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THE F. AND M. RIESZ THEOREM FOR NONELLIPTIC VEKUA’S

EQUATIONS∗
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Abstract. We present a class of nonelliptic first order equations in the plane whose solutions
satisfy the F. and M. Riesz property.
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1. Introduction. The celebrated F. and M. Riesz Theorem states that if µ is a
measure on the unit circle T with the property that the Fourier coefficients

(1.1) µ̂(k) =

∫ 2π

0

e−ikθ dµ(θ) = 0 for k = −1,−2, . . .

then µ is absolutely continuous with respect to the Lebesgue measure dθ. Condition
(1.1) is equivalent to the existence of a holomorphic function f(z) defined on the unit
disc ∆ whose weak boundary value in the sense of distributions is µ. This theorem
has a local version which can be stated as follows: Suppose f(z) is holomorphic on
the rectangle Q = (−a, a) × (0, b) and has a weak boundary value denoted bf which
is a distribution. That is, given ψ(x) ∈ C∞

0 (−a, a),

(1.2) lim
y→0+

∫

f(x+ iy)ψ(x) dx = 〈bf, ψ〉.

The local version of the F. and M. Riesz Theorem states that if bf is a measure,
then it is absolutely continuous with respect to Lebesgue measure dx. That is, bf ∈
L1
loc(−a, a). One way of proving this local version uses two facts:

1. A distribution bf which is a weak boundary value of a holomorphic function
is microlocally smooth in one direction at each x ∈ (−a, a), that is, its Fourier
transform decays rapidly in one direction - a condition which is akin to the
classical situation (1.1).

2. If the Fourier transform µ̂(ξ) of a measure µ is rapidly decaying in one direc-
tion, then µ ∈ L1

loc.
In [BH1] we extended this local version of the F. andM. Riesz Theorem to the solutions
of the equation Lf = 0 where

L = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y

is any smooth, complex, and locally integrable vector field. Recall that the vector field
L is called locally integrable in an open set D in the plane if for each p ∈ D, there is a
neighborhood U which admits a smooth function Z(x, y) which satisfies LZ = 0 and
its differential dZ 6= 0. Examples of locally integrable vector fields include nonzero
(|a(x, y)|+ |b(x, y)| 6= 0) real analytic vector fields and smooth, locally solvable vector
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fields. We mention that the class of locally integrable vector fields is much larger than
these two classes and the reader is referred to [BCH] and [T] for more on these vector
fields.

In [BH2], we established a local version of the F. and M. Riesz property for
solutions of the classical elliptic Vekua’s equation which we recall has the form

(1.3)
∂u

∂z
= A(x, t)u +B(x, t)u

where A and B are smooth, complex-valued functions. Here we will use this result
to extend the F. and M. Riesz property for solutions of a class of nonelliptic Vekua’s
equations of the form

(1.4) Lu = A(x, t)u +B(x, t)u

where L is a complex vector field of the form L = ∂
∂t

+
√
−1b(x) ∂

∂x
and b(x) is a

smooth, real-valued function.
Equation (1.3) arises in the theory of elasticity and the geometric problem of

the existence of infinitesimal bendings of surfaces of positive curvature (see [V]). In
recent years, in several articles, A. Meziani has shown that equation (1.4) is intimately
linked with the existence of infinitesimal bendings for certain surfaces of nonnegative
curvature (see for example M1 and [M2]).

2. Statement and proof of the main result.

Theorem. Let L = ∂
∂t

+
√
−1b(x) ∂

∂x
where b(x) is smooth and real-valued in a

neighborhood of zero. Let U be a neighborhood of (0, 0) in R
2, U+ = {(x, t) ∈ U : t >

0}, A,B ∈ C∞(U). Suppose f ∈ C1(U+) satisfies

(2.1) Lf(x, t) = A(x, t)f(x, t) +B(x, t)f(x, t) in U+

and assume that

(2.2) |f(x, t)| = O(t−N ) as t→ 0+.

If the weak boundary value bf on U ∩ R is a measure µ, then it is in L1
loc

.

Remark. It was shown in [BH2] that a solution f that satisfies (2.1) and (2.2)
has a weak boundary value bf .

Proof. Since this is a local statement, we only need to prove that bf is integrable
in a neighborhood of the origin. We can thus assume that U+ = (−α, α) × (0, β).
If at a point x0 ∈ (−α, α), b(x0) 6= 0, then L is elliptic at (x0, 0) and in this case,
by our results in [BH2], bf is integrable in a neighborhood of x0. We therefore only
need to show that bf is absolutely continuous with respect to Lebesgue measure in a
neighborhood of each point in the set

F = {x ∈ (−α, α) : b(x) = 0}.

Define the operator S by

Su =
∂u

∂t
+
√
−1b(x)

∂u

∂x
−Au −Bu.

We will show that given ϕ(x) ∈ C∞
0 (−α, α), for each k = 1, 2, . . . , there is a C∞

function uk(x, t) such that
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1. uk(x, 0) = ϕ(x) and

2. uk(x, t) =
∑k

j=0 ϕj(x)
tj

j! where for 1 ≤ j ≤ k, the ϕj satisfy the estimate

|ϕj(x)| ≤ Cj

(

j
∑

m=0

|b(x)|m|Dmϕ(x)|
)

, ϕ0 = ϕ

with Cj depending only on the functions b(x), A(x, t) and B(x, t), and

ϕj(x) =

j
∑

m=0

cjm(x)b(x)mDmϕ(x) +

j−1
∑

n=0

djn(x)b(x)
nDnϕ(x)

where the cjm and djn depend only on b(x), A(x, t) and B(x, t).
3.

Suk(x, t) =

(

k+1
∑

m=0

pkm(x, t)b(x)mDmϕ(x) +

k
∑

n=0

qkn(x, t)b(x)
nDnϕ(x)

)

tk

where the pkm and qkn depend only on b(x), A(x, t) and B(x, t).

To see this we proceed by induction and define

u1(x, t) = ϕ0(x) + ϕ1(x)t = ϕ(x) + ϕ1(x)t,

where

ϕ1(x) = −
√
−1b(x)ϕ′(x) +A(x, 0)ϕ(x) +B(x, 0)ϕ(x).

Write

A(x, t) = A(x, 0) +A1(x, t)t, B(x, t) = B(x, 0) +B1(x, t)t

We have:

Su1(x, t)

= ϕ1(x) +
√
−1b(x)(ϕ′(x) + ϕ′

1(x)t)−A(x, t)ϕ(x) −A(x, t)ϕ1(x)t

−B(x, t)ϕ(x) −B(x, t)ϕ1(x)t

=
(√

−1b(x)ϕ′
1(x)−A1(x, t)ϕ(x) −A(x, t)ϕ1(x) −B1(x, t)ϕ(x) −B(x, t)ϕ1(x)

)

t

= (b(x)2D2ϕ(x) + (b′(x) +
√
−1A(x, 0))b(x)Dϕ(x) +

√
−1B(x, 0)b(x)Dϕ(x)

+
√
−1b(x)Ax(x, 0)ϕ(x) +

√
−1b(x)Bx(x, 0)ϕ(x) −A1(x, t)ϕ(x)

+
√
−1A(x, t)b(x)Dϕ(x) −A(x, t)A(x, 0)ϕ(x) −A(x, t)B(x, 0)ϕ(x)

−B1(x, t)ϕ(x) −
√
−1b(x)B(x, t)Dϕ(x) −B(x, t)A(x, 0)ϕ(x) −B(x, t)B(x, 0)ϕ(x))t

= (b(x)2D2ϕ(x) + (b′(x) +
√
−1A(x, 0) +

√
−1A(x, t))b(x)Dϕ(x)

+ (
√
−1B(x, 0)−

√
−1B(x, t))b(x)Dϕ(x)

+ (
√
−1b(x)Ax(x, 0)−A1(x, t)−A(x, t)A(x, 0) −B(x, t)B(x, 0))ϕ(x)

+ (
√
−1b(x)Bx(x, 0)−A(x, t)B(x, 0) − B1(x, t)−B(x, t)A(x, 0))ϕ(x))t.
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Thus (1), (2), and (3) hold for u1. Suppose u1, . . . , uk have been defined so that
they satisfy (1), (2), and (3). Let

Suk(x, t) =

(

k+1
∑

m=0

pkm(x, t)b(x)mDmϕ(x) +

k
∑

n=0

qkn(x, t)b(x)
nDnϕ(x)

)

tk

where the pkm and qkn depend only on b(x), A(x, t) and B(x, t). Define

(2.3) ϕk+1(x) = −k!
(

k+1
∑

m=0

pkm(x, 0)b(x)mDmϕ(x) +

k
∑

n=0

qkn(x, 0)b(x)
nDnϕ(x)

)

.

Let

uk+1(x, t) = uk(x, t) + ϕk+1(x)
tk+1

(k + 1)!
.

Then

Suk+1(x, t) =Suk(x, t) + ϕk+1(x)
tk

k!
+
√
−1b(x)

(

ϕ′
k+1(x)

tk+1

(k + 1)!

)

−A(x, t)ϕk+1(x)
tk+1

(k + 1)!
− B(x, t)

ϕk+1(x)

(k + 1)!
tk+1.

Write

pkm(x, t) = pkm(x, 0) + pkm1(x, t)t for 0 ≤ m ≤ k + 1,

and

qkn(x, t) = qkn(x, 0) + qkn1(x, t)t for 0 ≤ n ≤ k.

Using the expression for Suk(x, t), we get:

Suk+1(x, t) =

(

k+1
∑

m=0

pkm1(x, t)b(x)
mDmϕ(x) +

k
∑

n=0

qk+1
n1 (x, t)b(x)nDnϕ(x)

)

tk+1

+
√
−1b(x)

(

ϕ′
k+1(x)

tk+1

(k + 1)!

)

−A(x, t)ϕk+1(x)
tk+1

(k + 1)!
−B(x, t)

ϕk+1(x)

(k + 1)!
tk+1.(2.4)

From (2.3) and (2.4) we see that for some smooth functions pk+1
m (x, t) and qk+1

n (x, t),
0 ≤ m ≤ k + 1, 0 ≤ n ≤ k depending only on b(x), A(x, t), and B(x, t),
(2.5)

Suk+1(x, t) =

(

k+2
∑

m=0

pk+1
m (x, t)b(x)mDmϕ(x) +

k+1
∑

n=0

qk+1
n (x, t)b(x)nDnϕ(x)

)

tk+1.

Thus the function uk+1(x, t) satisfies (1), (2) and (3).
The vector field L = ∂

∂t
+
√
−1b(x) ∂

∂x
is locally solvable and so (see [T]) there is

a C∞ function Z(x, t) that satisfies

LZ(x, t) = 0, Zx(x, t) 6= 0 near (0, 0).
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Let M = 1
Zx(x,t)

∂
∂x

. If h(x, t) is a C1 function, its differential

(2.6) dh = (Mh) dZ + (Lh) dt.

If w(x, t) is a C1 function, since Lf = Af+Bf , for ǫ > 0, and Qǫ = (−α1, α1)×(ǫ, β1),
by Stokes theorem we have:

∫

∂Qǫ

f(x, t)w(x, t) dZ(2.7)

=

∫∫

Qǫ

d (fw dZ)

=

∫∫

Qǫ

L(fw) dt ∧ dZ

=

∫∫

Qǫ

(Af +Bf)w dt ∧ dZ +

∫∫

Qǫ

f(Lw) dt ∧ dZ

=

∫∫

Qǫ

(Af +Bf)wZx(x, t) dt ∧ dx+

∫∫

Qǫ

f(Lw)Zx(x, t) dt ∧ dx.

If the x− support of w(x, t) is a compact set in (−α1, α1),

∫

∂Qǫ

f(x, t)w(x, t) dZ(x, t)(2.8)

=

∫ α1

−α1

f(x, β1)w(x, β1)Zx(x, β1) dx−
∫ α1

−α1

f(x, ǫ)w(x, ǫ)Zx(x, ǫ) dx

and so

lim
ǫ→0

∫

∂Qǫ

f(x, t)w(x, t) dZ(x, t)(2.9)

=

∫ α1

−α1

f(x, β1)w(x, β1)Zx(x, β1) dx− 〈bf, Zx(x, 0)w(x, 0)〉.

If in addition, w satisfies the equation

(2.10) Lw = −Aw +

(

BZx

Zx

)

w + E(x, t) on [−α1, α1]× [0, β1]

with |E(x, t)| ≤ CtN for some C > 0, then f(x, t)E(x, t) ∈ L1([−α1, α1]× [0, β1]) and
so

∫∫

Qǫ

(Af +Bf)wZx(x, t) dt ∧ dx+

∫∫

Qǫ

f(Lw)Zx dt ∧ dx(2.11)

= 2ℜ
(
∫∫

Qǫ

Bfw dZ

)

+

∫∫

Qǫ

f(x, t)E(x, t) dt ∧ dZ.

Since f(x, t)E(x, t) ∈ L1([−α1, α1]× [0, β1]),

(2.12) lim
ǫ→0

∫∫

Qǫ

f(x, t)E(x, t) dt ∧ dZ =

∫ α1

−α1

∫ β1

0

f(x, t)E(x, t) dt ∧ dZ.
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Thus if the x− support of w is compact in (−α1, α1), and it satisfies equation (2.10),
from (2.8) to (2.12), we conclude that

∫ α1

−α1

f(x, β1)w(x, β1)Zx(x, β1) dx− 〈bf, Zx(x, 0)w(x, 0)〉(2.13)

=

∫ α1

−α1

∫ β1

0

f(x, t)E(x, t) dt ∧ dZ + 2 lim
ǫ→0

ℜ
(
∫∫

Qǫ

Bfw dZ

)

.

Recall now that F = {x : b(x) = 0}. Let K ⊂ F be a compact set with Lebesgue
measure |K| = 0. Let {ϕǫ(x)}ǫ>0 be functions in C∞

0 (−α1, α1) satisfying 0 ≤ ϕǫ ≤ 1,
ϕǫ(x) = 1 on K, ϕǫ(x) = 0 when d(x,K) > ǫ, and |Dαϕǫ(x)| ≤ Cαǫ

−α. Let ψ(x) ∈
C∞

0 (−α1, α1). Set

wǫ
N (x, t) =

N
∑

j=0

ϕǫ
j(x)

tj

j!
, ϕǫ

0 = ϕǫψ

where the ϕǫ
j satisfy estimate (2) and

∂wǫ
N

∂t
+

√
−1b(x)

∂wǫ
N

∂x
= −Awǫ

N +

(

BZx

Zx

)

wǫ
N + Eǫ

N (x, t),

with

Eǫ
N (x, t) =

(

N+1
∑

m=0

pm(x, t)b(x)mDmϕǫ
0(x) +

N
∑

n=0

qn(x, t)b(x)
nDnϕǫ

0(x)

)

tN .

Plugging w = wǫ
N in (2.13) leads to

∫ α1

−α1

f(x, β1)w
ǫ
N (x, β1) dZ − 〈bf, Zx(x, 0)ϕǫψ〉(2.14)

= 2ℜ
(

∫ α1

−α1

∫ β1

0

Bfwǫ
N dt ∧ dZ

)

+

∫ α1

−α1

∫ β1

0

f(x, t)Eǫ
N (x, t) dt ∧ dZ.

We consider next each term in (2.14). Observe that

∣

∣

∣

∣

∫ α1

−α1

f(x, β1)w
ǫ
N (x, β1) dZ

∣

∣

∣

∣

≤ C

N
∑

m=0

∫ α1

−α1

|b(x)|m|Dm(ϕǫ(x)ψ(x))| dx

≤ C′

N
∑

m=0

∫ α1

−α1

d(x, F )m |Dm(ϕǫ(x)ψ(x))| dx.(2.15)

Here d(x, F ) =dist(x, F ). For each 0 ≤ m ≤ N ,

d(x, F )m |Dm(ϕǫ(x)ψ(x))| ≤ C1
d(x, F )m

ǫm
≤ C1

d(x, F )m

d(x,K)m
≤ C1.

Moreover, as ǫ→ 0, d(x, F )mDm(ϕǫ(x)ψ(x)) → 0 pointwise. It follows that

(2.16) lim
ǫ→0

∫ α1

−α1

f(x, β1)w
ǫ
N (x, β1) dZ = 0.
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The functions f(x, t)Eǫ
N (x, t) also satisfy a similar estimate independent of ǫ which

implies that

(2.17) lim
ǫ→0

∫ α1

−α1

∫ β1

0

f(x, t)Eǫ
N (x, t) dt ∧ dZ = 0.

From (2.14), (2.16), and (2.17), since ϕǫ(x) converges to the characteristic function
of K, and bf = dµ is a measure, we get:

∫

K

ψZxdµ = 2 lim
ǫ→0

ℜ
(

∫ α1

−α1

∫ β1

0

B(x, t)f(x, t)wǫ
N (x, t) dt ∧ dZ

)

.

That is, for any ψ ∈ C∞
0 (−α1, α1), the integral

∫

K
ψ dµ is real-valued, which implies

that
∫

K
ψ dµ = 0. The latter in turn implies that

∫

K
g dµ = 0 for every continuous

function g of compact support K in F . Hence, |µ|(E) = 0 whenever E ⊂ F is a
Borel set with Lebesgue measure |E| = 0. This proves that µ is absolutely continuous
with respect to Lebesgue measure. By the Rado-Nikodym theorem, it follows that
the measure µ is a locally integrable function.
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