OPTIMAL ACCELERATION OF CONVERGENCE*

ARIEH ISERLES ${ }^{\dagger}$ AND XIAOYAN LIU \ddagger

Abstract. In this paper we investigate the quadratic model

$$
\frac{\mathbf{b}^{T} \mathbf{u}+\mathbf{u}^{T} C \mathbf{u}}{\mathbf{a}^{T} \mathbf{u}}
$$

which generalises the Shanks transformation and the familiar Pade model, to accelerate the convergence of a sequence $\left\{u_{k}\right\}_{k \in Z_{p}}$. In the new model,

$$
\mathbf{u}^{T}=\left[u_{0}, u_{1}, \ldots, u_{n}\right]
$$

$\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n+1}$ and C is an $(n+1) \times(n+1)$ Hermitian matrix. (Note that, although \mathbf{u} might be complex, we use the transpose \mathbf{u}^{T}, rather than the adjoint \mathbf{u}^{*}.) Let us assume that the original sequence is obtained from the dynamical system $z \mapsto f(z)$, where $f(z)=\hat{u}+\sum_{k=1}^{\infty} \frac{1}{k!} \beta_{k}(z-\hat{u})^{k}$ is analytic about its fixed point $\hat{u} \in \mathbb{C}$. Suppose that $u_{0}=\hat{u}+\varepsilon$ and $u_{k}=f^{\circ k}\left(u_{0}\right)$. It is easy to show that $\mathbf{b}=\mathbf{0}$ and $\mathbf{a}=2 C \mathbf{1}$. We give an iterative formula for the construction of the matrices C. Furthermore, we discuss the rate of convergence, inclusive of the special case when the fixed point is at ∞.

1. The quadratic model. The starting point for the Shanks transformation is that, given a sequence $\left\{u_{k}\right\}_{k \in \mathbb{Z}^{+}}$, we construct the function

$$
G(z):=u_{0}+\sum_{k=1}^{\infty}\left(u_{k}-u_{k-1}\right) z^{k}
$$

and take the $[N / N]$ Padé approximant to F at $z=1$ as the 'accelerated' limit [1].
Its obvious generalisation is to consider

$$
G(z)=\sum_{m=0}^{\infty}\left[\sum_{j=0}^{m}(-1)^{m-j} \alpha_{m, j} u_{j}\right] z^{m}
$$

and its sections

$$
G^{[n]}(z)=\sum_{m=0}^{n}\left[\sum_{j=0}^{m}(-1)^{m-j} \alpha_{m, j} u_{j}\right] z^{m} .
$$

Having fixed n, we stipulate that $G^{[n]}(1)=u_{n}$. Thus,

$$
\sum_{j=0}^{n}\left[\sum_{m=j}^{n}(-1)^{m-j} \alpha_{m, j}\right] u_{j}=u_{n}
$$

and, since we want the coefficients to be independent of $\left\{u_{k}\right\}_{k \in \mathbb{Z}^{+}}$, we stipulate $\alpha_{n, n}=$ 1 and

$$
\begin{equation*}
\sum_{m=j}^{n}(-1)^{m-j} \alpha_{m, j}=0, \quad j=0,1, \ldots, n-1 \tag{1.1}
\end{equation*}
$$

[^0]This is our first model, and we call it the Padé model.
Another general scheme for convergence acceleration is by letting the accelerator be

$$
\begin{equation*}
\frac{\mathbf{b}^{T} \mathbf{u}+\mathbf{u}^{T} C \mathbf{u}}{\mathbf{a}^{T} \mathbf{u}} \tag{1.2}
\end{equation*}
$$

where

$$
\mathbf{u}^{T}=\left[u_{0}, u_{1}, \ldots, u_{n}\right]
$$

$\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n+1}$ and C is an $(n+1) \times(n+1)$ Hermitian matrix. Note that, although \mathbf{u} might be complex, we use the transpose \mathbf{u}^{T}, rather than the adjoint \mathbf{u}^{*}. We call this the quadratic model.
2. The quadratic model. Let us assume that the original sequence is obtained from the dynamical system $z \mapsto f(z)$, where $f(z)=\hat{u}+\sum_{k=1}^{\infty} \frac{1}{k!} \beta_{k}(z-\hat{u})^{k}$ is analytic about its fixed point $\hat{u} \in \mathbb{C}$. Suppose that $u_{0}=\hat{u}+\varepsilon$. Then, expanding into series,

$$
\begin{aligned}
& u_{1}=\hat{u}+\beta_{1} \varepsilon+\frac{1}{2} \beta_{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right) \\
& u_{2}=\hat{u}+\beta_{1}^{2} \varepsilon+\frac{1}{2}\left(\beta_{1}+\beta_{1}^{2}\right) \beta_{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

Generally, we have (except when $\beta_{1}=1$)

$$
\begin{equation*}
u_{k}=f^{\circ k}(\hat{u}+\varepsilon)=\hat{u}+\beta_{1}^{k} \varepsilon+\frac{1}{2} \beta_{1}^{k-1} \frac{1-\beta_{1}^{k}}{1-\beta_{1}} \beta_{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right), \quad k \in \mathbb{Z}^{+} \tag{2.1}
\end{equation*}
$$

where $f^{\circ k}$ is the k th iterate of the function f. Set

$$
V(\varepsilon)=\frac{\mathbf{b}^{T} \mathbf{u}+\mathbf{u}^{T} C \mathbf{u}}{\mathbf{a}^{T} \mathbf{u}}
$$

The order of convergence acceleration (equivalently, the order of superattractivity at the fixed point) is the integer p such that

$$
V(\varepsilon)=\hat{u}+O\left(\varepsilon^{p+1}\right)
$$

The condition for $p \geq 0$ is that $V(0)=\hat{u}$. Let

$$
\mathbf{p}_{\ell}:=\left[1, \beta_{1}^{\ell}, \beta_{1}^{2 \ell}, \ldots, \beta_{1}^{n \ell}\right]^{T}, \quad \ell \in \mathbb{Z}^{+}
$$

(for convenience, $\mathbf{p}_{0}=\mathbf{1}$).
The ε^{0} condition is

$$
\mathbf{b}^{T} \mathbf{1} \hat{u}+\mathbf{1}^{T} C \mathbf{1} \hat{u}^{2}=\mathbf{a}^{T} \mathbf{1} \hat{u}^{2},
$$

and we deduce that

$$
\begin{equation*}
\mathbf{b}^{T} \mathbf{1}=0, \quad \mathbf{1}^{T} C \mathbf{1}=\mathbf{a}^{T} \mathbf{1} \tag{2.2}
\end{equation*}
$$

We turn our attention next to the ε condition: it is

$$
\mathbf{b}^{T} \mathbf{p}_{1}+2 \mathbf{1}^{T} C \mathbf{p}_{1} \hat{u}=\mathbf{a}^{T} \mathbf{p}_{1} \hat{u}
$$

We first deduce that $\mathbf{b}^{T} \mathbf{p}_{1}=0$, and this implies $\mathbf{b}=\mathbf{0}$. Hence, no need to elaborate or mention any further that vector. More interesting consequence of equating powers of β_{1} is

$$
\begin{equation*}
\mathbf{a}=2 C \mathbf{1} \tag{2.3}
\end{equation*}
$$

Comparing with (2.2), we deduce that

$$
\begin{equation*}
\mathbf{1}^{T} C \mathbf{1}=\mathbf{a}^{T} \mathbf{1}=0 \tag{2.4}
\end{equation*}
$$

Thus, we need to go further, considering the ε^{2} terms, to argue that $p \geq 1$. This gives (for $\beta_{1} \neq 0$ - otherwise the analysis is even simpler!)

$$
\mathbf{p}_{1}^{T} C \mathbf{p}_{1}+\hat{u} \frac{\beta_{2}}{\beta_{1}\left(1-\beta_{1}\right)}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)^{T} C \mathbf{1}=\frac{1}{2} \hat{u} \frac{\beta_{2}}{\beta_{1}\left(1-\beta_{1}\right)}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)^{T} \mathbf{a}
$$

and (2.3) means that the $p \geq 1$ condition is just

$$
\begin{equation*}
\mathbf{q}^{T} C \mathbf{q} \equiv 0 \quad \text { for all } \quad \mathbf{q}=\left[1, q, q^{2}, \ldots, q^{n}\right]^{T}, \quad q \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

Hence

$$
\sum_{k=0}^{n} \sum_{\ell=0}^{n} c_{k, \ell} q^{k+\ell}=0, \quad q \in \mathbb{R}
$$

and (2.5) can be alternatively expressed as

$$
\begin{align*}
\sum_{k=0}^{\ell} c_{k, \ell-k} & =0, \tag{2.6}\\
\sum_{k=\ell-n}^{n} c_{k, \ell-k} & =0,
\end{align*} \quad \ell=n, 1, \ldots, n ; 1, \ldots, 2 n .
$$

Note, incidentally, that $\mathbf{1}^{T} C \mathbf{1}=0$ is a special case of (2.5) when $q=1$.
Recall from [2] that there exist numbers $\left\{\alpha_{m, \ell}: \ell=1, \ldots, m ; m=1,2, \ldots\right\}$ such that

$$
f^{\circ k}(z)=\hat{u}+\sum_{m=1}^{\infty}\left(\sum_{\ell=1}^{m} \alpha_{m, \ell} \beta_{1}^{k \ell}\right) \varepsilon^{m}
$$

(we exclude the cases of $\beta_{1}=0$ and of β_{1} being a root of unity). Consequently, and exploiting $\mathbf{1}^{T} C \mathbf{1}=0$, we obtain

$$
\begin{align*}
\mathbf{u}^{T} C \mathbf{u}= & 2 \hat{u} \tag{2.7}
\end{align*} \sum_{m=1}^{\infty}\left(\sum_{\ell=1}^{m} \alpha_{m, \ell} \mathbf{1}^{T} C \mathbf{p}_{\ell}\right) \varepsilon^{m} .
$$

Let

$$
W(\varepsilon):=\varepsilon^{-1}\left(\mathbf{u}^{T} C \mathbf{u}-2 \hat{u} \mathbf{1}^{T} C \mathbf{u}\right)
$$

Then a necessary condition for order p is that $W(\varepsilon)=O\left(\varepsilon^{p+1}\right)$ (recall that both the numerator and the denominator are $O(\varepsilon)$). Clearly, this is also sufficient if the $O(\varepsilon)$ terms therein are nonzero. Comparing (2.7) and (2.8), we have

$$
\begin{align*}
W(\varepsilon) & =\sum_{m=1}^{\infty}\left(\sum_{k=1}^{m} \sum_{\ell=1}^{k} \sum_{j=1}^{m+1-k} \alpha_{k, \ell} \alpha_{m+1-k, j} \mathbf{p}_{\ell}^{T} C \mathbf{p}_{j}\right) \varepsilon^{m} \tag{2.9}\\
& =\sum_{m=1}^{\infty} \sum_{\ell=1}^{m} \sum_{j=1}^{m+1-\ell}\left(\sum_{k=\ell}^{m+1-j} \alpha_{k, \ell} \alpha_{m+1-k, j}\right) \mathbf{p}_{\ell}^{T} C \mathbf{p}_{j} \varepsilon^{m} .
\end{align*}
$$

Moreover,

$$
V(\varepsilon)=\frac{\hat{u}\left[\alpha_{1,1} \mathbf{1}^{T} C \mathbf{p}_{1}+\sum_{m=1}^{\infty}\left(\sum_{\ell=1}^{m+1} \alpha_{m+1, \ell} \mathbf{1}^{T} C \mathbf{p}_{\ell}\right) \varepsilon^{m}\right]+\frac{1}{2} W(\varepsilon)}{\alpha_{1,1} \mathbf{1}^{T} C \mathbf{p}_{1}+\sum_{m=1}^{\infty}\left(\sum_{\ell=1}^{m+1} \alpha_{m+1, \ell} \mathbf{1}^{T} C \mathbf{p}_{\ell}\right) \varepsilon^{m}}
$$

hence the method is of order at least p if $\mathbf{1}^{T} C \mathbf{p}_{1} \neq 0$. Thus, the order is degraded for all β_{1} if $C \mathbf{1}=\mathbf{0}$ and it might be degraded for particular values of β_{1} if C is singular and \mathbf{p}_{1} is an eigenvector corresponding to the eigenvalue 0 . We impose in the sequel the requirement that $C \mathbf{1} \neq \mathbf{0}$ (i.e. that C is nondegenerate), W.L.O.G..

As we have already seen, $p \geq 1$ only if

$$
\alpha_{1,1}^{2} \mathbf{p}_{1}^{T} C \mathbf{p}_{1}=0
$$

Consequently, we require $\mathbf{q}^{T} C \mathbf{q} \equiv 0 \forall q \in \mathbb{R}$. The necessary condition for $p \geq 2$ is

$$
2 \alpha_{1,1}\left(\alpha_{2,1} \mathbf{p}_{1}^{T} C \mathbf{p}_{1}+\alpha_{2,2} \mathbf{p}_{1}^{T} C \mathbf{p}_{2}\right)=0
$$

hence we deduce that

$$
\begin{equation*}
\mathbf{q}_{1}^{T} C \mathbf{q}_{1} \equiv \mathbf{q}_{1}^{T} C \mathbf{q}_{2} \equiv 0 \tag{2.10}
\end{equation*}
$$

where

$$
\mathbf{q}_{j}=\left[1, q^{j}, q^{2 j}, \ldots, q^{n j}\right]^{T}, j \in \mathbb{Z}^{+}, q \in \mathbb{R}
$$

3. The General Case. We consider next $p \geq 3$. The conditions (2.10) are still necessary and the third-order terms are

$$
\begin{aligned}
& \left(2 \alpha_{1,1} \alpha_{3,1}+\alpha_{2,1}^{2}\right) \mathbf{p}_{1}^{T} C \mathbf{p}_{1} \\
+ & 2\left(\alpha_{1,1} \alpha_{3,2}+\alpha_{2,1} \alpha_{2,2}\right) \mathbf{p}_{1}^{T} C \mathbf{p}_{2} \\
+ & 2 \alpha_{1,1} \alpha_{3,3} \mathbf{p}_{1}^{T} C \mathbf{p}_{3}+\alpha_{2,2}^{2} \mathbf{p}_{2}^{T} C \mathbf{p}_{2}
\end{aligned}
$$

since (2.10) implies $\mathbf{q}_{2}^{T} C \mathbf{q}_{2}=0$ (note that $\mathbf{q}_{2}(q)=\mathbf{q}_{1}\left(q^{2}\right)$). Hence we require just one more equation,

$$
\begin{equation*}
\mathbf{q}_{1}^{T} C \mathbf{q}_{3}=0 \tag{3.1}
\end{equation*}
$$

Generally, by the similar reasoning, we need

$$
\begin{equation*}
\mathbf{q}_{1}^{T} C \mathbf{q}_{i}=0, \quad i=1,2, \ldots, p, \tag{3.2}
\end{equation*}
$$

for order p. We know that the matrix C cannot be $p \times p$, it has to be larger. In the following proposition we will prove that for $N=p(p+3) / 2$, the smallest matrix C satisfying (3.2) is $(N+1) \times(N+1)$. A lemma is required first.

Lemma 3.1. Let C be a symmetric matrix, and

$$
C=\left[a_{k, \ell}\right]_{k, \ell=0,1, \ldots, K}, \quad a(t, s)=\sum_{k=0}^{K} \sum_{\ell=0}^{K} a_{k, \ell} t^{k} s^{\ell}
$$

If $a\left(q^{j}, q^{i}\right)=0,1 \leq i \leq j, i$ and j are relatively prime, then $\left(t^{i}-s^{j}\right) \mid a(t, s)$.
Proof. Let us consider the coefficients $a_{k, \ell}$ of $a(t, s)$. Since

$$
\begin{aligned}
0 & =a\left(q^{j}, q^{i}\right)=\sum_{k=0}^{K} \sum_{\ell=0}^{K} a_{k, \ell} q^{j k} q^{i \ell} \\
& =\sum\left(a_{k, \ell}+a_{k-i, \ell+j}+a_{k-2 i, \ell+2 j}+\ldots+a_{k-u i, \ell+u j}\right) q^{j k+i \ell}
\end{aligned}
$$

every coefficient of $q^{j k+i \ell}$ has to be zero for $0 \leq k \leq K, 0 \leq \ell \leq K$. That means, using the fact that $\operatorname{gcd}(i, j)=1$ (hence each coefficient appears only in one equation) that

$$
a_{k, \ell}+a_{k-i, \ell+j}+a_{k-2 i, \ell+2 j}+\ldots+a_{k-u i, \ell+u j}=0
$$

where all subscripts are bounded by 0 and K. Notice that there are complex numbers $a_{1}, a_{2}, \ldots, a_{u}, b_{1}, b_{2}, \ldots, b_{u}$ such that

$$
\begin{aligned}
& a_{k, \ell} t^{k} s^{\ell}+a_{k-i, \ell+j} t^{k-i} s^{\ell+j}+a_{k-2 i, \ell+2 j} t^{k-2 i} s^{\ell+2 j}+\cdots+a_{k-u i, \ell+u j} t^{k-u i} s^{\ell+u j} \\
= & t^{k-u i} s^{\ell+u j}\left(a_{1} t^{i} s^{-j}+b_{1}\right)\left(a_{2} t^{i} s^{-j}+b_{2}\right) \cdots\left(a_{u} t^{i} s^{-j}+b_{u}\right) \\
= & t^{k-u i} s^{\ell}\left(a_{1} t^{i}+b_{1} s^{j}\right)\left(a_{2} t^{i}+b_{2} s^{j}\right) \cdots\left(a_{u} t^{i}+b_{u} s^{j}\right) .
\end{aligned}
$$

Substituting $t=1$ and $s=1$ we get

$$
0=a_{k, \ell}+a_{k-i, \ell+j}+a_{k-2 i, \ell+2 j}+\cdots+a_{k-u i, \ell+u j}=\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{u}+b_{u}\right) .
$$

One of $\left(a_{m}+b_{m}\right) \mathrm{s}$ must be zero and, without loss of generality, we assume that it is the first. Hence $a_{1}=-b_{1}$ (notice that also a_{1} could be zero) and

$$
\begin{aligned}
& a_{k, \ell} t^{k} s^{\ell}+a_{k-i, \ell+j} t^{k-i} s^{\ell+j}+a_{k-2 i, \ell+2 j} t^{k-2 i} s^{\ell+2 j}+\cdots+a_{k-u i, \ell+u j} t^{k-u i} s^{\ell+u j} \\
= & t^{k-u i} s^{\ell} a_{1}\left(t^{i}-s^{j}\right)\left(a_{2} t^{i}+b_{2} s^{j}\right) \cdots\left(a_{u} t^{i}+b_{u} s^{j}\right) .
\end{aligned}
$$

Let u, v be integers such that $0 \leq K-v i<i$ and $0 \leq K-u j<j$, respectively. We deduce that (the second sum being unique, because of $\operatorname{gcd}(i, j)=1$)

$$
\begin{aligned}
a(t, s) & =\sum_{k=0}^{K} \sum_{\ell=0}^{K} a_{k, \ell} t^{k} s^{\ell} \\
& =\sum_{k_{1}=0}^{i-1} \sum_{\ell_{1}=0}^{j-1}\left[\sum _ { k _ { 2 } = 0 } ^ { v } \left(a_{k_{1}+k_{2} i, \ell_{1}} t^{k_{1}+k_{2} i} s^{\ell_{1}}+a_{k_{1}+\left(k_{2}-1\right) i, \ell_{1}+j} t^{k_{1}+\left(k_{2}-1\right) i} s^{\ell_{1}+j}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +a_{k_{1}+\left(k_{2}-2\right) i, \ell_{1}+2 j} t^{k_{1}+\left(k_{2}-2\right) i} s^{\ell_{1}+2 j}+\cdots \\
& \left.+a_{k_{1}+\left(k_{2}-k_{2}\right) i, \ell_{1}+k_{2} j} t^{k_{1}+\left(k_{2}-k_{2}\right) i} s^{\ell_{1}+k_{2} j}\right) \\
& +\sum_{l_{2}=1}^{u}\left(a_{k_{1}+v i, \ell_{1}+\ell_{2} j} t^{k_{1}+v i} s^{\ell_{1}+\ell_{2} j}+a_{k_{1}+(v-1) i, \ell_{1}+\left(\ell_{2}+1\right) j} t^{k_{1}+(v-1) i} s^{\ell_{1}+\left(\ell_{2}+1\right) j}\right. \\
& +a_{k_{1}+(v-2) i, \ell_{1}+\left(\ell_{2}+2\right) j} t^{k_{1}+(v-2) i} s^{\ell_{1}+\left(\ell_{2}+2\right) j}+\cdots \\
& \left.\left.+a_{k_{1}+\left(v-u+\ell_{2}\right) i, \ell_{1}+u j} t^{k_{1}+\left(v-u+\ell_{2}\right) i} s^{\ell_{1}+u j}\right)\right] \\
= & \left(t^{i}-s^{j}\right) \sum b_{k, \ell} t^{k} s^{\ell}
\end{aligned}
$$

where if a subscript of $a_{k, \ell}$ is $>K$, then the $a_{k, \ell}$ in question is defined to be zero.
Proposition 3.2. Let $N_{p}:=p(p+3) / 2$. The smallest C satisfying the system of equations
(3.3) $\mathbf{q}_{1}^{T} C \mathbf{q}_{i}=0, i=1,2, \ldots, p$, where $\mathbf{q}_{i}=\left[1, q^{i}, q^{2 i}, \ldots, q^{n i}\right]^{T}, i \in \mathbb{Z}^{+}, q \in \mathbb{R}$ is $\left(N_{p}+1\right) \times\left(N_{p}+1\right)$. Furthermore, let $C_{N_{p}}$ be the smallest C corresponding to p, then we can construct $C_{N_{p}}$ from $C_{N_{p-1}}$ according to the following prescription.

$$
\begin{aligned}
C_{N_{1}}= & {\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 0
\end{array}\right], } \\
C_{N_{p}}= & {\left[\begin{array}{cc}
O_{(p+1) \times N_{p-1}} & O_{(p+1) \times(p+1)} \\
C_{N_{p-1}} & O_{N_{p-1} \times(p+1)}
\end{array}\right]+\left[\begin{array}{cc}
\left.\begin{array}{cc}
C_{N_{p-1}} & O_{N_{p-1} \times(p+1)} \\
O_{(p+1) \times N_{p-1}} & O_{(p+1) \times(p+1)}
\end{array}\right] \\
& -\left[\begin{array}{ccc}
O_{1 \times 1} & O_{1 \times N_{p-1}} & O_{1 \times p} \\
O_{N_{p-1} \times 1} & C_{N_{p-1}} & O_{N_{p-1} \times p} \\
O_{p \times 1} & O_{p \times N_{p-1}} & O_{p \times p}
\end{array}\right]-\left[\begin{array}{ccc}
O_{p \times p} & O_{p \times N_{p-1}} & O_{p \times 1} \\
O_{N_{p-1} \times p} & C_{N_{p-1}} & O_{N_{p-1} \times 1} \\
O_{1 \times p} & O_{1 \times N_{p-1}} & O_{1 \times 1}
\end{array}\right]
\end{array}, .\right.}
\end{aligned}
$$

where $p \geq 2$ and $O_{i \times j}$ is a zero matrix of order $i \times j$. Furthermore,

$$
\begin{equation*}
v_{p}(q):=\mathbf{1}^{T} C_{N_{p}} \mathbf{q}_{1}=(1-q)^{p} \prod_{k=1}^{p}\left(1-q^{k}\right) . \tag{3.5}
\end{equation*}
$$

Proof. We proceed by induction. By direct calculation, $\mathbf{q}_{1}^{T} C_{N_{1}} \mathbf{q}_{1}=0$.
Assume ne xt that $\mathbf{q}_{1}^{T} C_{N_{p-1}} \mathbf{q}_{i}=0$ for $i=1,2, \ldots, p-1$. Then

$$
\begin{aligned}
\mathbf{q}_{1}^{T} C_{N_{p}} \mathbf{q}_{i}= & q^{p+1} \mathbf{q}_{1}^{T} C_{N_{p-1}} \mathbf{q}_{i}+\mathbf{q}_{1}^{T} C_{N_{p-1}} q^{i(p+1)} \mathbf{q}_{i}-q^{1} \mathbf{q}_{1}^{T} C_{N_{p-1}} q^{i} \mathbf{q}_{i} \\
& -q^{p} \mathbf{q}_{1}^{T} C_{N_{p-1}} q^{i \cdot p} \mathbf{q}_{i}=0,
\end{aligned}
$$

for $i=1,2, \ldots, p-1$. Furthermore,

$$
\begin{aligned}
\mathbf{q}_{1}^{T} C_{N_{p}} \mathbf{q}_{p}= & q^{p+1} \mathbf{q}_{1}^{T} C_{N_{p-1}} \mathbf{q}_{p}+\mathbf{q}_{1}^{T} C_{N_{p-1}} q^{p(p+1)} \mathbf{q}_{p}-q^{1} \mathbf{q}_{1}^{T} C_{N_{p-1}} q^{p} \mathbf{q}_{p} \\
& -q^{p} \mathbf{q}_{1}^{T} C_{N_{p-1}} q^{p \cdot p} \mathbf{q}_{p}=0 .
\end{aligned}
$$

Hence $\mathbf{q}_{1}^{T} C_{N_{p}} \mathbf{q}_{i}=0$, for $i=1,2, \ldots, p$ and any positive integer p.

To prove that N_{p} is the smallest number such that there is at least one non-trivial C satisfying (3.2), we write $\mathbf{S}=\left[1, s, \ldots, s^{n}\right]^{T}$ and

$$
b_{i}(q, s)=\mathbf{q}_{1}^{T} C_{N_{i}} \mathbf{S}, \quad i=1,2, \ldots, p
$$

Then by our assumption

$$
b_{p}\left(q, q^{i}\right)=\mathbf{q}_{1}^{T} C_{N_{p}} \mathbf{q}_{i}=0, \quad i=1,2, \ldots, p
$$

Hence, by the Lemma 3.1, $\left(s-q^{i}\right) \mid b_{p}(q, s), \quad i=1,2, \ldots, p$. Note that $b_{p}(q, s)$ is a symmetric function of q and s, thus

$$
\prod_{k=1}^{p}\left[\left(s-q^{k}\right)\left(q-s^{k}\right)\right] \mid b_{p}(q, s) .
$$

On the other hand, by our recursion,

$$
\begin{aligned}
b_{1}(q, s) & =\mathbf{q}_{1}^{T} C_{N_{1}} \mathbf{S}=q^{2}-2 s q+s^{2}=(q-s)(q-s), \\
b_{p}(q, s) & =\mathbf{q}_{1}^{T} C_{N_{p}} \mathbf{S} \\
& =q^{p+1} \mathbf{q}_{1}^{T} C_{N_{p-1}} \mathbf{S}+\mathbf{q}_{1}^{T} C_{N_{p-1}} s^{p+1} \mathbf{S}-q \mathbf{q}_{1}^{T} C_{N_{p-1}} s \mathbf{S}-q^{p} \mathbf{q}_{1}^{T} C_{N_{p-1}} s^{p} \mathbf{S} \\
& =\left(q^{p+1}+s^{p+1}-q s-q^{p} s^{p} \mathbf{q}_{1}^{T} C_{N_{p-1}} \mathbf{S}\right. \\
& =\left(q^{p}-s\right)\left(q-s^{p}\right) b_{p-1}(q, s) \quad \quad \text { (by induction) } \\
& =\prod_{k=1}^{p}\left[\left(q^{k}-s\right)\left(q-s^{k}\right)\right] \quad \\
& =(-1)^{p} \prod_{k=1}^{p}\left[\left(s-q^{k}\right)\left(q-s^{k}\right)\right] .
\end{aligned}
$$

Thus $b_{p}(q, s)$ is the lowest degree $b(q, s)$ satisfying our assumption. The highest power of s or q in it, which corresponds to the smallest degree of matrix C, is

$$
N_{p}=p+1+2+\cdots+p=\frac{1}{2} p(p+3)
$$

The next statement is obvious,

$$
v_{p}(q)=b_{p}(q, 1)=\prod_{k=1}^{p}\left[\left(q^{k}-1\right)(q-1)\right]=(1-q)^{p} \prod_{k=1}^{p}\left(1-q^{k}\right) .
$$

The proof is complete.
To ensure that

$$
W(\varepsilon):=\varepsilon^{-1}\left(\mathbf{u}^{T} C \mathbf{u}-2 \hat{u} \mathbf{1}^{T} C \mathbf{u}\right)=O\left(\varepsilon^{p+1}\right)
$$

it is necessary that (3.3) holds. However, for $p=4,(3.3)$ is not sufficient and we need one more equation,

$$
\begin{equation*}
\mathbf{q}_{2}^{T} C \mathbf{q}_{3}=0 \tag{3.6}
\end{equation*}
$$

Generally, to guarantee $p \geq 4$,

$$
\begin{equation*}
\mathbf{q}_{i}^{T} C \mathbf{q}_{j}=0, \quad 2 \leq i+j \leq p+1, \quad 1 \leq i, j \leq p \tag{3.7}
\end{equation*}
$$

have to hold too. Thus, when p gets larger, our matrix C gets quite large. Fortunately, it is still possible to construct C recursively.

Theorem 3.3. Let

$$
\mathbf{J}_{p}:=\{k: 1 \leq k \leq[p / 2] ; k \text { and } p+1-k \text { are relatively prime }\}=:\left\{k_{1}, k_{2}, \ldots, k_{J_{p}}\right\}
$$ where $k_{1}=1$ and J_{p} is the number of elements in \mathbf{J}_{p}. Let

$$
\begin{aligned}
M_{1} & =2, \\
M_{p} & =M_{p-1}+J_{p}(p+1)=\sum_{k=1}^{[p / 2]} \sum_{\ell=k, \operatorname{gcd}(\ell, k)=1}^{p+1-k}(\ell+k), \quad p \geq 2, \\
a_{1}(t, s) & =(t-s)^{2}, \\
a_{p}(t, s) & =a_{p-1}(t, s) \prod_{j=1}^{J_{p}}\left(t^{k_{j}}-s^{p+1-k_{j}}\right)\left(t^{p+1-k_{j}}-s^{k_{j}}\right) \\
& =\prod_{k=1}^{[p / 2]} \prod_{\ell=k, \operatorname{gcd}(\ell, k)=1}^{p+1-k}\left(t^{\ell}-s^{k}\right)\left(t^{k}-s^{\ell}\right):=\sum_{i=0}^{M_{p}} \sum_{j=0}^{M_{p}} c_{i, j} t^{i} s^{j} \quad p \geq 2 .
\end{aligned}
$$

Then $C=\left[c_{i, j}\right]_{i, j=0,1, \ldots, M_{p}}$ is the smallest matrix satisfying (3.7).
We can construct C by the following recursive scheme. Let

$$
C_{M_{1}}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

For $p \geq 2$, let $M_{p, i}=M_{p-1}+i(p+1), i=0,1, \ldots, J_{p}, M_{p}:=M_{p, J_{p}}$, and set $C_{M_{p, 0}}:=C_{M_{p-1}}$. Then for $i=1,2, \ldots, J_{p}$,

$$
\begin{aligned}
C_{M_{p}, i}= & {\left[\begin{array}{ccc}
O_{(p+1) \times M_{p, i-1}} & O_{(p+1) \times(p+1)} \\
C_{M_{p, i-1}} & O_{M_{p, i-1} \times(p+1)}
\end{array}\right]+\left[\begin{array}{cc}
O_{M_{p, i-1} \times(p+1)} & C_{M_{p, i-1}} \\
O_{(p+1) \times(p+1)} & O_{(p+1) \times M_{p, i-1}}
\end{array}\right] } \\
& -\left[\begin{array}{ccc}
O_{k_{i} \times k_{i}} & O_{k_{i} \times M_{p, i-1}} & O_{k_{i} \times\left(p+1-k_{i}\right)} \\
O_{M_{p, i-1} \times k_{i}} & C_{M_{p, i-1}} & O_{M_{p, i-1 \times\left(p+1-k_{i}\right)}} \\
O_{\left(p, 1-k_{i}\right) \times k_{i}} & O_{\left(p+1-k_{i}\right) \times M_{p, i-1}} & O_{\left(p+1-k_{i}\right) \times\left(p+1-k_{i}\right)}
\end{array}\right] \\
& -\left[\begin{array}{ccc}
O_{\left(p+1-k_{i}\right) \times\left(p+1-k_{i}\right)} & O_{\left(p+1-k_{i}\right) \times M_{p, i-1}} & O_{\left(p+1-k_{i}\right) \times k_{i}} \\
O_{M_{p, i-1} \times\left(p+1-k_{i}\right)} & C_{M_{p, i-1}} & O_{M_{p, i-1} \times k_{i}} \\
O_{k_{i} \times\left(p+1-k_{i}\right)} & O_{k_{i} \times M_{p, i-1}} & O_{k_{i} \times k_{i}}
\end{array}\right] .
\end{aligned}
$$

Furthermore,

$$
v_{p}(q)=v_{p-1}(q) \prod_{i=1}^{J_{p}}\left(1-q^{k_{i}}\right)\left(1-q^{p+1-k_{i}}\right)=\prod_{k=1}^{[p / 2]} \prod_{\ell=k, \operatorname{gcd}(\ell, k)=1}^{p+1-k}\left(1-q^{\ell}\right)\left(1-q^{k}\right)
$$

Proof. The proof is straightforward. Suppose $1 \leq i \leq p, 1 \leq j \leq p, 2 \leq i+j \leq$ $p+1$. If $\operatorname{gcd}(i, j)=1$, then the factor $\left(t^{i}-s^{j}\right)$ is a divisor of $a_{p}(t, s)$, thus

$$
\mathbf{q}_{i}^{T} C \mathbf{q}_{j}=a_{p}\left(q^{j}, q^{i}\right)=0
$$

On the other hand, if $\operatorname{gcd}(i, j)=\sigma \geq 2$ then $i=k \sigma, j=l \sigma$ and $1 \leq k, l<p, 2 \leq$ $k+l<p+1$, and we still have

$$
\mathbf{q}_{i}^{T} C \mathbf{q}_{j}=\mathbf{q}_{k}^{T} C \mathbf{q}_{l}=a_{p}\left(q^{l}, q^{k}\right)=0
$$

Hence (3.7) is satisfied.
Furthermore, our Lemma 3.1 guarantees that $C=C_{M_{p}}$ is the smallest matrix satisfying (3.7).

We can get our recursive scheme for C from the recurrence formula for $a_{p}(t, s)$. The last statement is obvious considering $v_{p}(t)=a_{p}(1, t)$.

As for $n \geq M_{p}+1$, we can find more than one matrix C that satisfies (3.7).
Proposition 3.4. Let \mathcal{C}_{p}^{n} be the space of matrices satisfying (3.7). The dimension of \mathcal{C}_{p}^{n} is $\left(n-M_{p}+1\right)\left(n-M_{p}+2\right) / 2$, where M_{p} has been defined in Theorem 3.3. Furthermore, for fixed p and M_{p}, we can construct a base of \mathcal{C}_{p}^{n} in the following way. There is one element, up to a constant multiple, in $\mathcal{C}_{p}^{M_{p}}$ as constructed before, which we write as $C_{M_{p}}$. All the three elements in $\mathcal{C}_{p}^{M_{p}+1}$ can be written in the form

$$
\begin{aligned}
C_{M_{p}+1}^{(1)} & =\left[\begin{array}{cc}
O_{1 \times M_{p}+1} & 0 \\
C_{M_{p}} & O_{M_{p}+1 \times 1}
\end{array}\right]+\left[\begin{array}{cc}
O_{M_{p}+1 \times 1} & C_{M_{p}} \\
0 & O_{1 \times M_{p}+1}
\end{array}\right], \\
C_{M_{p}+1}^{(2)} & =\left[\begin{array}{cc}
0 & O_{1 \times M_{p}+1} \\
O_{M_{p}+1 \times 1} & C_{M_{p}}
\end{array}\right], \quad C_{M_{p}+1}^{(3)}=\left[\begin{array}{cc}
C_{M_{p}} & O_{M_{p}+1 \times 1} \\
O_{1 \times M_{p}+1} & 0
\end{array}\right] .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& v_{p, p+1}^{(0)}(q)=\mathbf{1}^{T} C_{M_{p}+1}^{(1)} \mathbf{q}_{1}=\mathbf{1}^{T} C_{M_{p}} \mathbf{q}_{1}+\mathbf{1}^{T} C_{M_{p}} q \mathbf{q}_{1}=(1+q) v_{p}(q) ; \\
& v_{p, p+1}^{(1)}(q)=\mathbf{1}^{T} C_{M_{p}+1}^{(2)} \mathbf{q}_{1}=\mathbf{1}^{T} C_{M_{p}} q \mathbf{q}_{1}=q v_{p}(q) ; \\
& v_{p, p+1}^{(2)}(q)=\mathbf{1}^{T} C_{M_{p}+1}^{(3)} \mathbf{q}_{1}=\mathbf{1}^{T} C_{M_{p}} \mathbf{q}_{1}=v_{p}(q) .
\end{aligned}
$$

For general $n \geq M_{p}+1$ we can construct a base of \mathcal{C}_{p}^{n} by recursion. Let $L=n-M_{p}$. First we construct one matrix of $\left(M_{p}+k+1\right) \times\left(M_{p}+k+1\right)$ by enlarging $C_{M_{p}}$ in the following fashion,

$$
\begin{aligned}
C_{M_{p}, 0}^{(0)} & =C_{M_{p}} ; \\
C_{M_{p}+k, k}^{(0)} & =\left[\begin{array}{cc}
O_{1 \times M_{p}+k} & 0 \\
C_{M_{p}+k-1, k-1}^{(0)} & O_{M_{p}+k \times 1}
\end{array}\right]+\left[\begin{array}{cc}
O_{M_{p}+k \times 1} & C_{M_{p}+k-1, k-1}^{(0)} \\
0 & O_{1 \times M_{p}+k}
\end{array}\right]
\end{aligned}
$$

for $k=1,2, \ldots, L$. We augment each to a matrix of size $\left(M_{p}+L+1\right) \times\left(M_{p}+L+\right.$ 1) by adding $L-k$ zero rows and columns as follows, whereby they are all linearly independent.

$$
\begin{gathered}
C_{M_{p}+L, k}^{(i)}=\left[\begin{array}{ccc}
O_{i \times i} & O_{i \times M_{p}+k+1} & O_{i \times L-k-i} \\
O_{M_{p}+k+1 \times i} & C_{M_{p}+k, k}^{(0)} & O_{M_{p}+k+1 \times L-k-i} \\
O_{L-k-i \times i} & O_{L-k-i \times M_{p}+k+1} & O_{L-k-i \times L-k-i}
\end{array}\right], \\
i=0,1, \ldots, L-k, k=0,1,2, \ldots, L .
\end{gathered}
$$

Correspondingly, $v_{p, n}^{(i, k)}(q):=\mathbf{1}^{T} C_{M_{p}+L, k}^{(i)} \mathbf{q}_{1}=q^{i}(1+q)^{k} v_{p}(q), i=0,1,2, \ldots, L-k$, $k=0,1,2, \ldots, L$.

Proof. Let $C \in \mathcal{C}_{p}^{n}$ and

$$
b(q, s)=\mathbf{q}_{1}^{T} C \mathbf{S}
$$

Then, according to the lemma,

$$
\prod_{k=1}^{[p / 2]} \prod_{\ell=k, \operatorname{gcd}(\ell, k)=1}^{p+1-k}\left(q^{\ell}-s^{k}\right)\left(q^{k}-s^{\ell}\right) \mid b(q, s)
$$

Hence

$$
b(q, s)=\prod_{k=1}^{[p / 2]} \prod_{\ell=k, \operatorname{gcd}(\ell, k)=1}^{p+1-k}\left(q^{\ell}-s^{k}\right)\left(q^{k}-s^{\ell}\right) r(q, s)
$$

where $r(s, q)$ is a polynomial of degree $n-M_{p}$ in two variables. There are $\left(n-M_{p}+1\right)\left(n-M_{p}+2\right) / 2$ unknowns for $r(t, s)$, that is the upper bound for the dimension of \mathcal{C}_{p}^{n}. It is obvious that our construction gives $\left(n-M_{p}+1\right)\left(n-M_{p}+2\right) / 2$ linearly independent matrices. Thus our assertions are true.

Theorem 3.5. If we choose $C \in \mathcal{C}_{p}^{M_{p}}$ as in Theorem 3.3 or $C \in \mathcal{C}_{p}^{n}$ as in Proposition 3.4, then the quadratic model

$$
G(z)=\frac{\mathbf{u}^{T} C \mathbf{u}}{2 \mathbf{1}^{T} C \mathbf{u}}
$$

has at least order p, unless β_{1} is a root of unity.
Examples. For $p=2, n=5, C$ is

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 \tag{3.8}\\
0 & 0 & 0 & -1 & -2 & 0 \\
0 & 0 & 2 & 1 & -1 & 0 \\
0 & -1 & 1 & 2 & 0 & 0 \\
0 & -2 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

For $p=2, n=6$, all the C s are

$$
\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & -2 & 0 \\
0 & 0 & 0 & 2 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & 2 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -2 & 0 & 0 \\
0 & 0 & 2 & 1 & -1 & 0 & 0 \\
0 & -1 & 1 & 2 & 0 & 0 & 0 \\
0 & -2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

For $p=2, n=7$, the C s are

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & -2 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & -2 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & -2 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & -1 & 0 & 0 & 0 \\
0 & -1 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & -2 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ;
$$

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & -2 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & -1 & 0 \\
0 & 0 & 0 & -1 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & -2 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ; \quad\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & -1 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 \\
0 & -1 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Finally, for $p=3, n=9$, the matrix C is

$$
\left[\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & -1 & 0 \\
0 & 0 & 0 & -2 & -1 & 0 & 1 & 2 & -1 & 0 \\
0 & 0 & 1 & -1 & -2 & -1 & 0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 & -1 & -2 & -1 & 1 & 0 & 0 \\
0 & -1 & 2 & 1 & 0 & -1 & -2 & 0 & 0 & 0 \\
0 & -1 & 1 & 2 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & -2 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Let us study next the attractivity of $G_{N}(z)$.
Theorem 3.6. Given $p>0$. Let
$\mathbf{J}_{p}:=\{k: 1 \leq k \leq[p / 2] ; k$ and $p+1-k$ are relatively prime $\}=\left\{k_{1}, k_{2}, \ldots, k_{J_{p}}\right\}$,
$S_{p}=k_{1}+\cdots+k_{J_{p}}$,
$K_{p}=S_{1}+\cdots+S_{p}$,
where $k_{1}=1$ and J_{p} is the number of elements in \mathbf{J}_{p}. If $f(z)$ is super-attractive of degree $s \geq 1$ at the fixed point \hat{z}, then $G_{M_{p}}(z)$ is super-attractive there of the degree $2(s+1)^{K_{p}}-2$.

Proof. Without loss of generality we suppose that $\hat{z}=0$. If

$$
f(z)=\alpha_{0} z^{s+1}+O\left(z^{s+2}\right)
$$

then by induction we have

$$
f^{\circ m}(z)=\alpha_{m} z^{(s+1)^{m}}+O\left(z^{(s+1)^{m}+1}\right)
$$

Note that

$$
G_{M_{p}}(z)=\frac{\mathbf{u}^{T} C_{M_{p}} \mathbf{u}}{2 \mathbf{1}^{T} C_{M_{p}} \mathbf{u}}=\frac{\sum_{i, j} c_{i, j} f^{\circ i} f^{\circ j}}{2 \sum_{i, j} c_{i, j} f^{\circ i}} .
$$

By the construction of $C_{M_{p}}$ we can see that $c_{i, j}=0$ for $0 \leq i+j \leq 2\left(K_{p}\right)-1$ and $c_{K_{p}, K_{p}} \neq 0$. Among the terms of $c_{i, j} f^{\circ i} f^{\circ j}$ the smallest power of z is in the form $c_{i, j} z^{(s+1)^{i}+(s+1)^{j}}$ when $s \geq 1$, for $2 K_{p} \leq i+j \leq 2 M_{p}$. Furthermore, $\sum_{j=0}^{M_{p}} c_{0, j}=$ $c_{0, M_{p}}=1$. Thus,

$$
\begin{aligned}
G_{M_{p}}(z) & =\frac{c_{K_{p}, K_{p}} \alpha_{K_{p}}^{2} z^{2(s+1)^{K_{p}}}+O\left(z^{2(s+1)^{K_{p}}+1}\right)}{c_{0, M_{p}} z+O\left(z^{2}\right)} \\
& =c_{K_{p}, K_{p}} \alpha_{K_{p}}^{2} z^{2(s+1)^{K_{p}}-1}+O\left(z^{2(s+1)^{K_{p}}}\right)
\end{aligned}
$$

Corollary. Let

$$
G_{n, p}(z)=\frac{\mathbf{u}^{T} C_{n, 0}^{\left(n-M_{p}\right)} \mathbf{u}}{2 \mathbf{1}^{T} C_{n, 0}^{\left(n-M_{p}\right)} \mathbf{u}}
$$

with $C_{n, 0}^{\left(n-M_{p}\right)}$ as in Proposition 3.4, then if $f(z)$ is super-attractive of degree $s \geq 1$ at the fixed point \hat{z} then $G_{n, p}(z)$ is super-attractive there of degree $2(s+1)^{n-M_{p}+K_{p}}-$ $(s+1)^{n-M_{p}}-1$.
4. The fixed point at ∞. Let f be analytic for $|z| \geq 1$ and $\infty \in F_{f}$. Assume that

$$
f(z)=\gamma_{0} z+\sum_{k=1}^{\infty} \frac{1}{k!} \gamma_{k} z^{-k+1}
$$

For the time being, we assume that γ_{0} is neither zero nor a root of unity. Then the Taylor expansion of $f^{\circ m}$ about ∞ is

$$
f^{\circ m}(z)=\gamma_{0}^{m} z+\sum_{k=1}^{\infty} \frac{1}{k!} \epsilon_{k}^{(m)} z^{-k+1} \quad m=1,2, \ldots
$$

According to Iserles [2], there exist numbers $D_{k, l}, l=0,1, \ldots, k, k=0,1, \ldots$, dependent on $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ but not on m, such that

$$
\epsilon_{k}^{(m+1)}=\sum_{l=0}^{k} D_{k, l} \epsilon_{l}^{(m)}
$$

Moreover, $D_{k, k}=\gamma_{0}^{1-k}, k=0,1, \ldots$. Let

$$
\begin{aligned}
B_{1,1} & =1, \\
B_{k, l} & =\frac{1}{\gamma_{0}^{l}-\gamma_{0}^{1-k}} \sum_{j=1-l}^{k-1} D_{k, j} B_{j, l}, \quad l=2-k, 3-k, \ldots, 1, \quad k=1,2, \ldots, \\
B_{k, 1-k} & =\gamma_{0}^{k-1}\left(\gamma_{k}-\sum_{l=2-k}^{1} B_{k, l} \gamma_{0}^{l}\right), \quad k=1,2, \ldots
\end{aligned}
$$

Then

$$
\epsilon_{k}^{(m)}=\sum_{l=1-k}^{1} B_{k, l} \gamma_{0}^{l m} \quad k, m=0,1, \ldots
$$

Therefore if $\mathbf{p}_{1}^{T} C \mathbf{p}_{1}=0, \mathbf{1}^{T} C \mathbf{p}_{1} \neq 0$, then

$$
G(z)=\frac{\mathbf{u}^{T} C \mathbf{u}}{2 \mathbf{1}^{T} C \mathbf{u}}=\frac{\mathbf{p}_{1}^{T} C \mathbf{p}_{1} z^{2}+2 B_{1,0} \mathbf{1}^{T} C \mathbf{p}_{1} z+O(1)}{2 \mathbf{1}^{T} C \mathbf{p}_{1} z+\sum_{k=1}^{\infty} \frac{1}{k!} \sum_{l=1-k}^{1} B_{k, l} \mathbf{1}^{T} C \mathbf{p}_{l} z^{-k+1}}=B_{1,0}+O\left(z^{-1}\right)
$$

In the case when ∞ is a super-attractive fixed point of f of degree s, we write

$$
f(z)=\gamma_{0} z^{s}+O\left(z^{s-1}\right)
$$

Then

$$
f^{\circ m}(z)=\gamma_{0}^{(m)} z^{s^{m}}+O\left(z^{s^{m}-1}\right)
$$

Note the highest power among $z^{s^{i}+s^{j}}$, for $1 \leq i, j \leq M_{p}$, must be located at $i=M_{p}$ or $j=M_{p}$ and the fact that in the matrix $C_{M_{p}}, c_{M_{p}, i}=c_{i, M_{p}}=0$ for $1 \leq i \leq M_{p}$. Therefore we get

$$
\begin{aligned}
G_{M_{p}}(z) & =\frac{\mathbf{u}^{T} C_{M_{p}} \mathbf{u}}{2 \mathbf{1}^{T} C_{M_{p}} \mathbf{u}}=\frac{\sum_{i, j} c_{i, j} f^{\circ i}(z) f^{\circ j}(z)}{2 \sum_{i, j} c_{i, j} f^{\circ i}(z)} \\
& =\frac{2 c_{0, M_{p}} \gamma_{0}^{\left(M_{p}\right)} z^{s^{M_{p}}+1}+O\left(z^{s^{M_{p}}}\right)}{2 c_{0, M_{p}} \gamma_{0}^{\left(M_{p}\right)} z^{s^{M_{p}}}+O\left(z^{s^{M_{p}}-1}\right)}=z+O(1)
\end{aligned}
$$

We have thus deduced the following result.
Proposition 4.1. If ∞ is a fixed point of f which is neither neutral with $\gamma_{0} a$ root of unity nor super-attractive, then ∞ is not a fixed point of $G_{M_{p}}(z)$ for

$$
G_{M_{p}}(z)=\frac{\mathbf{u}^{T} C_{M_{p}} \mathbf{u}}{2 \mathbf{1}^{T} C_{M_{p}} \mathbf{u}}
$$

Proposition 4.2. If ∞ is a super-attractive fixed point of f with $s \geq 2$, then ∞ is a fixed point with degree 1 of $G_{M_{p}}(z)$ for

$$
G_{M_{p}}(z)=\frac{\mathbf{u}^{T} C_{M_{p}} \mathbf{u}}{2 \mathbf{1}^{T} C_{M_{p}} \mathbf{u}}
$$

For a general $n \geq M_{p}+1$, we choose $C_{n, 0}^{\left(n-M_{p}\right)} \in \mathcal{C}_{p}^{n}$ and $p \geq 1$, since

$$
\begin{aligned}
G_{n, p}(z) & =\frac{\mathbf{u}^{T} C_{n, 0}^{\left(n-M_{p}\right)} \mathbf{u}}{2 \mathbf{1}^{T} C_{n, 0}^{\left(n-M_{p}\right)} \mathbf{u}}=\frac{\sum_{i, j} c_{i, j} f^{\circ i}(z) f^{\circ j}(z)}{2 \sum_{i, j} c_{i, j} f^{\circ i}(z)} \\
& =\frac{2 c_{n-M_{p}, n} \gamma_{0}^{\left(n-M_{p}\right)} \gamma_{0}^{(n)} z^{s^{n-M_{p}}+s^{n}}+O\left(z^{s^{n-M_{p}}+s^{n}-1}\right)}{2 c_{n-M_{p}, n} \gamma_{0}^{(n)} z^{s^{n}}+O\left(z^{s^{n}-1}\right)} \\
& =\gamma_{0}^{\left(n-M_{p}\right)} z^{s^{n-M_{p}}}+O\left(z^{s^{n-M_{p}}-1}\right),
\end{aligned}
$$

the point ∞ is still a super-attractive fixed point up to degree $s^{n-M_{p}}-1$.
Proposition 4.3. If ∞ is a fixed point of f which is neither neutral with γ_{0} a root of unity nor supper-attractive, then ∞ is not a fixed point of $G(z)$ for

$$
G(z)=\frac{\mathbf{u}^{T} C \mathbf{u}}{2 \mathbf{1}^{T} C \mathbf{u}} \quad \text { where } \quad C \in \mathcal{C}_{p}^{n} \quad \text { and } \quad p \geq 1 ; n \geq M_{p}+1
$$

If ∞ is a super-attractive fixed point of f with degree $s \geq 2$ then ∞ is a super-attractive fixed point of degree up to $s^{n-M_{p}}-1$ for the same $G(z)$ as above.
5. The behaviour for $\beta_{1}=1$. Supposing that

$$
f(z)=z+\sum_{\ell=2}^{\infty} \frac{1}{\ell!} \beta_{\ell} z^{\ell}
$$

where, again, $f^{\circ m}$ is the m th iterant of f, it follows from [1] that there exist constants $r_{\ell, j}$ such that

$$
\begin{equation*}
f^{\circ m}(z)=z+\sum_{\ell=2}^{\infty}\left(\sum_{j=1}^{\ell-1} r_{\ell, j} m^{j}\right) z^{\ell}, \quad m \in \mathbb{Z}^{+} \tag{5.1}
\end{equation*}
$$

where

$$
r_{\ell, \ell-1}=\left(\frac{\beta_{2}}{2}\right)^{\ell-1}, \quad \ell=2,3, \ldots
$$

Suppose that $C \in \mathcal{C}_{1}^{n}$. Differentiating $\mathbf{q}_{1}^{T} C \mathbf{q}_{1} \equiv 0$ with respect to q we obtain

$$
\mathbf{q}_{1}^{T} C \mathbf{q}_{1}^{\prime} \equiv 0
$$

hence, letting $q=1$,

$$
\begin{equation*}
\mathbf{1}^{T} C \mathbf{k}_{1}=0 \tag{5.2}
\end{equation*}
$$

where

$$
\mathbf{k}_{\ell}^{T}:=\left[0^{\ell} 1^{\ell} 2^{\ell} \cdots n^{\ell}\right], \quad \ell \in \mathbb{Z}^{+}
$$

Differentiating again, we have

$$
\mathbf{q}_{1}^{T} C \mathbf{q}_{1}^{\prime \prime}+\mathbf{q}_{1}^{\prime T} C \mathbf{q}_{1}^{\prime}=0
$$

hence, because of (5.2),

$$
\begin{equation*}
\mathbf{1}^{T} C \mathbf{k}_{2}+\mathbf{k}_{1}^{T} C \mathbf{k}_{1}=0 \tag{5.3}
\end{equation*}
$$

Because of (5.1), we have

$$
\mathbf{u}=\mathbf{1} z+\sum_{\ell=2}^{\infty}\left(\sum_{j=1}^{\ell-1} r_{\ell, j} \mathbf{k}_{j}\right) z^{\ell}
$$

Thus, taking (5.2) into account,

$$
\begin{aligned}
& \mathbf{1}^{T} C \mathbf{u}=\sum_{\ell=3}^{\infty}\left(\sum_{j=2}^{\ell-1} r_{\ell, j} \mathbf{1}^{T} C \mathbf{k}_{j}\right) z^{\ell}, \\
& \mathbf{u}^{T} C \mathbf{u}=2 \sum_{\ell=3}^{\infty}\left(\sum_{j=2}^{\ell-1} r_{\ell, j} \mathbf{1}^{T} C \mathbf{k}_{j}\right) z^{\ell+1}+\sum_{\ell_{1}=2}^{\infty} \sum_{\ell_{2}=2}^{\infty} \sum_{j_{1}=1}^{\ell_{1}-1} \sum_{j_{2}=1}^{\ell_{2}-1} r_{\ell_{1}, j_{1}} r_{\ell_{2}, j_{2}} \mathbf{k}_{j_{1}}^{T} C \mathbf{k}_{j_{2}} z^{\ell_{1}+\ell_{2}} .
\end{aligned}
$$

Recall that the function that we are iterating is

$$
G_{n}(z):=\frac{1}{2} \frac{\mathbf{u}^{T} C \mathbf{u}}{\mathbf{1}^{T} C \mathbf{u}}
$$

In our case

$$
G_{n}(z)=z\left(1+\frac{r_{2,1}^{2} \mathbf{k}_{1}^{T} C \mathbf{k}_{1}+O(z)}{2 r_{3,2} \mathbf{1}^{T} C \mathbf{k}_{2}+O(z)}\right)
$$

Thus, unless $\mathbf{k}_{1}^{T} C \mathbf{k}_{1}=0$, (5.3) yields

$$
G_{n}(z)=\frac{1}{2} z+O\left(z^{2}\right)
$$

In other words, the fixed point is merely attractive (not super-attractive!) and $G_{1}^{\prime}(0)=\frac{1}{2}$. This is identical to the standard Steffensen method [2].

The remaining case is

$$
\begin{equation*}
\mathbf{k}_{1}^{T} C \mathbf{k}_{1}=\mathbf{1}^{T} C \mathbf{k}_{2}=0 \tag{5.4}
\end{equation*}
$$

Considering the third derivative of $\mathbf{q}_{1}^{T} C \mathbf{q}_{1} \equiv 0$, we readily affirm (taking into account (5.2)-(5.4)) that

$$
\begin{equation*}
\mathbf{1}^{T} C \mathbf{k}_{3}+3 \mathbf{k}_{1}^{T} C \mathbf{k}_{2}=0 \tag{5.5}
\end{equation*}
$$

Now

$$
G_{n}(z)=z\left(1+\frac{r_{2,1} r_{3,2} \mathbf{k}_{1}^{T} C \mathbf{k}_{2}+O(z)}{r_{4,3} \mathbf{1}^{T} C \mathbf{k}_{3}+O(z)}\right) .
$$

Thus, because of (5.5) and unless $\mathbf{k}_{1}^{T} C \mathbf{k}_{2}=0$, we have

$$
G_{n}(z)=\frac{2}{3} z+O\left(z^{2}\right)
$$

and the situation is actually worse than in the previous case!
So, let us proceed a step further, replacing (5.5) with

$$
\begin{equation*}
\mathbf{1}^{T} C \mathbf{k}_{3}=\mathbf{k}_{1}^{T} C \mathbf{k}_{2}=0 \tag{5.6}
\end{equation*}
$$

Another differentiation of $\mathbf{q}_{1}^{T} C \mathbf{q}_{1} \equiv 0$ gives

$$
\begin{equation*}
\mathbf{1}^{T} C \mathbf{k}_{4}+4 \mathbf{k}_{1}^{T} C \mathbf{k}_{3}+3 \mathbf{k}_{2}^{T} C \mathbf{k}_{2}=0 \tag{5.7}
\end{equation*}
$$

In the present case

$$
\begin{aligned}
G_{n}(z) & =z\left(1+\frac{2 r_{2,1} r_{4,3} \mathbf{k}_{1}^{T} C \mathbf{k}_{3}+r_{3,2}^{2} \mathbf{k}_{2}^{T} C \mathbf{k}_{2}+O(z)}{2 r_{5,4} \mathbf{1}^{T} C \mathbf{k}_{4}}\right) \\
& =z\left(1+\frac{2 \mathbf{k}_{1}^{T} C \mathbf{k}_{3}+\mathbf{k}_{2}^{T} C \mathbf{k}_{2}+O(z)}{\mathbf{1}^{T} C \mathbf{k}_{4}+O(z)}\right)
\end{aligned}
$$

Thus, provided that $\mathbf{1}^{T} C \mathbf{k}_{4} \neq 0, G_{n}(z)=O\left(z^{2}\right)$ if and only if

$$
\mathbf{1}^{T} C \mathbf{k}_{4}+2 \mathbf{k}_{1}^{T} C \mathbf{k}_{3}+\mathbf{k}_{2}^{T} C \mathbf{k}_{2}=0
$$

Substituting the value of $\mathbf{1}^{T} C \mathbf{k}_{4}$ from (5.7) yields the conditions

$$
\begin{equation*}
\mathbf{1}^{T} C \mathbf{k}_{4} \neq 0, \quad \mathbf{k}_{1}^{T} C \mathbf{k}_{3}+\mathbf{k}_{2}^{T} C \mathbf{k}_{2}=0 \tag{5.8}
\end{equation*}
$$

It is instructive to check (5.8) in \mathcal{C}_{2}^{n} for $n \in\{5, \ldots, 7\}$. For $n=5$ we have a one-dimensional space spanned by (3.8), and the latter gives

$$
\mathbf{k}_{1}^{T} C \mathbf{k}_{3}+\mathbf{k}_{2}^{T} C \mathbf{k}_{2}=2
$$

Likewise, for $n=6$ we have

$$
\mathbf{k}_{1}^{T} C \mathbf{k}_{3}+\mathbf{k}_{2}^{T} C \mathbf{k}_{2}=4
$$

However, in the case $n=7$ we have a two-dimensional space and

$$
\begin{aligned}
& \mathbf{k}_{1}^{T} P_{1} \mathbf{k}_{3}+\mathbf{k}_{2}^{T} P_{1} \mathbf{k}_{2}=8 \\
& \mathbf{k}_{1}^{T} P_{2} \mathbf{k}_{3}+\mathbf{k}_{2}^{T} P_{2} \mathbf{k}_{2}=2
\end{aligned}
$$

Hence, the only possible choice of C (up to a nonzero multiplicative constant) which is consistent with the second condition in (5.8) is

$$
P:=P_{1}-4 P_{2}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & -4 & 0 \\
0 & 0 & 0 & 0 & 4 & 6 & -1 & 0 \\
0 & 0 & 0 & -6 & -3 & 4 & 0 & 0 \\
0 & 0 & 4 & -3 & -6 & 0 & 0 & 0 \\
0 & -1 & 6 & 4 & 0 & 0 & 0 & 0 \\
0 & -4 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Unfortunately, the first condition of (5.8) is violated, since $\mathbf{1}^{T} C \mathbf{k}_{4}=0$. This, in fact, is predictable - the function v for P is of the form

$$
v(t)=v_{1}(t)-4 v_{2}(t)=(1-t)^{6}(1+t) .
$$

Thus, $\mathrm{d}^{\ell} v(1) / \mathrm{d} t^{\ell}=0, \ell=0,1, \ldots, 5$. But

$$
\begin{aligned}
v(1) & =\mathbf{1}^{T} C \mathbf{1} \\
v^{\prime}(1) & =\mathbf{1}^{T} C \mathbf{k}_{1} \\
v^{\prime \prime}(1) & =\mathbf{1}^{T} C\left(\mathbf{k}_{2}-\mathbf{k}_{1}\right) \\
v^{\prime \prime \prime}(1) & =\mathbf{1}^{T} C\left(\mathbf{k}_{3}-3 \mathbf{k}_{2}+2 \mathbf{k}_{1}\right)
\end{aligned}
$$

and so on. We conclude that $\mathbf{1}^{T} C \mathbf{k}_{\ell}=0, \ell=0, \ldots, 5$. The general result can be phrased as a theorem.

Theorem 5.1. Suppose that

$$
\begin{gathered}
f(z)=z+\sum_{\ell=2}^{\infty} \frac{1}{\ell!} \beta_{\ell} z^{\ell} \\
G(z)=\frac{\mathbf{u}^{T} C \mathbf{u}}{2 \mathbf{1}^{T} C \mathbf{u}} \quad \text { where } \quad C \in \mathcal{C}_{p}^{M_{p}} \quad \text { and } \quad p \geq 1
\end{gathered}
$$

Then

$$
G(z)=\alpha_{p} z+O\left(z^{2}\right) \quad \text { for } \quad p \geq 1
$$

where $\alpha_{p} \neq 0$ for $p=1,2, \ldots, 5$. Furthermore, letting $L_{p}=J_{1}+\cdots+J_{p}$, it is true that $\sum_{j_{1}+j_{2}=2 L_{p}} \mathbf{k}_{j_{1}}^{T} C_{M_{p}} \mathbf{k}_{j_{2}} \neq 0$ for $p \geq 6$ implies $\alpha_{p} \neq 0$.

Proof. Since $p \geq 1$, we have

$$
\begin{aligned}
& \mathbf{1}^{T} C \mathbf{u}=\sum_{\ell=3}^{\infty}\left(\sum_{j=2}^{\ell-1} r_{\ell, j} \mathbf{1}^{T} C \mathbf{k}_{j}\right) z^{\ell}, \\
& \mathbf{u}^{T} C \mathbf{u}=2 \sum_{\ell=3}^{\infty}\left(\sum_{j=2}^{\ell-1} r_{\ell, j} \mathbf{1}^{T} C \mathbf{k}_{j}\right) z^{\ell+1}+\sum_{\ell_{1}=2}^{\infty} \sum_{\ell_{2}=2}^{\infty} \sum_{j_{1}=1}^{\ell_{1}-1} \sum_{j_{2}=1}^{\ell_{2}-1} r_{\ell_{1}, j_{1}} r_{\ell_{2}, j_{2}} \mathbf{k}_{j_{1}}^{T} C \mathbf{k}_{j_{2}} z^{\ell_{1}+\ell_{2}} .
\end{aligned}
$$

We will prove that, letting $\mathbf{k}_{0}:=\mathbf{1}$,

$$
\begin{equation*}
\mathbf{k}_{i}^{T} C_{M_{p}} \mathbf{k}_{j}=0, \quad \text { for } \quad 0 \leq i+j \leq 2 L_{p}-1 \tag{5.9}
\end{equation*}
$$

Let

$$
\begin{aligned}
a_{1}(t, s) & =(t-s)(t-s) ; \\
a_{p}(t, s) & =a_{p-1}(t, s) \prod_{k=1, \operatorname{gcd}(k, p+1-k)=1}^{[p / 2]}\left(t^{k}-s^{p+1-k}\right)\left(t^{p+1-k}-s^{k}\right) \\
& =\prod_{k=1}^{[p / 2]} \prod_{i=k, \operatorname{gcd}(i, k)=1}^{p+1-k}\left(t^{i}-s^{k}\right)\left(t^{k}-s^{i}\right) .
\end{aligned}
$$

Then, since $a_{p}(t, s)$ has $2 L_{p}$ factors of form $\left(t^{k}-s^{l}\right)$ and these factors are zero when $t=1$ and $s=1$,

$$
\begin{aligned}
\mathbf{k}_{i}^{T} C_{M_{p}} \mathbf{k}_{j} & =\left.\frac{\partial}{\partial t}\left(t \frac{\partial}{\partial t}\left(t \cdots \frac{\partial}{\partial t}\left(t \frac{\partial}{\partial s}\left(s \frac{\partial}{\partial s}\left(s \cdots \frac{\partial}{\partial s}\left(a_{p}(t, s)\right) \cdots\right)\right)\right) \cdots\right)\right)\right|_{t=1, s=1} \\
& =\left.\left(\frac{\partial^{i+j}}{\partial^{i} t \partial^{j} s} a_{p}(t, s)+\sum_{k+l<i+j, 0 \leq k \leq i, 0 \leq l \leq j} \sigma_{k, l} \frac{\partial^{k+l}}{\partial^{k} t \partial^{l} s} a_{p}(t, s)\right)\right|_{t=1, s=1} \\
& =0, \quad \text { for } \quad 0 \leq i+j \leq 2 L_{p}-1,
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\mathbf{1}^{T} C_{M_{p}} \mathbf{k}_{2 L_{p}} & =\left.\left[\frac{\partial^{2 L_{p}}}{\partial^{2 L_{p}}} a_{p}(t, s)+\sum_{k+l<2 L_{p}} \sigma_{k, l} \frac{\partial^{k+l}}{\partial^{k} t \partial^{l} s} a_{p}(t, s)\right]\right|_{t=1, s=1} \\
& =\left(2 L_{p}\right)!\prod_{k=1}^{[p / 2]} \prod_{i=k, \operatorname{gcd}(i, k)=1}^{p+1-k} i k \neq 0 .
\end{aligned}
$$

Consequently,

$$
\mathbf{1}^{T} C_{M_{p}} \mathbf{u}=\sum_{l=2 L_{p}+1}^{\infty}\left(\sum_{j=2 L_{p}}^{l-1} r_{l, j} \mathbf{1}^{T} C_{M_{p}} \mathbf{k}_{j}\right) z^{l}
$$

$$
\begin{aligned}
= & \left(\frac{\beta_{2}}{2}\right)^{2 L_{p}} \mathbf{1}^{T} C_{M_{p}} \mathbf{k}_{2 L_{p}} z^{2 L_{p}+1}+O\left(z^{2 L_{p}+2}\right) \\
\mathbf{u}^{T} C_{M_{p}} \mathbf{u}= & 2 \sum_{l=2 L_{p}+1}^{\infty}\left(\sum_{j=2 L_{p}}^{l-1} r_{l, j} \mathbf{1}^{T} C_{M_{p}} \mathbf{k}_{j}\right) z^{l+1} \\
& +\sum_{l_{1}+l_{2}>2 L_{p}+1}^{\infty} \sum_{j_{1}=1}^{l_{1}-1} \sum_{j_{2}=2 L_{p}-j_{1}}^{l_{2}-1} r_{l_{1}, j_{1}} r_{l_{2}, j_{2}} \mathbf{k}_{j_{1}}^{T} C_{M_{p}} \mathbf{k}_{j_{2}} z^{l_{1}+l_{2}} \\
= & 2 r_{2 L_{p}+1,2 L_{p}} \mathbf{1}^{T} C_{M_{p}} \mathbf{k}_{2 p} z^{2 L_{p}+2} \\
& +\sum_{j_{1}, j_{2}>0, j_{1}+j_{2}=2 L_{p}} r_{j_{1}+1, j_{1}} r_{j_{2}+1, j_{2}} \mathbf{k}_{j_{1}}^{T} C_{M_{p}} \mathbf{k}_{j_{2}} z^{2 L_{p}+2}+O\left(z^{2 L_{p}+3}\right) \\
= & \left(\frac{\beta_{2}}{2}\right)^{2 L_{p}} \sum_{j_{1}+j_{2}=2 L_{p}} \mathbf{k}_{j_{1}}^{T} C_{M_{p}} \mathbf{k}_{j_{2}} z^{2 L_{p}+2}+O\left(z^{2 L_{p}+3}\right),
\end{aligned}
$$

where $\mathbf{k}_{0}=1$. So we conclude

$$
G(z)=\alpha_{p} z+O\left(z^{2}\right) \quad \text { for } \quad p \geq 1
$$

where $\alpha_{p} \neq 0$ if $\sum_{j_{1}+j_{2}=2 L_{p}} \mathbf{k}_{j_{1}}^{T} C_{M_{p}} \mathbf{k}_{j_{2}} \neq 0$. By direct calculation we can easily deduce that $\alpha_{p} \neq 0$ for $p=1,2,3,4,5$. This completes the proof.

REFERENCES

[1] C. Brezinski and M. Redivo Zaglia, Extrapolation methods. Theory and Practice, NorthHolland, Amsterdam, 1993.
[2] A. Iserles, Complex dynamics of convergence acceleration, IMA J. of Numer. Anal., 11 (1991), pp. 205-240.

[^0]: *Received Sept. 27, 1999; revised April 10, 2001.
 ${ }^{\dagger}$ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England (A.Iserles@damtp.cam.ac.uk).
 ${ }^{\ddagger}$ Department of Mathematics and Physics, University of La Verne, USA (liux@ULV.EDU).

