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UNIFORM BLOW-UP ESTIMATES FOR NONLINEAR HEAT 
EQUATIONS AND APPLICATIONS 

FRANK MERLE* AND HATEM ZAAGt 

We consider the following nonlinear heat equation 

,     v /      ut    =    Au+lu^u 
(U   ^ I u(0)    =    uo, 

where u : (x, t) G RN x [0, T) -> R, 

(0.2)      1< p, (iV - 2)p < N + 2 and either no > 0 or (3JV - 4)p < 3iV + 8. 

More general vector-valued heat equations can be considered with similar results (see 
[MZ99] for more details) : 

(0.3) (     *    =   ±u + F(\u\)u 

where u : Q x [0,T) -> RM, p satisfies (0.2), ^ = R^ or fi is a smooth bounded 
convex domain of R^, -^XM) ~ l^^-1 as |ii| —» +00, and M € N. 

We are interested in the blow-up phenomenon for (0.1). Many authors have 
been interested in this topic. Let us mention for instance Friedman [Fri65], Fujita 
[F11J66], Ball [Bal77], Bricmont and Kupiainen [BKL94], Chen and Matano [CM89], 
Galaktionov and Vazquez [GV95], Giga and Kohn [GK89], [GK87], [GK85], Herrero 
and Velazquez [HV93], [HV92]. 

In the following, we consider u(t) a blow-up solution of (0.1) and denote its blow- 
up time by T. We aim at finding sharp uniform estimates at blow-up and specifying 
the blow-up behavior of u(i). Such a study is done considering equation (0.1) in its 
self-similar form : for all a G R^, we define 

(0.4) y = 4==, s = - log(T - t), Ti;a|T(y, s) = (T - t)^u(x, t). 

Therefore, Wa,T = w satisfies Vs > — log T, Vy G R^ : 

(0.5) -^ = Aw- -y.Vw — + Iw^w. 
as 2 p — 1 

Let us introduce the following Lyapunov functional associated with (0.5) : 
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Ivl2 

where p{y) = (
e
47r) */2. 

The question is to estimate wa,T(s) as 5 —> +00, uniformly with respect to a, whether 
a is a blow-up point or not (a is called a blow-up point if there exists (an)tn) —> (a, T) 
such that \u(an,tn)\ —> +00). 

Giga and Kohn showed that self-similar variables are convenient for describing 
the blow-up rate in the following sense : there exists 60(^0) > 0 suc^1 ^a^ ^5 — ^oC^o), 

(0.6) 60 < k(5)|L- < -• 

We first aim at sharpening this result in order to obtain compactness properties in 
our problem. 

1. A Liouville Theorem for equation (0.5). We are interested in classifying 
all global and bounded solutions of (0.5), for all subcritical p : 

(1.1) p > 1 and (N - 2)p < N + 2. 

We claim the following : 

THEOREM 1. A Liouville Theorem for equation (0.5). Assume (1.1) and 
consider w a solution of (0.5) defined for all (y, 5) G R^ x R such that V(y,s) G 
R^ x R, |^(2/, 5)| < C. Then, either w = 0; or w = K, or w(y, s) = =t<£>(s — SQ) where 

K = (p— l)-^1, so G R and (p(s) = K(1 + e5)-^71. 

REMARK, cp is in fact an L00 connection between two critical points of (0.5): K; 

and 0. Indeed, 

(p = 7 + ^P,   <£>(-00) = K,   (^(+00) = 0. 
p-l 

REMARK. A similar classification result can be obtained with a solution w defined 
only on (-00,5*) (see [MZ98]). 

Theorem 1 has the following corollary : 

COROLLARY 1. A Liouville Theorem for equation (0.1). Assume (1.1) 
and consider u a solution of (0.1) defined for all (x,t) G R^ x (—00,0) such that 

V(a:,t) G R^ x (-oo,0); \u(x,t)\ < C(-t)~^. Then, either u = 0, or uix.t) = 

±/<T* - t)'^ for some T* > 0. 

The proofs can be found in [MZ99] and [MZ98]. The key tools in the proof are 
the following : 

i) A classification of all possible linear behaviors of w(s) as 5 —> — 00 in Z^R^) 

ii) The following geometric transformations which keeps (0.5) invariant : 

w(y,s) ->Wa,b(y,s) =w(y + ae%,s + b), 

where a G R^ and b G R, 
iii) A blow-up criterion for (0.5) used for solutions close to the constant point ^ 

(This criterion is also a blow-up criterion for (0.1) via the transformation (0.4)) : 
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If for some SQ G R, I(W(SO)) > 0 where 

p+i 

I(w) = -2E(w) + ^ ( [   \w(y)\2p(y)dyS 

P+l    \JRN j 

then w(s) blows up in finite time. 

REMARK. This criterion is sharp for solutions near constants. Indeed, if W(SQ) = 
Co, then 

w blows-up in finite time <& \CQ\ > K <£> /(Co) > 0. 

REMARK. The proof of the Liouville Theorem strongly relies on the existence of 
a Lyapunov functional for equation (0.5) and can not be extended to other systems 
where the nonlinearity is not a gradient. In [Zaa], we go beyond this restriction and 
introduce new tools to prove a Liouville Theorem of the same type for the following 
system 

ut = Att + vp,   vt = Av + uq. 

2. Localization at blow-up. We assume again (0.2). The estimate (0.6) of 
Giga and Kohn gives compactness in the problem. Using a compactness procedure 
in the singular zone of R^ (which is, say {y \ \w(y, s)\ > ^}), we find a solution 
satisfying the hypotheses of Theorem 1. Therefore, Aw is small with respect to \w\p 

in this singular zone (or equivalently, Au is small with respect to \u\p). A subcritical 
localization procedure introduced by Zaag [Zaa98] (under the level of the constant 
K) allows us to propagate this estimate towards the intermediate zone between the 
singular and the regular one. We claim the following : 

THEOREM 2. Comparison with the associated ordinary differential equa- 
tion. Assume (0.2) and consider T < To and ||wo||c2(RN) ^ Co- Then, Ve > 0, there 
is CfoCcTo) such that\/(x,t) € RN x [0,T), 

\ut -\u\p-1u\ <e\u\p + C. 

REMARK. This way, we prove that the solution of the PDE (0.1) can be uniformly 
and globally in space-time compared to a solution of an ODE (localized by definition). 
Note that the condition u(0) € C2(MiV) is not restrictive because of the regularizing 
effect of the Laplacian. 

REMARK. Many striking corollaries can be derived from this theorem. It implies 
in particular that no oscillation is possible near a blow-up point a, and that \u(x, t)\ —> 
-foo as (x,i) —> (a,T). Moreover, Veo > 0, there exists ^o(^o) < T such that for all 
b <E RN, if |u(M)| < (1- - €o)«(T - t)~^r for some t G [*o,T), then b is not a 
blow-up point (this specifies more precisely a former result by Giga and Kohn where 
£o = *o(€o?a)). 

3. Optimal L00 estimates at blow-up. We still assume (0.2). Using estimate 
(0.6) and the Liouville Theorem, we make a compactness argument to get the following 
sharp estimates : 

THEOREM 3. L00 refined estimates for w(s). Assume that (0.2) holds. Then, 
there exist positive constants d for i = 1,2,3 such that if u is a solution of (0.1) 
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which blows-up at time T and satisfies u(G) G C^R^), then Ve > 0; there exists 
5i(e) > - logT such that Vs > sx, Va G RN, 

"a/rtollL-    <    ^ + (^ + e)i,      ||Vti;aiTW|Uoo    <    % 
Wa,T{s)\\Loo      <      ^-, ||V3^a,T(5)||Loo      <      ^. 

REMARK. In the case N = 1, Herrero and Velazquez (Filippas and Kohn also) 
proved some related estimates, using a Sturm property introduced in particular by 
Chen et Matano (the number of space oscillations is a decreasing function of time). 

REMARK. The constant ^ is optimal (see Herrero and Velazquez, Bricmont and 
Kupiainen, Merle and Zaag). 

4. Different notions of blow-up profiles and the stability question. We 
assume (0.2). We consider a G M^, a blow-up point of u(t), solution of (0.1). From 
translation invariance, we can assume a = 0. We would like to know whether u(t) (or 
WO,T(S) defined in (0.4)) has a universal behavior or not, as t —> T (or s —> +oo). 

Filippas, Kohn, Liu, Herrero et Velazquez prove that w behaves in two distinct 
ways : 

KQy^s) "M'-it*. 0 ' TIT* I as s - either Vi? > 0,   sup 
\y\<R 

+oo, for some 5 > 0 where I G {1,..., iV}, Q is a N x iV orthogonal matrix and // is 
the / x / identity matrix. 

- or Vi? > 0,  sup \w(y, s) - K\ < C(R)e~XoS for some AQ > 0. 
\y\<R 

From a physical point of view, these results do not tell us much about the transi- 
tion between the singular zone (w > a where a > 0) and the regular one (w ~ 0). In 
[MZ99], we specify this transition by proving the existence of a profile in the variable 
z — JL 

THEOREM 4.   Existence of a blow-up profile for equation (0.1). Assume 
(0.2) holds.  There exists I G {0,1,..., TV} and a N x N orthogonal matrix Q such that 
w(Q(z)y/s,s) —> fi(z) uniformly on compact sets \z\ < C, where fi(z) = (p — 1 + 

i 

^EN2)"^ ifl>landfo{z) = K = (p-l)-&. 
i=i 

This result has been proved by Velazquez in [Vel92]. However, the convergence 
speed depends on the considered blow-up point in [Vel92], whereas it is uniform in 
[MZ99]. This uniformity allows us to derive the stability of the profile f^ in [FKMZ]. 

Using renormalization theory, Bricmont and Kupiainen prove in [BK94] the exis- 
tence of a solution of (0.5) such that 

Vs > 5o, Vy G R", Ky, s) - /iv(-^)| < ^ 

Merle and Zaag prove the same result in [MZ97], thanks to a technique of finite- 
dimension reduction. They also prove the stability of such a behavior with respect to 
initial data, in a neighborhood of the constructed solution. 
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In [Zaa98] and [Vel92], it is proved that in this case, u(x,t) —► u*(x) as t —> T 

uniformly on and that u* (x) 
i 

p-i 
as x 0. 8p| log|x| 

[(p-l)2|xPj 
One interesting problem is to relate all known blow-up profiles' notions : profiles 

for \y\ bounded, -^ bounded or x ~ 0. We prove in the following that all these 
descriptions are equivalent, in the case of single point blow-up with a non degenerate 
profile (generic case). This answers many questions which arose in former works. 

THEOREM 5. Equivalence of blow-up behaviors at a blow-up point. ;4s- 
sume (0.2) and consider a an isolated blow-up point of u{t) solution of (0.1). The 
following behaviors of u(t) and wa,T(s) (defined in (0.4)) are equivalent : 

w(y,s)- *+2S<"-5'»l! = o [ - ] as s —> +oo; i)VR>0,  sup 
\y\<R 

ii) Vi? > 0;   sup \w{zy/s,s) - fo{z)\ —> 0 as s —> +00 with fo(z) = (p 
\z\<R 

1 + 

(p-lf 
4p Nl2)- 

u*(x) 

Hi) 3eQ  > 0 such that for all \x — a\  < €Q, u{x,t) 
i 

P-I 

u*{x) as t —+ T and 
Sp\ logjz-al 
(p-l)2|x-a|2 

A further application of the Liouville Theorem is the stability of the behavior de- 
scribed in Theorem 5, with respect to perturbations in initial data. Using a dynamical 
system approach, we prove in [FKMZ], with Fermanian the following : 

THEOREM 6. Stability of the blow-up profile.Assume (1.1) and consider u(t) 
a blow-up solution of (0.1) with initial data u$ which blows-up at t = f at only one 
point a = 0 and satisfies (0.6). Assume that 

for all \x\ >Randte [0,f),   \u(x,t)\ < M. 

and that the function w0f(y,s) defined in (0.4) satisfies uniformly on compact sets 
ofRN 

(4.1) ^Av^-.^-iN-^). 

Then, there is a neighborhood V in L00 of UQ such that for all UQ G V the solution of 
(0.1) with initial data UQ blows-up at time T = T(UQ) at a unique point a = a(uo) and 
the function waiT(y,s) defined in (0.4) satisfies uniformly on compact sets ofRN 

wa,T{y,s)-K    ~     —(jV-iJLi 
s->+oo 2ps 2 

Moreover, (a(uo),T(uQ)) goes to (0,T) as UQ goes to uQ. 

■)• 

REMARK. This results generalizes the stability result of [MZ97]. Note that unlike 
most applications of the Liouville Theorem, this result is valid for all subcritical p. 
In [FKZ], the same result is proved (only under the condition (0.2)), by a completely 
different approach based on the Liouville Theorem and on [MZ97]. 

REMARK. In [FKMZ], we prove the stability with respect to initial data of the 
blow-up behavior with the minimal speed 

(4.2) Ki)l|L~<C(T-i)-*=T 



556 F. MERLE AND H. ZAAG 

for all subcritical p (that is under the condition (1.1)). Note that this result is obvious 
under the weaker assumption (0.2), for Giga and Kohn proved in [GK87] that all blow- 
up solutions satisfy (4.2). No blow-up rate estimate is known if 

UQ has no sign and (37V - 4)p > 3N - 8. 

Therefore, our result is meaningful in this last case. 
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