
METHODS AND APPLICATIONS OF ANALYSIS. c© 2013 International Press
Vol. 20, No. 2, pp. 197–210, June 2013 006

FIVE OPEN PROBLEMS IN COMPRESSIBLE MATHEMATICAL
FLUID DYNAMICS∗

DENIS SERRE†

Abstract. The problems below are motivated by some of the works I did in the past. They deal
with the dynamics of compressible fluids, either viscous or inviscid. They could be good questions
for mathematicians having originality and technical strength. They are not worth a million dollars,
even not a penny, but they are interesting in their own.
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1. Global-in-time Cauchy problem for Euler–Fourier system.

Problem #1. To develop a global-in-time theory of the Cauchy
problem for the 1-D Euler–Fourier system. Initial data would only
be constrained by finite energy and entropy, and possibly by local
boundedness of appropriate quantities, like ρ, 1ρ , v, θ,

1
θ .

The complete Navier-Stokes-Fourier system for a viscous, heat-conducting fluid
is

∂tρ+ div(ρv) = 0,

∂t(ρv) + Div(ρv ⊗ v) +∇p(ρ, e) = DivT ,

∂t

(
1

2
ρ|v|2 + ρe

)
+ div

(
1

2
ρ|v|2 + ρe+ p(ρ, e)

)
v = div(T v + κ(ρ, e)∇θ),

where the viscous tensor is given by

T := µ(ρ, e)(∇v + (∇v)T ) + (ζ(ρ, e)− 2µ(ρ, e))(div v)Id.

Under appropriate assumptions about the pressure law (ρ, e) 7→ p and the diffu-
sion coefficients µ, ζ and κ, the existence of global-in-time renormalized solutions to
the Cauchy problem has been proved for finite energy/entropy initial data [1, 9, 10, 12].
Local-in-time existence of smooth solutions is also known when the initial data is
smooth enough. By smooth, we mean data of class Hs with s > 1 + d

2 , d the space
dimension; the corresponding solutions are almost classical ones. See [15, 16, 26].

One may wonder what happens if one of the diffusion processes is negligible.
We explained in [25] that the only meaningful limit is that towards the Euler-Fourier
system, for which µ, ζ ≡ 0 but κ > 0. In particular, we proved that for a smooth initial
data, the local-in-time smooth solution provided by S. Kawashima’s theory converges
as µ, ζ → 0+ towards the local-in-time smooth solution of the Euler-Fourier system.

When the initial data is not smooth, but has finite energy and entropy, the
Cauchy problem for the Euler-Fourier system seems to be an open problem; even
in one space dimension!

Why is it difficult? Let us first recall some basic facts from [15, 26].
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Viscous system of conservation laws have the general form

∂tu+ DivF (u) = Div(B(u)∇u) :=
∑
α,β

∂α(Bαβ(u)∂βu), (1)

where u(x, t) ∈ Rn is the vector-valued unknown. Basic assumptions are
• The system (1) dissipates a strongly convex entropy η(u),
• The p first lines of the system are first-order; with w = (u1, . . . , up), they

read

∂tw + Divf(u) = 0.

• The rank of the symbol

B(u; ξ) =
∑
α,β

ξαξβB
αβ(u)

equals n − p for every ξ 6= 0. Its range is therefore constant, equal to {0} ×
Rn−p.

We proved in [26] the following facts
• The dissipation tensor B(u)∇u involves only the gradients ∇zj for j = p +

1, . . . , n where

zj =
∂η

∂uj
.

Defining z := (zp+1, . . . , zn), the first-order operator z 7→ B(u)∇u =(
0

b(u)∇z

)
is elliptic.

• Let g be defined from f by the change of variable u 7→ (w, z), that is g(w, z) =
f(u). When z is frozen, the system

∂tw + Divg(w, z) = 0. (2)

is hyperbolic. It is called the reduced inviscid system. Actually, it admits
a strongly convex entropy E which is evaluated from η after two Legendre
transforms η 7→ η∗ (with respect to the variable u) and η∗ 7→ E (with respect
to z1, . . . , zp, while zp+1, . . . , zn are frozen).

It turns out that the system (1) displays both parabolic features (according to the
variable z) and hyperbolic ones (according to w). The hyperbolic waves are convected
at the velocities of system (2).

The reduced system (2) plays another important role in the analysis of (1). For
instance, it governs the jump relations (Rankine–Hugoniot relations) in discontinuous
solutions. It can be genuinely nonlinear or linearly degenerate. In the former case,
the solutions of (2) (at constant z) usually devellop shock waves in finite time. In the
full system (1), this phenomenon remains possible: w becomes discontinuous in finite
time, while z does not, because of the parabolic dissipation. However, ∇z becomes
discontinuous when w does, due to the coupling. Actually, there is a competition
between the damping induced by dissipation plus coupling on the one hand, and the
hyperbolic non-linearity on the other hand. Therefore a small smooth initial data
yield a global-in-time solution, provided that the coupling is strong enough, in the
sense that the eigenvectors of the hyperbolic symbol

A(u; ξ) =
∑
α

ξαDFα(u)
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do not belong to the kernel of B(u; ξ). This property bears the name of Kawashima–
Shizuta condition.

The possibility that w becomes discontinuous renders the analysis of the Cauchy
problem especially difficult. Morally, we don’t expect to solve the full Cauchy problem
before being able to solve that for the reduced system (2); somehow, all the difficulties
associated with (2) are present in (1).

Of course, when (2) is linearly degenerate, the situation is much nicer, because
we expect that the regularity of v be propagated.

Back to Gas Dynamics. We distinguish two cases, depending on whether we take
in account both viscosity and heat conduction, or only heat conduction:

• In the Navier-Stokes-Fourier system, we have p = 1, w = ρ and z = (vθ ,−
1
θ ).

The reduced equation

∂tρ+ div(ρv) = 0

is a transport equation with constant velocity (here, v is frozen because the
viscosity does involve ∇v). Not only (2) is linearly degenerate, but it is even
linear. This is a very nice situation; for instance the discontinuities of ρ may
propagate, and they actually do, but they may not appear from nowhere.
This explains why this case has been so far the only one for which the global
existence was proved for the Cauchy problem with large initial data.

• In the Euler-Fourier system, there is only heat conduction. Then p = 1 + d
and w = (ρ, ρv), z = − 1

θ . The reduced system is the Euler system for
a isothermal gas; it is genuinely non-linear. The theory of the quasi-linear
hyperbolic Cauchy problem for large initial data is still lacking if d ≥ 2, so we
don’t expect any immediate progress for the multi-dimensional Euler-Fourier
system.
This leaves open the one-dimensional case

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv2 + p(ρ, e)) = 0,

∂t

(
1

2
ρv2 + ρe

)
+ ∂x

(
1

2
ρv2 + ρe+ p

)
v = ∂x(κ∂xθ).

The reduced system is a 2× 2 hyperbolic system

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv2 + p(ρ)) = 0.

The hyperbolic Cauchy problem with large data can be attacked by the com-
pensated compactness method, as done by R. DiPerna [7] and followers (G.-
Q. Chen & coll. [8], P.-L. Lions, B. Perthame, P. Souganidis & E. Tadmor
[20, 19], Ph. LeFloch [17]). It is not clear how compensated compactness
could be adapted to a partially parabolic context. A seamingly better situa-
tion arises if we think that for a perfect gas, the isothermal motions obey to
the pressure law p = A2ρ, where A = A(θ). Then the reduced system is the
one analyzed by T. Nishida [22]; it has the property that the density stays
away from zero if it is positive at initial time. In addition, there is a Lyapunov
function, analogous to the total variation of the Riemann invariants, which
makes the Glimm scheme particularly tractable. But again, it is unclear how
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to incorporate the Glimm scheme, even in its simplest form à la Nishida, into
an analysis of a coupled hyperbolic-parabolic system.

We point out one difficulty that is common to all mathematical questions about
compressible gases: it is unclear a priori whether the density remains positive ev-
erywhere. The vacuum renders the equations singular in some sense; at least, the
first-order part (convection terms) looses hyperbolicity. Even in one space-dimension,
this difficulty necessitates a specific treatment. See the works by compensated com-
pactness, for instance [19, 20, 5].

2. 2D compressible Euler system.

Problem #2. To develop a Compensated Compactness calculus
about symmetric matrices, when CC gives only inequalities. As a
preliminary step, this calculus should give complete continuity of
the semi-group associated with the Cauchy problem for a multi-
dimensional scalar conservation law.

Let us turn towards the Euler system for a barotropic gas:

∂tρ+ div(ρv) = 0,

∂t(ρv) + Div(ρv ⊗ v) +∇p(ρ) = 0.

Let us assume that p′ > 0 (hyperbolicity) and either (ρp)′′ does not vanish (genuine

non-linearity, or p ≡ p∞ − a2

ρ (Chaplygin gas). When the initial data is Hs with

s > 1 + d
2 , the standard theory of symmetric hyperbolic systems ensures that a

unique solution exists, locally in time. Because of the singularity at the vacuum, one
has to work in appropriate variables (h(ρ), v), see [2, 21].

So far, the existence of global-in-time solutions is an open problem, unless either
d = 1 (as mentionned in Section 1), or the initial data is so special (see [11, 24]) that
the solution remains classical for every t > 0. In one space dimension, two sorts of
techniques are available. That based on BV estimates (Glimm scheme, front tracking)
is unlikely to extend in several space dimensions, because of the clues that BV (Rd)
cannot be a space of well-posedness (see J. Rauch [23]), a phenomenon associated
with the dispersiveness of the Euler system (and of most multi-D systems as well).
The other technique is Compensated Compactness.

At first glance, Compensated Compactness is hopeless in dimension d ≥ 2, for
two reasons:

• In one space dimension, L. Tartar’s strategy [29], developed by DiPerna [7]
and followers involves infinitely many entropies. Such a large family always
exists for 2× 2 systems (two unknowns, two independent variables), but are
unlikely in the other cases. This is the reason why CC has not been applied to
the one-dimensional full gas dynamics, which consists in 3 equations. Even
for an isentropic gas, the space of entropies is finite dimensional if d ≥ 2.
Thus we may deal only with finitely many independent entropy-flux pairs.

• For 2 × 2 systems, we have at our disposal the so-called div-curl Lemma,
which is an equality. In higher space-time dimension (3 or more indepen-
dent variables), the information provided by CC consists only in inequalities.
Specifically, we expect that for some approximate solutions uε bounded in
L2
loc, some vector fields ~qα(uε) are such that the sequence div~qα(uε) remains
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in a compact subset of H−1loc (R1+d). Say that α = 1, . . . , r ; if Q : Mr×(1+d)(R)
is a quadratic form satisfying

(detM = 0) =⇒ (Q(M) ≥ 0),

then a Young measure associated with the sequence (uε)ε>0 must satisfy

〈ν,Q(M(u))〉 ≥ Q(〈ν,M(u)〉), (3)

where u 7→ M(u) is the matrix-valued function whose rows are the vector
fields ~qα. Equivalently, we have

〈ν ⊗ ν,Q(M(v)−M(u))〉 ≥ 0, (4)

where the measure ν⊗ν acts on continuous functions of the doubled variable
(v, u) ∈ Rn × Rn.
The inequality (3) (or equivalently (4)) is quite poor in practice, and CC has
never been applied to hyperbolic conservation laws in three or more space-
time dimensions. Even in the case of scalar conservation law (n = 1), only
the one-dimensional (two space-time dimensions) has been treated by CC.

The direction that I suggest to investigate invokes another property of those
systems of physical interest: the conservation laws to be solved have a symmetric
form. This is clear in gas dynamics, because the Euler equations can be written as

Divt,xS = 0, S =

(
ρ ρvT

ρv ρv ⊗ v + pId

)
.

Therefore the ambient space to consider in CC is not that of arbitrary matrices, but
that of symmetric matrices Sym1+d(R). My opinion is that we may even forget about
the equation of energy, at least when applying Murat-Tartar’s inequality (3). After
all, it is already used to get an a priori estimate in L∞t (L2), and its presence should
break the symmetry.

Thus let us apply CC only to the sequence Sε := S(ρε, vε). Even if we have
only one such sequence, instead of an infinity, and only inequalities instead of an
equality, we do have a lot of them. Namely, we obtain as many inequalities as there
are quadratic form Q : Sym1+d → R such that

(detS = 0) =⇒ (Q(S) ≥ 0).

There are lot of such forms. For instance,

Q0(S) = dTr(S2)− (TrS)2

works, because it rewrites in terms of the eigenvalues λ0, . . . , λd of S as

d

d∑
j=0

λ2j −

 d∑
j=0

λj

2

,

which is non-negative when λ ∈ R1+d has one zero component, by Cauchy–Schwarz
inequality. From Q0, we may also construct QP : S 7→ Q0(PTSP ) whenever P ∈
M1+d(R). If P is singular, then QP is non-negative definite, and Murat-Tartar’s
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inequality is just a consequence of Jensen’s Inequality. On the contrary, (3) is non-
trivial for QP if P is non-singular.

In practice, the set of quadratic forms suitable for CC is a convex cone, with a
compact section. It is sufficient to write the Murat-Tartar inequality for each extremal
point of this section. The first step would therefore to identify accurately this cone.
It can be seen that this cone is strictly bigger than just that spanned by the QP ’s and
the non-negative quadratic forms.

Comments.
• We do not expect to work out the CC for gas dynamics by following the above

strategy, even in one space dimension. When d = 1, all the QP ’s coincide
and this amounts to apply the div-curl Lemma only once, a notoriously poor
approach. Therefore we modestly suggest to push forward CC in a not-so-
hopeless situation, that of a multi-dimensional scalar conservation law.

• Our new approach is motivated by Tartar’s calculus for the one-dimensional
scalar equation

∂tu+ ∂xf(u) = 0, u(t, x) ∈ R.

Tartar observed that it is enough to apply CC only once, to the entropy-flux
pairs (u, f) and (f, η), where of course η′ = f ′2. Then one uses the fact that
for every a, b ∈ R, we have

(b− a)(η(b)− η(a)) ≥ (f(b)− f(a))2,

with equality only when f is affine between a and b. This choice of entropy-
flux pairs amounts to dealing with a symmetric object

S =

(
u f(u)

f(u) η(u)

)
.

Actually, Tartar’s calculation works out even in we invoke one inequality
of the form (3), instead of the div-curl Lemma: it is enough to take Q =
−det. A natural generalization to a multi-dimensional scalar conservation
law ∂tu + divf(u) = 0 would be to work with the symmetric matrix S(u)
where

s′αβ(u) = f ′α(u)f ′β(u), f0(u) ≡ u.

We point out that S′(u) is non-negative; incidentally, it is rank-one.
The good news are that in one space dimension, S 7→ −2 detS is the special
case of the Q0 that we are allowed to deal with in several space dimensions.

3. Compressible Navier-Stokes system with constant viscosities near
vacuum.

Problem #3. In [13], D. Hoff and the author found an unphysical
consequence of the hypothesis that the viscosity is a constant coef-
ficient. This phenomenon occurs in a one space-dimension gas, in
presence of vacuum. Is there a multi-dimensional counterpart?

Let us consider the isentropic or isothermal Navier-Stokes equations for a com-
pressible fluid:

∂tρ+ div(ρv) = 0,

∂t(ρv) + Div(ρv ⊗ v) +∇p(ρ) = DivT ,
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where the viscous tensor is given by

T := µ(∇v + (∇v)T ) + (ζ − 2µ)(div v)Id.

Let us assume that the viscosity coefficients are constant. This is not physically
realistic, yet it is assumed in some mathematical works, either for convenience or
because it is needed to work out the analysis. This assumption has the drawback
that when the density vanishes, there remains a non-trivial equation for the velocity,
namely

µ∆v + (ζ − µ)∇divv = 0. (5)

This suggest that when considering a sequence of initial data (ρm0 , u
m
0 ) with ρm0 > 0,

tending to a limit (ρ̄0, ū0) which has a zone of vaccum V0, then the limit ū of the
velocities um(t, x) will satisfy (5). This “ghost” velocity could have some effect onto
the boundary of the vacuum zone V(t), like if there remained some gas in this domain,
or like if the vacuum had its own pressure.

The scenario described above has been rigorously justified in one space dimension
by D. Hoff and the author [13]. Specifically, the limit data (ρ̄0, ū0) was that of two
droplets of gas separated by vacuum. As long as the drops don’t merge, they evolve
independently, with their own constant masses mr,` and momenta qr,`. Their centers
of mass move at constant speeds v = q/m. Assuming vr > v`, we deduce that the
drops must merge at a time

T ∗ <
v` − vr
L

,

with L the distance between the centers of mass at initial time. On the contrary,
when the initial data is modified by the addition of a small density ε > 0 between the
drops, we observe that the drops remain separated by a wake of length ≥ R, where R
does not depend upon ε and t > 0. Therefore the limit of the corresponding solution
is not the solution associated with the limit of the initial data: the solution does not
depend continuously upon the initial data when the density tends to zero somewhere.
Actually, the limit solution displays an unphysical transfer of momentum between
both droplets.

The Question is whether this scenario remains valid in several space dimensions.
We still may consider two droplets, such that the centers of mass and the velocities
satisfy

G` −Gr + τ(v` − vr) = 0

for some τ > 0. Then we know that the drops must merge at some time T ∗ < ∞
(mind that T ∗ might be larger than τ , as the center of mass of a droplet may not
belong to the droplet itself, if it is not convex). Suppose now that the surrounding
vacuum is replaced by an arbitrarily small density ε > 0. What can we say about
the distance r between the drops as a function of ε and t ? Does it remain uniformly
positive ? This is not crystal-clear, because the added gas may escape in the directions
tranversal to the axis between the drops. Or, is it possible that the merging of the
drops is delayed, in the sense that there exists a time T ′ > T ∗ such that

lim
ε
inf
→0

r(ε, T ′) > 0 ?
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A possibly simpler problem is that of an annulus, or of a spherical shell of gas,
enclosing a zone of vacuum. Assume a rotational invariance of the data. Then the
solution is radial:

ρ = ρ(t, r), v = vr(t, r)~er.

If ρε0 ≡ ε over some interval (0, r−), what happens when ε → 0+ ? Let the vacuum
zone at time t be (0, r(ε, t)). Does r remain bounded away from zero, uniformly in ε
and t ? On the contrary, how does the vaccum zone (0, r(t)) behave when the data
satisfies ρ0 ≡ 0 over (0, r−) ?

There has been quite a lot of work in the past decade, dealing with flows in
presence of vacuum. See for instance [14] and the references therein. This paper
suggests an interesting criterion (equation (1.9)) in order to select a unique solution
when the density vanishes.

4. Entire solutions of compressible Euler system.

Problem #4. Does there exist a non-trivial smooth entire (eternal)
solution of the Euler system for compressible fluids, with finite mass
and energy, in odd space-dimension?

In [24], we showed that the forward Cauchy problem for the Euler system of either
an isentropic or a non-isentropic gas admits a global-in-time classical solution provided
that the initial density is small enough, the initial entropy is close to a constant and
the initial velocity is close to a linear field ū(x) = Ax where the spectrum of A does
not intersect (−∞, 0]. As usual, the smallness and the closeness are understood in
Hs with s > 1 + d

2 . M. Grassin [11] dropped the assumption that the velocity field is
almost linear, by assuming only that at every point x, the Jacobian ∇xu(0, x) does
not have a non-positive eigenvalue, this in some uniform way. Let us point out that
this global well-posedness was a new result for a non-isentropic gas even in one space-
dimension. Only in the one-dimensional isentropic case this result met the litterature;
see D.-Q. Li & W.-C. Yu [18].

The data under consideration has typically finite mass and energy. For instance,
the gas may occupy initially a bounded domain. Its support spreads as time in-
creases, being bounded at every time. Of course, the diameter of the support grows
unboundedly as t→ +∞.

An amazing fact is that when the dimension d is even (say 2, in order to be
meaningful), then a d×d matrix may have no real eigenvalue at all. If this is the case
for ∇xu(0, x), then the above result applies both forward and backward (just change
(t, x)↔ (−t,−x)). For instance, if u(0, x) is close to the field

ū(x) =

(
−x2
x1

)
,

we obtain classical solutions that are defined for all t ∈ R. Such solutions are called
either entire (to mimic complex variable functions) or eternal.

On the contrary, the 2×2 case of a one-dimensional isentropic gas does not admit
such a finite mass entire solution; this can be proved, following Lax, by differentiating
twice the Riemann invariants along characteristic lines.

This suggest the following Question: Assume that (ρ, u, s) is a classical solution
of the Euler equation defined for all t ∈ R (and not only for t > 0). We may consider
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either the isentropic gas with p = ργ , or the non-isentropic with p = (γ − 1)ρe, with
a constant γ > 1. Assume in addition that the total mass and energy are finite and
non-zero (for instance, the gas occupies at each time a bounded domain). Notice that
this forbids the data to depend only upon d− 1 coordinates. Is it true that the space
dimension d is even ? Or is it possible to have such entire solutions in space dimension
3 ?

Morally, if an entire solution exists, we anticipate the following scenario. The
particles on the boundary of the domain are somehow those with largest velocity;
they asymptotically behave as free particles. Let Φts be the flow map, which brings
the particles from time s to time t. We normalize the fluid domain so that it becomes
the unit ball, hence being independent of the time t. We renormalize as well the flow
map so that it belongs to Diff(Bd). For large s < 0 < t, the trace of renormalized
flow map on the unit sphere is likely to belong to the connected component of −idd
within Diff(Sd−1). If d is odd, this contradicts the fact that the flow map preserves
the orientation.

Remark. If we drop the assumption that the solutions are smooth, there even
exist solutions that are compactly supported in space and time, hence are eternal; see
[6].

5. Regular reflection of a gas against a wedge.

Problem #5. Existence of a Regular Reflection for a compressible
flow, without an irrotational assumption.

The problem of shock reflection along corners has a long history, begining with
experiments done by E. Mach at the end of the XIXth century. From the mathematical
point of view, one focuses on an ideal situation where the corner is the apex of a
straight, infinite wedge, and the incident shock is planar, separating two uniform
states. Of course, the state surrounding the wedge is at rest. The problem is to
describe mathematically (existence, uniqueness, regularity, qualitative features) the
flow after the time t = 0 at which the shock hits the tip of the wedge.

For the sake of simplicity, we limit ourselves to the two-dimensional case and to
barotropic fluids. The problem has finitely many data, say the aperture angle 2α of
the wedge, two densities ρdown and ρup (if we assume an isentropic flow) and the angle
β of incidence of the shock. This determines the net mass flux j per unit time across
the shock, by

j2
[

1

ρ

]
+ [p(ρ)] = 0.

Then the normal shock velocity is given by ρ0V = j. With β, this determines ~V .
Finally, the upstream velocity vup is given by ρ1(vup ·N−V ) = j, N being the (given)
normal to the shock.

In practice, the mathematical analysis is restricted to the symmetric case where
β = 0 ; then the axis of symmetry, a line normal to the shock, which separates the
sector into two equal parts, is equivalent to a rigid boundary.

The expected solution can be rather complicated in some cases. The simplest
situation arises when either ρ1 − ρ0 is small, or α is close enough to π

2 . The reason is
easy to understand:
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sonic circle

VN

up

down

sub son.

I

R

R

Fig. 1. The Regular Reflection. The solid wedge is at right. The reflected shock R is straight
until it meets S. Then it becomes a curve.

• If ρ1 = ρ0, there is no shock at all, and the solution is just the rest state of
density ρ0,

• If instead α = π
2 , then the data (shock and domain) depend only upon the

normal coordinate, and the reflexion reduces to a one-dimensional problem,
which can be solved by algebraic calculations.

This “simple” situation is called a Regular Reflection (RR). Roughly speaking,
the incident shock I keeps moving, but reflects along the (rigid) wall of the sector.
The reflected shock R is at first a straight line, which separates the upstream state
from another uniform state UVN (after von Neumann). The latter is used to define
a pseudo-sonic circle S, normal to the wall. When R meets S, it becomes a curve
and we lack an explicit description: mathematically speaking, the part of R beyond
S is a free boundary. In the bounded domain delimited by R, S and the wedge,
the flow is (pseudo-)sub-sonic and non-constant; see Figure 1. Unlike the data, the
solution cannot be described in finite terms. More, we don’t know yet the existence
of a solution to this problem.

We point out that the data are scale-invariant: both the domain (a wedge) and
the state at t = 0 are unchanged under x 7→ λx when λ > 0. Because the flow is
governed by the Euler equations, a first-order system of conservation law, we expect
a self-similar solution. This will certainly be true if the Cauchy problem has the
uniqueness property. Self-similarity is that the unknown (ρ, v) depends only upon
y := x

t . Then, introducing the pseudo-velocity w := v − y, the Euler system reduces
to the differential equations

div(ρw) + 2ρ = 0, (6)

ρ(w · ∇)w + ρw +∇p = 0. (7)
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This is a first-order system of three equations in three unknowns, whose principal part
is in conservation form. Its type depends upon the sign of |w| − c(ρ), where c = p′ is
the sound speed. It is hyperbolic when |w| > c (the pseudo-supersonic domain). The
pseudo-sonic circle has therefore an equation |y − vVN| = c(ρVN).

Our Question is therefore to prove the existence of a solution of (6, 7), subject
to the boundary conditions given by the RR data.

For more details, the reader is advised to have a look to the review paper [27]
and to the the references herein.

Why is this problem difficult? Some difficulties of this problem can be over-
come with modern analytical tools: – the fact that R is a free boundary, – the type
degeneracy along S (see for instance [28]). Some others are significantly harder:

• In the subsonic domain, the system (6, 7) is neither hyperbolic nor elliptic,
but something in between. Two characteristics are complex conjugate (a
glimpse of ellipticity), but one remains real (a sign of hyperbolicity). It is
impossible to decouple these opposite aspects. This is typically a situation
where we lack ideas and tools.

• A calculation done in [27] shows that the vorticity ω = curlv may not be
square integrable! Thus not only the solution is not classical (because of the
presence of shocks), but it is even not piecewise smooth. No satisfactory
description of this vortical singularity has been given yet.

These fundamental difficulties led many people to simplify the problem by making
the irrotational assumption. This is only an approximation of the reality, because the
reflected shock, once it becomes curved, does generate non-zero vorticity. At first
glance, this approximation seems relevant when the shock strength ρ1 − ρ0 is very
small, because the entropy generation is of the order of (ρ1 − ρ0)3; it is however
definitely incompatible with the lack of integrability of ω2 in the real case.

The irrotational case displays two nice features. On the one hand, it prevents from
the vortical singularity, and therefore we may expect a piecewise smooth solution. On
the other hand, the system (6, 7) reduces to a single, second-order equation governing
the stream function φ defined by w = ∇φ :

div(ρ∇φ) + 2ρ = 0, ρ = h−1(−φ− 1

2
|∇φ|2), (8)

where ρ 7→ h(ρ) is defined by h′(ρ) = 1
ρp
′(ρ). The situation is much better here

than in the non-irrotational case: away from the sonic line, the equation is either
hyperbolic or elliptic. Actually, it is elliptic in the domain where the solution is not
piecewise constant. One may therefore use all the weapons of the scalar elliptic theory:
maximum principle, Harnack inequality and so on. This is the strategy followed by
G.-Q. Chen and M. Feldman [4], who ultimately proved the existence of an irrotational
solution when ρ1 − ρ0 is not too big and α is close enough to π

2 .
Of course, it would be desirable to solve the non-irrotational problem instead.

Pointwise a priori estimates for the density and its inverse, for the velocity and tem-
perature (if the flow is non-isentropic) have been given in [27].

Another open question, related to this one, is whether the proof of the existence
of a vortical singularity in the isentropic case can be extended to the non-isentropic
case (full Euler equations).

Finally, let us mention that the three-dimensional situation, where the obstacle
is a circular cone, is significantly more complicated. Even if we use the cylindrical
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symmetry of the problem, the reflected shock is curved immediately after it reflects
along the wall. The state between R and the wall is no longer uniform. Both R
and this state become unknowns. Of course, the sonic line is no longer a circle. To
our knowledge, there have not been any mathematical paper on this more realistic
problem, even under the irrotational assumption.

Concluding remarks. Even if one million dollars is awarded to a problem about
viscous incompressible fluid dynamics, it is worth studying questions about compress-
ible flows, with or without dissipative process. They may be more relevant in the
applications. They present a greater variety of phenomena: the non-linearity is often
competing with either dispersion or dissipation, in such a way that discontinuities
can emerge, if the data is not too small. Such lack of smoothness raises a serious
problem regarding the tools we should employ; standard functional spaces (Sobolev,
Besov, BV , etc. . . ) are not appropriate, at least in several space dimensions. Be-
sides, compressibility allows the fluid to develop a cavity; this vaccum problem can be
harmful to technical devices, as well as disturbing at the mathematical level, due to
singularities in the equations or to type degeneracy. Last but not least, the coupling
between hyperbolic and parabolic modes yields an interesting challenge in the choice
of functional spaces, as well as in the choice of methods.

Compressible fluid dynamics is a very active field. The open problems are count-
less, and our choice of five of them is strongly biased by our own mathematical interest
and previous research. There is some hope that they be solved in a way or another in
the near future. We encourage young researchers to think about them, without any
preconceived idea. It is often useful not to know too much about a field, in order to
be able to develop truly new and efficient ideas.
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