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GROUND STATES AND SINGULAR VECTORS OF CONVEX
VARIATIONAL REGULARIZATION METHODS∗

MARTIN BENNING† AND MARTIN BURGER‡

Abstract. Singular value decomposition is the key tool in the analysis and understanding
of linear regularization methods in Hilbert spaces. Besides simplifying computations it allows to
provide a good understanding of properties of the forward problem compared to the prior information
introduced by the regularization methods. In the last decade nonlinear variational approaches such
as `1 or total variation regularizations became quite prominent regularization techniques with certain
properties being superior to standard methods. In the analysis of those, singular values and vectors
did not play any role so far, for the obvious reason that these problems are nonlinear, together with
the issue of defining singular values and singular vectors in the first place.

In this paper however we want to start a study of singular values and vectors for nonlinear vari-
ational regularization of linear inverse problems, with particular focus on singular one-homogeneous
regularization functionals. A major role is played by the smallest singular value, which we define as
the ground state of an appropriate functional combining the (semi-)norm introduced by the forward
operator and the regularization functional. The optimality condition for the ground state further
yields a natural generalization to higher singular values and vectors involving the subdifferential of
the regularization functional, although we shall see that the Rayleigh principle may fail for higher
singular values.

Using those definitions of singular values and vectors, we shall carry over two main properties
from the world of linear regularization. The first one is gaining information about scale, respectively
the behavior of regularization techniques at different scales. This also leads to novel estimates at
different scales, generalizing the estimates for the coefficients in the linear singular value expansion.
The second one is to provide classes of exact solutions for variational regularization methods. We will
show that all singular vectors can be reconstructed up to a scalar vector by the standard Tikhonov-
type regularization approach even in the presence of (small) noise. Moreover, we will show that they
can even be reconstructed without any bias by the recently popularized inverse scale space method.

Key words. Inverse problems, variational regularization, singular values, ground states, total
variation regularization, Bregman distance, inverse scale space method, compressed sensing.
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1. Introduction. Regularization methods and their analysis are a major topic
in inverse problems and image processing. In the last century mainly linear regular-
ization methods for problems in Hilbert spaces have been studied and analyzed, and
it seems that for such methods a quite complete theory is now available based on
singular value decomposition (cf. [64]) of the forward operator in the norm defined by
the regularization (cf. [36]), respectively generalizations to spectral decompositions
in the rare cases of non-compact forward operators (cf. [36]).

The research in the 21st century has significantly shifted from linear regulariza-
tions to nonlinear approaches, in particular variational methods generalizing Tikhonov
regularization, where singular regularization functionals such as `1-norms or the total
variation are used. In many examples the above mentioned functionals have shown to
yield improved properties with respect to the incorporation of prior knowledge and the
quality of reconstructions, and have also been a key tool in the adjacent theory of com-
pressed sensing (cf. [25, 26, 33, 32]). Various advances in the analysis of such regular-
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ization methods have been made over the last years, ranging from basic regularization
properties (cf. e.g. [1, 28]) over error estimation (cf. [22, 23, 56, 57, 11, 43, 49]) to cor-
rections of inherent bias by iterative and time-flow techniques (cf. [60, 54, 19, 18, 71]).
Singular values and vectors did so far not play any role in the analysis of such methods
and it is common belief that their use is restricted to linear regularization methods.
This is not surprising, since first of all it is not trivial to define a notion of singu-
lar values and to characterize it in the nonlinear case. Moreover, it is obvious that
due to missing linearity no decomposition into singular values can be achieved. For
these reasons the study of singular values (or eigenvalues of regularization function-
als) has been mainly abandoned in the inverse problems community, studies of related
nonlinear eigenvalue problems rather exist in nonlinear partial differential equations
and functional inequalities (cf. [2, 12, 16, 29, 31, 38, 41, 45, 46, 47, 68]), in control
theory (cf. [39]), in image processing (cf. [4, 5, 9, 27]) and surprisingly in machine
learning (cf. [17, 66]). Motivated by those as well as general approaches to nonlinear
eigenvalue problems we will define a ground state by a Rayleigh-type principle and
further singular values and singular vectors by considering the first-order optimality
condition for the non-convex variational problem defining ground states. The main
results we shall derive are the following:

• First of all, our definition of singular values and singular vectors is studied
and demonstrated to be a meaningful extension of the linear case, although
some properties can be lost in extreme cases, e.g. the discreteness of the
spectrum and the Rayleigh principle for higher singular values (Section 3).

• With the singular values and singular vectors we derive error estimates for ap-
propriate linear functionals of the solution, which provide information about
the behavior at different scales. This is made explicit for an example in total
variation denoising (Section 4).

• An important part is to verify that singular vectors are exact solutions of
variational regularization schemes. This means that if the image of a singular
vector under the forward operator is used for the reconstruction, the solution
is a multiple of the singular vector. Surprisingly, under certain conditions
particularly met for singular regularizations, the same holds true if a certain
amount of noise is added. For inverse scale space methods we can further
verify that singular vectors are reconstructed without bias, i.e. after finite
time (depending on the singular value) the solution of the inverse scale space
equals exactly the singular vector, without a multiplicative change (Sections
5 and 7).

• We derive estimates on the bias of variational regularization schemes, which
show that the minimal bias is somehow defined by the ground state, respec-
tively by the smallest singular value in our definition (Section 6).

• We provide a variety of examples of inverse problems and regularization func-
tionals, for which singular values and singular vectors can be computed ex-
plicitly. This allows to draw various conclusions about the behavior of the
regularization and the typical shape of preferred solutions (Section 8).

2. Notations and assumptions. To fix notation, we consider linear inverse
problems of the form

Ku = f ,(2.1)

with K : U → H being a linear operator mapping from a Banach space U to a Hilbert
space H, with the goal to recover u from (2.1) with given data f that is potentially
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being corrupted by noise. We are mainly interested in the case of K being compact,
in particular continuous from the weak or weak-* topology of U to the strong topology
of H, which creates ill-posedness of the inverse problems.

Nonlinear variational regularization methods for computing robust approximate
solutions of (2.1) are of the form

û ∈ arg min
u∈dom(J)

{
1

2
‖Ku− f‖2H + αJ(u)

}
,(2.2)

with J : dom(J) ⊆ U → R ∪ {+∞} being a so-called regularization functional that
incorporates the a-priori knowledge, and α ∈ R>0 denoting the regularization pa-
rameter that controls the impact of J on the solution û of (2.2). Note that in the
variational approach linear regularizations methods are related to quadratic regular-
ization functionals like

J(u) =
1

2
‖Du‖2U

for linear operators D : U → U , since they lead to linear optimality conditions.
Another classical choice motivated from statistical mechanics and information theory
is the Boltzmann (Shannon) entropy regularization functional, in U = L1(Ω),

J(u) =

∫
Ω

u log(u)− u dx,

leading to the so-called maximum entropy regularization (cf. [34]). Recently popular
functionals are non-differentiable regularization energies like the one-norm J(u) =
‖u‖`1 in U = RN or the total variation J(u) = TV(u), being defined as

TV(u) := sup
ϕ∈C∞0 (Ω;Rn)
‖ϕ‖L∞(Ω;Rn)≤1

∫
Ω

u divϕ dx .(2.3)

Total variation regularization became popular in the Rudin-Osher-Fatemi (ROF)
model [59]

û ∈ arg min
u∈BV(Ω)

{
1

2
‖u− f‖2L2(Ω) + αTV(u)

}
.(2.4)

The space BV(Ω) is the space of all function u ∈ L1(Ω) such that TV(u) is bounded.
In case of Ω ⊆ Rn for n ∈ {1, 2} the space BV(Ω) can be embedded into L2(Ω).

Since we are going to deal with rather large classes of convex functionals J , let
us recall some basic facts from convex analysis (cf. [58, 35] for detailed discussions).
As usual for a Banach space U , the Banach space of bounded linear mappings from
U to R is called the dual space of U and is denoted by U∗, with norm

‖p‖U∗ := sup
‖u‖U=1

|p(u)| = sup
u∈U \{0}

|p(u)|
‖u‖U

= sup
‖u‖U≤1

|p(u)| .

The functional p(u) = 〈p, u〉U∗×U is called the dual product. Throughout this work
we are going to denote the dual product simply by 〈p, u〉U . In case that U is even a
Hilbert space, the dual product can be identified with the scalar product of U .
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The characterization of dual spaces and its elements allows us to define the sub-
differential of a convex functional.

Definition 1 (Subdifferential). Let U be a Banach space with dual space U∗,
and let the proper functional J : U → R ∪ {+∞} be convex. Then, J is called subdif-
ferentiable at u ∈ U , if there exists an element p ∈ U∗ such that

J(v)− J(u)− 〈p, v − u〉U ≥ 0

holds, for all v ∈ U . Furthermore, we call p a subgradient at position u. The collection
of all subgradients at position u, i.e.

∂J(u) := {p ∈ U∗ | J(v)− J(u)− 〈p, v − u〉U ≥ 0 ,∀v ∈ U} ⊂ U∗ ,

is called subdifferential of J at u.

We further mention that the subdifferential of one-homogeneous functionals can
be further characterized as (cf. [73])

∂J(u) := {p ∈ U∗ | 〈p, u〉 = J(u), 〈p, v〉 ≤ J(v) ,∀v ∈ U} ⊂ U∗ .(2.5)

Another concept we shall use in several arguments is the notion of (generalized)
Bregman distances, defined as

Dp
J(v, u) = J(v)− J(u)− 〈p, v − u〉U ,

with p ∈ ∂J(u). Bregman distances are not common distance functionals, since they
do not satisfy a triangle inequality and are not symmetric in general. However, for
J being convex they are non-negative and satisfy Dp

J(u, u) = 0. Symmetry can be
restored by using symmetric Bregman distances, i.e.

Dp,q,symm
J (v, u) = Dp

J(u, v) +Dq
J(v, u) = 〈q − p, v − u〉U

for q ∈ ∂J(v).

Before we continue with the definition of ground states and singular vectors for
general convex and subdifferentiable regularization functionals, we want to precisely
define the class of operators and functionals we are going to investigate. Thus, for
the remainder of this work we will assume the following properties without further
notice:

Assumption 1 (Setup).

• Ω ⊆ Rd, Σ ⊆ Rk are bounded domains.
• U is a Banach space, being the dual of some other Banach space.
• H is a Hilbert space.
• K : U → H is a bounded linear operator mapping between these spaces
• J : dom(J) ⊆ U → R ∪ {+∞} is a proper non-negative convex functional

3. Ground states and singular vectors. In this section we want to define
ground states of regularization functionals as well as an analogue of singular vectors
for nonlinear functionals.
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3.1. Ground states. We start with a definition of a ground state, which is
motivated by similar properties in partial differential equations, e.g. the classical one
of a ground-state in the Schrödinger equation and related problems (cf. [12, 68, 2]).
In order to obtain a ground state we normalize the element u and minimize the
regularization functional among those elements, i.e. u0 is defined as (see Theorem 1
below for well-definedness in an appropriate setting)

u0 ∈ arg min
u∈dom(J)
‖Ku‖H=1

{J(u)} .(3.1)

In the context of variational schemes like (2.2) we are particularly interested in non-
trivial ground states of one-homogeneous regularization functional. A trivial ground
state appears if J(u0) = 0, and we can immediately provide a well-known example
for such:

Example 1. Let Ω ⊂ Rd with d ∈ {1, 2}. Then we know that BV(Ω) ⊂
L2(Ω) holds. Thus, for K = I being the identity operator I : L2(Ω) → L2(Ω), a
trivial ground state of J = TV is the constant function u0 = 1/

√
|Ω|, since we have

TV(u0) = 0 and ‖u0‖L2(Ω) = 1. Note that as usual the ground state is not unique,
since −u0 is a ground state as well.

However, in many cases trivial ground states do not give interesting insights into
the nature of a regularization energy, as the previous example shows. Thus, we would
like to investigate non-trivial ground states that are orthogonal to the trivial ones
in a reasonable sense. Let us therefore define some preliminary notions first. The
K-product of two elements u, v ∈ U is defined as

〈u, v〉K := 〈Ku,Kv〉H .

Furthermore we are going to write ‖u‖K as an abbreviation for
√
〈u, u〉K . This

particular definition of a scalar product for elements of a Banach space allows us to
define a useful orthogonal complement of a kernel of a regularization functional, which
we define as usual via

ker(J)⊥ := {u ∈ dom(J) | 〈u, v〉K = 0,∀v ∈ ker(J)} .(3.2)

For completeness we also introduce

ker(J) := {u ∈ dom(J) | J(u) = 0} .

In the case of convex non-negative one-homogeneous functionals we are mainly
interested in, the kernel and also its complement can further be characterized as linear
subspaces:

Lemma 1. Let J be convex, non-negative and one-homogeneous. Then ker(J) is
a linear subspace.

Proof. Let u, v ∈ ker(J) and a, b ∈ R such that |a| + |b| 6= 0. With α = |a|
|a|+|b| ∈

[0, 1], ũ = sign(a)u and ṽ = sign(b)v we obtain

0 ≤ J(au+ bv) = J((|a|+ |b|)(αũ+ (1− α)ṽ))

= (|a|+ |b|)J(αũ+ (1− α)ṽ) ≤ (|a|+ |b|)(αJ(ũ) + (1− α)J(ṽ)),
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by using the one-homogeneity and convexity of J . Since J(ũ) = J(u) = 0 and
J(ṽ) = J(v) = 0 hold due to the one-homogeneity of J , we conclude J(au + bv) = 0
as well. Thus, au+ bv ∈ ker(J) holds true.

Example 2. Considering J = TV again, we easily see that ker(TV) equals the set
of all constant functions, because the estimation of the kernel can simply be reduced
to estimating ker(∇).
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Fig. 1. The function ua as defined in (3.5), for a = 1/2. This function is a ground state of
K = I, J = TV, according to Definition 2.

Definition 2 (Ground State). Under the above assumptions on J and K, a
ground state u0 is defined as an element

u0 ∈ arg min
u∈ker(J)⊥

‖Ku‖H=1

{J(u)} .(3.3)

Moreover, if u0 exists we call

(3.4) λ0 = J(u0)

the smallest singular value.

Under standard assumptions on variational regularization methods, the ground
state indeed exists, which can be verified by usual arguments (cf. [74]):

Theorem 1. Let d be a metric on U , let K be continuous from this metric
topology to the strong topology of H, and let J be lower semicontinuous with respect to
this metric topology. Moreover, let the sublevel sets of u 7→ ‖Ku‖H+J(u) be compact
in the metric topology. Then there exists at least one ground state u0 ∈ U .

We want to give a brief example of ground states in case of J(u) = TV(u).

Example 3. For Ω = [0, 1] ⊂ R, K = I and J(u) = TV(u) we want to consider

(3.5) ua(x) =


√

(1−a)a

1−a x ≥ a

−
√

(1−a)a

a x < a
,
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for a ∈ (0, 1). We easily see that ua is orthogonal to the kernel of TV, which consists

of all constant functions due to Example 2, since
∫ 1

0
ua(x) dx = 0 holds. Moreover,

ua guarantees the normalization constraint ‖ua‖L2([0,1]) = 1 for every a ∈]0, 1[. How-

ever, the TV-value TV(ua) = 1√
(1−a)a

is a strictly convex function in a with unique

minimum at a = 1/2. Thus, u0 = u
1
2 , which is visualized in Figure 1, is a ground

state if we can prove that there does not exist a function ũ with 〈ũ, 1〉L2([0,1]) = 0,

‖ũ‖L2([0,1]) = 1 and TV(ũ) < 2.

Lemma 2. There exists no function ũ ∈ C([0, 1]) with ‖ũ‖L2([0,1]) = 1 and
〈1, ũ〉L2([0,1]) = 0 such that TV(ũ) < 2 holds.

Proof. It is easy to see that for the monotonic rearrangement of an arbitrary
function ũ ∈ C([0, 1]), which we want to denote by

ũ∗(x) = sup{t | |{u > t}| > |x|},

we have (cf. e.g [2])

TV(ũ∗) ≤ TV(ũ) .

Thus, in the following we are going to consider monotonically increasing functions ũ∗ ∈
C([0, 1]) with ‖ũ∗‖L2([0,1]) = 1 and 〈1, ũ∗〉L2([0,1]) = 0 only, without loss of generality.
Now we want to prove TV(ũ∗) ≥ 2 by contradiction and therefore subdivide the proof
into two parts. First of all we are going to prove the inequalities

(ũ∗(1))2 − 1 ≥
(
(ũ∗(1))2 − (ũ∗(0))2

)
y(3.6)

and

1 ≤ TV(ũ∗)

(
−
∫ y

0

ũ∗(x)

)
,(3.7)

with y denoting a root of ũ∗. Subsequently we are going to use (3.6) and (3.7) to
conclude the contradiction.

For a monotonically increasing function ũ∗ we can rewrite the normalization con-
straint ‖ũ∗‖L2([0,1]) = 1 to

1 = ‖ũ∗‖2L2([0,1]) =

∫ y

0

(ũ∗(x))
2
dx+

∫ 1

y

(ũ∗(x))
2
dx

≤ y (ũ∗(0))
2

+ (1− y) (ũ∗(1))
2

,

with y denoting a root of ũ∗. Rearranging immediately yields (3.6).
Moreover, according to the second mean value theorem of integration there exists

a ξ ∈]0, 1[ such that we can rewrite the normalization constraint to

1 =

∫ 1

0

ũ∗(x)ũ∗(x) dx

= ũ∗(0)

∫ ξ

0

ũ∗(x) dx+ ũ∗(1)

∫ 1

ξ

ũ∗(x) dx

= (ũ∗(1)− ũ∗(0))︸ ︷︷ ︸
=TV(ũ∗)

∫ 1

ξ

ũ∗(x) dx ,
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where the last equality holds due to 〈1, ũ∗〉L2([0,1]) = 0. Since the value of
∫ 1

ξ
ũ∗(x) dx

gets maximal for ξ = y and since we know
∫ 1

y
ũ∗(x) dx = −

∫ y
0
ũ∗(x) dx we obtain

(3.7).
Finally, we are now able to proof the lemma’s statement via contradiction. We

assume ũ∗ to satisfy TV(ũ∗) < 2. Then, the normalization constraint ‖ũ∗‖L2([0,1]) = 1
however implies either ũ∗(1) ≥ 1 or ũ∗(0) ≤ −1. Without loss of generality we assume
ũ∗(1) ≥ 1. Thus, there exists a constant c ≥ 0 such that ũ∗(1) = 1 + c holds. Due
to TV(ũ∗) < 2 this automatically implies ũ∗(0) ≥ −1 + c and (ũ∗(0))2 ≤ (−1 + c)2.
Applying (3.6) therefore yields

(1 + c)2 − 1 ≥
(
(1 + c)2 − (1− c)2

)
y ,

which can be rewritten to y ≤ c/4 + 1
2 . We are therefore able to estimate (3.7) to

obtain

1 ≤ TV(ũ∗)

(
−
∫ y

0

ũ∗(x) dx

)
≤ TV(ũ∗)y (−ũ∗(0)) ≤ TV(ũ∗)y(1− c)

≤ TV(ũ∗)

(
c

4
+

1

2

)
(1− c)

≤ TV(ũ∗)

(
1

2
− c2

4
− c

4

)
≤ 1

2
TV(ũ∗) ,

which yields 2 ≤ TV(ũ∗) and therefore is a contradiction to the assumption TV(ũ∗) <
2.

Note that u0 of the previous example is not a unique ground state, since −u0

yields the same minimum. However, this is also true for ground states of quadratic
variational schemes and therefore no surprise. Nevertheless, the following example
shows that in the general case there exist ground states that differ substantially, and
not just only in terms of their sign.

Example 4. Let U = `1(RN ) and H = `2(RM ). Consider the regularization
energy J(u) = ‖u‖`1 , and as an operator a matrix K with columns being normalized

with respect to the `2-norm, i.e. (Kej)
T · (Kej) = 1, with ej denoting the j-th unit

vector. Then every vector ei = (δji)j=1,...,N , with δij denoting the Kronecker delta,
is a ground state.

In some cases it is useful to have an alternative definition of ground states of
variational regularizations like (2.2):

Definition 3 (Ground State II). A ground state u0 is defined as

u0 ∈ arg max
u∈ker(J)⊥

J(u)≤1

{‖Ku‖H} .(3.8)

If u0 exists, we shall call

(3.9) λ0 =
1

‖Ku0‖H

the smallest singular value.
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At first glance, Definition 3 appears to be very different from Definition 2; how-
ever, for one-homogeneous functionals J both definitions are equivalent up to normal-
ization of the singular vector and yield the same singular value, as we will see with
the following Lemma.

Lemma 1. Let J be a proper and one-homogeneous functional. Then, Definition
2 and Definition 3 are equivalent up to multiplication of u0 by λ0.

Proof. ⇒: Let u0 be a ground state that satisfies Definition 2. Then, for ũ :=
u0/J(u0) = u0/λ0 we obtain J(ũ) = 1 and ‖Kũ‖H = 1/J(u0) = 1/λ0. Thus, in order
to satisfy Definition 3, ũ is supposed to maximize ‖Ku‖H, i.e. ‖Kũ‖H ≥ ‖Kv‖H for
all v with J(v) ≤ 1. We prove this statement by contradiction and assume that there
exists a function v with ‖Kv‖H > 1/λ0 and J(v) ≤ 1. However, if such a function
exists, we can define ṽ := v/‖Kv‖H to obtain a function that satisfies ‖Kṽ‖H = 1
and J(ṽ) ≤ 1/‖Kv‖H < λ0, which is a contradiction to u0 being a ground state in
the sense of Definition 2.
⇐: Now let u0 be a ground state in terms of Definition 3, i.e. J(u0) ≤ 1 such
that ‖Ku0‖H =: 1/λ0 is maximized. Then we can define ũ = λ0u0, which satisfies
‖Kũ‖H = 1 and J(ũ) = λ0. In analogy to the first part of the proof, we prove by
contradiction that ũ already has to be a ground state in terms of Definition 2. We
therefore assume that there exists a function v such that J(v) < λ0 and ‖Kv‖H = 1
holds. If such a function exists, than ṽ := v/J(v) exists as well. However, for ṽ we
observe J(ṽ) = 1 and ‖Kṽ‖H > 1/λ0, which is a contradiction to u0 being a ground
state in terms of Definition 3.

3.2. Singular vectors. In analogy to singular vectors of linear operators we
want to extend the concept of singular vectors to variational frameworks of the form
(2.2). The motivation is to consider the formal optimality condition for the ground
state, which is obtained by considering stationary points of the Lagrange functional
(with parameter λ ∈ R)

(3.10) L(u;λ) = J(u)− λ

2
(‖Ku‖2H − 1),

which is given by

λK∗Ku ∈ ∂J(u),

where ∂J denotes the subdifferential.
Hence, we define a singular vector as follows:

Definition 4 (Singular Vector). Let J be convex with non-empty subdifferential
∂J at every u ∈ dom(J). Then, every function uλ with ‖Kuλ‖H = 1 satisfying

λK∗Kuλ ∈ ∂J (uλ)(3.11)

is called singular vector of J with corresponding singular value λ. The subgradient
pλ = λK∗Kuλ is called dual singular vector in the following.

We mention that taking a dual product with uλ yields the singular value relation

λ =
〈pλ, uλ〉U
‖Kuλ‖2H

= 〈pλ, uλ〉U .
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In the case of J being one-homogeneous we even have

λ = J(uλ) ,

which also implies λ ≥ λ0, for any singular value λ.
For smooth J one can prove that the ground state is a singular vector by analyzing

the Lagrange functional above (cf. [42]). In the one-homogeneous case we give an
alternative proof:

Proposition 1. Let J be one-homogeneous and let u0 be the ground state with
λ0 = J(u0). Then λ0 is a singular value and u0 is a singular vector.

Proof. For J being one-homogeneous, p0 ∈ ∂J(u0) is equivalent to 〈p0, u0〉U =
J(u0) and

〈p0, u〉U ≤ J(u), ∀ u ∈ U ,

due to (2.5). We verify this property for p0 = λ0K
∗Ku0. First of all we obtain

〈p0, u0〉U = λ0〈Ku0,Ku0〉H = J(u0)

by the definition of λ0 and the normalization of u0. Moreover, for arbitrary u ∈ U
with Ku 6= 0 we define v = u/‖Ku‖H and find

〈p0, u〉U = ‖Ku‖Hλ0〈Ku0,Kv〉H ≤ ‖Ku‖Hλ0.

Since v is normalized, we have by the definition of the ground state

λ0 = J(u0) ≤ J(v) =
J(u)

‖Ku‖H

and thus, 〈p0, u〉U ≤ J(u). If Ku = 0, then

〈p0, u〉U = λ0〈Ku0,Ku〉H = 0 ≤ J(u),

thus p0 ∈ ∂J(u0).

Higher singular values and singular vectors are difficult to characterize as we
shall see from examples below. Also orthogonality of singular vectors corresponding
to different singular values is lost. Consider λK∗Kuλ = pλ and µK∗Kuµ = pµ for
singular vectors uλ and uµ, then we only have

1

λ
〈pλ, uµ〉 =

1

µ
〈pµ, uλ〉 .

We want to give two examples:

Example 5. Let us investigate the functional J(u) = 1
2‖∇u‖

2
L2(Ω;Rn), in order to

demonstrate that the definition of singular vectors is consistent with the definition of
singular vectors of linear operators. Since J is Fréchet-differentiable, its subdifferential
consists of its Fréchet-derivative only, i.e. ∂J(u) = {−∆u}. Considering K = I for
simplicity, (3.11) reads as the classical Eigenfunction problem of the Laplace operator,
i.e.

−λuλ = ∆uλ ,
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Fig. 2. The functions ua plotted for the values a ∈ {1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8}. All of
these functions are singular values according to Definition 4, but only u1/2 is a ground state.

or equivalently as the singular vector decomposition problem of the gradient operator
∇. Due to the compactness of the inverse Laplacian, the spectrum is discrete, i.e.
there are countably many different singular values.

The structure of the spectrum, by which we formally denote the set of singular
values, changes if we consider more degenerate cases as the total variation frequently
used in inverse problems and imaging:

Example 6. Let us now consider K being the embedding operator from BV(Ω)
to L2(Ω) on the unit interval Ω = [0, 1]. For a ∈ (0, 1) the function ua defined by
(3.5) is a singular vector of TV, with singular value λ = 1/

√
(1− a)a, as we shall see

in the following: We can characterize the subdifferential of TV as

∂TV(u) =
{

divϕ
∣∣∣ ‖ϕ‖L∞(Ω;Rn) ≤ 1, ϕ · n|∂Ω = 0, 〈divϕ, u〉L2(Ω) = TV(u)

}
,

(3.12)

for u ∈ BV(Ω). We see that the distributional derivative of the continuous function
qa : [0, 1]→ [−1, 0] defined as

qa(x) :=

{
x−1
1−a x ≥ a
−xa x < a

,

for a ∈]0, 1[, is an element of ∂TV(ua), since we have ‖qa‖L∞([0,1]) = 1, qa(0) =

qa(1) = 0 and 〈(qa)
′
, ua〉L2([0,1]) = TV(ua) = λ (here the derivative has to be consid-

ered in a distributional way). Moreover, the distributional derivative of qa satisfies
the singular vector relation λua = (qa)

′ ∈ ∂TV(ua), for λ = 1/
√

(1− a)a. Hence, ua

is a singular vector of TV. The singular vector is visualized for various choices of a
in Figure 2 Now we see that there exists a continuous spectrum [2,∞) although in
spatial dimension one the embedding operator is compact.

We are going to consider various further examples in Section 8.
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3.3. Failure of the Rayleigh principle. Above we have defined the ground
state by a Rayleigh principle, i.e. minimizing J with respect to normalization and
orthogonality to the kernel. Again in the linear case, further singular vectors can
be obtained by similar Rayleigh principles, e.g. by minimizing J(u) subject to u ∈
ker(J)⊥, ‖u‖K = 1 and 〈u, u0〉K = 0.We have already seen from Example 6 that in the
nonlinear case we will not be able to compute all singular values and singular vectors
this way. However, it seems at least interesting whether we can obtain an orthonormal
basis of singular vectors (with orthogonality defined in the K-scalar product, assuming
for the moment thatK has trivial nullspace). As we shall demonstrate in the following,
this is not possible in general.

Let us first discuss formally why the Rayleigh principle can fail to yield singular
vectors in the nonlinear case. Assume for this sake we have a system of orthonormal
singular vectors uj , j = 0, . . . , n, i.e.

λjK
∗Kuλj = pλj ∈ ∂J(uλj ), 〈uλj , uλk〉K = δjk.

Then we define

(3.13) uλn+1 ∈ arg min
u∈Cn

J(u),

with the constraint set

(3.14) Cn :=
{
u ∈ U

∣∣ ‖u‖K = 1, 〈uλj , u〉K = 0, j = 0, . . . , n
}
.

Note that the existence of uλn+1
follows under the same conditions as the existence

of a ground state if in addition Cn is nonempty (which is always the case in infinite
dimensions). Again we may set up the Lagrange functional

(3.15) L = J(u)− λ

2

(
‖u‖2K − 1

)
−

n∑
j=0

µj〈uλj , u〉K

and thus obtain the optimality condition as the variation with respect to u via

(3.16) λK∗Kuλn+1
+

n∑
j=0

µjK
∗Kuλj = pλn+1

∈ ∂J(uλn+1
).

Now uλn+1
is a singular vector if and only if µj = 0 for j = 1, . . . , n. To understand

the latter we take a product with uλk , k ∈ {0, . . . , n}, and obtain

µk = 〈pλn+1 , uλk〉U ,

due to the orthonormality. Now there is no particular reason why 〈pλn+1
, uλk〉U = 0

should hold, since we cannot use the usual argument as in the linear case, namely a
simple eigenvalue equation for uλk .

We finish this section with a simple example that explicitly shows the failure of
the Rayleigh principle:

Example 7. Let U = `1(R2) and H = `2(R2), J(u) = ‖u‖1, and choose K such
that

(3.17) K∗K =

(
1 2ε
2ε ε

)
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for 0 < ε < 1
4 . Then it is straight-forward to see that the ground state is given by

u0 = ±(1, 0)T with λ0 = 1 and ‖Ku0‖2 = 1. All vectors of the form u1 = c(−2ε, 1),
c ∈ R, are orthogonal to u0. Without restriction of generality we can use the one with
c = 1 and verify that it is not a singular vector. We find

λ1K
∗Ku1 = λ1

(
0

ε− 4ε2

)
6∈ ∂‖u1‖1 =

(
−1
1

)
.

Though the second entry is positive due to 0 < ε < 1
4 , the first entry remains zero for

any choice of λ1, thus implying that u1 is not a singular vector.

From the last example we see that it is not possible to construct an orthonormal
basis of singular vectors starting from the ground state in general. However, in certain
cases this may still be possible, as we shall see also in a surprising example in the
next section.

4. Scales and scale estimates. In the linear singular value decomposition, i.e.
λK∗Ku = u

‖u‖K in our setup, the singular vectors and singular values carry informa-

tion about scale. The usual definition of scale respectively frequency is related to the
value of λ. In analogy to the eigenvalues of the Laplace operator mentioned above,
small λ means small frequency respectively large scale, and the scale information is
carried by the singular vectors. For increasing λ the frequency is increasing, respec-
tively the scale is decreasing. It turns out that the interpretation of scale is even more
striking in some nonlinear regularization cases, in particular for the ROF denoising
model discussed in Example 6. Here, intuitively the ground state is the largest scale,
since it includes two plateaus of size 1

2 . For other values of a we have λ = 1
a(1−a) , i.e.

decreasing scale the farther a is away from 1
2 . This is quite intuitive as well, since the

singular value has plateaus of length a or 1 − a and the size of the smaller plateau
is decreasing in scale as λ is increasing. As we shall see in the following, we can use
an appropriate selection of singular vectors of the ROF problem to obtain a standard
multiscale representation.

4.1. Scales in total variation and the Haar wavelet. The probably most
frequently studied and best understood multiscale decomposition is the one of signals
in the Haar wavelet basis, given on the unit interval by ψ0,0(x) = χ(x) and
(4.1)
ψj,k(x) = 2(j−1)/2(χ(2jx−2k)−χ(2jx−2k+1)), k = 0, . . . , 2j−1−1, j = 1, 2, . . .

with the scale function χ being the characteristic function of the unit interval, i.e.

(4.2) χ(x) =

{
1 if x ∈ [0, 1]
0 else

.

It is a kind of folklore that the Haar wavelet decomposition is closely related to total
variation methods in spatial dimension one (respectively to anisotropic total variation
in higher dimension), and rough connections between ROF denoising and filtering with
Haar wavelets have been established (cf. [24, 44, 63]). Here we shall provide a more
explicit connection between the Haar wavelet basis and singular vectors of the ROF
functional. For this sake we use a slightly nonstandard definition of the total variation
in the form

TV∗(u) := sup
ϕ∈C∞(Ω;Rn)
‖ϕ‖L∞(Ω;Rn)≤1

∫
Ω

u divϕ dx .(4.3)
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Note that in contrast to (2.3) we do not choose test functions ϕ with compact support,
which yields an additional boundary term. For functions u ∈ W 1,1([0, 1]) ∩ C([0, 1])
it is straight-forward to see that

(4.4) TV∗(u) =

∫ 1

0

|u′(x)| dx+ |u(1)|+ |u(0)|.

This in particular eliminates the kernel of the total variation, so that the ground state
is indeed a constant u0 ≡ 1 with λ0 = TV∗(u0) = 2. Then our main result is the
following:

Theorem 2. Let K : BV([0, 1]) → L2([0, 1]) be the embedding operator and let
J = TV∗. Then the Haar wavelet basis is an orthonormal set of singular vectors for
K and J , i.e.

(4.5) λj,kψj,k ∈ ∂TV∗(ψj,k)

with singular value λj,k = 2(j+3)/2 for j ≥ 1 and λ0 = 2. In particular u0 is a ground
state.

Proof. We first show that u0 = ψ0,0 is a ground state. Take an arbitrary contin-

uously differentiable function u satisfying the normalization condition
∫ 1

0
u2 dx = 1.

Then there exists x0 ∈ [0, 1] such that |u(x0)| ≥ 1. Thus, by the triangle inequality

TV∗(u) ≥ |u(1)− u(x0)|+ |u(x0)− u(0)|+ |u(1)|+ |u(0)| ≥ 2|u(x0)| ≥ 2

holds. Since C1([0, 1]) is dense in BV([0, 1]) we conclude that the infimum over
TV∗ over all functions of bounded variation with normalized L2-norm is 2. Since
TV∗(u0) = 2 and ‖u0‖L2([0,1]) = 1, it is a ground state.

We further need to verify that pj,k = λj,kψj,k is a subgradient of the one-
homogeneous functional TV∗ at ψj,k, for j ≥ 1. For this sake we first compute
TV∗(ψj,k) = 2(j−1)/24 = 2(j+3)/2 and immediately see that

〈pj,k, ψj,k〉 = λj,k

∫ 1

0

|ψj,k|2 dx = 2(j+3)/2.

The remaining step is to prove that

〈pj,k, u〉 ≤ TV∗(u)

for arbitrary u ∈ BV ([0, 1]). For this sake we consider the primitive q satisfying
q′ = pj,k and q(0) = −1. We observe that indeed q attains its maxima and minima
on the jump set of pj,k and they equal +1 respectively −1. Hence, ‖q‖∞ = 1 and we
find

〈pj,k, u〉 =

∫ 1

0

q′(x)u(x) dx ≤ sup
ϕ∈W 1,2([0,1];R)
‖ϕ‖L∞([0,1])≤1

∫
Ω

u ϕ′ dx.

Finally, by a density argument we conclude that this supremum equals the one over
C∞, hence

〈pj,k, u〉 ≤ sup
ϕ∈C∞([0,1];R)
‖ϕ‖L∞([0,1])≤1

∫
Ω

u ϕ′ dx = TV∗(u).
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4.2. Scale estimates. In the following we want to demonstrate how singular
vectors can be used to derive sharp error estimates on the components at different
scales without any additional prior knowledge on the solution, as e.g. the assumption
of specific source conditions (cf. [22, 43]). We will make the connection to scale ex-
plicit by again considering the case of the ROF-model and the corresponding singular
vectors.

Let us assume we are given a singular vector uλ with singular value λ and dual
singular vector pλ, i.e.

λK∗Kuλ = pλ ∈ ∂J(uλ)

for ‖Ku‖H = 1. Then we can estimate solutions of (2.2) for input data given in terms
of f = Kũ+ η, with ũ ∈ dom(K)∩dom(J) and η ∈ H, with respect to this particular
singular vector.

Theorem 3. For input data f = Kũ + η, ũ ∈ dom(K) and η ∈ H, the solution
û of (2.2) satisfies the estimate∣∣∣∣〈 1

λ
pλ, û− ũ

〉
U

∣∣∣∣ ≤ |〈η,Kuλ〉H|+ α |〈p̂, uλ〉U | .

Proof. The estimate is simply a consequence of taking a dual product of the
optimality condition of (2.2) with uλ. The optimality condition reads as

K∗K(û− ũ) + αp̂ = K∗η ,

for p̂ ∈ ∂J(û). Taking the dual product with uλ yields

〈K∗Kuλ, û− ũ〉U = 〈K∗η − αp̂, uλ〉U ,

which is equivalent to 〈
1

λ
pλ, û− ũ

〉
U

= 〈K∗η − αp̂, uλ〉U .

The estimate for the absolute value of the right-hand side simply follows from the
triangular inequality.

Remark 1. In case of J being one-homogeneous we have |〈p̂, uλ〉U | ≤ J(uλ) = λ
and the estimate therefore can be used to deduce∣∣∣∣〈 1

λ
pλ, û− ũ

〉
U

∣∣∣∣ ≤ αλ+ |〈η,Kuλ〉H| .

The two terms in the error estimate can be easily interpreted. The term αλ is a worst-
case estimate for the bias at the scale of the used singular value, while the second
term describes the impact of noise on a specific scale. Note that the scalar product
of the noise with Kuλ implies actually some averaging of the noise, which usually
reduces the noise variance stronger on larger scales than on smaller ones. This can be
analyzed in particular for statistical noise models such as additive Gaussian noise.

In the following we want to demonstrate how Theorem 3 can be used to derive
estimates for the difference of the reconstruction û and the input data ũ on different
scales.
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Example 8. With this first example we want to find a worst-case estimate for
a reconstruction û of (2.4), with respect to the input data f = ũ + η on the scale
[0, a] ⊂ [0, 1], for 0 < a < 1. We want to point out that the ROF model is mean-value

preserving, i.e.
∫ 1

0
(û− ũ) dx = 0. Let us investigate the integral equation∫ a

0

(û− ũ) dx = c0

∫ 1

0

u0 (û− ũ) dx+ c1

∫ 1

0

u1 (û− ũ) dx ,

=

∫ 1

0

(c0u0 + c1u1) (û− ũ) dx ,

=

∫ a

0

(c0u0 + c1u1) (û− ũ) dx+

∫ 1

a

(c0u0 + c1u1) (û− ũ) dx ,(4.6)

with the function u0 defined as u0(x) ≡ 1, and with u1(x) := ua(x) being the singular
vector of Example 6. Then, (4.6) reads as

∫ a

0

(û− ũ) dx =

(
c0 −

√
1− a

a
c1

)∫ a

0

(û− ũ) dx+

(
c0 +

√
a

1− a
c1

)∫ 1

a

(û− ũ) dx .

(4.7)

In order to satisfy (4.7), the coefficients c0 and c1 have to be chosen such that they
solve the linear system of equations

(4.8)

 1 −
√

1−a
a

1
√

a
1−a

( c0
c1

)
=

(
1
0

)
.

It is easy to see that c0 = a and c1 = −
√
a(1− a) solve (4.8). Thus, we obtain the

following scale estimate

∣∣∣∣∫ a

0

(û− ũ) dx

∣∣∣∣ =

∣∣∣∣∣∣∣∣a
∫ 1

0

û− ũ dx︸ ︷︷ ︸
=0

−
√
a(1− a)

∫ 1

0

u1 (û− ũ) dx

∣∣∣∣∣∣∣∣ ,

=
√
a(1− a)

∣∣∣∣∫ 1

0

u1 (û− ũ) dx

∣∣∣∣ ,

≤
√
a(1− a)

(
α√

a(1− a)
+

∣∣∣∣∫ 1

0

η u1 dx

∣∣∣∣
)

,

=

(
α+

√
a(1− a)

∣∣∣∣∫ 1

0

η u1 dx

∣∣∣∣) ,

since 1/
√
a(1− a) is the singular value of u1. Note that for η = 0 we simply obtain∣∣∣∣∫ a

0

(û− ũ) dx

∣∣∣∣ ≤ α .

This estimate is obviously not sharp if a→ 1, since
∫ 1

0
û− ũ dx = 0, but gives a worst

case estimate if a is far away from the boundary as in case of a = 1/2. If we consider
e.g. ũ(x) = x − 1/2, the estimate guarantees that the area visualized in Figure 3 is
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Fig. 3. The function ũ(x) = x − 1/2 (solid red line) and the solution of (2.4) for input data
given in terms of f = ũ and α = 1/18 (dashed blue line). The areas indicated by wavy lines equal
−1/18 and 1/18, respectively.

equal or smaller than α. Indeed the area equals α, which becomes clear by computing
the exact solution of (2.4) for f(x) = ũ(x) = x − 1/2. For 0 < α < 1/8 the solution
satisfies

û(x) =


√

2α− 1
2 x ∈

[
0,
√

2α
[

x− 1
2 x ∈

[√
2α, 1−

√
2α
]

1
2 −
√

2α x ∈
]
1−
√

2α, 1
] ,

and thus,
∫ 1/2

0
(û− ũ) dx = −

∫ 1

1/2
(û− ũ) dx = α holds true.

Example 9. As a second example we want to focus on a scale estimate on the
scale [a, b] ⊂ [0, 1], for 0 < a < b < 1. Again we study (2.4) and, in analogy to the
previous example, consider

∫ b

a

û− ũ dx =

∫ 1

0

(c0u0 + c1u1 + c2u2) (û− ũ) dx ,(4.9)

with u0(x) ≡ 1, u1(x) := ua(x) and u2(x) := −ub(x), for ua and ub being singular
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vectors as defined in Example 6. Thus, we can rewrite (4.9) to∫ b

a

(û− ũ) dx =

∫ a

0

(c0u0 + c1u1 + c2u2) (û− ũ) dx +∫ b

a

(c0u0 + c1u1 + c2u2) (û− ũ) dx +∫ 1

b

(c0u0 + c1u1 + c2u2) (û− ũ) dx

=

(
c0 −

√
1− a
a

c1 +

√
1− b
b

c2

)∫ a

0

(û− ũ) dx +(
c0 +

√
a

1− a
c1 +

√
1− b
b

c2

)∫ b

a

(û− ũ) dx +(
c0 +

√
a

1− a
c1 −

√
b

1− b
c2

)∫ 1

b

(û− ũ) dx .

Similar to the previous example we therefore have to make sure that c0, c1 and c2
satisfy

(4.10)


1 −

√
1−a
a

√
1−b
b

1
√

a
1−a

√
1−b
b

1
√

a
1−a −

√
b

1−b


 c0

c1
c2

 =

 0
1
0

 .

Solving (4.10) for c0, c1 and c2 yields c0 = b−a, c1 =
√
a (1− a) and c2 =

√
b (1− b).

Consequently, Theorem 3 allows us to compute the estimate

∣∣∣∣∣
∫ b

a

(û− ũ) dx

∣∣∣∣∣ ≤ (b− a)

∣∣∣∣∣∣∣∣
∫ 1

0

û− ũ dx︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣+
√
a (1− a)

∣∣∣∣∫ 1

0

u1 (û− ũ) dx

∣∣∣∣
+
√
b (1− b)

∣∣∣∣∫ 1

0

u2 (û− ũ) dx

∣∣∣∣
≤ 2α+

√
a (1− a)

∣∣∣∣∫ 1

0

η u1 dx

∣∣∣∣+
√
b (1− b)

∣∣∣∣∫ 1

0

η u2 dx

∣∣∣∣ .

In case of clean data, i.e. η = 0, we see that∣∣∣∣∣
∫ b

a

(û− ũ) dx

∣∣∣∣∣ ≤ 2α

holds. It is remarkable that the worst-case estimate on the scale [a, b] does not depend
on the boundary values a and b. However, if we want to estimate the mean value,
then an additional factor 1

b−a comes up, which increases with decreasing size of the
interval.
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5. Exact reconstruction of singular vectors. In this section we discuss ex-
act solutions of variational regularization methods, namely the recovery of singular
vectors. We will relate this results to properties of Bregman distances. First of all,
we want to recall a criterion that has been shown by Meyer in [52] in order to derive
trivial ground states for the ROF-model. These considerations can be generalized by
the use of Bregman distances as it can be seen by the following theorem.

Theorem 4. Let f be such that

1

α
K∗f ∈ ∂J(0)(5.1)

is satisfied, then a minimizer of (2.2) is given by û ≡ 0. Vice versa, û ≡ 0 is a
minimizer of (2.2) only if (5.1) holds.

Proof. We can rewrite (2.2) to

û ∈ arg min
u∈dom(J)

{
1

2
‖Ku‖2H + α

(
J(u)−

〈
1

α
K∗f, u

〉
U

)
+

1

2
‖f‖2H

}
Since (5.1) is satisfied, we can define q := (K∗f)/α such that

Dq
J(u, 0) = J(u)− J(0)− 〈q, u〉U

is a non-negative Bregman distance. Hence, ignoring the constant part 1/2‖f‖H we
have

û ∈ arg min
u∈dom(J)

{
1

2
‖Ku‖2H + αDq

J(u, 0)

}
for which the obvious minimizer is given via û = 0, since both terms are non-negative
and vanish for u = 0. It is straightforward to see the opposite condition from the
optimality condition for û = 0.

Remark 2. Note that if (5.1) is satisfied for a specific α̃, then (5.1) is automat-
ically guaranteed for every α ≥ α̃, since (K∗f)/α̃ ∈ ∂J(0) implies

J(v) ≥
〈

1

α̃
K∗f, v

〉
U

,

for all v ∈ dom(J). If we multiply both sides of the inequality with α̃ we obtain

α̃J(v) ≥ 〈K∗f, v〉U ,

since α̃ is positive. Due to the positivity of J we even have

αJ(v) ≥ α̃J(v)

for all v ∈ dom(J) and α ≥ α̃, and hence, (5.1) is guaranteed for all α ≥ α̃.

Theorem 4 yields an explicit condition on the regularization parameter α to en-
force the solution of (2.2) to be zero. Furthermore, according to the following Lemma
for singular vectors uλ of one-homogeneous functionals there even have to exist pa-
rameters α such that (5.1) is fulfilled for f = Kuλ.
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Lemma 2. Let J be one-homogeneous. If u ∈ dom(J) ∩ dom(K) is a function
such that (5.1) does not hold for any α ∈ R>0 with data f = Ku, i.e.

1

α
K∗Ku /∈ ∂J(0) ∀α ∈ R>0 ,

then, u is not a singular vector with singular value λ 6= 0.

Proof. We want to prove the statement by contradiction. We therefore assume
that on the one hand, u is a singular vector with singular value λ, i.e. λK∗Ku = p ∈
∂J(u). Taking a duality product of this relation with u yields the equality

λ‖Ku‖2H = J(u) ,(5.2)

due to the one-homogeneity of J . Moreover, from the definition of the subdifferential,
the singular value property yields

J(v) ≥ J(u) + λ 〈K∗Ku, v − u〉U ∀v ∈ dom(J) .(5.3)

On the other hand, we know due to (K∗Ku) /α /∈ ∂J(0) for all α ∈ R>0 that there
has to exist a function v ∈ dom(J) with

〈Ku,Kv〉H > αJ(v) .(5.4)

If we insert (5.3) into (5.4), for the particular choice of v we therefore obtain

〈Ku,Kv〉H > α
(
J(u) + λ 〈Ku,Kv〉H − λ‖Ku‖

2
H
)

⇔ (1− λα) 〈Ku,Kv〉H > α
(
J(u)− λ‖Ku‖2H

)
.(5.5)

Equation (5.5) is supposed to be true for every α ∈ R>0, especially for the particular
choice α = 1/λ. In this case, (5.5) reads as

λ‖Ku‖2H > J(u) ,

for λ > 0, and therefore is a contradiction to (5.2).

The equivalent reverse statement of Lemma 2 is that for every data f created
by a singular vector uλ, i.e. f = Kuλ, there exists a parameter α̃ such that (5.1) is
valid for α ≥ α̃. Moreover, condition (5.1) guarantees that the data f needs to satisfy
certain properties in order to vanish for a large regularization parameter α, e.g. f
does need to have zero mean for K = I in the case of TV-regularization.

Remark 3. Note that, however, it is possible for a particular function f that
there does not exist a parameter α such that (5.1) is fulfilled, although f = Ku0 is
given in terms of a trivial ground state (and therefore in terms of a singular vector)
with singular value λ = 0. A simple example would be that f 6≡ 0 is a constant
function in case of K = I and J = TV.

5.1. Clean data. In case of clean data f = γKuλ, γ > 0 and uλ being a non-
trivial singular vector, we are interested in finding a solution of (2.2) that can be
expressed in terms of this singular vector, i.e. û = cũ for a positive constant c. We
want to call such a function almost exact solution.
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The following theorem gives us the conditions on α needed for recovering a multiple
of uλ.

Theorem 5. Let J be one-homogeneous. Furthermore, let uλ be a singular vector
with corresponding singular value λ. Then, if the data f is given as f = γKuλ for a
positive constant γ, a solution of (2.2) is û = cuλ for

c = γ − αλ ,

if γ > αλ is satisfied.

Proof. Again, we rewrite (2.2) in terms of a Bregman distance. Inserting f =
γKuλ yields

û ∈ arg min
u∈dom(J)

{
1

2
‖Ku− γKuλ‖2H + αJ(u)

}
∈ arg min

u∈dom(J)

{
1

2
‖Ku− cKuλ‖2H + αJ(u) + αJ(cuλ)− γ − c

λ
〈λK∗Kuλ, u〉U

+
1

2
(〈γKuλ, γKuλ〉H + 〈cKuλ, cKuλ〉H)− αJ(cuλ)

}
.

By ignoring the constant part, for γ > αλ and c = γ − αλ > 0 we therefore obtain

û = arg min
u∈dom(J)

{
1

2
‖Ku− cKuλ‖2H + αDq

J(u, cuλ)

}
,

with

q = λK∗Kuλ ∈ ∂J(uλ)
J one-homogeneous

= ∂J(cuλ) .

An obvious minimizer is û = cuλ.

Note that the above result does not yield that the singular value is the unique
minimizer, except for K having trivial nullspace. To see this, let us consider model
(2.2) with J(u) = ‖u‖`1 and K being the matrix

K :=
1√
2

(
1 1
1 1

)
.

It is obvious that K is normalized with respect to the `2-norm, but neither is injective
nor surjective. Due to Example 4 both e1 and e2 are singular vectors. However, both
yield the same output f = (1/

√
2, 1/
√

2)T and therefore both û = (1 − α)e1 and
û = (1− α)e2 satisfy Theorem 5.

We also mention that the main line of Theorem 5 also holds for p-homogeneous
functionals, but with different constants c. In the following we turn our attention to
noisy data, where the one-homogeneity is much more essential, e.g. exact reconstruc-
tion for a wide class of noise realizations cannot hold for quadratic regularizations.

5.2. Noisy data. The multivaluedness of the subdifferential ∂J allows to obtain
almost exact solutions even in the presence of noisy data, i.e. f = γKuλ + n, though
the case of noisy data is slightly more complicated to prove. If the most significant
features of uλ with respect to the regularization energy J are left unaffected by the
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noise, then the following theorem guarantees almost exact recovery of the singular
vector uλ.

Theorem 6. Let J be one-homogeneous. Furthermore, let uλ be a singular vector
with corresponding singular value λ. The data f is assumed to be corrupted by noise
n, i.e. f = γKuλ+n for a positive constant γ, such that there exist positive constants
µ and η with

µK∗Kuλ + ηK∗n ∈ ∂J(uλ) .(5.6)

Then, a solution of (2.2) is given by û = cuλ for

c = γ − αλ+
λ− µ
η

,

if γ satisfies the SNR-condition

(5.7) γ >
µ

η
,

and if α ∈ [1/η, γ/λ+ 1/η[ holds.

Proof. Similar to the proof of Theorem 5 we rewrite (2.2) to

û = arg min
u∈dom(J)

{
1

2
‖Ku− γKuλ − n‖2H + αJ(u)

}
= arg min
u∈dom(J)

{
1

2
‖Ku− cKuλ‖2H + αJ(u)− α

〈
γ − c
α

K∗Kuλ +
1

α
K∗n, u

〉
U

}
= arg min
u∈dom(J)

{
1

2
‖Ku− cKuλ‖2H + αDq

J(u, cuλ)

}
,

with obvious minimizer û = cuλ, if we neglect the constant parts and if we can manage
to choose c such that

γ − c
α

K∗Kuλ +
1

α
K∗n ∈ ∂J(uλ) = ∂J(cuλ) .

Note that since ∂J(uλ) is a convex set not only λK∗Kuλ and (5.6) are elements of
∂J(uλ), but also any convex combination, i.e.

((1− β)λ+ βµ)K∗Kuλ + βηK∗n ∈ ∂J(uλ) ,

for each β ∈ [0, 1].
Hence, we need to choose c > 0 and β ∈ [0, 1] such that 1/α = βη and (γ−c)/α =

(1− β)λ+ βµ. Therefore, solutions for β and c are

β =
1

αη

and

c = γ − αλ+
λ− µ
η

.
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In order to satisfy β ≤ 1 and c > 0, α has to be chosen such that α is bounded via

1

η
≤ α < γ

λ
+

1

η
+

µ

λη
.

This condition can only be satisfied, if γ > µ/η holds.

At a first glance (5.6) seems unreasonably restrictive, e.g. for smooth functionals
J it can only hold if the noise is generated by the singular vector itself. This however
differs completely in the situation of singular regularization functionals with large
subdifferentials. To see this, let us consider the setup of Example 4 with a ground
state ei, together with the reasonable assumptions that no pair of columns in K is
linearly independent. For

p = λK∗Kei ∈ ∂‖ei‖`1(RN )

we have

pi = p · ei = λei ·K∗Kei = λ = 1

and hence for j 6= i

|p · ej | = |ej ·K∗Kei| = |Kj ·Ki| < 1,

where we denote by Kj the j-th column of K. Now let n ∈ RM be the noise vector
and v = K∗n. In order to satisfy (5.6) we need

1 = p · ei = µei ·K∗Kei + ηei · v = µ+ ηvi,

and

1 ≥ |p · ej | = |µKj ·Ki + ηvj |.

The first condition is satisfied if µ = 1− ηvi. Since then

|µKj ·Ki + ηvj | = |Kj ·Ki|+O(η)

for η small and |Kj ·Ki| < 1, we indeed conclude that there always exists η such that
(5.6) is satisfied. Note that in this case λ = 1 and hence c = γ − α+ vi.

6. Bias of variational methods. We have seen in the previous section that
there remains a small bias in the exact reconstruction of singular vectors, which is
incorporated in the fact that c < γ, with difference depending on the actual singular
value. For f = γKuλ, this difference yields a residual

‖Ku− f‖H = αλ‖Kuλ‖H = αλ,

i.e. a bias in the solution, which is minimal for the ground state λ0. In this short
section we will show that indeed this bias prevails for arbitrary data and the residual
is bounded below by αλ0, which again confirms the extremal role of the ground state.

Theorem 7. Let J be one-homogeneous, f ∈ H be arbitrary, α > 0, and let

uα ∈ arg min
u∈U

(
1

2
‖Ku− f‖2H + αJ(u)

)
.
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Then

(6.1) ‖Kuα‖H ≤ max{‖f‖H − αλ0, 0},

where λ0 is the smallest singular value. As a direct consequence, if ‖f‖H ≥ αλ0, then

(6.2) ‖Kuα − f‖H ≥ αλ0,

which is sharp if f is a multiple of Ku0 with the ground state u0.

Proof. If Kuα = 0, then the estimate is obviously satisfied. Thus, we restrict our
attention to the case Kuα 6= 0 and define v := uα

‖Kuα‖ . From the dual product of the

optimality condition with v we see that for a subgradient pα ∈ ∂J(uα) = ∂J(v) that

〈K∗Kuα, v〉U + α〈pα, v〉U = 〈K∗f, v〉U .

Due to the one-homogeneity of J we conclude 〈pα, v〉U = J(v) and hence,

‖Kuα‖H + αJ(v) = 〈f,Kv〉H.

By the definition of the ground state we conclude J(v) ≥ λ0 and by further estimating
the right-hand side via the Cauchy-Schwartz inequality 〈f,Kuα〉H ≤ ‖f‖H‖Kuα‖H
we have

‖Kuα‖H + αλ0 ≤ ‖f‖H,

which implies the assertion.

The bias in the residual can to some extent also be translated to the regularization
functional, as the following result shows:

Theorem 8. Let J be one-homogeneous, f = Kũ for ũ ∈ U with J(ũ) < ∞,
such that ‖f‖H ≥ αλ0. Moreover let α > 0 and

uα ∈ arg min
u∈U

(
1

2
‖Ku− f‖2H + αJ(u)

)
.

Then

(6.3) J(uα) ≤ J(ũ)− α

2
λ2

0 ,

with λ0 denoting the smallest singular value.

Proof. By the definition of uα as a minimizer and (6.2) we conclude

1

2
α2λ2

0 + αJ(uα) ≤ 1

2
‖Kuα − f‖2H + αJ(uα) ≤ αJ(ũ),

which yields the assertion after dividing by α.

7. Unbiased recovery and inverse scale space. In Section 5 we have seen
that in standard variational methods of the form (2.2) one can recover singular vector
(almost) exactly with a loss of contrast. In this chapter we want to extend this topic to
the question of exact recovery without a loss of contrast, in the absence and presence
of noise. For this sake we are going to investigate the concept of the inverse scale



SINGULAR VECTORS OF CONVEX REGULARIZATION METHODS 319

space flows, which have displayed superior properties to solutions of (2.2) in several
numerical tests (cf. [19, 60]).
Inverse scale space methods can be derived asymptotically from the Bregman iteration

(7.1) uk+1 ∈ arg min
u∈dom(J)

{
1

2
‖Ku− f‖2H + α(J(u)− 〈pk, u〉U )

}
,

for which the subgradient pk ∈ ∂J(uk) satisfies p0 ≡ 0 and

(7.2) pk = pk−1 +
1

α
K∗(f −Kuk) .

In the limit α → ∞ one can interpret ∆t = 1
α as a time step tending to zero. Thus,

we obtain the inverse scale space flow

(7.3) ∂tp(t) = K∗(f −Ku(t)), p(t) ∈ ∂J(u(t)).

We refer to [19, 10, 18, 20, 21, 23, 53] for detailed discussions of the inverse scale space
method and its analysis.

We want to mention that analogous results on exact respectively unbiased recon-
struction can be obtained for the Bregman iteration, clearly with some dependence
on the value of α, further details can be found in [10].

7.1. Clean data. Similar to Section 5.1, we are going to consider data f =
γKuλ, with uλ being a singular vector. For this setup we are able to derive the
following result:

Theorem 9. Let J be one-homogeneous and let uλ be a singular vector with
corresponding singular value λ. Then, if the data f are given by f = γKuλ for a
positive constant γ, a solution of the inverse scale space flow (7.3) is given by

(7.4) u(t) =

{
0 if t < t∗
γuλ if t ≥ t∗

for t∗ = λ/γ.

Proof. First of all we see with Theorem 4 that for t < t∗ we have

p(t) = tK∗f = tγK∗Kuλ = t
γ

λ
pλ ∈ ∂J(0).

Since ∂tp = K∗f and p(0) = 0, u(t) = 0 is a solution of (7.3).
For time t ≥ t∗ a continuous extension of p is given by the constant p(t) = p(t∗)

and u(t) = u(t∗). Due to the one-homogeneity, with t∗ = λ/γ we obtain

p(t∗) ∈ ∂J(uλ) = ∂J(γuλ), K∗(f −Ku(t∗)) = 0 .

Thus, ∂tp = 0 yields indeed a solution of (7.3) for t ≥ t∗.

7.2. Noisy data. As in Section 5 the case of noisy data is a bit more compli-
cated. In order to recover a singular vector exactly despite the contamination of the
data f with noise, we basically need the signal ratio µ as introduced in Theorem 6
to equal the singular value λ. We also mention that the stopping time is the regular-
ization parameter in inverse scale space methods, thus we can only expect the exact
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reconstruction to happen in a time interval (t∗, t∗∗). More precisely we obtain the
following result:

Theorem 10. Let J be one-homogeneous and let uλ be a singular vector with
corresponding singular value λ. The data f is assumed to be corrupted by noise n,
i.e. f = γKuλ + n for a positive constant γ, such that there exist positive constants
µ and η that satisfy (5.6) and (5.7). Then, a solution of the inverse scale space flow
(7.3) is given by

(7.5) u(t) =

{
0 if t < t∗
cuλ if t∗ ≤ t < t∗∗

for

c = γ +
λ− µ
η

.(7.6)

and

t∗ =
λη

λ+ γη − µ
< t∗∗ = η.

Proof. With a similar argumentation as in the proof of Theorem 9 we obtain
u(t) = 0 for t < t∗ and

p(t∗) = t∗γK
∗Kuλ + t∗K

∗n

as the corresponding subgradient to the first non-zero u for a critical time t∗. Analo-
gous to the proof of Theorem 6 we can treat the relation above as a convex combination
of λK∗K and (5.6) for any β ∈ [0, 1], and determine β = λ

λ+γη−µ and subsequently

t∗ as above. Moreover, we see that u(t∗) = cuλ is a feasible solution with subgradient
p(t∗), which we extrapolate as constant for further times up to some time t∗∗. Then,
from p(t∗) = t∗K

∗f and ∂tp(t) = K∗(f − cKuλ) we conclude

p(t) = tK∗f − (t− t∗)cK∗Kuλ
= tK∗(γKuλ + n)− (t− t∗)cK∗Kuλ
= tK∗n+ (γt− c(t− t∗))K∗Kuλ .

To obtain p(t) ∈ ∂J(u(t∗)) we again compare convex combinations of (5.6) and
λK∗Kuλ with parameter β ∈ [0, 1]. We need to choose β = t

η , which is only possible

for t < t∗∗ = η. Further we obtain that µ = γt− c(t− t∗) needs to hold. This identity
can be verified with the above formulas for t∗ and c.

8. Further examples. In the following we shall discuss several further examples
to illustrate the use of nonlinear singular values:

8.1. Hilbert space norms. The obvious first starting point is to consider reg-
ularizations with Hilbert space norms, i.e.

(8.1) J(u) = ‖u‖U .

Note that we focus on the one-homogeneous case here, i.e. we do not use the squared
Hilbert space norm as in the standard formulation of Tikhonov regularization. How-
ever, it is easy to check that there is a one-to-one relation between the singular values
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of the problems with squared and non-squared norms, such that they are equivalent.
It is straight-forward to see that the singular values are determined from

(8.2) λK∗Ku =
u

‖u‖U
,

and with our normalization we see λ = ‖u‖U . Thus if un is a singular vector in the
classical definition

(8.3) K∗Kun = σ2
nun,

it is also a singular vector in the new definition (at least after appropriate normaliza-
tion). The linear singular values σn are related to the novel values λn via

(8.4) σ2
n =

1

λn‖un‖U
=

1

λ2
n

,

which is consistent with our original definition as singular values being related to the
regularization functional rather than to K.

The fact that singular values yield exact solutions of the variational problem is
not new and is directly inferred as a special case of the standard theory (cf. [36]).
However, it is surprising how the behavior of the inverse scale space method changes
when rescaling from the squared norm to the one-homogeneous case. In the case of
J(u) = 1

2‖u‖
2
U the inverse scale space method is equivalent to Showalter’s method (cf.

[62])

∂tu = K∗(f −Ku),

and it is well-known that singular vectors follow an exponential dynamic, i.e. if
f = Kuλ for a singular vector uλ, then

u(t) = (1− e−t/λ)uλ .

The behavior changes completely in the one-homogeneous case as we can conclude
from the results in the previous section, since the solution remains zero in finite time
and then jumps exactly to u(t) = uλ at the critical time.

8.2. Total variation. We have already used the ROF model for denoising at
several instances as a simple illustrative example, in particular in spatial dimension
one. In this section we want to extend the considerations of the one dimensional
ROF model to data that is corrupted by noise. Moreover, we want to highlight the
connection between singular vectors and characteristic functions of so-called calibrable
sets as introduced in [5, 4], with respect to the isotropic total variation functional in
higher spatial dimension. In [27] the theory of calibrable sets has also been extended
to more general (and in particular anisotropic) regularization functionals, which we
disregard here for the sake of simplicity. Instead, we introduce an analytical solution of
the anisotropic total variation regularization in terms of the singular vector definition,
similar to the previous examples in spatial dimension one.

Unbiased recovery in practice. In this section we briefly want to illustrate
that in practice the violation of the assumptions of the Theorems 9 and 10 can indeed
yield undesired artifacts in the reconstruction. We therefore want to investigate the
piece-wise constant function u4 : [0, 1]→ {−1, 1}

u4(x) :=

{
1 x ∈

[
1
4 ,

3
4

]
−1 else

.(8.5)
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It is straightforward to see that u4 is a singular vector of TV with singular value λ = 4,
and with the corresponding dual singular vector p4 satisfying the relation p4 = q′4 (in
terms of a weak derivative) for q4 defined as

q4(x) := 4


−x x ∈

[
0, 1

4

[
x− 1

2 x ∈
[

1
4 ,

3
4

]
1− x x ∈

]
3
4 , 1
] .(8.6)

Both functions are visualized in Figure 4. Now assume we want to compute the
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1

0.5

0

0.5

1

x

Fig. 4. The functions u4 (solid blue line) and q4 (dashed red line) as defined in (8.5) and (8.6),
respectively.

minimizer of (2.4) for our data given in terms of f(x) = u4(x) + n(x). Here, n

represents a noise function which we assume to have mean zero (i.e.
∫ 1

0
n(x) dx = 0),

and to fulfill N(0) = N(1), with N denoting the primitive of n (i.e. N ′(x) = n(x)).
In order to apply Theorem 6 we need to guarantee the existence of constants µ > 0
and η ≥ 1/α such that (5.6) is satisfied. We therefore make the attempt to define

q(x) :=
µ

4
q4(x) + ηN(x) ,

for which we obtain q(0) = q(1) = 0, due to the definition of n. Moreover, we discover

〈q′, u4〉L2([0,1]) = µ+ 2η

∫ 3
4

1
4

n(x) dx

= 4

(
µ

4
+
η

2

(
N

(
3

4

)
−N

(
1

4

)))
,

which equals TV(u4) = 4 if µ satisfies

µ = 4− 2η

(
N

(
3

4

)
−N

(
1

4

))
.

Assume N(3/4) ≥ N(1/4), then we even obtain

µ ≤ 4− 2

α

(
N

(
3

4

)
−N

(
1

4

))
≤ 4 = λ ,(8.7)
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due to η ≥ 1/α. Note that in order to obtain µ > 0 we need to ensure

α >
1

2

(
N

(
3

4

)
−N

(
1

4

))
,(8.8)

otherwise Theorem 6 cannot be applied. Assuming to choose η = 1/α, the loss of
contrast modifies to

c = 1− 4α+ 2

(
N

(
3

4

)
−N

(
1

4

))
in case that (8.8) does hold.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

x
 

 
u4
u
_

q
_

(a) α = 19π+2
152π

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

x
 

 
u4
u
_

q
_

(b) α = 1
75π

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

x
 

 
u4
u
_

q
_

(c) α = 1
76π

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

x
 

 
u4
u
_

q
_

(d) Closeup, α = 1
75π

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

x
 

 
u4
u
_

q
_

(e) Closeup, α = 1
76π

Fig. 5. Computational ROF-reconstructions for input datum f = u4 + n, with u4 and n being
defined as in (8.5) and (8.9), respectively. It is remarkable to see that as soon as α is chosen such
that Theorem 6 cannot be applied, the numerical computations fail to compute a multiple of u4,
indicating the sharpness of the Theorem.

Let us consider a specific example now. We decide to choose the periodic function

n(x) := A cos (38πx)(8.9)

to be our noise function, with amplitude A and frequency 38. Note that this
noise function satisfies the mean zero property as well as N(0) = N(1), for
N(x) = (A sin (38πx))/(38π). Moreover, we compute N(3/4) = A/(38π) and
N(1/4) = −A/(38π), so that (8.7) now reads as µ ≤ 4 (1−A/(38απ)), and according
to (8.8), α should be chosen to satisfy

α >
A

38π
.
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In Figure 5 you can see several computational solutions of (2.4) for the specified input
datum f = u4 + n, for A = 1/2 and numerous α-values. The computations nicely
indicate that as soon as the assumptions of Theorem 6 are violated, artifacts are
introduced in the computational reconstruction.

In the unbiased case of Theorem 10 we may conclude from the considerations
above that we obtain u(t) = u4 as the solution of the Inverse Scale Space Flow (7.3),
for 4 ≤ t < (38π)/A and A < (19π)/2.

The ROF model and calibrable sets. In [52] Y. Meyer has basically proved
that the characteristic function of a circle is a singular vector of isotropic total varia-
tion on RN . In [5, 4] the class of characteristic functions that correspond to singular
vectors in the terminology of this paper has been extended to calibrable sets. In the
following we want to recall properties of calibrable sets and show why they correspond
to singular vectors of total variation.

Definition 5. Let C ⊂ R2 be a bounded, convex and connected set with its
boundary ∂C being of class C1,1. Then C is called calibrable if there exists a vector
field ξ ∈ L∞(C;R2) with ‖ξ‖∞ ≤ 1 such that

−div ξ = const = λC :=
P (C)

|C|
in C

ξ · ν = −1 a. e. on ∂C

(8.10)

holds, for ν denoting the outer unit normal to ∂C, P (C) denoting the perimeter and
with |C| representing the volume of C.

Remark 4. Note that the perimeter simply equals the isotropic total variation
TV(χC) of the corresponding characteristic function χC .

Theorem 11. In [4] it has been proved that for calibrable sets the following
conditions are satisfied.

• C is the solution of the problem

min
X⊂C

P (X)− λ|X| .

• The inequality

ess sup
x∈∂C

κ(x) ≤ λ

holds, with κ(x) denoting the curvature of ∂C at point x.

In [9] it has already been proved that for calibrable sets C the solution of the
isotropic total variation with an characteristic function χC as the input datum satisfies
û(x) = (1 − λα)χC(x). Thus, Theorem 5 implies that the input datum already has
to be a singular vector with singular value λ.

We finally mention that Agueh and Carlier [3] have investigated a related class of
ground state problems for total variation with constraints of the form

∫
Ω
G(|u|) dx =

1. Such may be interesting for denoising with noise models different from additive
Gaussian, where hardly any examples of exact solutions exist, except for single ones
in [10].
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The anisotropic ROF model in two dimensions. Analytical solutions of the
isotropic ROF model have widely been studied and discussed in literature. However,
analytical solutions of the anisotropic ROF model have not attracted a similar at-
tention, although many of them are easier to describe, as we are going to see in the
following.
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Fig. 6. On-top and three-dimensional view of the singular vector u√32 and its dual variables

px√
32

and py√
32

.

Recall (8.5) and its dual singular vector p4 = q′4, with q4 being defined in (8.6).
Let us define the two-dimensional functions qx√

32
: [0, 1]2 → [−1, 1] and qy√

32
: [0, 1]2 →

[−1, 1] with qx√
32

(x, y) := q4(x) and qy√
32

:= q4(y). Then it is easy to see that the
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weak divergence of q√32 = (qx√
32
, qy√

32
) divided by

√
32 yields the function

u√32(x, y) =
√
2


1 (x, y) ∈

[
1
4
, 3
4

]
0

((∣∣x− 1
2

∣∣ ≤ 1
4

)
∧
(∣∣y − 1

2

∣∣ > 1
4

))
∨
((∣∣x− 1

2

∣∣ > 1
4

)
∧
(∣∣y − 1

2

∣∣ ≤ 1
4

))
−1 else

.

(8.11)

Thus, with the same considerations as before we are able to prove that u√32 is a

singular vector of TV with singular value λ =
√

32, since we observe
• qx√

32
nx = 0 and qy√

32
ny = 0, with nx and ny denoting the outer unit normals

of qx√
32

and qy√
32

in x- and in y-direction, respectively

• ‖q‖L∞([0,1]2;R2) = max
(∣∣∣qx√

32

∣∣∣ , ∣∣∣qy√
32

∣∣∣) = 1

•
〈
divq√32, u

√
32

〉
L2([0,1]2;R2)

= TV(u√32)

The singular vector u√32 and the dual vectors qx√
32

and qy√
32

are visualized in Figure
6.

Denoising vector fields. Another generalization of the one-dimensional ROF
model to multiple dimensions has been discussed recently in [15], namely the denoising
of vector fields f ∈ L2(Ω;Rn) via minimizing

(8.12) u = arg min
u∈L2(Ω;Rn)

{
1

2

∫
Ω

(f − u)2 dx+

∫
Ω

|div u| dx
}

.

As in the case of total variation, the L1-norm of the divergence has to be generalized
to a weak form

(8.13) J(u) = sup
ϕ∈C∞0 (Ω)
‖ϕ‖L∞(Ω)≤1

∫
Ω

u · ∇ϕ dx.

Concerning our investigation of ground states and singular values, this model
yields an example with a huge set of trivial ground states. Any function u ∈ L2(Ω;Rn)
such that ∇ · u = 0 is obviously a ground state. In order to compute a nontrivial
ground state we obtain the condition∫

Ω

u · v dx = 0 for all v with ∇ · v = 0,

and that u has to be a gradient field, i.e.

λu = ∇q .

The scalar q is obtained from the minimization of∫
Ω

|∆q| dx subject to

∫
Ω

‖∇q‖2`2(Rn) dx = 1 .

8.3. Support pursuit. While sparsity regularization with discrete `1-
functionals has been studied extensively in the last decade, the continuum analog
was investigated only recently. At a first glance it seems that L1(Ω) would be the
straight-forward extension in terms of function spaces, but similar to the case of total
variation the lack of a weak-star topology in L1(Ω) prevents the applicability and often
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the existence of minimizers. Again the solution is to extend the variational approach
to a slightly larger space, which is a dual space. In this case this dual space is the
space of Radon measures M(Ω), which is the dual space of C0(Ω). The appropriate
regularization functional as introduced in [14] is the zero-order total variation of a
measure µ ∈M(Ω), i.e.

(8.14) J(µ) = sup
ϕ∈C0(Ω)
‖ϕ‖∞≤1

∫
Ω

ϕ dµ.

The setup used in [14] is to choose K = L∗, with L : H → C0(Ω) being a bounded
linear operator. This allows to avoid working with the complicated dual space of
M(Ω) for some arguments. We note that in this setup regular singular vectors can
rather be obtained from

(8.15) λLL∗µ ∈ ∂J(µ) .

In [30] this problem was analyzed in a compressed sensing setting, when K consists
of a finite number of forward projections (in a polynomial basis), so that L can be
written down explicitly.

Bounded operators. Here we will consider two related cases including most
practical examples we are aware of (except the Radon integral transform): First of
all we analyze integral operators K∞ :M(Ω)→ L2(Σ) of the form

(8.16) (K∞u)(x) =

∫
Ω

k(x, y) dµ(y)

with a continuous kernel k. Then we shall turn to projection operators with M
measurements KM :M(Ω)→ RM of the form

(8.17) (KMu) =

(∫
Ω

kj(x) dµ(x)

)
j=1,...,M

,

assuming again the kj to be continuous. Notice that KM can also be thought of as
a semidiscretization of the operator K∞, e.g. by collocation methods, so it is natural
to compare at least ground states for those operators.

Our aim is to verify a natural extension of the `1-case, where the ground state
is a vector with a single nonzero entry. The natural analogue in the space of Radon
measures is a concentrated measure δx for x ∈ Ω (we use the notation δx due to the
relation to the Dirac delta distribution), with

(8.18)

∫
Ω

ϕ(y) dδx = ϕ(x) ∀ϕ ∈ C0(Ω) .

Indeed we can show that ground states are of this form and give a reasonably simple
condition on their location.

Theorem 12. Let K∞ and KM be as above. Then
• A ground state µ∞0 of K∞ is given by µ∞0 = cδz, with z satisfying∫

Ω

k(x, z)2 dx ≥
∫

Ω

k(x, y)2 dx ∀ y ∈ Ω ,
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and with c fulfilling

c = λ∞0 =
1√∫

Ω
k(x, z)2 dx

.

• A ground state µM0 of KM is given by µM0 = cδz, with z satisfying∑
j

kj(z)
2 ≥

∑
j

kj(y)2 ∀ y ∈ Ω ,

so that c fulfills

c = λ∞0 =
1√∑
j kj(z)

2
.

Proof. We prove a slightly more general version: for an operator K :M(Ω)→ H,
µ0 = cδz is a ground state if

f(y) := ‖Kδy‖H

attains a maximum at z. This yields the statements of the theorem as special cases.

Define c = λ0 = 1
‖Kδz‖H . Then we see that

〈λK∗Kµ0, µ0〉M(Ω) = c = J(µ0).

Moreover, for any µ ∈M(Ω) we have

〈λK∗Kµ0, µ〉M(Ω) = λ〈Kδz,Kµ〉H ≤ λ‖Kµ‖H .

We thus verify that λ2‖Kµ‖2H ≤ J(µ)2, or equivalently

‖Kµ‖2H ≤ J(µ)2‖Kδz‖2H

holds. First of all we discover

‖Kµ‖2H = 〈µ,K∗Kµ〉M(Ω) ≤ J(µ)‖K∗Kµ‖∞ .

For y ∈ Ω we further estimate

|(K∗Kµ)(y)| = |〈Kδy,Kµ〉H| ≤ ‖Kδy‖H ‖Kµ‖H ,

and thus obtain

‖K∗Kµ‖∞ = sup
y
|(K∗Kµ)(y)| ≤ sup

y
f(y)‖Kµ‖H ,

which finally yields the assertion.
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An Unbounded operator. As a simple sketch of the ROF model in three
dimensions (when embedding of BV into L2 fails), we study the case of K∗K being
the inverse Laplacian, i.e. Ku = v, with v ∈ H1

0 (Ω) solving −∆v = u if u ∈ M(Ω) ∩
H−1(Ω), and for Ω denoting the unit ball in R3. Since a Dirac delta distribution is
not an element of H−1(Ω) in spatial dimension three, we cannot obtain such measures
as singular vectors, hence the latter can at most be concentrated on manifolds with
higher dimension.
The equation for the singular vector becomes

λµ = −∆p, p ∈ ∂J(µ)

and we can look for radially symmetric solutions µ = M(r), p = P (r). Hence

λr2M = −∂r(r2∂rP )

with the additional condition P (1) = 0. Now a canoncial measure concentrated on
a codimension one manifold is the one on a sphere with radius R ∈ (0, 1), which
corresponds to M being a concentrated measure in r = R, i.e. M = cδR with c to be
determined from the normalization condition∫ 1

0

P (r)2r2 dr = 1 .

Then P can be computed as

(8.19) P (r) =

{
λcR

2

r (1− r) if r ≥ R
λcR(1−R) if r < R

.

Now P attains a maximum at r = R, and we need to choose λ such that P (R) = 1
holds, which yields λ = 1

cR(1−R) . Hence, we conclude that a measure concentrated

on a sphere of radius R is a singular vector, the smallest singular value in this class
is obtained for R = 1

2 . Note that λ → ∞ for R → 1 or R → 0, which confirms that
neither a concentrated measure in the origin nor a measure concentrated on ∂Ω is a
singular vector.

8.4. Sparsity and variants. As mentioned above sparsity-enforcing regular-
izations played an important role in image analysis and inverse problems in the last
years. The usual setup in `1-Regularization is U = `1(Rn) and H = `2(Rm), the
forward operator can thus be identified with a matrix K ∈ Rm×n. The proof of The-
orem 12 immediately implies that a ground state is given by γei, where i ∈ {1, . . . , n}
is the index of a row with maximal Euclidean norm, i.e. ‖Kei‖2 ≥ ‖Kej‖2 for any
j ∈ {1, . . . , n}. In the following we discuss two other relevant examples related to
sparsity and their ground states, respectively singular vectors.

Low rank. In order to compute matrix-valued solutions of low rank, the nuclear
norm has been considered in various papers recently, respectively shown to be an
exact relaxation of minimal rank problems in some cases (cf. [37, 55]). In this case
U = Rm×n and H = RM with

(8.20) J(u) =

min{m,n}∑
j=1

σj(u) ,
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for which σj are the (classical) singular values of the matrix u, and with M � (m×n)
denoting the number of known entries of u.

It seems natural that a ground state is of rank one. To see this, we take an
arbitrary matrix u with singular value decomposition

u =

min{m,n}∑
j=1

σjUjV
T
j .

Then we have

‖Ku‖H =

∥∥∥∥∥∥
min{m,n}∑

j=1

σjKUjV
T
j

∥∥∥∥∥∥
H

≤
min{m,n}∑

j=1

σj‖KUjV Tj ‖H ≤ max ‖KUjV Tj ‖HJ(u).

Equality is obtained if u is a rank-one matrix. Thus, we conclude that the ground
state is of rank one and obviously it is a multiple of UV T , where U and V maximize
‖KUV T ‖H among all orthogonal matrices.

Joint sparsity. In some applications it is more reasonable that few groups of
variables have nonzero entries instead of just a few single variables being nonzero.
This is modeled by so-called joint sparsity or group lasso approaches (cf. [67, 72, 51]),
the most prominent example being

(8.21) J(u) =

n∑
i=1

√√√√mi∑
j=1

u2
ij ,

in U = RN and H = RM , where N =
∑n
i=1mi. Since the goal is to obtain group

sparsity, we expect solutions such that ui· vanishes for most indices i. In particular
one expects the ground state such that ui· is a nonzero vector for only a single index
i.

In order to characterize the ground state we introduce the matrices Ai ∈ RM×mi
representing the linear operator K restricted to elements u supported in the index
set {i} × {1, . . . ,mi}. We shall also use the notation Ui = (uij)j=1,...,mi ∈ Rn. With
those we can write

J(u) =

n∑
i=1

‖Ui‖`2(Rmi ), ‖Ku‖`2(RM ) =

∥∥∥∥∥
n∑
i=1

AiUi

∥∥∥∥∥
`2(RM )

.

By the triangle inequality
(8.22)

‖Ku‖`2(RM ) ≤
n∑
i=1

‖AiUi‖`2(RM ) ≤
n∑
i=1

σmax
i ‖Ui‖`2(Rmi ) ≤ J(u) max

i∈{1,...,n}
σmax
i ,

for which σmax
i is the largest singular value of Ai. Equality is obtained if Uk is the

singular vector corresponding to singular value σmax
k with

σmax
k ≥ σmax

i ∀i 6= k

and all other Ui equal zero. Thus, there are ground states with only one row different
from zero, which perfectly corresponds to the motivation of group sparsity. The
pattern of the nonzero row is a classical singular vector of the restricted matrix Ai.
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8.5. Infimal-convolution regularization. Due to deficiencies of standard reg-
ularization functionals, constructions like infimal convolution of multiple regulariza-
tion functionals have been considered recently (cf. [28, 7, 8, 65, 61, 13]). The infimal
convolution (inf-convolution) of two convex functionals J1 and J2 is defined as

(8.23) J(u) := inf
v∈U

(J1(v) + J2(u− v)),

and appears to be a good way to combine the advantages of different regularization
functionals. Ideally one would hope that the inf-convolution of J1 and J2 can lead to
exact reconstruction of all solutions that are reconstructed exactly with J1 or J2.
Since the related variational problem can be reformulated as

(8.24) (v, w) = arg min
v,w

{
1

2
‖K(v + w)− f‖2 + α(J1(v) + J2(w))

}
,

we can directly consider singular vectors in the product space for u = (v, w), which
are characterized by

(8.25) λK∗K(v + w) = p1 = p2, p1 ∈ ∂J1(v), p2 ∈ ∂J2(w) .

In general we cannot expect that singular vectors of J1 or J2 are again singular vectors
of the inf-convolution. The simplest case would be a singular vector v

λK∗Kv = p1 ∈ ∂J1(v), w = 0.

Then we need that p1 ∈ ∂J2(0), which is difficult to achieve for general combinations.
However, the construction works at least for the ground state of one-homogeneous
functionals J1 and J2. Let v0 be the ground state of J1 and w0 be the one of J2.
Moreover we assume that J1(v0) ≤ J2(w0). Then we can estimate

J1(v) + J2(w) ≥ J1(v0)‖Kv‖+ J2(w0)‖Kw‖ ≥ J1(v0)‖K(v + w)‖.

Equality is achieved if w = 0 and v = v0, hence the ground state of J1 is also a ground
state of J . Note that for J2(w0) > J1(v0) we may conclude that w0 is not a ground
state, potentially not even a singular vector. Since such inequalities depend on the
scaling of J1 and J2 this suggests that one should use a scaling such that the smallest
singular values are equal.

9. Conclusions and open problems. In this paper we have generalized the
notion of singular values and singular vectors to nonlinear regularization methods in
Banach spaces and demonstrated their usefulness in the analysis. In particular we have
derived results on the bias of variational methods and scale estimates, which have a
particular geometric interpretation in the case of total variation denoising. Moreover,
we have shown that singular vectors are the solutions that can be reconstructed exactly
(up to a multiplicative constant) by variational regularization techniques.

A major open problem is to obtain a constructive approach for computing singu-
lar values and singular vectors, or at least ground states, of arbitrary problems either
analytically or numerically. A computational approach for similar problems was al-
ready discussed in [40], as well as for similar problems with quadratic constraints in
[6, 48, 50, 69, 70]. Our computational experiments indicate that such approaches can
indeed compute singular vectors, however they do not converge robustly to the ground
state and it is difficult to control to which singular vector the method will converge.
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matics, Birkhäuser, Basel, 2006.

[42] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints,
Mathematical Modelling: Theory and Applications Volume 23. Springer, Netherlands,
2009.
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