {Js}s.

Definition 2.3. A family of ω-compatible almost complex structures
{Js}0<s<δ satisfying ♠ is called an asymptotically semiflat family if Im(A0)
is independent of θ in the local description (12).

This definition does not depend on the choice of action-angle coordinate.
This condition is equivalent to the lower-boundedness of Ricci curvatures for
{gJs

}0<s<δ if we assume that J is integrable. Namely, we have the following.

Fact 2.4 ([11, Proposition 7.6]). Assume a family of ω-compatible
complex structures {Js}0<s<δ satisfies ♠. Then, there is κ ∈ R such that
RicgJs

≥ κgJs
for any s > 0, if and only if {Js}0<s<δ is an asymptotically

semiflat family.

Remark 2.5. Actually, it is possible to weaken the assumption ♠ for the
family of ω-compatible complex structures {Js}s. All we need for our argu-
ment below are the convergence of the frame bundle as in Fact 2.6 and the
lower-boundedness of Ricci curvatures as in Fact 2.4. However, without as-
suming ♠, the condition for lower-boundedness of Ricci curvatures becomes
complicated. To avoid this technical difficulty, in the below we work under
the asymptotically semiflatness assumption (in particular the condition ♠).

2.5. The structure of the limit spaces

Now we review the result in [11], on the pointed S1-equivariant measured
Gromov-Hausdorff limits of {(S, ĝs)}0<s<δ under the deformation satisfying
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♠. Let gk,∞ and ν∞ be a Riemannian metric and a measure on Rn × S1

defined by

gk,∞ :=
1

k2(1 + ∥y∥2)(dt)
2 +

n
∑

i=1

(dyi)
2,(13)

dν∞ := dy1 · · · dyndt,

where k is a positive integer, y = (y1, . . . , yn) ∈ Rn and e
√
−1t ∈ S1. We de-

fine the isometric S1-action on (Rn × S1, gk,∞, ν∞) by (y, e
√
−1t) · e

√
−1τ :=

(y, e
√
−1(t+kτ)) for e

√
−1τ ∈ S1. The followings are the main results of [11].

Fact 2.6 ([11, Theorem 7.16]). In the above situations, assume we
are given an asymptotically semiflat family of almost complex structures
{Js}0<s<δ satisfying the condition ♠. Let b ∈ B, k be a positive integer and
fix ub ∈ (π ◦ µ)−1(b). Assume that µ−1(b) is a Bohr-Sommerfeld fiber of level
k and not a Bohr-Sommerfeld fiber of level k′ for any 0 < k′ < k. Let νĝJs

be the Riemannian measure of ĝJs
. We assume that there is κ ∈ R such

that RicgJs
≥ κgJs

holds for all 0 < s < δ. Then for some positive constant
K > 0, the family of pointed metric measure spaces with the isometric S1-
action

{(

S, ĝJs
,
νĝJs

K
√
s
n , ub

)}

s

converges to
(

Rn × S1, gk,∞, ν∞, (0, 1)
)

as s→ 0 in the sense of the pointed
S1-equivariant measured Gromov-Hausdorff topology.

Remark 2.7. We should remark that [11, Theorem 7.16] was proven under
the assumption that Js are integrable. However, we can replace the integra-
bility of Js by the asymptotic semiflatness of {Js} without any change of
the proof.

The Laplacian ∆k,∞ on the metric measure space (Rn × S1, gk,∞, µ∞) is
defined so that

∫

Rn×S1

(∆k,∞f1)f2dµ∞ =

∫

Rn×S1

⟨df1, df2⟩gk,∞dµ∞

holds for any f1, f2 ∈ C∞
c (Rn × S1) (see [15, p.3]). We have

∆k,∞f = ∆Rnf − k2(1 + ∥y∥2)∂
2f

∂t2
,
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where ∆Rn = −
∑n

i=1
∂2

∂y2
i

.
The relation between the above operator and the Laplacian on the Gaus-

sian space, (Hj ,∆j
Rn) in (2) and (3), is explained as follows. Let us fix k,

and in the rest of this subsection, Rn × S1 denotes the limit space at strict
Bohr-Sommerfeld point of level k. For a positive integer j ∈ kZ, if we write
j = kl we have

(

L2(Rn × S1)⊗ C
)ρj

=
{

φ(y)e−
√
−1lt; φ ∈ L2(Rn)

}

This induces the isomorphism

L2(Rn, e−j∥y∥2

dLRn)⊗ C ∼=
(

L2(Rn × S1, dµ∞)⊗ C
)ρj

φ 7→ φ · e−
j∥y∥2

2
−
√
−1lt

and the identification of the operators

∆j
Rn

∼= ∆
ρj

k,∞ − (j2 + jn).

In this way, we identify the spectral structures,

(Hj ,∆j
Rn) ∼=

(

(

L2(Rn × S1), dµ∞)⊗ C
)ρj

,∆
ρj

k,∞ − (j2 + jn)
)

(14)

On the other hand,
(

L2(Rn × S1)⊗ C
)ρj = {0} if j /∈ kZ.

Since the spectrum and the eigenspaces of the operator ∆j
Rn on Hj is

well-known, by (14) we have the following eigenspace decompositions for
these spaces.

Fact 2.8 ([11, Theorem 8.1]). Let l ∈ Z>0, j = kl and

W (j, λ) :=
{

f ∈
(

C∞(Rn × S1)⊗ C
)ρj

;
(

∆k,∞ − j2 − jn
)

f = 2λf
}

.

Then there is an orthogonal decomposition

(L2(Rn × S1)⊗ C)ρj =
⊕

d∈Z≥0

W (j, jd),

where

W (j, jd) = spanC

{

e
j∥y∥2

2
−
√
−1lt

(

∂

∂y

)N

(e−j∥y∥2

); N ∈ (Z≥0)
n, |N | = d

}

.
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3. Spectral convergence

3.1. Convergence of spectral structures

In [19], Kuwae and Shioya introduced the notion of spectral structures for
the Laplacian which enabled us to treat the convergence of eigenvalues in
the systematic way. In this subsection we review the framework developed
in [19]. In this paper, Hilbert spaces are always assumed to be separable,
and to be over K = R or C.

Let A be a directed set, and let us fix an element ∞ ∈ A. The typical
examples used in this paper are A = Z>0 ⊔ {∞} and A = R≥0 with 0 ∈ R≥0

regarded as the element ∞ ∈ A.

Definition 3.1. Let {Hα}α∈A be a net of Hilbert spaces. We say the net
{Hα}α converges toH∞, or {Hα}α is a convergent net of Hilbert spaces if it is
equipped with a dense subspace C ⊂ H∞ and linear operators Φα : C → Hα

which satisfy

lim
α→∞

∥Φα(u)∥Hα
= ∥u∥H∞(15)

for any u ∈ C.

Definition 3.2 ([19, Definition 2.4 and 2.5]). Let {Hα}α∈A be a con-
vergent net of Hilbert spaces and assume we are given uα ∈ Hα for α ∈ A.

(1) A net {uα}α converges to u∞ strongly as α→ ∞ if there exists a net
{ũβ}β∈B ⊂ H∞ tending to u∞ such that

lim
β

lim sup
α→∞

∥Φα(ũβ)− uα∥Hα
= 0.

(2) A net {uα}α converges to u∞ weakly as α→ ∞ if

lim
α→∞

⟨uα, vα⟩Hα
= ⟨u∞, v∞⟩

holds for any net {vα}α∈A such that vα → v∞ strongly.

Next we define the notion of convergence of bounded operators. Suppose
{Hα}α∈A is a convergent net, and we have a net of bounded operators {Bα ∈
L(Hα)}α∈A.
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Definition 3.3 ([19, Definition 2.6]). We say that a net {Bα}α∈A
strongly converges to B∞ if Bαuα → B∞u∞ strongly for any sequence
{uα}α∈A with uα ∈ Hα strongly converging to u∞ ∈ H∞. We say that
{Bα}α∈A compactly converges to B∞ if Bαuα → B∞u∞ strongly for any
sequence {uα}α∈A with uα ∈ Hα weakly converging to u∞ ∈ H∞.

Note that when Bα → B∞ compactly, B∞ is necessarily a compact op-
erator.

Next, we define the notion of spectral structure, which is crucial in our
paper.

Definition 3.4. A spectral structure is a pair (H,A), where H is a Hilbert
space and A : D(A) → H is a densely defined self-adjoint linear operator on
H. We say that a spectral structure (H,A) is positive if A is a nonnegative
operator.

Remark 3.5. The readers should note that the notion of spectral structure
defined in Definition 3.4 is more general than that in [19, Section 2.6]; their
definition corresponds to positive spectral structures in Definition 3.4. More
precisely, for a Hilbert space H, they define a spectral structure on H to be
a set of data

Σ := (A, E , E, {Tt}t≥0, {Rζ}ζ∈ρ(A)),

where A is a densely defined positive selfadjoint operator on H which is
called the infinitesimal generator, E is a quadratic form associated with A,
E is the spectral measure of A, Tt := e−tA, Rζ = (ζ −A)−1 and ρ(A) is
the resolvent set of A. However, the data above is completely determined
only by the operator A, so their spectral structures are in one to one corre-
spondence with positive spectral structures in our paper. Since we need to
consider spectral convergence of operators which are not necessarily positive
in Section 6, we generalize the notion as above.

If we have a spectral structure (Hα, Aα), for a Borel subset I ⊂ R, let
Eα(I) ∈ B(Hα) be the corresponding spectral projection of the selfadjoint
operator Aα on Hα. Let us define nα(I) := dimEα(I)Hα ∈ Z≥0 ∪ {∞}.

Now we define the convergence of spectral structures. In the below, when
we talk about a net of spectral structure {Σα}α = {(Hα, Aα)}α, we always
assume that {Hα}α is a convergent net of Hilbert spaces.

Definition 3.6 ([19, Theorem 2.4 and Definition 2.14]). Given a net
of spectral structures {Σα}α∈A = {(Hα, Aα)}α∈A, we say that {Σα}αstrongly
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(resp. compactly)converges to Σ∞ if Eα((λ, µ]) → E∞((λ, µ]) strongly (resp.
compactly) for any real numbers λ < µ which are not in the point spectrum
of A∞.

In terms of the spectrum of Aα, the followings hold.

Fact 3.7 ([19, Proposition 2.6 and Remark 2.8]). Let a < b be two
numbers which are not in the point spectrum of A∞. If Σα → Σ∞ strongly,
we have

lim inf
α

nα((a, b]) ≥ n∞((a, b]).

Fact 3.8 ([19, Theorem 2.6 and Remark 2.8]). Assume that Σα → Σ∞
compactly. Then for any a, b ∈ R \ σ(A∞) with a < b, we have nα((a, b]) =
n∞((a, b]) for α sufficiently close to ∞. In particular, the limit set of σ(Aα)
coincides with σ(A∞).

Next, we focus on the case of positive spectral structures. If (H,A)
is a positive spectral structure, its associated quadratic form E : H →
[0,∞] is defined by E(u) := ∥

√
Au∥2H for u ∈ D(

√
A) and E(u) := ∞ for

u ∈ H\D(
√
A). Since A is a closed operator, we see that E is closed,

namely, D(
√
A) is complete with respect to the norm defined by ∥u∥E :=

√

∥u∥2H + E(u). We also have a notion of convergence for quadratic forms,

as follows.

Definition 3.9 ([19, Definition 2.11 and 2.13]). Let {Hα}α∈A be a
convergent net of Hilbert spaces. A net of closed quadratic forms {Eα : Hα →
[0,∞]}α Mosco converges to E∞ : H∞ → [0,∞] as α→ ∞ if

(1) E∞(u∞) ≤ lim infα→∞ Eα(uα) for any {uα}α with uα → u∞ weakly,
and

(2) for any u∞ ∈ H∞ there exists {uα}α strongly converging to u∞ such
that E∞(u∞) = limα→∞ Eα(uα).

Moreover, {Eα}α compactly converges to E∞ as α→ ∞ if

(3) {Eα}α Mosco converges to E∞ as α→ ∞, and
(4) for any {uα}α with lim supα→∞(∥uα∥2Hα

+ Eα(uα)) <∞, there exists
a strongly convergent subnet.

The spectral convergences of positive spectral structures have equivalent
definitions in terms of convergence of associated quadratic forms, as follows.
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Fact 3.10 ([19, Theorem 2.4]). Given a net of positive spectral structures
{Σα}α = {(Hα, Aα)}α let us denote the corresponding net of quadratic forms
by {Eα}α. Then the followings are equivalent.

1) We have a Mosco convergence Eα → E∞ (resp. Eα → E∞ compactly).

2) {Σα}α strongly (resp. compactly) converges to Σ∞

Note that when A = R≥0 with 0 ∈ R≥0 regarded as the limit element
∞ ∈ A, we see that any convergence of a net {Xs}s>0 is equivalent to the
convergence of subsequence {Xsi}i∈Z>0

for all {si}i∈Z>0
with limi→∞ si = 0.

Thus in the below, we mainly work in the case where A = Z>0 ⊔ {∞}, i.e.,
we work with sequences.

3.2. Lie group actions on Spectral structures

Let Σ be a spectral structure on H whose infinitesimal generator is
A : D(A) → H and G be a compact Lie group. Suppose that G acts on
H linearly and isometrically, and G · D(A) ⊂ D(A) and suppose that A is
G-equivariant. For a finite dimensional unitary representation (ρ, V ) of G,
we define the spectral structure Σρ on

Hρ := (H ⊗ V )ρ

=

{

∑

i

ui ⊗ vi ∈ H ⊗ V ;
∑

i

(γ · ui)⊗ ρ(γ)vi =
∑

i

ui ⊗ vi

}

as follows. Since

A⊗ idV : D(A)⊗ V → H ⊗ V,

is G-equiavariant, we obtain the map

Aρ := (A⊗ idV )|(D(A)⊗V )ρ : (D(A)⊗ V )ρ → (H ⊗ V )ρ.

Then we have the spectral structure Σρ whose infinitesimal generator is Aρ.
Let E, Eρ be the spectral measures of A, Aρ, respectively. Then one can

see

Eρ((λ, µ]) = E((λ, µ])⊗ idV : Hρ → Hρ.

Let (Hα,Σα) be the net of spectral structures and {Hα}α converge to
H∞. Let Φα : C → Hα be as in Definition 3.1. We suppose thatG acts linearly
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and isometrically on all of Hα and Aα are all G-equivariant. Moreover we
also assume that G · C ⊂ C and Φα are G-equivariant. Put

Cρ := (C ⊗ V )ρ,

Φρ
α := Φα ⊗ idV |Cρ : Cρ → Hρ

α,

then we can see that {Hρ
α}α converges to Hρ

∞. One can show the following
proposition.

Proposition 3.11. If Σα → Σ∞ strongly (resp.compactly), then Σρ
α → Σρ

∞
strongly (resp.compactly).

3.3. Strong spectral convergence of equivariant Laplacians

In this subsection, we explain how to apply the general theory of subsec-
tion 3.1 to our situations.

The following notion is the special case of [7, Definition 4.1].

Definition 3.12. Let G be a compact Lie group.

(1) Let (P ′, d′) and (P, d) be metric spaces with isometric G-action. A map
ϕ : P ′ → P is an G-equivariant ε-approximation if ϕ is G-equivariant
and ε-approximation. Here, ε-approximation means that |d′(x′, y′)−
d(ϕ(x′), ϕ(y′))| < ε holds for all x′, y′ ∈ P ′ and P ⊂ B(ϕ(P ′), ε). More-
over if ϕ is a Borel map then it is called a Borel G-equivariant ε-
approximation.

(2) Let {(Pi, di, νi, pi)}i be a sequence of pointed metric measure spaces
with isometric G-action. (P∞, d∞, ν∞, p∞) is said to be the pointed G-
equivariant measured Gromov-Hausdorff limit of {(Pi, di, νi, pi)}i, or

(Pi, di, νi, pi)
G-pmGH−−−−−→ (P∞, d∞, ν∞, p∞),

if G acts on P∞ isometrically and there are positive numbers {εi}i,
{Ri}i, {R′

i}i with

lim
i→∞

εi = 0, lim
i→∞

Ri = lim
i→∞

R′
i = ∞,

and Borel G-equivariant εi-approximation

ϕi : (π
−1
i (B(p̄i, R

′
i)), pi) → (π−1

∞ (B(p̄∞, Ri)), p∞)
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for every i such that

lim sup
i→∞

∣

∣

∣

∣

∫

P∞

fdν∞ −
∫

Pi

f ◦ ϕidνi
∣

∣

∣

∣

= 0

for any f ∈ Cc(P∞). Here, πi : Pi → Pi/G is the quotient map and
p̄i = πi(pi).

Theorem 3.13. Let G be a compact Lie group. Let n ∈ Z>0 and κ ∈
R. Assume that we have a family of pointed Riemannian manifolds
{(Pi, gi, pi)}i∈Z>0

with isometric G-actions, and each of them satisfies the
condition

dimPi = n and Ric(gi) ≥ κgi.

Assume there exists a pointed metric measure space (P∞, d∞, ν∞, p∞) with
an isometric measure-preserving G-action, and we have

(Pi, di, νi, pi)
G-pmGH−−−−−→ (P∞, d∞, ν∞, p∞).

Here (Pi, di, νi) is the Riemannian manifold (Pi, gi) regarded as a metric
measure space. Let (ρ, V ) be a finite dimensional representation of G. Set
Hρ

i := (L2(Pi, νi)⊗ V )ρ and Aρ
i := ∆i ⊗ idV |Hρ

i
and let Σρ

i be the spectral
structure induced by Aρ

i for each i ∈ Z>0 ∪ {∞}. Then we have Σρ
i → Σρ

∞
strongly.

Proof. Put Hρ
i := L2(Pi, νi), Ai := ∆i and let Σi be the spectral structure

induced by Ai for each i ∈ Z>0 ∪ {∞}. Then by [19, Theorem 1.3], one can
see that Σi → Σ∞ strongly. Recall that

Φi : C := Cc(P∞) → Hi

was defined by

Φi(f)(u) :=

{

f ◦ ϕi(u) u ∈ π−1
i (B(p̄i, R

′
i))

0 u /∈ π−1
i (B(p̄i, R

′
i))

for f ∈ C. Since ϕi is G-equivariant, Φi is also G-equivariant. Then by Propo-
sition 3.11, Σρ

i → Σρ
∞ strongly. □

Next we consider the following situation. We have a family of closed
Riemannian manifolds {(Pi, gi)}i∈N with isometric G-actions and suppose
that the dimension of Pi is independent of i. We have a fixed positive integer
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N > 0, and points pji ∈ Pi for each i ∈ N and 1 ≤ j ≤ N . We also assume

that for each j ̸= l, we have limi→∞ di(p
j
i , p

l
i) = ∞. We assume that for each

1 ≤ j ≤ N , there exists a pointed metric measure space (P j
∞, d

j
∞, ν

j
∞, p

j
∞)

with isometric measure-preserving G-action such that

(16) (Pi, di, νi, p
j
i )

G-pmGH−−−−−→ (P j
∞, d

j
∞, ν

j
∞, p

j
∞).

Here (Pi, di, νi) is the Riemannian manifold (Pi, gi) regarded as a metric
measure space. We also assume that there is κ ∈ R such that Ricgi ≥ κgi,

then the Laplacian ∆j
∞ acting on L2(P j

∞, ν
j
∞) makes sense by [5].

Fix a positive integer k ≥ 1. The Hilbert spaces we consider are

Hi := L2(Pi, νi),

H∞ := ⊕N
j=1L

2(P j
∞, ν

j
∞).

Then we obtain Hρ
i and Hρ

∞ in the same way as Subsection 3.2. Now we
explain the natural choice of C and Φi. In the case of N = 1, put C and Φi

as in the proof of Theorem 3.13.
If N ≥ 2, we can modify the above constructions as follows. By

the convergence (16), we can choose positive numbers ϵi, R
′
i, Ri such

that limi→∞ εi = 0 and limi→∞Ri = limi→∞R′
i = ∞ and G-equivariant εi-

approximation

ϕji : π
−1
i (B(p̄ji , R

′
i)) → π−1

∞ (B(p̄j∞, Ri))

such that ϕi(pi) = p∞. Moreover, by the assumption that limi→∞ di(p
j
i , p

l
i) =

∞ for j ̸= l, we may assume that for each i, the sets {π−1
i (B(p̄ji , R

′
i))}Nj=1

are mutually disjoint. Thus we can set

C := ⊕N
j=1Cc(P

j
∞) =







N
∑

j=1

fj ∈ ⊕N
j=1C(P

j
∞); supp(fj) is compact.







,

Φi(f)(u) :=

{

f ◦ ϕji (u) u ∈ π−1
i (B(p̄ji , R

′
i))

0 u /∈ π−1
i (B(p̄ji , R

′
i)) for any j

for f ∈ C. Then the same procedure in Subsection 3.2 yields Cρ and Φρ
i .

Set Ai := ∆i and A∞ := ⊕N
j=1∆

j
∞. Then we obtain Σρ

i and Σρ
∞ in the

same way as Subsection 3.2.
Now we show that, under the lower bound of Ricci curvature of

{Pi}i∈Z≥0
, we have the strong convergence Σρ

i → Σρ
∞ as follows.
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Proposition 3.14. Under the convergence (16), assume moreover that
there exist n ∈ Z>0 and κ > 0 such that for all i ∈ Z>0, we have

dimPi = n and Ric(gi) ≥ κgi.

Then we have Σρ
i → Σρ

∞ strongly.

Proof. Take any two real numbers λ < µ which are not in the point spec-
trum of Aρ

∞. Then we must show that Eρ
i ((λ, µ]) → Eρ

∞((λ, µ]) strongly. To
simplify notations, we write Ei := Eρ

i ((λ, µ]) in this proof. Take a strongly
convergent sequence ui → u∞, where ui ∈ Hρ

i . We must show Eiui → E∞u∞
strongly.

We writeHρ,j
∞ := (L2(P j

∞, ν
j
∞)⊗ V )ρ so thatHρ

∞ = ⊕N
j=1H

ρ,j
∞ . The spec-

tral structure decompose accordingly, and we write corresponding objects
for each component as Σρ,j

∞ and Eρ,j
∞ . We decompose u∞ =

∑N
j=1 u

j
∞ where

uj∞ ∈ Hρ,j
∞ .

We may decompose the sequence {ui}i into sequences {uji}i (1 ≤ j ≤ N),

where ui =
∑N

j=1 u
j
i and uji → uj∞ strongly for each j. By the lower bound

for Ricci curvature, we can apply Theorem 3.13 and we know that Σρ
i → Σρ,j

∞
strongly as i→ ∞. Thus we have Eiu

j
i → Ej

∞u
j
∞ strongly. We take a sum

over j and get the result. □

3.4. Ricci curvature

In this subsection let (X, g) be a Riemannian manifold and π : S → X be a
principal S1-bundle. Suppose that an S1 connection

√
−1A ∈ Ω1(S,

√
−1R)

is given. We define a Riemannian metric ĝ on S from A and g similarly as
in Subsection 2.1. Here, we compute the Ricci curvature of ĝ.

Let x1, . . . , xN be a local coordinate of X and denote by ∂̂i the horizontal
lift of ∂

∂xi . Denote by ξ♯ ∈ C∞(X;TX) the vector field generated by ξ ∈
Lie(S1). Put e :=

√
−1 ∈ Lie(S1), define Fij by

Fije := FA(∂̂i, ∂̂j)

and let Γk
ij be the Christoffel symbols of g. Since FA is a basic 2-form on S,

and since S1 is abelian, we can see that Fij is S1-invariant and FA is the
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pullback of 1
2Fijdx

i ∧ dxj ∈ Ω2(X). In this situation we have

[∂̂i, ∂̂j ] = −Fije
♯, ∇e♯e

♯ = [e♯, e♯] = [∂̂i, e
♯] = 0,

∇
∂̂i
∂̂j = Γk

ij ∂̂k −
1

2
Fije

♯, ∇
∂̂i
e♯ = ∇e♯ ∂̂i =

gkhFih

2
∂̂k.

Put

(∇F )kij = ∂̂k(Fij)− FilΓ
l
jk − FljΓ

l
ik,

then the 2nd Bianchi identity implies

0 = dFA(∂̂i, ∂̂j , ∂̂k) = {∂̂i(Fjk)− ∂̂j(Fik) + ∂̂k(Fij)}e
= {(∇F )ijk + (∇F )jki + (∇F )kij} = 0.

Now we denote by R̂ the curvature tensor of ĝ, and by R that of g. Then
we have

R̂(∂̂i, ∂̂j)∂̂k = Rl
ijk∂̂l +

(∇F )kij
2

e♯

+
glh

4
(2FijFkh − FjkFih − FkiFjh)∂̂l,

R̂(∂̂i, e
♯)∂̂j =

glh

2
(∇F )ijh∂̂l −

gkhFjhFike
♯

4
,

R̂(∂̂i, e
♯)e♯ = −g

khFihg
lpFkp

4
∂̂l,

R̂(e♯, e♯)e♯ = 0.

Now, define F ∗F ∈ Γ(Symm2(H
∗))⊗ Symm2(g) by

F ∗F = gklFikFjl∂̂
i ⊗ ∂̂j ⊗ e⊗ e

where H∗ is the dual bundle of the horizontal distribution H ⊂ TP and
{∂̂i}i is the dual basis of {∂̂i}i. Note that {(d∇)∗F}j = −gih(∇F )hij . Then
we have

R̂ic(∂̂j , ∂̂k) = Ricjk −
(F ∗F )jk

2
,

R̂ic(∂̂j , e
♯) =

{(d∇)∗F}j
2

,

R̂ic(e♯, e♯) =
gjk(F ∗F )jk

4
.
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Here, (d∇)∗F is given by the pullback of d∗(Fijdx
idxj).

Proposition 3.15. Let (X2n, ω) be a symplectic manifold and (L, h,∇) is
the prequantum line bundle. In the above setting, if S = S(L, h), g = gJ for
some ω-compatible almost complex structure and A is the S1-connection on
S corresponding to ∇, then

R̂ic(∂̂j , ∂̂k) = Ricjk −
gjk
2
, R̂ic(∂̂j , e

♯) = 0, R̂ic(e♯, e♯) =
n

2
.

Proof. By the assumption F = −
√
−1π∗ω holds. Then we have F ∗F = g,

hence

R̂ic(∂̂j , ∂̂k) = Ricjk −
gjk
2
,

R̂ic(e♯, e♯) =
n

2
.

To show (d∇)∗F = 0, it suffices to show d∗ω = 0. Since ω = g(J ·, ·) holds
and g is hermitian with respect to J , ∗ω = cωn−1 holds for some constant
c. Since d ∗ ω = cd(ωn−1) = 0, we have the assertion. □

4. The compact spectral convergence

In this section, we prove our first main theorem of this paper, Theorem
1.1. By the identifications of spectral structures given by (7) and (14), this
is equivalent to Theorem 1.3. Since we know the strong convergence by
Proposition 3.14, in order to show the compact convergence, what we need
to show is the item (4) of Definition 3.9, i.e., that given any sequence {fi ∈
(L2(S; ĝJsi

)⊗ C)ρk}i with lim supi→∞
(

∥fi∥2L2 + ∥dfi∥2L2

)

<∞, we can find a
strongly convergent subsequence. In order for this, what we need to prove is,
roughly speaking, that given any such sequence {fi}i, they stay in a certain
distance from the set Bk of Bohr-Sommerfeld points of level k.

In subsection 4.1, as a preparation for the localization argument, we
show a local estimate of the lower bound for the laplacian ∆ρk

ĝJ
with Dirichlet

boundary conditions (Proposition 4.3). Using this, in subsection 4.2, we show
the localization of H1,2-bounded sequence to the set of Bohr-Sommerfeld
points of level k (Proposition 4.4). Combining this result with the lower
boundedness of Ricci curvatures, in subsection 4.3, we prove Theorem 1.3.
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4.1. A local estimate

Lemma 4.1. Let ĝ be an inner product on a finite dimensional vector space
T and W ⊂ T be a subspace. we have

ĝ−1(α, α) ≥ (ĝ|W )−1(α|W , α|W )

for any α ∈ T ∗.

Proof. Along the orthogonal decomposition T =W ⊕W⊥, we decompose ĝ
into

ĝ =

(

ĝ|W 0
0 ĝ|W⊥

)

.

Then it induces the orthogonal decomposition T ∗ ∼=W ∗ ⊕ (W⊥)∗ and

ĝ−1 =

(

(ĝ|W )−1 0
0 (ĝ|W⊥)−1

)

,

which gives the assertion. □

Let (X2n, ω) be a closed symplectic manifold with a prequantum line
bundle (L,∇, h), µ : (X,ω) → B be a possibly singular Lagrangian fibration,
and J be an ω-compatible almost complex structure. We denote the frame
bundle of L by π : S → X. Let V ⊂ B be an open subset on which µ is
non-singular with connected torus fibers, equipped with a fixed action-angle
coordinate on U := µ−1(V ). For each b ∈ V , put Xb := µ−1(b) and Sb :=
π−1(Xb), and denote by ĝb the metric on Sb induced by ĝJ .

Now denote the action-angle coordinate x1, . . . , xn, θ
1, . . . , θn on U such

that x1, . . . , xn is a coordinate on V and ∇ = d−
√
−1xidθ

i. Put bi := xi(b).
Then one can see that µ−1(b) is a Bohr-Sommerfeld fiber of level k iff
(b1, . . . , bn) ∈ 1

k
Z.

Now fix b ∈ V , put gb = gijdθ
idθj and

Nb := sup
θ∈Tn

{Nb(θ) ∈ R+; Nb(θ) is the maximum eigenvalue of (gij(θ))i,j} ,

(17)

λ(k, b) := inf

{

n
∑

i=1

(mi + kbi)
2; m1, . . . ,mn ∈ Z

}

.

(18)
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Here, Nb and λ(k, b) may depend on the choice of the action-angle coordi-
nates.

Proposition 4.2. For any φ ∈ C∞(Tn,C),

∫

Tn

(

∂φ

∂θi
+
√
−1kbiφ

)(

∂φ̄

∂θj
−
√
−1kbjφ̄

)

gijdθ ≥ λ(k, b)

Nb

∫

Tn

|φ|2dθ

holds, where dθ = dθ1 · · · dθn.

Proof. Since

∫

Tn

(

∂φ

∂θi
+
√
−1kbiφ

)(

∂φ̄

∂θj
−
√
−1kbjφ̄

)

gijdθ

≥ 1

Nb

∫

Tn

(

∂φ

∂θi
+

√
−1kbiφ

)(

∂φ̄

∂θj
−
√
−1kbjφ̄

)

δijdθ

=
1

Nb

∫

Tn

δij
(

− ∂2φ

∂θi∂θj
− 2

√
−1kbj

∂φ

∂θi
+ k2bibjφ

)

φ̄dθ,

it suffices to evaluate the lowest eigenvalue of the operator

Lk := δij
(

− ∂2

∂θi∂θj
− 2

√
−1kbj

∂

∂θi

)

+ k2∥b∥2.

If we put φm(θ) = e
√
−1miθ

i

for m = (m1, . . . ,mn) ∈ Z, then

Lkφm =
(

∥m∥2 + 2km · b+ k2∥b∥2
)

φm

= ∥m+ kb∥2φm,

which gives the assertion. □

Proposition 4.3. Let b ∈ V,Nb and λ(k, b) be as above and put K =

infb∈V
λ(k,b)
Nb

. We have

∫

S|U
|df |2ĝdµĝ ≥ 2π(k2 +K)

∫

S|U
|f |2dµĝ

for all f ∈ (C∞(S)⊗ C)ρk
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Proof. Let f ∈ (C∞(S)⊗ C)ρk . By Lemma 4.1,

∫

S|U
|df |2ĝdµĝ ≥

∫

S|U
|df |Sb

|2ĝbdµĝ

holds. We have

ĝb = (dt− xidθ
i)2 + gb,

dµĝ = dt · ωn = dtdxdθ

where gb = gJ |Xb
. On Sb, we may write f |Sb

= e−
√
−1ktφ(θ) for some φ ∈

C∞(Tn;C). Then

∫

S|U
|df |Sb

|2ĝbdµĝ =

∫

V

(
∫

S1×Xb

|df |Sb
|2ĝbdtdθ

)

dx.

Since

|df |Sb
|2ĝb = k2|φ|2 +

(

∂φ

∂θi
+
√
−1kxiφ

)(

∂φ̄

∂θj
−
√
−1kxjφ̄

)

gijb ,

one can see

∫

S1×Xb

|df |Sb
|2ĝbdtdθ

= 2π

∫

Tn

{

k2|φ|2 +
(

∂φ

∂θi
+
√
−1kxiφ

)(

∂φ̄

∂θj
−
√
−1kxjφ̄

)

gijb

}

dθ.

By Proposition 4.2, we obtain

∫

S|U
|df |2ĝdµĝ ≥ 2π(k2 +K)

∫

S|U
|f |2dµĝ.

□

4.2. Localization of H1,2-bounded functions to
Bohr-Sommerfeld fibers

Suppose we are given a closed symplectic manifold (X,ω) and a prequantum
line bundle (L,∇, h) as in Section 2. Suppose also that we have a nonsingu-
lar Lagrangian fibration µ : X → B. We consider an asymptotically semiflat
family of ω-compatible almost complex structures {Js}0<s<δ. Put gs = gJs
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and ĝs = ĝJs
. Recall that we have given a local description of these metrics

in subsection 2.4.
Let us denote Bk ⊂ B the set of Bohr-Sommerfeld points of level k. In

this subsection, using the local estimate in the last subsection, we show the
following.

Proposition 4.4. Under the above settings, assume that for each 0 <
s < δ, a function fs ∈ (C∞(S)⊗ C)ρk is chosen so that ∥fs∥L2 = 1 and
sup0<s<δ ∥dfs∥L2 <∞. Then for any ϵ > 0, there exists C > 0 such that for
all 0 < s < δ, we have

∥fs|µ−1(Bs(Bk,C))∥2L2 ≥ 1− ϵ.

Here Bs(Bk, C) = {b ∈ B | infx∈Bk
dgs(µ

−1(b), µ−1(x)) < C}.

Proof. Let Λ := sup0<s<δ ∥dfs∥2L2 . Let us fix a finite open cover V of B along
with a fixed action-angle coordinate on µ−1(V ) for each V ∈ V so that L is
trivialized as ∇ = d−

√
−1xidθ

i.
First we focus on one element V ∈ V. Let us denote the action-angle co-

ordinate on U := µ−1(V ) by x1, . . . , xn, θ
1, . . . , θn. By (12) and [11, Propo-

sition 7.2], there exist positive constants c1,M > 0 such that

c1∥b1 − b2∥ ≥
√
sgs(µ

−1(b1), µ
−1(b2)),(19)

Nb(s) ≤ sM(20)

holds for all 0 < s < δ and all b, b1, b2 ∈ V . Although the integrability of Js
is assumed in [11, Proposition 7.2], this assumption is not essential and we
can obtain the same inequality without integrability. Here we denoted the
Euclidean distance on V given by the action-angle coordinate by ∥ · ∥, and
Nb(s) is the positive number defined in (17) with respect to the metric gs.
Take CV :=

√
MΛc1/(

√
ϵk). Then for any point b ∈ V \Bs(Bk, CV ) we have

λ(k, b) ≥ k2(
√
sCV /c1)

2. Thus we have

inf
b∈V \Bs(Bk,CV )

λ(k, b)

Nb(s)
≥ k2sC2

V

sMc21
=

Λ

ϵ
.

Take any open subset V ′ ⊂ V and denote U ′ := µ−1(V ′). Applying Propo-
sition 4.3 we have

∫

S|U′\µ−1(Bs(Bk,C̃))

|dfs|2ĝsdµĝs ≥ 2π

(

k2 +
Λ

ϵ

)
∫

S|U′\µ−1(Bs(Bk,C̃))

|fs|2dµĝs(21)
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for any 0 < s < δ and C̃ ≥ CV .
Next we work globally. We take C := maxV ∈V CV . Take any finite parti-

tion W of X into manifolds with corners such that for each element W ∈ W
there exist an element V ∈ V such that W ⊂ V . If we apply the inequality
(21) on each W ∈ W and add them together, we get the inequality

∫

S|X\µ−1(Bs(Bk,C))

|dfs|2ĝsdµĝs ≥ 2π

(

k2 +
Λ

ϵ

)
∫

S|X\µ−1(Bs(Bk,C))

|fs|2dµĝs

Since we have

∫

S|X\µ−1(Bs(Bk,C))

|dfs|2ĝsdµĝs ≤
∫

S

|dfs|2ĝsdµĝs ≤ Λ,

we get

∥fs|µ−1(Bs(Bk,C))∥2L2 ≥ 1− ϵ

2π
.

This proves the proposition. □

Remark 4.5. The above localization argument can be regarded as an ana-
logue of Witten deformation, the argument originating from Witten’s proof
of Morse inequality [21]. In our situations, the fiberwise Laplacian of the
Lagrangian fibration plays the role of the differential of a Morse function,
which puts a potential term to the Laplacians. This idea is essentially the one
used by Furuta, Fujita and Yoshida in [6]. There, they showed a localization
result for indices of Dirac-type operator on fibrations, and the invertibility
of fiberwise operators play the role of the potential term. The argument is
more elementary in our situations, because we only have to consider the ze-
roth degree part of ∂-Laplacians. In particular, in contrast to their settings,
we do not need to assume that the family of metrics {gs}s are submersion
metrics.

4.3. Convergence of H1,2-bounded sequences

In this section, we consider an asymptotically semiflat family {Js}0<s<δ of
ω-compatible almost complex structures. Denote by Sb

∞ := Rn × S1 be the
limit space appearing in Theorem 2.6 for each b ∈ Bk.
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Take si > 0 such that limi→∞ si = 0. Put

Hi =

(

L2

(

S,
νĝsi

K
√
si

n

)

⊗ C

)ρk

,

H∞ =
⊕

b∈Bk

(

L2(Sb
∞, ν∞)⊗ C

)ρk

,

C =
⊕

b∈Bk

(

Cc(S
b
∞, ν∞)⊗ C

)ρk

.

Proposition 4.6. Let si > 0 and limi→∞ si = 0. Take fi ∈ (C∞(S)⊗ C)ρk

such that

lim sup
i→∞

(

∥fi∥2
L2(S,

νĝsi
K

√
si

n )
+ ∥dfi∥2

L2(S,
νĝsi

K
√

si
n )

)

<∞.

Then there is a subsequence {fi(j)}∞j=1 ⊂ {fi}∞i=1 and f b∞ ∈ (L2(Sb
∞)⊗ C)ρk

for every b ∈ Bk such that fi(j) →
(

f b∞
)

b
as j → ∞ strongly.

Proof. Put

∥fi∥2H1,2 := ∥fi∥2L2 + ∥dfi∥2L2 ,

then we have supi ∥fi∥H1,2 <∞. First of all we apply [14, Theorem 4.9]
to this sequence. Denote by Bi(ub, R) and B∞(ub∞, R) the open ball
with respect to ĝsi and gk,∞, respectively. Here, ub∞ = (0, 1) is the base
point in Sb

∞. Then the H1,2-norms of fi|Bi(ub,R) are bounded, accordingly

[14, Theorem 4.9] implies that there is f b,R∞ ∈ H1,2(B∞(ub∞, R))⊗ C and
fi(j)|Bi(j)(ub,R) → f b,R∞ strongly for some subsequence {fi(j)}j ⊂ {fi}i.

By taking subsequences inductively and by the diagonal argument, the
subsequence can be taken such that the above convergence holds for any
R = 1, 2, 3, . . ..

Therefore, we obtain

f b,R∞ = f b,R
′

∞ |B∞(ub
∞,R),

for any R′ > R. Define f b∞ ∈ L2
loc(S

b
∞)⊗ C by f b∞|B∞(ub

∞,R) = f b,R∞ , then

∑

b∈Bk

∥f b∞∥2L2 =
∑

b∈Bk

lim
R→∞

∥f b,R∞ ∥2L2 =
∑

b∈Bk

lim
R→∞

lim
j→∞

∥fi(j)|Bi(j)(ub,R)∥2L2
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holds. Since Bi(ub, R) ∩Bi(ub′ , R) is empty for b ̸= b′ and sufficiently small
si, then one can see

∑

b∈Bk

lim
R→∞

lim
j→∞

∥fi(j)|Bi(j)(ub,R)∥2L2 ≤ lim
R→∞

lim
j→∞

∥fi(j)∥2L2

= lim
j→∞

∥fi(j)∥2L2 <∞,

accordingly, f∞ := (f b∞)b ∈
⊕

b∈Bk
(L2(Sb

∞, ν∞)⊗ C).
Next we show that fi(j) → f∞ strongly.

By the strong convergence fi(j)|Bi(j)(ub,R) → f b,R∞ , we have

lim
l→∞

lim sup
j→∞

∥

∥

∥
Φi(j)(f̃

l,b,R)− fi(j)|Bi(j)(ub,R)

∥

∥

∥

L2
= 0

for some {f̃ l,b,R}∞l=0 ⊂ Cc(B∞(ub∞, R)) such that liml→∞ ∥f̃ l,b,R − f b,R∞ ∥L2 =
0. Then for any R > 0 there is a sufficiently large integer lR > 0 such that

lim sup
j→∞

∥

∥

∥
Φi(j)(f̃

l,b,R)− fi(j)|Bi(j)(ub,R)

∥

∥

∥

L2
< 2−R,

∥

∥

∥
f̃ l,b,R − f b,R∞

∥

∥

∥

L2
< 2−R

holds for any l ≥ lR. Since X is compact then Bk is a finite set, consequently,
we may take lR independently of b. Now put f̃ l,R := (f̃ l,b,R)b ∈ C.

In order to show the strong convergence fi(j) → f∞, it is enough to show
the followings.

lim
R→∞

∥

∥

∥
f̃ lR,R − f∞

∥

∥

∥

L2
= 0,(22)

lim
R→∞

lim sup
j→∞

∥

∥

∥
Φi(j)(f̃

lR,R)− fi(j)

∥

∥

∥

L2
= 0.(23)

For (22), one can see

∥

∥

∥
f̃ lR,R − f∞

∥

∥

∥

2

L2
=

∑

b

∥

∥

∥
f̃ lR,b,R − f b∞

∥

∥

∥

2

L2

≤
∑

b

(

∥

∥

∥
f̃ lR,b,R − f b,R∞

∥

∥

∥

2

L2
+
∥

∥

∥
f b∞|B∞(ub

∞,R)c

∥

∥

∥

2

L2

)

≤ 2−2R ·#Bk +
∑

b

∥

∥

∥
f b∞|B∞(ub

∞,R)c

∥

∥

∥

2

L2
→ 0
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as R→ ∞. Next for (23), we can see

lim sup
j→∞

∥

∥

∥
Φi(j)(f̃

lR,R)− fi(j)

∥

∥

∥

2

L2

≤
∑

b

(

lim sup
j→∞

∥

∥

∥
Φi(j)(f̃

lR,b,R)− fi(j)|Bi(j)(ub,R)

∥

∥

∥

2

L2
+
∥

∥fi(j)|Bi(j)(ub,R)c
)

∥

∥

∥

∥

2

L2

≤ 2−2R ·#Bk + lim sup
j→∞

∥

∥

∥
fi(j)|Bi(j)(B̃k,R)c

∥

∥

∥

2

L2
.

By Proposition 4.4, for any ε > 0 there is Rε > 0 such that

∥fi∥2L2(Bi(B̃k,Rε)c)
< ε∥fi∥2L2(S),

where B̃k := {ub | b ∈ Bk} ⊂ S, which gives

lim sup
j→∞

∥

∥

∥
Φi(j)(f̃

lRε ,Rε)− fi(j)

∥

∥

∥

2

L2
≤ 2−2Rε ·#Bk + ε sup

i
∥fi∥2L2 .

By taking ε→ 0, we obtain (23).
So we see the strong convergence fi(j) → f∞ as j → ∞. Since each of

fi(j) are S
1-equivariant, f∞ is also S1-equivariant, hence f∞ ∈ H∞. □

Now we can prove the main theorem.

Definition 4.7. Let (X2n, ω) be a closed symplectic manifold and (L,∇, h)
be a prequantum line bundle. Let J be a compatible almost complex struc-
ture on X. For k ∈ Z>0, define

∆♯k
J := ∇∗

k∇k − kn : Γ(Lk) → Γ(Lk),

where

∇k : Γ(L
k) → Ω1(Lk)

is the connection on Lk induced by ∇. We have ∆♯k
J = 2∆k

∂̄J
when J is an

integrable complex structure, as we have already mentioned in (7).

Theorem 4.8. Let (X,ω) be a closed symplectic manifold of dimension
2n, (L,∇, h) be a prequantum line bundle and k ≥ 1 be a positive integer.
Assume that we are given a non-singular Lagrangian fibration µ : X → B.
Consider any asymptotically semiflat family of ω-compatible almost complex
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structures {Js}s>0 and assume that there is κ ∈ R with RicgJs
≥ κgJs

. Then
we have a compact convergence of spectral structures

(L2(X,Lk),∆♯k
Js
)

s→0−−−→
⊕

b∈Bk

(

Hk,∆k
Rn

)

.

in the sense of Kuwae-Shioya [19].

Proof. By the identification (7), it suffices to show Theorem 1.3. Take any
sequence of positive numbers si > 0 such that limi→∞ si = 0. Let Σi be

the spectral structure given by ∆ρk

ĝJsi

. It is enough to show that Σi → Σ∞
compactly. By Proposition 3.15, we know that uniform lower bound of the
Ricci curvatures of {(S, ĝJs

)}0<s<δ are given by the assumption RicgJs
≥

κgJs
. So by Proposition 3.14, we see that Σi → Σ∞ strongly. By Fact 3.10, we

need to show that, for any {ui}i with lim supi→∞(∥ui∥2Hi
+ ∥dui∥2Hi

) <∞,
there exists a strongly convergent subsequence. If ui ∈ (C∞(S)⊗ C)ρk for
all i, this is true by Proposition 4.6. In general for not necessarily smooth
{ui}i, we can approximate {ui}i by a sequence {u′i}i with u′i ∈ (C∞(S)⊗
C)ρk , limi ∥ui − u′i∥ = 0 and lim supi→∞(∥u′i∥2Hi

+ ∥du′i∥2Hi
) <∞, so we get

the result. □

Proof of Theorem 1.1. By (7), 2∆k
∂Js

= ∆♯k
Js

if Js is integrable. By the

asymptotic semiflatness of {Js}s, we can give the uniform lower bound of
RicgJs

by Fact 2.4. Then we have Theorem 1.1 by Theorem 4.8. □

As a consequence of Theorem 4.8, we have the following result.

Corollary 4.9. Under the assumptions in Theorem 1.3, let λjs be the j-th
eigenvalue (j ≥ 1) of ∆♯k

Js
acting on L2(X;Lk), counted with multiplicity.

For j ≥ 1, let N(j) ∈ Z≥0 be such that the following inequality is satisfied.

#Bk ·
(N(j)− 1 + n)!

n!(N(j)− 1)!
< j ≤ #Bk ·

(N(j) + n)!

n!(N(j))!
.

Then we have

lim
s→0

λjs = k ·N(j).

In particular, the number of eigenvalues converging to 0 is equal to #Bk.

We obtain Corollary 1.2 by applying Corollary 4.9 to the case that all
of Js are integrable.
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5. Convergence of quantum Hilbert spaces

We have so far proved the compact spectral convergence result of ∆k
∂̄Js

, under

asymptotically semiflat deformations of integrable complex structures. How-
ever, actually this does not imply that the quantum Hilbert spaces obtained
by the Kähler quantizations, {H0(XJs

;Lk)}s>0, converge to the quantum
Hilbert space obtained by the real quantization, ⊕b∈Bk

C. This is because,
there may exist a family of eigenvalues {λs}s>0 of {∆k

∂̄Js

}s>0 with λs ̸= 0

for all s > 0 such that λs → 0 as s→ 0. In such cases, the dimensions of
quantum Hilbert spaces can jump at s = 0 as s→ 0.

In this and the following sections, we show that, if k is large enough, the
spaces {H0(XJs

;Lk)}s>0 indeed converge to the space ⊕b∈Bk
ker∆k

Rn . The
lower bound of k is given by the Ricci curvatures of (X, ĝs). Moreover, we
also consider the case that Js are not integrable, using the small eigenspaces
of ∆♯k

Js
instead of H0(XJs

;Lk).

5.1. Almost Kähler quantization

In this subsection, we consider geometric quantization for symplectic mani-
folds (X,ω), which do not necessarily admit a Kähler structure.

In general, any symplectic manifold admits compatible almost complex
structures, and there are several known ways to generalize Kähler quanti-
zation to the quantization of symplectic manifolds equipped with almost
complex structures. In this paper we consider the almost Kähler quantiza-
tion introduced by Borthwick and Uribe in [4, Section 3] and we discuss
it based on [20]. This is done by generalizing the ∂-Laplacian ∆k

∂̄J
by ∆♯k

J

which is defined in Definition 4.7.
Guillemin and Uribe showed in [9] that ∆♯k

J has the spectral gap between
large eigenvalues and the other finitely many eigenvalues if k is sufficiently
large, and the dimension of the direct sum of the eigenvectors associated
with the latter eigenvalues is equal to the Riemann-Roch number of Lk.
Here, we will discuss this idea in the case of k is not large but J is close to
the integrable one in some sense.

Let TX ⊗ C = T 1,0X ⊕ T 0,1X be the decomposition into eigenspaces of
J such that J |T 1,0X =

√
−1 and J |T 0,1X = −

√
−1. Denote by ∇LC the Levi-

Civita connection of gJ , then we obtain the following connections

∇1,0 :=
1

4
(1−

√
−1J) ◦ ∇LC ◦ (1−

√
−1J),

∇0,1 :=
1

4
(1 +

√
−1J) ◦ ∇LC ◦ (1 +

√
−1J),
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on T 1,0X,T 0,1X, respectively. Define A2 := ∇LC −∇1,0 −∇0,1 ∈ Γ(T ∗X ⊗
T ∗X ⊗ TX), then A2 = 0 if and only if J is integrable. From now on, for a
tensor T ∈ Γ(T ∗X⊗l ⊗ TX⊗m) and x ∈ X, the norm |Tx| is defined naturally
by (gJ)x and we put ∥T∥J := supx∈X |Tx|. Let E1, . . . , En ∈ T 1,0

x X be an
orthonormal basis with respect to gJ and E1, . . . , En ∈ Λ1,0T ∗

xX be the dual
basis.

Put Λ0,• :=
⊕n

q=0 Λ
0,qT ∗X. Then the Clifford action on Λ0,• ⊗ Lk is de-

fined by

c(Ei) :=
√
2E

i∧, c(Ei) := −
√
2ιEi

.

If we denote by ∇Cl the Clifford connection on Λ0,• ⊗ Lk, then the Spinc

Dirac operator Dk acting on Ω0,•(Lk) is defined by

Dk :=

2n
∑

i=1

c(ei)∇Cl
ei ,

where e1, . . . , e2n form the orthonormal basis of TxX with respect to gJ . In
[20], the Clifford connection is written as ∇Cl = ∇0,1 ⊗ 1Lk + 1Λ0,• ⊗∇k +
A′

2 ⊗ 1Lk , where A′
2 is given by

A′
2 =

1

2

∑

i,j

{

gJ(A2(Ei), Ej)E
i ∧ Ej ∧+gJ(A2(Ei), Ej)ιEi

ιEj

}

.

Denote by R the curvature tensor of ∇LC .

Definition 5.1. Let δ ≥ 0. J is a δ-almost complex structure if it is ω-
compatible almost complex structure such that

sup

{

sup
x,i,j

|R(Ei, Ej)|, sup
x,i,j

|R(Ei, Ej)|, ∥A2∥2J , ∥∇LCA2∥J
}

≤ δ.

Remark 5.2. J is a 0-almost complex structure iff J is integrable.

Under the assumption that J is a δ-almost complex structure for 0 ≤ δ ≤
1, if we have an estimate ∥T∥J ≤ Cδ for some constant C > 0 depending only
on n, we write T = O(δ). For a > 0 and b ∈ R, if we have −Cδa ≤ b ≤ Cδa,
then we also write b = O(δ)a.
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Lemma 5.3. Let J be a δ-almost complex structure. Then we have

D2
k =

(

∇Cl
)∗

∇Cl − kn+ 2k

n
∑

q=0

qΠq +Ric♯ ⊗ 1Lk +O(δ),

where Πq : Λ
0,• ⊗ Lk → Λ0,q ⊗ Lk is the natural projection and Ric♯ =

∑

j,k Ric(Ej , Ek)E
k ∧ ιEj

. Moreover, if we put ∇Cl
0,1 :=

∑

iE
i ⊗∇Cl

Ei

, then
we have

D2
k = 2

(

∇Cl
0,1

)∗
∇Cl

0,1 + 2k

n
∑

q=0

qΠq + 2Ric♯ ⊗ 1Lk +O(δ).

Proof. First of all we can see

D2
k =

(

∇Cl
)∗

∇Cl +
1

2

∑

α,β

c(eα)c(eβ)F
∇Cl

(eα, eβ),

for any orthonormal basis e1, . . . , e2n ∈ TxX. It is known that if J is inte-
grable, then we have

1

2

∑

α,β

c(eα)c(eβ)F
∇Cl

(eα, eβ) = −kn+ 2k

n
∑

q=0

qΠq +Ric♯ ⊗ 1Lk .

If J is not integrable, we can also see that the difference between the left-
hand side and the right-hand side are written by the linear combination of
the coefficients of A⊗2

2 ,∇LCA2 and (2, 0) or (0, 2) component of the curva-
ture R, hence we have the first equality. We can also obtain it from [20,
Theorem 2.2].

The second equality is given by comparing
(

∇Cl
)∗∇Cl and

(

∇Cl
0,1

)∗∇Cl
0,1.

We take E1, . . . , En such that ∇1,0Ei|x = ∇0,1Ei|x = 0. Then we can see
∑

i(∇LC
Ei

Ei)|x =
∑

i(∇LC
Ei
Ei)|x = 0 by the coclosedness of ω with respect to

gJ , hence we have

2
(

∇Cl
0,1

)∗
∇Cl

0,1 =
(

∇Cl
)∗

∇Cl −
∑

i

F∇0,1

(Ei, Ei)− k
∑

i

F∇(Ei, Ei) +O(δ)

=
(

∇Cl
)∗

∇Cl − Ric♯ ⊗ 1Lk − kn+O(δ),

which gives the second equality. □
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Lemma 5.4. Let J be a δ-almost complex structure. We have

⟨D2
kφ,φ⟩L2 = ⟨∆♯k

J φ,φ⟩L2 +O(δ)∥φ∥2L2

for any φ ∈ Ω0,0(Lk).

Proof. By the definition of ∇Cl, we can see that ∥∇Clφ∥2L2 = ∥∇kφ∥2L2 +
O(δ)∥φ∥2L2 . Then we obtain the result by Lemma 5.3. □

Theorem 5.5. There is a positive constant C depending only on n such that
for any k > 0, κ ∈ R with k + κ > 0 and δ > 0, if J is a δ-almost complex
structure with RicgJ ≥ (κ− δ)gJ , then we have

Spec(∆♯k
J ) ⊂ (−Cδ,Cδ) ∪ (2k + 2κ− Cδ,+∞).

Proof. The idea of the proof is essentially based on [20]. Take λ ∈ R and
φ ∈ C∞(Lk) with ∆♯k

J φ = λφ and ∥φ∥L2 = 1. By Lemma 5.4, we can see
λ∥φ∥2L2 = ∥Dkφ∥2L2 +O(δ), hence we obtain λ ≥ O(δ). Next we have

⟨D2
k(Dkφ), Dkφ⟩L2 = ∥D2

kφ∥2L2 ≤ (λ+O(δ))2∥φ∥2L2 .

Moreover, since Dkφ ∈ Ω0,odd(Lk), then the second equation of Lemma 5.3
implies

⟨D2
k(Dkφ), Dkφ⟩L2 ≥ ∥∇Cl

0,1Dkφ∥2L2 + (2k + 2κ+O(δ))∥Dkφ∥2L2

≥ (2k + 2κ+O(δ))(λ+O(δ))∥φ∥2L2

if δ is sufficiently small such that k + κ+O(δ) > 0. Therefore, there exists
a constant C > 0 depending only on n such that

λ2 + (3Cδ − 2k − 2κ)λ+ (2k + 2κ)Cδ ≥ 0

if 2k + 2κ− Cδ > 0, which implies λ ≤ Cδ or λ ≥ 2k + 2κ− Cδ by tak-
ing C larger. If 2k + 2κ− Cδ ≤ 0, then we also have the conclusion since
(−Cδ,Cδ) ∪ (2k + 2κ− Cδ,+∞) = (−Cδ,+∞). □

Now, define the Riemann-Roch number by

RR(X,Lk) := ind(Dk) = dimKerD+
k − dimKerD−

k ,

where D+
k = Dk|Ω0,even(Lk) and D

−
k = Dk|Ω0,odd(Lk). The Riemann-Roch num-

ber is independent of J .
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Let C be a constant appearing in Theorem 5.5. For a constant δ > 0,
put

Hk,δ := spanC

{

φ ∈ C∞(Lk)| ∃λ ∈ (−Cδ,Cδ), ∆♯k
J φ = λφ

}

.

Theorem 5.6. Let k be a positive integer and κ ∈ R be a constant such
that k + κ > 0. There is a constant δn,k,κ > 0 depending only on n, k, κ such
that for any δ ≤ δn,k,κ and any δ-almost complex structure J with RicgJ ≥
(κ− δ)gJ , we have Cδ < 2k + 2κ− Cδ and

RR(X,Lk) = dimHk,δ.

Proof. We follow the argument in [20]. Let J be a δ-almost complex structure
with RicgJ ≥ (κ− δ)gJ . Since C

∞(Lk) ⊂ Ω0,•(Lk), we regard Hk,δ as a sub-
space of Ω0,•(Lk). Denote by P : Ker(Dk) → Hk,δ and Q : Hk,δ → Ker(Dk)
the orthogonal projections with respect to the L2 inner product. It suffices
to show that both of P,Q are injective.

Note that D2
k preserves the decomposition Ω0,•(Lk) = Ω0,even(Lk)⊕

Ω0,odd(Lk). By the second equation in Lemma 5.3, we can see
that Spec(D2

k|Ω0,odd(Lk)) ⊂ [2(k + κ) +O(δ),+∞). Next we show that
Spec(D2

k|Ω0,even(Lk)) ⊂ {0} ∪ (2k + 2κ+O(δ),+∞). Let λ ∈ R and φ ∈
Ω0,•(Lk) satisfy D2

kφ = λφ and suppose λ ̸= 0. Then we have D2
k(Dkφ) =

λDkφ and Dkφ ∈ Ω0,odd(Lk), then λ ≥ 2(k + κ) +O(δ).
Now, let φ ∈ Hk,ε and Qφ = 0. Then we have

⟨D2
kφ,φ⟩L2 ≤ (Cδ +O(δ))∥φ∥2L2

by Lemma 5.4. Since Qφ = 0 implies that ⟨D2
kφ,φ⟩L2 ≥ (2k + 2κ+

O(δ))∥φ∥2L2 by the above argument, we obtain

2k + 2κ ≤ O(δ)

for φ ̸= 0. Therefore, if we assume δ is sufficiently small, then φ = 0.
Next we take φ ∈ Ker(Dk) such that Pφ = 0. Put φ =

∑

q φq, where

φq ∈ Ω0,q(Lk). If we put ψ =
∑

q≥1 φq, then the second formula of Lemma
5.3 gives

0 = ⟨D2
kφ,φ⟩L2 ≥ ∥∇Cl

0,1φ∥2L2 + (2k + 2κ+O(δ))∥ψ∥2L2 +O(δ)∥φ0∥2L2 ,

hence we have

∥ψ∥2L2 ≤ Aδ∥φ0∥2L2(24)
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for some constant A depending only on n, k, κ, if δ is sufficiently small. In the
following argument, replace A by the larger one if it is necessary. Moreover
the first formula of Lemma 5.3 gives

0 = ⟨D2
kφ,φ⟩L2

≥ ∥∇Clφ∥2L2 − nk∥φ∥2L2 + (2k + κ+O(δ))∥ψ∥2L2 +O(δ)∥φ0∥2L2 .

Here, we may suppose 2k + κ+O(δ) > 0. Then by combining (24),

∥∇Clφ∥2L2 ≤ nk(1 +Aδ)∥φ0∥2L2 .(25)

Now, we may write ∇Clφ = ∇kφ0 +A′
2φ2 + α, where α is the higher de-

gree term. Then we have ∥∇Clφ∥L2 ≥ ∥∇kφ0 +A′
2φ2∥L2 ≥ |∥∇kφ0∥L2 −

∥A′
2φ2∥L2 |, hence by (24)(25), we have

∥∇kφ0∥L2 ≤ ∥∇Clφ∥L2 +O(
√
δ)∥ψ∥L2

≤
√
nk(

√
1 +Aδ +Aδ)∥φ0∥L2 ,

which gives

∥∇kφ0∥2L2 − nk∥φ0∥2L2 ≤ Aδ∥φ0∥2L2

if δ is sufficiently small. This means ⟨∆♯k
J φ0, φ0⟩L2 ≤ Aδ∥φ0∥2L2 , therefore, if

we take δ > 0 such that Aδ ≤ 2k + 2κ− Cδ, then Pφ = 0 implies φ = 0 by
Theorem 5.5. □

5.2. Convergence of the quantum Hilbert spaces

Now, fix k, κ with k + κ > 0 and let C, δn,k,κ be as in Theorems 5.5 and 5.6.

Theorem 5.7. Let (X,ω, L, h,∇) be a closed symplectic manifold with a
prequantum bundle, and let Js be a family of δn,k,κ-almost complex structures
with RicgJs

≥ (κ− δn,k,κ)gJs
. Define

Hk,s := span
{

φ
∣

∣

∣
∃λ ∈ (−Cδn,k,κ, Cδn,k,κ), ∆♯k

Js
φ = λφ

}

and denote by Pk,s : L
2(X, gJs

;Lk) → Hk,s the orthogonal projection. We
also consider Ker(∆k

Rn) ⊂ Hk and denote by Pk the orthogonal projec-
tion onto this space. Then, under the convergence of Hilbert spaces
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L2(XJs
;Lk) → ⊕b∈Bk

Hk as s→ 0, we have a compact convergence

Pk,s
s→0−−−→ ⊕b∈Bk

Pk,

as a family of bounded operators on this family. In particular, for such k we
have

RR(X,Lk) = #Bk.

Proof. Let us denote the spectral projection for (L2(X, gJs
;Lk),∆♯k

Js
) by Es

and for ⊕b∈Bk
(Hk,∆k

Rn) by E∞. By the compact spectral convergence in
Theorem 4.8 and the definition of compact convergence in Definition 3.6,
we have Es((−ε, ε]) → E∞((−ε, ε]) compactly as s→ 0 for any ε > 0. Put
ε = Cδn,k,κ. By Theorems 5.5 and 5.6, we see that, for s > 0 small enough,
we have Es((−ε, ε]) = Pk,s. Moreover we also have E∞((−ε, ε]) = ⊕b∈Bk

Pk.
Thus we get the desired result. □

6. Examples

In this section we apply Theorem 5.7 to the following two cases.

6.1. Kähler quantization

In this subsection, we apply Theorem 5.7 in the case of all of Js are in-
tegrable. We assume that {Js}s is asymptotically semiflat family of ω-
compatible complex structures. Then by Fact 2.4, there is κ ∈ R such that
RicgJs

≥ κgJs
. Take a positive integer k such that k + κ > 0 and let Hk,s be

as in Theorem 5.7. We can apply Theorem 5.5 to this case for any δ > 0,
hence we can see Spec(∆k

∂Js

) ⊂ {0} ⊔ [2k + 2κ,+∞). Since δn,k,κ is taken

such that Cδn,k,κ < 2k + 2κ− Cδn,k,κ < 2k + 2κ, then Hk,s = Ker∆k
∂Js

=

H0(XJs
, Lk). Therefore, we obtain the following conclusion.

Theorem 6.1. Let (X,ω, L, h,∇) be a closed symplectic manifold with
a prequantum bundle, and let Js be an asymptotically semiflat fam-
ily of ω-compatible complex structures. Denote by Pk,s : L

2(X, gJs
;Lk) →

H0(XJs
, Lk) the orthogonal projection. We also consider Ker(∆k

Rn) ⊂ Hk

and denote by Pk the orthogonal projection onto this space. Then for suffi-
ciently large k > 0, under the convergence of Hilbert spaces L2(XJs

;Lk) →
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⊕b∈Bk
Hk as s→ 0, we have a compact convergence

Pk,s
s→0−−−→ ⊕b∈Bk

Pk,

as a family of bounded operators on this family. In particular, for such k we
have

RR(X,Lk) = #Bk.

6.2. Almost Kähler quantization

Here, we show an example of one parameter families of ω-compatible almost
complex structures {Js}0<s<δ on (X,ω) to which we can apply Theorems 1.3
and 5.7. We assume the following condition on {Js}s.

♡ In the local description as in (9), the coefficient Aij does not depend
on the fiber coordinate θ and linear in s, i.e., we have a local frame of
T 1,0
Js
X of the form

∂

∂θi
+ sAij(x)

∂

∂xj
, i = 1, . . . , n

for some Aij ∈ C∞(U)⊗Mn(C).

Note that this condition is independent of the choice of action-angle coordi-
nate. Obviously, {Js}s is asymptotically semiflat.

Proposition 6.2. Fix δ > 0 arbitrarily. If a family of almost complex struc-
ture {Js}s>0 satisfies the condition ♡, there exist sδ > 0 such that Js is a
δ-almost complex structure and RicgJs

≥ −δgJs
for all 0 < s < s0.

Proof. This follows by straightforward estimates for curvature tensors and
some other quantities as follows. We take a finite covering of X by open sets
with action-angle coordinates (x1, · · · , xn, θ1, · · · , θn). Put

Es
i :=

1√
s

(

∂

∂θi
+ sAij(x)

∂

∂xj

)

,

Pij = Re(Aij), Qij = Im(Aij).

By (11) and the condition ♡, the metric tensor satisfies the condition

gJs

(

Es
i , E

s
j

)

= 2Qij , gJs

(

Es
i , E

s
j

)

= gJs

(

E
s
i , E

s
j

)

= 0
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From now on we write Es
ī
:= E

s
i and let α, β, γ, τ = 1, . . . , n, 1̄, . . . , n̄. Since

gJs
([Es

α, E
s
β ], E

s
γ) =

√
sgJ1

([E1
α, E

1
β ], E

1
γ),

Es
α

(

gJs
(Es

β , E
s
γ)
)

=
√
sE1

α

(

gJ1
(E1

β , E
1
γ)
)

,

we can see

∇LC
Es

α
Es

β =
√
sΓγ

αβ(x)E
s
γ

for some function Γγ
αβ(x) depending only on x, where ∇LC is the Levi-Civita

connection of gJs
. Moreover we have

gJs

(

∇LC
Es

α
∇LC

Es
β
Es

γ , E
s
τ

)

= sgJ1

(

∇LC
E1

α
∇LC

E1
β
E1

γ , E
1
τ

)

.

Therefore, we can see that all of the geometric quantities appearing in Defi-
nition 5.1 are bounded by Cs from the above, where C is a positive constant
independent of s. Since the curvature tensor is bounded, the uniform lower
bound of the Ricci curvature also exists. □

Thus we may apply Theorems 1.3 and 5.7 to {Js}s with ♡. In particular,
Theorem 5.7 can be applied by putting κ = 0, hence for any positive k.
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