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OPTIMAL ACCELERATION OF CONVERGENCE*

ARIEH ISERLEST AND XIAOYAN LIU%

Abstract. In this paper we investigate the quadratic model
bTu+u”Cu
aTu
which generalises the Shanks transformation and the familiar Padé model, to accelerate the conver-
gence of a sequence {uk}kezp- In the new model,

u” = [ug,u1,. .., unl,

a,b € R"™" and C is an (n+1) x (n 4+ 1) Hermitian matrix. (Note that, although u might be
complex, we use the transpose u’, rather than the adjoint u*.) Let us assume that the original
sequence is obtained from the dynamical system z — f(z), where f(z) = @ + Z;’;l %ﬁk (z — a)*

is analytic about its fixed point & € C. Suppose that ug = @ + ¢ and uy = fOk(uo). It is easy to
show that b = 0 and a = 2C'1. We give an iterative formula for the construction of the matrices C.
Furthermore, we discuss the rate of convergence, inclusive of the special case when the fixed point is
at oco.

1. The quadratic model. The starting point for the Shanks transformation is
that, given a sequence {uy}ecz+, we construct the function

G(z) :=up + Z(uk —up_1)2"
k=1

and take the [N/N] Padé approximant to F' at z = 1 as the ‘accelerated’ limit [1].
Its obvious generalisation is to consider

G(z) =Y D (1) o ju, | 2™
m=0 | j=0

and its sections

(=)™ i juy | 2™

NE

Gl(z) = i

m=0 | j=0

Having fixed n, we stipulate that GI"J(1) = u,,. Thus,

> Z_(—l)m_jam,j Uj = Un

Jj=0 | m=j

and, since we want the coefficients to be independent of {uy, }cz+, we stipulate v, ,, =
1 and

(1.1) S ()", =0,  j=01,...,n—1

m=j
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16 A. ISERLES AND X. LIU

This is our first model, and we call it the Padé model.
Another general scheme for convergence acceleration is by letting the accelerator

be
bT e
(1.2) purwu
aTu
where
ul = [ug,ur,. .., u]

a,b e R" and C is an (n + 1) x (n + 1) Hermitian matrix. Note that, although u
might be complex, we use the transpose u”, rather than the adjoint u*. We call this
the quadratic model.

2. The quadratic model. Let us assume that the original sequence is obtained
from the dynamical system z — f(z), where f(2) = 4+ Y 4o, 1 Bk(z —@)¥ is analytic
about its fixed point @ € C. Suppose that ug = @ + €. Then, expanding into series,

uy =4+ Pre + 1026” + O(€°),
uy =4+ Pie+ 5(B1 + B1)Pag” + O(2).

Generally, we have (except when 5 = 1)

1— k
(2.1)  wp = fF(a+e)=a+Bfe+ 387" . gl Boe® +O(e®), kel
—pP1
where f°F is the kth iterate of the function f. Set
bTu +u?Cu
Vie)=—5—"
alu

The order of convergence acceleration (equivalently, the order of superattractivity at
the fixed point) is the integer p such that

V(e) =4+ O(ePth).
The condition for p > 0 is that V(0) = 4. Let
pe=[1,081, 65, .... 80", tezt

(for convenience, pg = 1).
The €% condition is

b 14 +17C14? = a’'142,

and we deduce that
(2.2) b’1 =0, 17c1 =a’1.
We turn our attention next to the € condition: it is

bTp; +217Cpit = al pri.
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We first deduce that b”p; = 0, and this implies b = 0. Hence, no need to elaborate

or mention any further that vector. More interesting consequence of equating powers
of By is

(2.3) a=201.
Comparing with (2.2), we deduce that
(2.4) 1"c1=a"1=0.

Thus, we need to go further, considering the 2 terms, to argue that p > 1. This gives
(for 81 # 0 — otherwise the analysis is even simpler!)

fa Teq - 1y T
Bi(1 ﬁl)( TP Cl=3 51(1—ﬁ1)(p1 P2) 2

piCp1+1
and (2.3) means that the p > 1 condition is just
(2.5) qfCq=0 for all a=[1,¢,¢*...,¢"1", q€R.

Hence

n n
chqu qeRa

k=0 ¢=0

and (2.5) can be alternatively expressed as

(2.6) k=0
Z cro—k =0, {=n+1,...,2n.

Note, incidentally, that 17C1 = 0 is a special case of (2.5) when ¢ = 1.
Recall from [2] that there exist numbers {a,¢ : £=1,...,m;m =1,2,...} such
that

m=1

fR) =a+ Z (Zameﬁ )

(we exclude the cases of #1 = 0 and of 31 being a root of unity). Consequently, and
exploiting 17C1 = 0, we obtain

(2.7) u’Cu =2 Z <Z am,ngC’pg> €
m=1 \/{

(2.8) 17Cu = Z ( Qo lTC’pg> e™.
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Let
W(e) :=e ! (u"Cu-2a1"Cu).

Then a necessary condition for order p is that W (e) = O(eP*!) (recall that both the
numerator and the denominator are O(g)). Clearly, this is also sufficient if the O(e)
terms therein are nonzero. Comparing (2.7) and (2.8), we have

%) m k m+l—k
(2.9) W(e) = S>3 Y okstmirk;pCpj | €™
m=1 \k=1¢=1 j=1
c© m m+l—f /m+1—j
m=1¢=1 j=1 k=t
Moreover,
V( ) U [aLllTCpl + Z::I (Zzn:-iil Oém+1)g1TCpg) Em} + %W(E)
g) = 9

a1117Cpy + Y7, (Z;’zl am+17g1TC’pg) gm

hence the method is of order at least p if 17 Cp; # 0. Thus, the order is degraded for
all g1 if C1 = 0 and it might be degraded for particular values of 3 if C' is singular
and pi is an eigenvector corresponding to the eigenvalue 0. We impose in the sequel
the requirement that C1 # 0 (i.e. that C' is nondegenerate), W.L.O.G..

As we have already seen, p > 1 only if

a§,1P1TCP1 =0.
Consequently, we require q” Cq = 0 Vg € R. The necessary condition for p > 2 is
2011 (a2,1p] Cp1 + az,2p] Cp2) =0,
hence we deduce that
(2.10) qi Ca1 = qf Cq2 =0,
where
Qi =[1,¢,¢7,...,¢", jeZt qeR

3. The General Case. We consider next p > 3. The conditions (2.10) are still
necessary and the third-order terms are

(21,1031 4 03 1)p] Cp1
+2(v 1032 + 062,1a2,2)p1TOP2
+ 201,103 3p; Cps + a3 5p5 Cpa,

since (2.10) implies g Cqs = 0 (note that q2(q) = q1(¢?)). Hence we require just one
more equation,

(3'1) q{ng =0.
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Generally, by the similar reasoning, we need
(3.2) q/Cq; =0, i=1,2,...,p

for order p. We know that the matrix C' cannot be p X p, it has to be larger. In the
following proposition we will prove that for N = p(p + 3)/2, the smallest matrix C
satisfying (3.2) is (N + 1) x (N + 1). A lemma is required first.

LeEMMA 3.1. Let C be a symmetric matriz, and

K K
C = [agelke=01,....K, a(t,s) = Z Z ap " s’

k=0 £=0
Ifa(¢’,q") = 0,1 <i<j,iand j are relatively prime, then (t' — s7)|a(t, s).

Proof. Let us consider the coefficients ay ¢ of a(t,s). Since

0=al¢,q") Zzakeqﬂ“ *

k=0 ¢=0

kit
= E (Qho + Qh—ifrj + Qi 042f + - F it )P T

every coefficient of ¢7*T% has to be zero for 0 < k < K, 0 < ¢ < K. That means,
using the fact that ged(i, j) = 1 (hence each coefficient appears only in one equation)
that

Qo+ Qg—i i+ Qp—2i 0425 + ...+ Qp—uituj = 0,
where all subscripts are bounded by 0 and K. Notice that there are complex numbers
A1,02,...,0q, bl, b2, PN ,bu such that

tk 21 E+2J_|_ tk ui ZJruj

ap,ot*s" + ar_i o 75T 4 ap_gi 040 " Gh—ui b+
= thTui I (g7 s ™I 4 by ) (agt's T 4 bg) - - (aut's ™ + by)
= tk_“isé(alti + blsj)(agti + bQSj) s (auti + busj)'

Substituting t = 1 and s = 1 we get
0=ape+ Gh—ipt; + Qh—2i042; + + Qi ruj = (a1 +b1)(a2 + b2) -+ (ay + by).

One of (@, + by,)s must be zero and, without loss of generality, we assume that it is
the first. Hence a1 = —b; (notice that also a; could be zero) and

tk 21 E+2J_|_ tk ui ZJruj

k— l+
aklt 5 + ap— z€+gt i J"‘ak 24,0425 cag— wi, b+uj

= th=vigla (£ — s7)(ast! + bas?) - - (aut’ + bys?).

Let w,v be integers such that 0 < K —wvi < i and 0 < K — uj < j, respectively. We
deduce that (the second sum being unique, because of ged(i,j) = 1)

K K

CL(t, S) = Z Z akﬂgtksl
k=0 ¢=0
i—1 g—1 v

_ k1+kot £ +(ka—1)1 E +
- E E [ E (ak1+k2i,41t TR+ Ay 4 (ko —1)d, €1+Jt kit (ke —1)i g1+
k1=04,=0 ko=0
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k ko—2)i £1+27
+ iyt (k=i 2t TR

k ko—k 0 +k
+ak1+(k2 o), £1+k2Jt 1+ (ka— 2)1 1+ 2])

u
ki1+vi _l1+027 ki+(v—1)1 1+ (La+1)5
+ E (@ iyt 05t TS a1y 0 g gyt T T DD
lo=1

+ak1+(v 2)7( 51+(f2+2)]t 1+('U 2)'L 51+(l2+2) 4.

k 4 4
+ak1+(v wtla)i, l1+th 1+ (v—u+ 2)1 1+ug)]

= — SJ Z bkygtkse

where if a subscript of aj ¢ is > K, then the aj ¢ in question is defined to be zero. O

PROPOSITION 3.2. Let N, := p(p + 3)/2. The smallest C satisfying the system
of equations

(33) fCq; =0, i =1,2,...,p, where q; =[1,¢",¢*,...,¢"|",icZ", geR

s (Np +1) x (Np + 1). Furthermore, let Cy, be the smallest C' corresponding to p,
then we can construct Cy, from C,_, according to the following prescription.

[0 01
Cn,=10-201,
100
(3.4) COn, = Ow+1)xNy1 Owrvxen) | | ONpor ONpaxen)
' ' L Nyt Oy i) _O(p+1)XNp71 Ow+1)x(p+1)
O1x1 Oi1xn,_;, Oixp Opxp  Opxn,_, Opx1
— | Onp_ixt Cn,_y On,_ixp| = | ONp_yxp Cn,_1 On,_.x1|>
Op><1 Oprp,l Op><p 1 Ol><p leNp,l Ol><1

where p > 2 and O;x; is a zero matriz of order i X j. Furthermore,

P
(3.5) vp(q) ==1"Cnya1 = (1 - q) H )

Proof. We proceed by induction. By direct calculation, g Cn,q; = 0.
Assume ne xt that qlTC'Np,lqz' =0fori=1,2,...,p— 1. Then

ol Oy, vai+al On, " " ™Ma; — ¢*al On, d'a

- qpq,—erprlqi'pq’L‘ = Oa

ai Cn,q; = ¢

fori=1,2,...,p— 1. Furthermore,

al On,ap = ¢*'af Cn, ,ap +af Cn, ,¢"*Va, —¢'af Cn, ,¢Pq,
—¢"q1 Cn,_,¢""q, = 0.

Hence q; CNpql =0, for:=1,2,...,p and any positive integer p.
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To prove that N, is the smallest number such that there is at least one non-trivial
C satisfying (3.2), we write S = [1,s,...,s"]" and

bi(g,8) =al Cn,S, i=1,2,...,p
Then by our assumption
bp(q,¢') =ai Cn,qi =0, i=1,2,...,p
Hence, by the Lemma 3.1, (s — ¢")|by(g,s), ¢ = 1,2,...,p. Note that b,(g,s) is a

symmetric function of ¢ and s, thus

[(s — ") (q = s")]Ibp(q. s).

i :jﬁ

On the other hand, by our recursion,

bi(g,s) =i On,S = ¢° —2sq+5° = (¢ — s)(q — 5),

by(g,s) = af Cn,S
=¢"MalCn,_,S+aiCy,_,s*™S —qal Cn,_,sS — ¢°ai C,_, s
= ("' + " —gs — ¢"s")q] C,_, S
= (¢" = s)(q — s")bp-1(g 5)

P
H " —s)(q — s")] (by induction)
k=1

H s—q")(qg—s")).

Thus by, (g, s) is the lowest degree b(q, s) satisfying our assumption. The highest power
of s or ¢ in it, which corresponds to the smallest degree of matrix C, is

Ny=p+1+2+4---+p=3pp+3).
The next statement is obvious,

vp(@) = byg, 1) = [JUd" =g -] = (1 — )" [T(1 - ")
k=1

k=1

The proof is complete. O
To ensure that

W(e) :=e " (u"Cu-2a1"Cu) = O(eP™),

it is necessary that (3.3) holds. However, for p = 4, (3.3) is not sufficient and we need
one more equation,

(3'6) ngqg =0.
Generally, to guarantee p > 4,

(3.7) al'Cq; =0, 2<i+j<p+1, 1<i,j<p.
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have to hold too. Thus, when p gets larger, our matrix C' gets quite large. Fortunately,
it is still possible to construct C' recursively.

THEOREM 3.3. Let
Jp i ={k:1<k<[p/2]; k and p + 1 — k are relatively prime} =: {ky, ko, ..., ky,}
where ki = 1 and J, is the number of elements in J,. Let

M, =2,
[p/2] p+1—k

My =M, 1+ Jpp+1)= S (+k), p=2
k=1 =k, gcd({,k)=1

ai(t,s) = (t —s)?,

Jp

apltys) = apoi (t,5) [ (1% — s Ry @1k — )
j=1
[p/2] p+1—k My, My
H H (t" = sP)(tF — 5% = Z Zci7jtisj p>2.
k=1 =k, ged(£,k)=1 i=0 j=0

Then C = [c; jlij=0.1,...,m, 15 the smallest matriz satisfying (3.7).
We can construct C' by the following recursive scheme. Let

0 0 1
Cv,=10 =2 0
1 0 0
For p > 2, let My; = My, 1 +i(p+1), i = 0,1,...,Jp, My := M, ;,, and set
Cym,o = Cn,_y. Then fori=1,2,...,J,,
Ca Owr1)xtty i Opr1)x(p+) ] . [OMp,mx(pH) Cyia
. OMp,ifl OMp,iflx(pJ’_l) O(P+1)><(P+1) O(p+1)><Mp,i71
[ Okiin OkiXMp,ifl Okix(p-i-l—ki) ]
- OMp,ileki OMp,ifl OMp,i—lx(erl_ki)
LOw+1-ki)xk: Opt1-ki)x My i1 Opti—ki)x (pt1-ks) ]
Opt+1-k:) x (p+1—k:) Op1—ki)x My, iy Op1—ki) xk;
- OMp,z'71><(p+1—ki) OMp,i—l OMp,Flei
Olﬂ')(([)ﬁ*lfki) OkiXMp,ifl Ok?Zthl
Furthermore,
Jp p/2] p+1—k
vp(a) = vpoae) [ = )@ =75 = [ II a-dHa-dH.
i=1 k=1 =k, gcd({,k)=1

Proof. The proof is straightforward. Suppose 1 <i<p, 1 <j<p, 2<i+j<
p+ 1. If ged(i, j) = 1, then the factor (t' — s7) is a divisor of a,(t, s), thus

a; Cq; = ap(¢’,q") = 0.
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On the other hand, if ged(i,j) = 0 > 2 then i = ko, j =lo and 1 < k,l < p, 2 <
k+1<p+1, and we still have

al Caqj = qf Cai = a,(q',¢*) = 0.

Hence (3.7) is satisfied.

Furthermore, our Lemma 3.1 guarantees that C' = Cjy, is the smallest matrix
satisfying (3.7).

We can get our recursive scheme for C' from the recurrence formula for ay(t, s).
The last statement is obvious considering v, (t) = a,(1,t). O

As for n > M, + 1, we can find more than one matrix C' that satisfies (3.7).

PROPOSITION 3.4. Let Cp} be the space of matrices satisfying (3.7). The dimension
of Cj} is (n — My + 1)(n — My, + 2)/2, where M), has been defined in Theorem 3.3.
Furthermore, for fized p and M, we can construct a base of C; in the following way.

P

There is one element, up to a constant multiple, in C;éw as constructed before, which

we write as Cpy,. All the three elements in Céwﬁ_l can be written in the form

CJ(\ZH _ |:Ol><Mp+1 0 }_’_ [OMerlxl Cu, ]

Cym, On,tixt 0 O1xMp+1
c® { 0 leMpH} o® [ Cu, OMP+1><1:| '
Mp+1 Onm,+1ix1 Cu, ’ Mp+1 O1x M, +1 0
Furthermore,
Ufﬂ%ﬂ(‘l) = ]'TCI(\/1[1)7+1Q1 =1"Cy,q1 + 1" Cosqa1 = (14 q)vp(q);
U:l(i;t)?-‘rl(q) = 1TCJ(\/212+1(11 =1"Chrqq1 = qup(q);

Uz(fz)url(q) = 1TCI(\/3[1)7+1(11 = 1TCMpq1 = vp(q)-

For general n > My + 1 we can construct a base of C;' by recursion. Let L =n — M,.
First we construct one matriz of (M, +k+1) x (M, +k+1) by enlarging Chr, in the
following fashion,

CI(\/OIZ,O = CMP;

(0)
C 0 _ 01><Mp+k 0 OMP—chl CMerkfl,kfl
Mp+k,k C(O) 0O 0
Mytk—1,k—1 YMp+kx1 0 Ix My+k

fork=1,2,...,L. We augment each to a matriz of size (M, + L + 1) x (M, + L +
1) by adding L — k zero rows and columns as follows, whereby they are all linearly
independent.

o Oixi Oix(l\/ngrkJrl Oixr—k—i
i 0
Crysre = | OMythtixi CM ko k OM, +kt1xL—k—i | 5

Op—k—ixi Or—k—ixMy+k+1 OL_k—ixL—k—i
i=01,... . L—k k=0,1,2,....L.

Correspondingly, Uz(f;;f) (q) :== 1TC](\2’+L1kq1 = ¢'(1+q)*v,(q), i = 0,1,2,..., L — k,
k=012, ... L.
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Proof. Let C' € C) and
b(g,s) = a1 CS.
Then, according to the lemma,
/2] pt+l-—k
(q" = s)(d" = s)[b(g, 9).
k=1 {=k,gcd({,k)=1
Hence

/2] p+1l—k

[
b(g, s) = I1

k=1 =k, gcd({,k)=1

(¢" = s")(d" = s")r(q, 5),

where 7(s,q) is a polynomial of degree n — M, in two variables. There are
(n — M, + 1)(n — M, + 2)/2 unknowns for r(¢, s), that is the upper bound for the

dimension of C;. It is obvious that our construction gives (n— M, +1)(n — M, +2)/2

linearly independent matrices. Thus our assertions are true. O

THEOREM 3.5. If we choose C € CZJ)W’) as in Theorem 3.3 or C' € C; as in
Proposition 3.4, then the quadratic model
B u’Cu
~ 217Cu
has at least order p, unless 31 is a oot of unity.

G(z)

Examples. Forp=2,n=5,Cis

00 0 0 01
00 0 —-1-20
00 2 1 -10
(3:8) 0-11 2 00
0-2-10 00
10 0 0 00
For p =2, n =6, all the C's are
[000 0 0 00 [00 0 0 0 10] [00 000 01
000 O 0O 01 00 0 —-1-200 00 00-1-10
000 0 —-1-20 00 2 1 —-100 00 01-1-10
000 2 1 —10{; 0-11 2 000f; 00 121 00
00-11 2 00 0-2-10 000 0-1-110 00
00-2-10 00 10 0 0 000 0-1-100 00
010 00 00/ |00 0O0O000] [10 000 00O0]
For p =2, n =7, the Cs are
[000 0 0 0 00] [00 0 0 0 100] [00 000 0 10]
000 O 0 010 00 0 —-1-2000 00 00-1-100
000 0 —-1-200 00 2 1 —-1000 00 01-1-100
000 2 1 —-100 0-11 2 0000/ 00 121 000
00-11 2 000 0-2-10 0000’ 0-1-110 000
00-2—-10 000 10 0 0 0000 0-1-100 000
010 0 0 000 00 0 0 0000 10 000 000
1000 0 0 000/ |00 0 0 0000/ |00 000 000]
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(0000 0 0 00 (000 000 00O 00 0000 O 1]
0000 0 0 00O 000 000 01 00 000—-100
0000 0 0 01 000 00—-1-10 00 000-2-10
0000 0 —1-20] 000 01-1-10] 00 0210 00
0000 2 1 —-10|” (000 121 00| |00 0120 00
000—-11 2 00 00-1-110 00 0-1-2000 00
000—2—-10 00 00-1-100 00 00 —-1000 00
0010 0 0 0 0] 010 000 00] |10 0000 0 0]

Finally, for p = 3, n = 9, the matrix C' is

00 00000 0 01]
0000 0 0-1-1-20
0000 12 2 1-10
00 0-2-10 1 2 10
00 1-1-2-10 2 00
00 2 0-1-2-11 00
0-12 1 0 -1-20 00
0-11 2 2 100 00
0-2-1-10 0 0 0 00
(10000000 00

Let us study next the attractivity of Gy (z).
THEOREM 3.6. Given p > 0. Let
Jp :={k:1<k<[p/2]; k and p+ 1 — k are relatively prime } = {k1,ka,... ky,},
Sp=ki+-+ky,
K,=5+---+5,
where ki = 1 and J, is the number of elements in J,. If f(z) is super-attractive of

degree s > 1 at the fized point 2, then G, (2) is super-attractive there of the degree
2(s + 1)Kr — 2.

Proof. Without loss of generality we suppose that 2 = 0. If
F(z) = aoz"™ + O(=""?),
then by induction we have
Fo(2) = amz (DT 4 02D L),
Note that
CuToyu X e fO Y
217Cr, w237, iy o0

By the construction of Cyy, we can see that ¢;; = 0 for 0 < i+ j < 2(K,) — 1 and
¢k, x, 7 0. Among the terms of ;i f°f°7 the smallest power of z is in the form

ci)‘jz(s‘“l)i‘“(s‘“l)j when s > 1, for 2K, < i+ j < 2M, . Furthermore, Z;V[:po coj =
CO,IMP =1. Thus,

Gum,(2)

K K
CKp;Kpa%(pZ%S-’_l) ! +O(22(S+1) T’+1)

co,m, % + O(2?)

= cxp,Kpa%(pZQ(S“)Kp‘l + 0260

Gu,(2) =
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COROLLARY. Let

T ("_Mp)
u Cn,o u

Grp(z) = ———
: 21TC’7(170_MP)u

with Cr(:O_M”) as in Proposition 3.4, then if f(z) is super-attractive of degree s > 1 at
the fized point 2 then G ,(2) is super-attractive there of degree 2(s + 1)"~MpTEKp
(s+1)"Mp 1.

4. The fixed point at co. Let f be analytic for |z| > 1 and co € Fy. Assume
that

0o 1 B
f@) =r2+) GG iy
k=1

For the time being, we assume that g is neither zero nor a root of unity. Then the
Taylor expansion of f° about co is

rem *yoz—|—zk' ™)kl m=1,2,....

According to Iserles [2], there exist numbers Dy, I =0,1,...,k, k=0,1,..., depen-
dent on {74}72, but not on m, such that

(m+1) Z Dk lel

Moreover, Dy, ;, = *yé_k, k=0,1,.... Let

By =1,

By, = e ZD;W i 1=2—k3—Fk...,1, k=1,2,...,

Ojll

Biak =7 (- Z Briv),  k=1,2,....
1=2—k

Then
1
= > Buw"  km=01,....
I=1—k

Therefore if pf Cp; =0, 17Cp; # 0, then

u’Cu prCp12%2 4+ 2B1o17Cp1z + O(1 _
Gle) = mt _ PIORE B P O o),
u 21 Oplz—l—zk:l HZl:l—k Bk711 Cplz

In the case when oo is a super-attractive fixed point of f of degree s, we write

f(z) =702" +0(z* 7).
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Then
frE) ="z o).

Note the highest power among zsi"’sj, for 1 <14,j < M,, must be located at i = M),
or j = M, and the fact that in the matrix Cys,, cn,s = cin, = 0 for 1 <@ < M,
Therefore we get

- uTOM;,U . Ei,j Ci,iji(Z)foj(z)
N 21TOMPU a 221»7]» Ciyiji(Z)
- 200_,Mp’y(()Mp)stp+l + O(stp)

2c001,75 2" + O(z2"" 1)

GMP (Z)

—2+0(1).

We have thus deduced the following result.

PROPOSITION 4.1. If 0o is a fized point of f which is neither neutral with vo a
root of unity nor super-attractive, then oo is not a fized point of Gy, (z) for

uTC'Mpu

GMP (2) - 21TOM u

PROPOSITION 4.2. If 0o is a super-attractive fixed point of f with s > 2, then oo
is a fized point with degree 1 of G, (2) for

uTCMpu
) = 917

For a general n > M, + 1, we choose Cr(:O—Mp) eCr andp > 1, since

PN VRGP RL T O) )
" 21TC’7(:)10_MP)u 2 Z” cij fo(2)

2Cn7Mp7n’Y(()n_Mp)’Y(()n)an7Mp +s™ + O(anfMp +s"71)

2cn,Mp_,n”yOn)25" +0(z" 1)

_ /Yén,Mp)ZSnfMp 4 O(anfl\/fp_l)7

the point oo is still a super-attractive fized point up to degree s"~Mr — 1,

PROPOSITION 4.3. If 0o is a fixed point of f which is neither neutral with vy a

root of unity nor supper-attractive, then oo is not a fized point of G(z) for
o
(z):% where C €C, and p>1; n>M,+1.

If 0o is a super-attractive fixed point of f with degree s > 2 then oo is a super-attractive
fived point of degree up to s"~Mr — 1 for the same G(z) as above.
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5. The behaviour for 3; = 1. Supposing that
=2

where, again, f°™ is the mth iterant of f, it follows from [1] that there exist constants
7, such that

@|,_.

(5.1) *z—l—i Zw’jmj 2, mezZt,

=2 \ j=1

-1
Tee—1 = (%) 5 622,3,....

Suppose that C € C}'. Differentiating g7 Cq; = Owith respect to ¢ we obtain

where

qi Cq) =
hence, letting ¢ = 1,
(5.2) 17Ck, =0,
where
ki ==[00120 ..t ], rez”

Differentiating again, we have
af Caf +a;" Cqj =0,
hence, because of (5.2),
(5.3) 17Cky + ki Ck;, = 0.
Because of (5.1), we have
u—lz—l—i Zr“ 2t
=2 \j=1

Thus, taking (5.2) into account,

) -1
1"Cu=> " r17CK, | 2,
(=3 \ j=2

[e%s) oo £1—142—1

0 -1
w'Cu=23 |3 reslChi | 24 3 30 30 > ik, Ok ¥,
=3 \j=2

21:2 22:2 j1:1 j2:1
Recall that the function that we are iterating is

1 u’Cu
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In our case

r3 kTCky + O(2)
Gn(z) =2z — .
27”3721 Ckz + O(Z)

Thus, unless k¥ Ck; = 0, (5.3) yields
Gn(2) = 32+ O(z%).

In other words, the fixed point is merely attractive (not super-attractive!) and
G1(0) = 3. This is identical to the standard Steffensen method [2].
The remaining case is

(5.4) kTCk, =17Ck, = 0.

Considering the third derivative of g7 Cq; = 0, we readily affirm (taking into account
(5.2)—(5.4)) that

(5.5) 17Ck3 + 3kTCk, = 0.
Now
T2.173 2k’{Ck2 + O(Z)
Gn(z)=2z|(1 =
(Z) & ( + T4731T0k3 + O(Z)

Thus, because of (5.5) and unless k¥ Cky = 0, we have
Gn(2) = 224 0(2%)

and the situation is actually worse than in the previous case!
So, let us proceed a step further, replacing (5.5) with

(5.6) 17Ck3 = kI Cky = 0.
Another differentiation of g7 Cq; = 0 gives
(5.7) 17Cky + 4k{ Ck3 + 3k2 Cky = 0.

In the present case

2 kT Cks + 12 , k¥ Cky + O
Gn(z):z 14 T2,174,3K3 3 T T'32K9 2 (Z)
27‘5)41T0k4

— (14 2k,‘1er3 + kngz + O(Z)
17Cky + O(2)

Thus, provided that 17Cky # 0, G,,(2) = O(2?) if and only if
17Cky + 2k] Cks + ki Cky = 0.
Substituting the value of 17Cky from (5.7) yields the conditions

(5.8) 17Cks #0, kI Ckz + ki Cky = 0.
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It is instructive to check (5.8) in C§ for n € {5,...,7}. For n = 5 we have a
one-dimensional space spanned by (3.8), and the latter gives

k{Cks + ki Cky = 2.
Likewise, for n = 6 we have
ki Cks + ki Cky = 4.
However, in the case n = 7 we have a two-dimensional space and

kTP ks + ki Pk, =8,
kT Poks + ki Poky = 2.

Hence, the only possible choice of C' (up to a nonzero multiplicative constant) which
is consistent with the second condition in (5.8) is

o0 0 0 0 0 0 1
00 0 0 0 -1 -4 0
0o 0 0 0 4 6 -10
0 0 0 -6 -3 4 0 0
P=h—-dB=104 g 4 23 6 0 0 o0
0 -1 6 4 0 0 0 0
0 -4 -1 0 0 0 0 0
1 0 0 0O 0O 0 0 0|

Unfortunately, the first condition of (5.8) is violated, since 17 Ck,4 = 0. This, in fact,
is predictable — the function v for P is of the form

v(t) = v1(t) — 4vo(t) = (1 —1)5(1 + 1).

Thus, d‘v(1)/dt* =0,¢=0,1,...,5. But

v(1) =17C1,
V(1) = 17Ck;,

v"(1) =17C(ky — ky),

v (1) = 17C (k3 — 3ky + 2ky)

and so on. We conclude that 17Ck, = 0, £ = 0,...,5. The general result can be
phrased as a theorem.

THEOREM 5.1. Suppose that

fz) =2+ Z %ﬁgzé
=2

ulCu

() = 17 where C € C;éwp and p>1.

Then

G(z) =apz+0(z%)  for p>1
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where oy # 0 for p =1,2,...,5. Furthermore, letting L, = J1 + -+ + Jp,, it is true
that Zjl-i-jz:%p k! Ckj, # 0 for p > 6 implies o # 0.

Proof. Since p > 1, we have

00 —1
1"Cu=> "> ratck; | 2,
=3 \j=2
00 /-1 oo oo l1—145—1
u’Cu = 22 Zrl=j1Tij 2+ Z Z Z Z Tfl-,jlwmhkﬁijzzller-
(=3 \j=2 1=2£2=2j1=1j2=1

We will prove that, letting ko := 1,
(5.9) k! Cuy,k; =0, for 0<i4+j<2L,—1.
Let

ay(t,s) = (t—s)(t — s);
[p/2]
ap(t,s) = ap_1(t, ) 11 (tF — sPHI=ky(pti=k _ gk)
k=1, ged(k,p+1—k)=1
/2] pti-k
= II & =sHEk-s).

k=1 i=k,ged(i,k)=1

Then, since a,(t, s) has 2L, factors of form (t* — s') and these factors are zero when
t=1and s=1,

ot = 2 (12 (12 (12 (2 (s Lt ))) )

oiti Fo Ll
Gt D angpara(ts)
—————— t=1, s=1
—0, for 0<i+j<2L,—1,

t=1, s=1

Furthermore,
92Lv o+l
]-TCMkaLp = %ap(t, S) + Z Ukﬁlmap(t, S)
kHl<2Ly t=1, s=1
[p/2] p+1—Fk
= L) ] II ik#o.

k=1 i=k, ged(i,k)=1

Consequently,

00 -1

]_TCMPU = Z Z ’I”l,j]_TCMpkj Zl

1=2L,41 \j=2L,
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B2\ 2"
- (?) 170, kar, 27771+ O(z2007)

9] -1
U.TCMPII =2 E E T‘lJlTCMpkj ZH_l
1=2L,+1 \j=2L,
ll_l l2_1

oo
. . T e
+ E E E Tllyjlrlzdzkjl OMpkaz

l14+12>2L,41 j1=1 jo=2L,—j1
T 2L,42
=2ror, 41,20, 1" Car, kop2z® "
T 20,42 20,43
+ > Tji+ 11 Tja+1,5:Kj, Cnr, Kjp 277775 + O(27707)
J1,J2>0,51+j2=2L,
3 2L,
_ 2 Z T 2L,+2 2L,+3
= <7) ijOMpkj2Z P + O(Z P ),
Ji+j2=2L,
where kg = 1. So we conclude
G(2) = apz+0(z%) for p>1,
. T . . . .
where oy, # 0 if Ej1+j2:2Lp k; Cun,kj, # 0. By direct calculation we can easily

deduce that oy, # 0 for p = 1,2, 3,4,5. This completes the proof. O
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