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OPTIMAL ACCELERATION OF CONVERGENCE∗

ARIEH ISERLES† AND XIAOYAN LIU‡

Abstract. In this paper we investigate the quadratic model

b
T
u + uT Cu

aT u
,

which generalises the Shanks transformation and the familiar Padé model, to accelerate the conver-
gence of a sequence {uk}k∈Zp

. In the new model,

u
T = [u0, u1, . . . , un],

a,b ∈ R
n+1

and C is an (n + 1) × (n + 1) Hermitian matrix. (Note that, although u might be
complex, we use the transpose u

T , rather than the adjoint u
∗.) Let us assume that the original

sequence is obtained from the dynamical system z �→ f(z), where f(z) = û +
∑∞

k=1

1
k!

βk(z − û)k

is analytic about its fixed point û ∈ C. Suppose that u0 = û + ε and uk = f◦k(u0). It is easy to
show that b = 0 and a = 2C1. We give an iterative formula for the construction of the matrices C.
Furthermore, we discuss the rate of convergence, inclusive of the special case when the fixed point is
at ∞.

1. The quadratic model. The starting point for the Shanks transformation is
that, given a sequence {uk}k∈Z

+ , we construct the function

G(z) := u0 +

∞∑
k=1

(uk − uk−1)z
k

and take the [N/N ] Padé approximant to F at z = 1 as the ‘accelerated’ limit [1].
Its obvious generalisation is to consider

G(z) =

∞∑
m=0

⎡
⎣ m∑

j=0

(−1)m−jαm,juj

⎤
⎦ zm

and its sections

G[n](z) =

n∑
m=0

⎡
⎣ m∑

j=0

(−1)m−jαm,juj

⎤
⎦ zm.

Having fixed n, we stipulate that G[n](1) = un. Thus,

n∑
j=0

⎡
⎣ n∑

m=j

(−1)m−jαm,j

⎤
⎦ uj = un

and, since we want the coefficients to be independent of {uk}k∈Z
+ , we stipulate αn,n =

1 and

n∑
m=j

(−1)m−jαm,j = 0, j = 0, 1, . . . , n− 1.(1.1)
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16 A. ISERLES AND X. LIU

This is our first model, and we call it the Padé model .
Another general scheme for convergence acceleration is by letting the accelerator

be

bT u + uT Cu

aT u
,(1.2)

where

uT = [u0, u1, . . . , un]

a,b ∈ R
n+1 and C is an (n + 1)× (n + 1) Hermitian matrix. Note that, although u

might be complex, we use the transpose uT , rather than the adjoint u∗. We call this
the quadratic model.

2. The quadratic model. Let us assume that the original sequence is obtained
from the dynamical system z �→ f(z), where f(z) = û+

∑∞
k=1

1
k!βk(z− û)k is analytic

about its fixed point û ∈ C. Suppose that u0 = û + ε. Then, expanding into series,

u1 = û + β1ε + 1
2β2ε

2 + O(ε3),

u2 = û + β2
1ε + 1

2 (β1 + β2
1)β2ε

2 + O(ε3).

Generally, we have (except when β1 = 1)

uk = f◦k(û + ε) = û + βk
1 ε + 1

2βk−1
1

1− βk
1

1− β1
β2ε

2 + O(ε3), k ∈ Z
+,(2.1)

where f◦k is the kth iterate of the function f . Set

V (ε) =
bTu + uT Cu

aTu
.

The order of convergence acceleration (equivalently, the order of superattractivity at
the fixed point) is the integer p such that

V (ε) = û + O(εp+1).

The condition for p ≥ 0 is that V (0) = û. Let

p� := [1, β�
1, β

2�
1 , . . . , βn�

1 ]T , � ∈ Z
+

(for convenience, p0 = 1).
The ε0 condition is

bT1û + 1T C1û2 = aT1û2,

and we deduce that

bT1 = 0, 1T C1 = aT1.(2.2)

We turn our attention next to the ε condition: it is

bT p1 + 21T Cp1û = aT p1û.
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We first deduce that bT p1 = 0, and this implies b = 0. Hence, no need to elaborate
or mention any further that vector. More interesting consequence of equating powers
of β1 is

a = 2C1.(2.3)

Comparing with (2.2), we deduce that

1T C1 = aT1 = 0.(2.4)

Thus, we need to go further, considering the ε2 terms, to argue that p ≥ 1. This gives
(for β1 �= 0 – otherwise the analysis is even simpler!)

pT
1 Cp1 + û

β2

β1(1 − β1)
(p1 − p2)

T C1 = 1
2 û

β2

β1(1− β1)
(p1 − p2)

Ta

and (2.3) means that the p ≥ 1 condition is just

qT Cq ≡ 0 for all q = [1, q, q2, . . . , qn]T , q ∈ R.(2.5)

Hence

n∑
k=0

n∑
�=0

ck,�q
k+� = 0, q ∈ R,

and (2.5) can be alternatively expressed as

�∑
k=0

ck,�−k = 0, � = 0, 1, . . . , n;

n∑
k=�−n

ck,�−k = 0, � = n + 1, . . . , 2n.

(2.6)

Note, incidentally, that 1T C1 = 0 is a special case of (2.5) when q = 1.
Recall from [2] that there exist numbers {αm,� : � = 1, . . . , m ; m = 1, 2, . . .} such

that

f◦k(z) = û +

∞∑
m=1

(
m∑

�=1

αm,�β
k�
1

)
εm

(we exclude the cases of β1 = 0 and of β1 being a root of unity). Consequently, and
exploiting 1T C1 = 0, we obtain

uT Cu = 2û

∞∑
m=1

(
m∑

�=1

αm,�1
T Cp�

)
εm(2.7)

+

∞∑
m=2

⎛
⎝m−1∑

k=1

k∑
�=1

m−k∑
j=1

αk,�αm−k,jp
T
� Cpj

⎞
⎠ εm

1T Cu =
∞∑

m=1

(
m∑

�=1

αm,�1
T Cp�

)
εm.(2.8)
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Let

W (ε) := ε−1
(
uT Cu− 2û1T Cu

)
.

Then a necessary condition for order p is that W (ε) = O(εp+1) (recall that both the
numerator and the denominator are O(ε)). Clearly, this is also sufficient if the O(ε)
terms therein are nonzero. Comparing (2.7) and (2.8), we have

W (ε) =

∞∑
m=1

⎛
⎝ m∑

k=1

k∑
�=1

m+1−k∑
j=1

αk,�αm+1−k,jp
T
� Cpj

⎞
⎠ εm(2.9)

=
∞∑

m=1

m∑
�=1

m+1−�∑
j=1

(
m+1−j∑

k=�

αk,�αm+1−k,j

)
pT

� Cpjε
m.

Moreover,

V (ε) =
û

[
α1,11

T Cp1 +
∑∞

m=1

(∑m+1
�=1 αm+1,�1

T Cp�

)
εm

]
+ 1

2W (ε)

α1,11T Cp1 +
∑∞

m=1

(∑m+1
�=1 αm+1,�1T Cp�

)
εm

,

hence the method is of order at least p if 1T Cp1 �= 0. Thus, the order is degraded for
all β1 if C1 = 0 and it might be degraded for particular values of β1 if C is singular
and p1 is an eigenvector corresponding to the eigenvalue 0. We impose in the sequel
the requirement that C1 �= 0 (i.e. that C is nondegenerate), W.L.O.G..

As we have already seen, p ≥ 1 only if

α2
1,1p

T
1 Cp1 = 0.

Consequently, we require qT Cq ≡ 0 ∀q ∈ R. The necessary condition for p ≥ 2 is

2α1,1

(
α2,1p

T
1 Cp1 + α2,2p

T
1 Cp2

)
= 0,

hence we deduce that

qT
1 Cq1 ≡ qT

1 Cq2 ≡ 0,(2.10)

where

qj = [1, qj , q2j , . . . , qnj ]T , j ∈ Z
+, q ∈ R.

3. The General Case. We consider next p ≥ 3. The conditions (2.10) are still
necessary and the third-order terms are

(2α1,1α3,1 + α2
2,1)p

T
1 Cp1

+ 2(α1,1α3,2 + α2,1α2,2)p
T
1 Cp2

+ 2α1,1α3,3p
T
1 Cp3 + α2

2,2p
T
2 Cp2,

since (2.10) implies qT
2 Cq2 = 0 (note that q2(q) = q1(q

2)). Hence we require just one
more equation,

qT
1 Cq3 = 0.(3.1)
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Generally, by the similar reasoning, we need

qT
1 Cqi = 0, i = 1, 2, . . . , p,(3.2)

for order p. We know that the matrix C cannot be p× p, it has to be larger. In the
following proposition we will prove that for N = p(p + 3)/2, the smallest matrix C
satisfying (3.2) is (N + 1)× (N + 1). A lemma is required first.

Lemma 3.1. Let C be a symmetric matrix, and

C = [ak,�]k,�=0,1,...,K , a(t, s) =
K∑

k=0

K∑
�=0

ak,�t
ks�.

If a(qj , qi) = 0, 1 ≤ i ≤ j, i and j are relatively prime, then (ti − sj)|a(t, s).

Proof. Let us consider the coefficients ak,� of a(t, s). Since

0 = a(qj , qi) =
K∑

k=0

K∑
�=0

ak,�q
jkqi�

=
∑

(ak,� + ak−i,�+j + ak−2i,�+2j + . . . + ak−ui,�+uj)q
jk+i�,

every coefficient of qjk+i� has to be zero for 0 ≤ k ≤ K, 0 ≤ � ≤ K. That means,
using the fact that gcd(i, j) = 1 (hence each coefficient appears only in one equation)
that

ak,� + ak−i,�+j + ak−2i,�+2j + . . . + ak−ui,�+uj = 0,

where all subscripts are bounded by 0 and K. Notice that there are complex numbers
a1, a2, . . . , au, b1, b2, . . . , bu such that

ak,�t
ks� + ak−i,�+jt

k−is�+j + ak−2i,�+2jt
k−2is�+2j + · · ·+ ak−ui,�+ujt

k−uis�+uj

= tk−uis�+uj(a1t
is−j + b1)(a2t

is−j + b2) · · · (autis−j + bu)

= tk−uis�(a1t
i + b1s

j)(a2t
i + b2s

j) · · · (auti + busj).

Substituting t = 1 and s = 1 we get

0 = ak,� + ak−i,�+j + ak−2i,�+2j + · · ·+ ak−ui,�+uj = (a1 + b1)(a2 + b2) · · · (au + bu).

One of (am + bm)s must be zero and, without loss of generality, we assume that it is
the first. Hence a1 = −b1 (notice that also a1 could be zero) and

ak,�t
ks� + ak−i,�+jt

k−is�+j + ak−2i,�+2jt
k−2is�+2j + · · ·+ ak−ui,�+ujt

k−uis�+uj

= tk−uis�a1(t
i − sj)(a2t

i + b2s
j) · · · (auti + busj).

Let u, v be integers such that 0 ≤ K − vi < i and 0 ≤ K − uj < j, respectively. We
deduce that (the second sum being unique, because of gcd(i, j) = 1)

a(t, s) =

K∑
k=0

K∑
�=0

ak,�t
ks�

=

i−1∑
k1=0

j−1∑
�1=0

[

v∑
k2=0

(ak1+k2i,�1t
k1+k2is�1 + ak1+(k2−1)i,�1+jt

k1+(k2−1)is�1+j
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+ ak1+(k2−2)i,�1+2jt
k1+(k2−2)is�1+2j + · · ·

+ ak1+(k2−k2)i,�1+k2jt
k1+(k2−k2)is�1+k2j)

+
u∑

l2=1

(ak1+vi,�1+�2jt
k1+vis�1+�2j + ak1+(v−1)i,�1+(�2+1)jt

k1+(v−1)is�1+(�2+1)j

+ ak1+(v−2)i,�1+(�2+2)jt
k1+(v−2)is�1+(�2+2)j + · · ·

+ ak1+(v−u+�2)i,�1+ujt
k1+(v−u+�2)is�1+uj)]

= (ti − sj)
∑

bk,�t
ks�

where if a subscript of ak,� is > K, then the ak,� in question is defined to be zero.

Proposition 3.2. Let Np := p(p + 3)/2. The smallest C satisfying the system

of equations

qT
1 Cqi = 0, i = 1, 2, . . . , p, where qi = [1, qi, q2i, . . . , qni]T , i ∈ Z

+, q ∈ R(3.3)

is (Np + 1) × (Np + 1). Furthermore, let CNp
be the smallest C corresponding to p,

then we can construct CNp
from CNp−1

according to the following prescription.

CN1
=

⎡
⎢⎢⎣

0 0 1

0 −2 0

1 0 0

⎤
⎥⎥⎦ ,

CNp
=

⎡
⎣O(p+1)×Np−1

O(p+1)×(p+1)

CNp−1
ONp−1×(p+1)

⎤
⎦ +

⎡
⎣ CNp−1

ONp−1×(p+1)

O(p+1)×Np−1
O(p+1)×(p+1)

⎤
⎦

−

⎡
⎢⎢⎣

O1×1 O1×Np−1
O1×p

ONp−1×1 CNp−1
ONp−1×p

Op×1 Op×Np−1
Op×p

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

Op×p Op×Np−1
Op×1

ONp−1×p CNp−1
ONp−1×1

O1×p O1×Np−1
O1×1

⎤
⎥⎥⎦ ,

(3.4)

where p ≥ 2 and Oi×j is a zero matrix of order i× j. Furthermore,

vp(q) := 1T CNp
q1 = (1− q)p

p∏
k=1

(1− qk).(3.5)

Proof. We proceed by induction. By direct calculation, qT
1 CN1

q1 = 0.
Assume ne xt that qT

1 CNp−1
qi = 0 for i = 1, 2, . . . , p− 1. Then

qT
1 CNp

qi = qp+1qT
1 CNp−1

qi + qT
1 CNp−1

qi(p+1)qi − q1qT
1 CNp−1

qiqi

− qpqT
1 CNp−1

qi·pqi = 0,

for i = 1, 2, . . . , p− 1. Furthermore,

qT
1 CNp

qp = qp+1qT
1 CNp−1

qp + qT
1 CNp−1

qp(p+1)qp − q1qT
1 CNp−1

qpqp

− qpqT
1 CNp−1

qp·pqp = 0.

Hence qT
1 CNp

qi = 0, for i = 1, 2, . . . , p and any positive integer p.
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To prove that Np is the smallest number such that there is at least one non-trivial

C satisfying (3.2), we write S = [1, s, . . . , sn]
T

and

bi(q, s) = qT
1 CNi

S, i = 1, 2, . . . , p.

Then by our assumption

bp(q, q
i) = qT

1 CNp
qi = 0, i = 1, 2, . . . , p.

Hence, by the Lemma 3.1, (s − qi)|bp(q, s), i = 1, 2, . . . , p. Note that bp(q, s) is a
symmetric function of q and s, thus

p∏
k=1

[(s− qk)(q − sk)]|bp(q, s).

On the other hand, by our recursion,

b1(q, s) = qT
1 CN1

S = q2 − 2sq + s2 = (q − s)(q − s),

bp(q, s) = qT
1 CNp

S

= qp+1qT
1 CNp−1

S + qT
1 CNp−1

sp+1S− qqT
1 CNp−1

sS− qpqT
1 CNp−1

spS

= (qp+1 + sp+1 − qs− qpsp)qT
1 CNp−1

S

= (qp − s)(q − sp)bp−1(q, s)

=

p∏
k=1

[(qk − s)(q − sk)] (by induction)

= (−1)p

p∏
k=1

[(s− qk)(q − sk)].

Thus bp(q, s) is the lowest degree b(q, s) satisfying our assumption. The highest power
of s or q in it, which corresponds to the smallest degree of matrix C, is

Np = p + 1 + 2 + · · ·+ p = 1
2p(p + 3).

The next statement is obvious,

vp(q) = bp(q, 1) =

p∏
k=1

[(qk − 1)(q − 1)] = (1− q)p

p∏
k=1

(1− qk).

The proof is complete.
To ensure that

W (ε) := ε−1
(
uT Cu− 2û1T Cu

)
= O(εp+1),

it is necessary that (3.3) holds. However, for p = 4, (3.3) is not sufficient and we need
one more equation,

qT
2 Cq3 = 0.(3.6)

Generally, to guarantee p ≥ 4,

qT
i Cqj = 0, 2 ≤ i + j ≤ p + 1, 1 ≤ i, j ≤ p.(3.7)
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have to hold too. Thus, when p gets larger, our matrix C gets quite large. Fortunately,
it is still possible to construct C recursively.

Theorem 3.3. Let

Jp := {k : 1 ≤ k ≤ [p/2]; k and p + 1− k are relatively prime} =: {k1, k2, . . . , kJp
}

where k1 = 1 and Jp is the number of elements in Jp. Let

M1 = 2,

Mp = Mp−1 + Jp(p + 1) =

[p/2]∑
k=1

p+1−k∑
�=k, gcd(�,k)=1

(� + k), p ≥ 2,

a1(t, s) = (t− s)2,

ap(t, s) = ap−1(t, s)

Jp∏
j=1

(tkj − sp+1−kj )(tp+1−kj − skj )

=

[p/2]∏
k=1

p+1−k∏
�=k, gcd(�,k)=1

(t� − sk)(tk − s�) :=

Mp∑
i=0

Mp∑
j=0

ci,jt
isj p ≥ 2.

Then C = [ci,j ]i,j=0,1,...,Mp
is the smallest matrix satisfying (3.7).

We can construct C by the following recursive scheme. Let

CM1
=

⎡
⎣ 0 0 1

0 −2 0
1 0 0

⎤
⎦ .

For p ≥ 2, let Mp,i = Mp−1 + i(p + 1), i = 0, 1, . . . , Jp, Mp := Mp,Jp
, and set

CMp,0
:= CMp−1

. Then for i = 1, 2, . . . , Jp,

CMp,i =

[
O(p+1)×Mp,i−1

O(p+1)×(p+1)

CMp,i−1
OMp,i−1×(p+1)

]
+

[
OMp,i−1×(p+1) CMp,i−1

O(p+1)×(p+1) O(p+1)×Mp,i−1

]

−

⎡
⎣ Oki×ki

Oki×Mp,i−1
Oki×(p+1−ki)

OMp,i−1×ki
CMp,i−1

OMp,i−1×(p+1−ki)

O(p+1−ki)×ki
O(p+1−ki)×Mp,i−1

O(p+1−ki)×(p+1−ki)

⎤
⎦

−

⎡
⎣O(p+1−ki)×(p+1−ki) O(p+1−ki)×Mp,i−1

O(p+1−ki)×ki

OMp,i−1×(p+1−ki) CMp,i−1
OMp,i−1×ki

Oki×(p+1−ki) Oki×Mp,i−1
Oki×ki

⎤
⎦ .

Furthermore,

vp(q) = vp−1(q)

Jp∏
i=1

(1− qki)(1− qp+1−ki) =

[p/2]∏
k=1

p+1−k∏
�=k, gcd(�,k)=1

(1− q�)(1− qk).

Proof. The proof is straightforward. Suppose 1 ≤ i ≤ p, 1 ≤ j ≤ p, 2 ≤ i + j ≤
p + 1. If gcd(i, j) = 1, then the factor (ti − sj) is a divisor of ap(t, s), thus

qT
i Cqj = ap(q

j , qi) = 0.
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On the other hand, if gcd(i, j) = σ ≥ 2 then i = kσ, j = lσ and 1 ≤ k, l < p, 2 ≤
k + l < p + 1, and we still have

qT
i Cqj = qT

k Cql = ap(q
l, qk) = 0.

Hence (3.7) is satisfied.
Furthermore, our Lemma 3.1 guarantees that C = CMp

is the smallest matrix
satisfying (3.7).

We can get our recursive scheme for C from the recurrence formula for ap(t, s).
The last statement is obvious considering vp(t) = ap(1, t).

As for n ≥Mp + 1, we can find more than one matrix C that satisfies (3.7).

Proposition 3.4. Let Cn
p be the space of matrices satisfying (3.7). The dimension

of Cn
p is (n −Mp + 1)(n −Mp + 2)/2, where Mp has been defined in Theorem 3.3.

Furthermore, for fixed p and Mp, we can construct a base of Cn
p in the following way.

There is one element, up to a constant multiple, in C
Mp

p as constructed before, which

we write as CMp
. All the three elements in C

Mp+1
p can be written in the form

C
(1)
Mp+1 =

[
O1×Mp+1 0

CMp
OMp+1×1

]
+

[
OMp+1×1 CMp

0 O1×Mp+1

]
,

C
(2)
Mp+1 =

[
0 O1×Mp+1

OMp+1×1 CMp

]
, C

(3)
Mp+1 =

[
CMp

OMp+1×1

O1×Mp+1 0

]
.

Furthermore,

v
(0)
p,p+1(q) = 1T C

(1)
Mp+1q1 = 1T CMp

q1 + 1T CMp
qq1 = (1 + q)vp(q);

v
(1)
p,p+1(q) = 1T C

(2)
Mp+1q1 = 1T CMp

qq1 = qvp(q);

v
(2)
p,p+1(q) = 1T C

(3)
Mp+1q1 = 1T CMp

q1 = vp(q).

For general n ≥Mp + 1 we can construct a base of Cn
p by recursion. Let L = n−Mp.

First we construct one matrix of (Mp + k +1)× (Mp + k +1) by enlarging CMp
in the

following fashion,

C
(0)
Mp,0 = CMp

;

C
(0)
Mp+k,k =

[
O1×Mp+k 0

C
(0)
Mp+k−1,k−1 OMp+k×1

]
+

[
OMp+k×1 C

(0)
Mp+k−1,k−1

0 O1×Mp+k

]

for k = 1, 2, . . . , L. We augment each to a matrix of size (Mp + L + 1)× (Mp + L +
1) by adding L − k zero rows and columns as follows, whereby they are all linearly

independent.

C
(i)
Mp+L,k =

⎡
⎣ Oi×i Oi×Mp+k+1 Oi×L−k−i

OMp+k+1×i C
(0)
Mp+k,k OMp+k+1×L−k−i

OL−k−i×i OL−k−i×Mp+k+1 OL−k−i×L−k−i

⎤
⎦ ,

i = 0, 1, . . . , L− k, k = 0, 1, 2, . . . , L.

Correspondingly, v
(i,k)
p,n (q) := 1T C

(i)
Mp+L,kq1 = qi(1 + q)kvp(q), i = 0, 1, 2, . . . , L − k,

k = 0, 1, 2, . . . , L.
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Proof. Let C ∈ Cn
p and

b(q, s) = qT
1 CS.

Then, according to the lemma,

[p/2]∏
k=1

p+1−k∏
�=k,gcd(�,k)=1

(q� − sk)(qk − s�)|b(q, s).

Hence

b(q, s) =

[p/2]∏
k=1

p+1−k∏
�=k, gcd(�,k)=1

(q� − sk)(qk − s�)r(q, s),

where r(s, q) is a polynomial of degree n − Mp in two variables. There are
(n −Mp + 1)(n −Mp + 2)/2 unknowns for r(t, s), that is the upper bound for the
dimension of Cn

p . It is obvious that our construction gives (n−Mp +1)(n−Mp +2)/2
linearly independent matrices. Thus our assertions are true.

Theorem 3.5. If we choose C ∈ C
Mp

p as in Theorem 3.3 or C ∈ Cn
p as in

Proposition 3.4, then the quadratic model

G(z) =
uT Cu

21T Cu

has at least order p, unless β1 is a root of unity.

Examples. For p = 2, n = 5, C is⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
0 0 0 −1 −2 0
0 0 2 1 −1 0
0 −1 1 2 0 0
0 −2 −1 0 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.(3.8)

For p = 2, n = 6, all the Cs are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 −1 −2 0
0 0 0 2 1 −1 0
0 0 −1 1 2 0 0
0 0 −2 −1 0 0 0
0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0
0 0 0 −1 −2 0 0
0 0 2 1 −1 0 0
0 −1 1 2 0 0 0
0 −2 −1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
0 0 0 0 −1 −1 0
0 0 0 1 −1 −1 0
0 0 1 2 1 0 0
0 −1 −1 1 0 0 0
0 −1 −1 0 0 0 0
1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For p = 2, n = 7, the Cs are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 −1 −2 0 0
0 0 0 2 1 −1 0 0
0 0 −1 1 2 0 0 0
0 0 −2 −1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0
0 0 0 −1 −2 0 0 0
0 0 2 1 −1 0 0 0
0 −1 1 2 0 0 0 0
0 −2 −1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0
0 0 0 0 −1 −1 0 0
0 0 0 1 −1 −1 0 0
0 0 1 2 1 0 0 0
0 −1 −1 1 0 0 0 0
0 −1 −1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 −1 −2 0
0 0 0 0 2 1 −1 0
0 0 0 −1 1 2 0 0
0 0 0 −2 −1 0 0 0
0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 −1 −1 0
0 0 0 0 1 −1 −1 0
0 0 0 1 2 1 0 0
0 0 −1 −1 1 0 0 0
0 0 −1 −1 0 0 0 0
0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0
0 0 0 0 0 −2 −1 0
0 0 0 2 1 0 0 0
0 0 0 1 2 0 0 0
0 −1 −2 0 0 0 0 0
0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, for p = 3, n = 9, the matrix C is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 −1 −2 0
0 0 0 0 1 2 2 1 −1 0
0 0 0 −2 −1 0 1 2 −1 0
0 0 1 −1 −2 −1 0 2 0 0
0 0 2 0 −1 −2 −1 1 0 0
0 −1 2 1 0 −1 −2 0 0 0
0 −1 1 2 2 1 0 0 0 0
0 −2 −1 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us study next the attractivity of GN (z).

Theorem 3.6. Given p > 0. Let

Jp := {k : 1 ≤ k ≤ [p/2]; k and p + 1− k are relatively prime } = {k1, k2, . . . , kJp
},

Sp = k1 + · · ·+ kJp
,

Kp = S1 + · · ·+ Sp,

where k1 = 1 and Jp is the number of elements in Jp. If f(z) is super-attractive of

degree s ≥ 1 at the fixed point ẑ, then GMp
(z) is super-attractive there of the degree

2(s + 1)Kp − 2.

Proof. Without loss of generality we suppose that ẑ = 0. If

f(z) = α0z
s+1 + O(zs+2),

then by induction we have

f◦m(z) = αmz(s+1)m

+ O(z(s+1)m+1).

Note that

GMp
(z) =

uT CMp
u

21T CMp
u

=

∑
i,j ci,jf

◦if◦j

2
∑

i,j ci,jf◦i
.

By the construction of CMp
we can see that ci,j = 0 for 0 ≤ i + j ≤ 2(Kp) − 1 and

cKp,Kp
�= 0. Among the terms of ci,jf

◦if◦j the smallest power of z is in the form

ci,jz
(s+1)i+(s+1)j

when s ≥ 1, for 2Kp ≤ i + j ≤ 2Mp . Furthermore,
∑Mp

j=0 c0,j =
c0,Mp

= 1. Thus,

GMp
(z) =

cKp,Kp
α2

Kp
z2(s+1)Kp

+ O(z2(s+1)Kp +1)

c0,Mp
z + O(z2)

= cKp,Kp
α2

Kp
z2(s+1)Kp−1 + O(z2(s+1)Kp

).
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Corollary. Let

Gn,p(z) =
uT C

(n−Mp)
n,0 u

21T C
(n−Mp)
n,0 u

with C
(n−Mp)
n,0 as in Proposition 3.4, then if f(z) is super-attractive of degree s ≥ 1 at

the fixed point ẑ then Gn,p(z) is super-attractive there of degree 2(s + 1)n−Mp+Kp −
(s + 1)n−Mp − 1.

4. The fixed point at ∞. Let f be analytic for |z| ≥ 1 and ∞ ∈ Ff . Assume
that

f(z) = γ0z +

∞∑
k=1

1

k!
γkz−k+1.

For the time being, we assume that γ0 is neither zero nor a root of unity. Then the
Taylor expansion of f◦m about ∞ is

f◦m(z) = γm
0 z +

∞∑
k=1

1

k!
ε
(m)
k z−k+1 m = 1, 2, . . . .

According to Iserles [2], there exist numbers Dk,l, l = 0, 1, . . . , k, k = 0, 1, . . ., depen-
dent on {γk}

∞
k=1 but not on m, such that

ε
(m+1)
k =

k∑
l=0

Dk,lε
(m)
l .

Moreover, Dk,k = γ1−k
0 , k = 0, 1, . . .. Let

B1,1 = 1,

Bk,l =
1

γl
0 − γ1−k

0

k−1∑
j=1−l

Dk,jBj,l, l = 2− k, 3− k, . . . , 1, k = 1, 2, . . . ,

Bk,1−k = γk−1
0 (γk −

1∑
l=2−k

Bk,lγ
l
0), k = 1, 2, . . . .

Then

ε
(m)
k =

1∑
l=1−k

Bk,lγ
lm
0 k, m = 0, 1, . . . .

Therefore if pT
1 Cp1 = 0, 1T Cp1 �= 0, then

G(z) =
uT Cu

21T Cu
=

pT
1 Cp1z

2 + 2B1,01
T Cp1z + O(1)

21T Cp1z +
∑∞

k=1
1
k!

∑1
l=1−k Bk,l1T Cplz−k+1

= B1,0 + O(z−1).

In the case when ∞ is a super-attractive fixed point of f of degree s, we write

f(z) = γ0z
s + O(zs−1).
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Then

f◦m(z) = γ
(m)
0 zsm

+ O(zsm−1).

Note the highest power among zsi+sj

, for 1 ≤ i, j ≤ Mp, must be located at i = Mp

or j = Mp and the fact that in the matrix CMp
, cMp,i = ci,Mp

= 0 for 1 ≤ i ≤ Mp.
Therefore we get

GMp
(z) =

uT CMp
u

21T CMp
u

=

∑
i,j ci,jf

◦i(z)f◦j(z)

2
∑

i,j ci,jf◦i(z)

=
2c0,Mp

γ
(Mp)
0 zsMp+1 + O(zsMp

)

2c0,Mp
γ

(Mp)
0 zsMp + O(zsMp−1)

= z + O(1).

We have thus deduced the following result.

Proposition 4.1. If ∞ is a fixed point of f which is neither neutral with γ0 a

root of unity nor super-attractive, then ∞ is not a fixed point of GMp
(z) for

GMp
(z) =

uT CMp
u

21T CMp
u

Proposition 4.2. If ∞ is a super-attractive fixed point of f with s ≥ 2, then ∞
is a fixed point with degree 1 of GMp

(z) for

GMp
(z) =

uT CMp
u

21T CMp
u

For a general n ≥ Mp + 1, we choose C
(n−Mp)
n,0 ∈ Cn

p and p ≥ 1, since

Gn,p(z) =
uT C

(n−Mp)
n,0 u

21T C
(n−Mp)
n,0 u

=

∑
i,j ci,jf

◦i(z)f◦j(z)

2
∑

i,j ci,jf◦i(z)

=
2cn−Mp,nγ

(n−Mp)
0 γ

(n)
0 zsn−Mp+sn

+ O(zsn−Mp+sn−1)

2cn−Mp,nγ
(n)
0 zsn + O(zsn−1)

= γ
(n−Mp)
0 zsn−Mp

+ O(zsn−Mp−1),

the point ∞ is still a super-attractive fixed point up to degree sn−Mp − 1.

Proposition 4.3. If ∞ is a fixed point of f which is neither neutral with γ0 a

root of unity nor supper-attractive, then ∞ is not a fixed point of G(z) for

G(z) =
uT Cu

21T Cu
where C ∈ Cn

p and p ≥ 1; n ≥Mp + 1.

If∞ is a super-attractive fixed point of f with degree s ≥ 2 then∞ is a super-attractive

fixed point of degree up to sn−Mp − 1 for the same G(z) as above.
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5. The behaviour for β1 = 1. Supposing that

f(z) = z +

∞∑
�=2

1
�!β�z

�

where, again, f◦m is the mth iterant of f , it follows from [1] that there exist constants
r�,j such that

f◦m(z) = z +

∞∑
�=2

⎛
⎝�−1∑

j=1

r�,jm
j

⎞
⎠ z�, m ∈ Z

+,(5.1)

where

r�,�−1 =

(
β2

2

)�−1

, � = 2, 3, . . . .

Suppose that C ∈ Cn
1 . Differentiating qT

1 Cq1 ≡ 0with respect to q we obtain

qT
1 Cq′1 ≡ 0,

hence, letting q = 1,

1T Ck1 = 0,(5.2)

where

kT
� :=

[
0� 1� 2� · · · n�

]
, � ∈ Z

+.

Differentiating again, we have

qT
1 Cq′′1 + q′1

T
Cq′1 = 0,

hence, because of (5.2),

1T Ck2 + kT
1 Ck1 = 0.(5.3)

Because of (5.1), we have

u = 1z +

∞∑
�=2

⎛
⎝�−1∑

j=1

r�,jkj

⎞
⎠ z�.

Thus, taking (5.2) into account,

1T Cu =
∞∑

�=3

⎛
⎝�−1∑

j=2

r�,j1
T Ckj

⎞
⎠ z�,

uT Cu = 2

∞∑
�=3

⎛
⎝�−1∑

j=2

r�,j1
T Ckj

⎞
⎠ z�+1 +

∞∑
�1=2

∞∑
�2=2

�1−1∑
j1=1

�2−1∑
j2=1

r�1,j1r�2,j2k
T
j1Ckj2z

�1+�2 .

Recall that the function that we are iterating is

Gn(z) := 1
2

uT Cu

1T Cu
.
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In our case

Gn(z) = z

(
1 +

r2
2,1k

T
1 Ck1 + O(z)

2r3,21T Ck2 + O(z)

)
.

Thus, unless kT
1 Ck1 = 0, (5.3) yields

Gn(z) = 1
2z + O(z2).

In other words, the fixed point is merely attractive (not super-attractive!) and
G′1(0) = 1

2 . This is identical to the standard Steffensen method [2].
The remaining case is

kT
1 Ck1 = 1T Ck2 = 0.(5.4)

Considering the third derivative of qT
1 Cq1 ≡ 0, we readily affirm (taking into account

(5.2)–(5.4)) that

1T Ck3 + 3kT
1 Ck2 = 0.(5.5)

Now

Gn(z) = z

(
1 +

r2,1r3,2k
T
1 Ck2 + O(z)

r4,31T Ck3 + O(z)

)
.

Thus, because of (5.5) and unless kT
1 Ck2 = 0, we have

Gn(z) = 2
3z + O(z2)

and the situation is actually worse than in the previous case!
So, let us proceed a step further, replacing (5.5) with

1T Ck3 = kT
1 Ck2 = 0.(5.6)

Another differentiation of qT
1 Cq1 ≡ 0 gives

1T Ck4 + 4kT
1 Ck3 + 3kT

2 Ck2 = 0.(5.7)

In the present case

Gn(z) = z

(
1 +

2r2,1r4,3k
T
1 Ck3 + r2

3,2k
T
2 Ck2 + O(z)

2r5,41T Ck4

)

= z

(
1 +

2kT
1 Ck3 + kT

2 Ck2 + O(z)

1T Ck4 + O(z)

)
.

Thus, provided that 1T Ck4 �= 0, Gn(z) = O(z2) if and only if

1T Ck4 + 2kT
1 Ck3 + kT

2 Ck2 = 0.

Substituting the value of 1T Ck4 from (5.7) yields the conditions

1T Ck4 �= 0, kT
1 Ck3 + kT

2 Ck2 = 0.(5.8)
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It is instructive to check (5.8) in Cn
2 for n ∈ {5, . . . , 7}. For n = 5 we have a

one-dimensional space spanned by (3.8), and the latter gives

kT
1 Ck3 + kT

2 Ck2 = 2.

Likewise, for n = 6 we have

kT
1 Ck3 + kT

2 Ck2 = 4.

However, in the case n = 7 we have a two-dimensional space and

kT
1 P1k3 + kT

2 P1k2 = 8,

kT
1 P2k3 + kT

2 P2k2 = 2.

Hence, the only possible choice of C (up to a nonzero multiplicative constant) which
is consistent with the second condition in (5.8) is

P := P1 − 4P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 −1 −4 0
0 0 0 0 4 6 −1 0
0 0 0 −6 −3 4 0 0
0 0 4 −3 −6 0 0 0
0 −1 6 4 0 0 0 0
0 −4 −1 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Unfortunately, the first condition of (5.8) is violated, since 1T Ck4 = 0. This, in fact,
is predictable – the function v for P is of the form

v(t) = v1(t)− 4v2(t) = (1− t)6(1 + t).

Thus, d�v(1)/ dt� = 0, � = 0, 1, . . . , 5. But

v(1) = 1T C1,

v′(1) = 1T Ck1,

v′′(1) = 1T C(k2 − k1),

v′′′(1) = 1T C(k3 − 3k2 + 2k1)

and so on. We conclude that 1T Ck� = 0, � = 0, . . . , 5. The general result can be
phrased as a theorem.

Theorem 5.1. Suppose that

f(z) = z +

∞∑
�=2

1

�!
β�z

�

G(z) =
uT Cu

21T Cu
where C ∈ CMp

p and p ≥ 1.

Then

G(z) = αpz + O(z2) for p ≥ 1
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where αp �= 0 for p = 1, 2, . . . , 5. Furthermore, letting Lp = J1 + · · · + Jp, it is true

that
∑

j1+j2=2Lp
kT

j1CMp
kj2 �= 0 for p ≥ 6 implies αp �= 0.

Proof. Since p ≥ 1, we have

1T Cu =

∞∑
�=3

⎛
⎝�−1∑

j=2

r�,j1
T Ckj

⎞
⎠ z�,

uT Cu = 2

∞∑
�=3

⎛
⎝�−1∑

j=2

r�,j1
T Ckj

⎞
⎠ z�+1 +

∞∑
�1=2

∞∑
�2=2

�1−1∑
j1=1

�2−1∑
j2=1

r�1,j1r�2,j2k
T
j1Ckj2z

�1+�2 .

We will prove that, letting k0 := 1,

kT
i CMp

kj = 0, for 0 ≤ i + j ≤ 2Lp − 1.(5.9)

Let

a1(t, s) = (t− s)(t− s);

ap(t, s) = ap−1(t, s)

[p/2]∏
k=1, gcd(k,p+1−k)=1

(tk − sp+1−k)(tp+1−k − sk)

=

[p/2]∏
k=1

p+1−k∏
i=k,gcd(i,k)=1

(ti − sk)(tk − si).

Then, since ap(t, s) has 2Lp factors of form (tk − sl) and these factors are zero when
t = 1 and s = 1,

kT
i CMp

kj =
∂

∂t

(
t
∂

∂t

(
t · · ·

∂

∂t

(
t

∂

∂s

(
s

∂

∂s

(
s · · ·

∂

∂s
(ap(t, s)) · · ·

)))
· · ·

))
t=1, s=1

=

⎛
⎝ ∂i+j

∂it∂js
ap(t, s) +

∑
k+l<i+j,0≤k≤i,0≤l≤j

σk,l
∂k+l

∂kt∂ls
ap(t, s)

⎞
⎠

t=1, s=1

= 0, for 0 ≤ i + j ≤ 2Lp − 1,

Furthermore,

1T CMp
k2Lp

=

⎡
⎣ ∂2Lp

∂2Lps
ap(t, s) +

∑
k+l<2Lp

σk,l
∂k+l

∂kt∂ls
ap(t, s)

⎤
⎦

t=1, s=1

= (2Lp)!

[p/2]∏
k=1

p+1−k∏
i=k, gcd(i,k)=1

ik �= 0.

Consequently,

1T CMp
u =

∞∑
l=2Lp+1

⎛
⎝ l−1∑

j=2Lp

rl,j1
T CMp

kj

⎞
⎠ zl
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=

(
β2

2

)2Lp

1T CMp
k2Lp

z2Lp+1 + O(z2Lp+2)

uT CMp
u = 2

∞∑
l=2Lp+1

⎛
⎝ l−1∑

j=2Lp

rl,j1
T CMp

kj

⎞
⎠ zl+1

+

∞∑
l1+l2>2Lp+1

l1−1∑
j1=1

l2−1∑
j2=2Lp−j1

rl1,j1rl2,j2k
T
j1CMp

kj2z
l1+l2

= 2r2Lp+1,2Lp
1T CMp

k2pz
2Lp+2

+
∑

j1,j2>0,j1+j2=2Lp

rj1+1,j1rj2+1,j2k
T
j1CMp

kj2z
2Lp+2 + O(z2Lp+3)

=

(
β2

2

)2Lp ∑
j1+j2=2Lp

kT
j1CMp

kj2z
2Lp+2 + O(z2Lp+3),

where k0 = 1. So we conclude

G(z) = αpz + O(z2) for p ≥ 1,

where αp �= 0 if
∑

j1+j2=2Lp
kT

j1CMp
kj2 �= 0. By direct calculation we can easily

deduce that αp �= 0 for p = 1, 2, 3, 4, 5. This completes the proof.
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