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Abstract. The purpose of the paper is to introduce a notion of logarithmic differential forms
on singular varieties. We also compute the Poincaré series and generators of the corresponding mod-
ules in a few particular cases, including quasihomogeneous complete intersections, normal varieties,
determinantal varieties, and others.
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Introduction. The concept of logarithmic differential forms with poles along a
reduced divisor D in a complex manifold M has appeared in contemporary theory in
1960s in relation with studies of Hodge structure and Gauss-Manin connection on al-
gebraic varieties. More precisely, by traditional definition, a meromorphic differential
form w with poles along such a divisor D is called logarithmic if the two forms w and
dw have at worst simple poles on D only. The corresponding sheaves are usually de-
noted by Q4 (log D), p > 0. For instance, P. Deligne, N. Katz, Ph. Griffiths exploited
this notion for a union of smooth subvarieties which are normally crossing, K.Saito
and his successors studied the case of arbitrary reduced divisors (see [20]), etc.

In his previous works, the author elaborates another approach to this subject,
which is mainly based on an original interpretation of the above definition with the
use of a modified version of the classical de Rham lemma adapted to the case of
singular hypersurfaces (see [2, 4, 6]). In this article, we shall extend the notion of
logarithmic differential forms with poles along Cartier divisors on Cohen-Macaulay
varieties in the course of these ideas. Among other things, we compute the Poincaré
series and generators of the modules of logarithmic differential forms in the case of
divisors given on graded isolated complete intersection singularities (graded ICIS),
normal varieties, determinantal varieties, and others.

In the first two sections, we discuss basic notions and definitions, involving some
important properties of regular differential forms on complex varieties, and describe a
few simple methods for computing the module of Kéhler differentials and the Poincaré
series of related objects on quasihomogeneous singularities. Then we apply this tech-
niques for computing the Poincaré series of modules of regular differential forms on
the quotient surface singularities of embedding codimension 2. The next two sections
contain a brief discussion of the main principle of our approach which is based on
a variant of the classical de Rham lemma. This leads to an alternative definition of
logarithmic differential forms which is better suited for the use in a rather general
setting. In the sixth section, we consider some simple properties of logarithmic forms
on normal varieties. Then we compute explicitly the Poincaré series and generators
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of the modules of logarithmic differential forms for divisors given on complete inter-
sections with isolated singularities and determinantal varieties. In the final section,
we analyze an example of 2-dimensional fan, the simplest example of rigid surface
singularity which is neither normal nor Cohen-Macaulay. Almost all results are il-
lustrated by concrete examples, containing explicit computations, nonformal remarks
and comments.

I would like to thank the organizing committee of the Conference, especially
Professor Stephen Yau, for their complimentary invitation to visit the Tsinghua Sanya
International Mathematics Forum and hospitality there. I am also deeply indebted
to all participants of the meeting for many fruitful conversations and stimulating
scientific discussions. I am especially grateful to the referee for careful reading of the
manuscript and useful remarks.

1. Differential forms and the Poincaré complex. Let (X,0) be a germ of
complex space. We choose one of its representatives embedded in an open neighbor-
hood U of the point 0 € C™ with coordinates 21, ..., 2., and denote it by X. Then
X is determined by an ideal I of the structure sheaf Oy, generated by a sequence
of holomorphic functions fi,..., fr € Oy. In what follows, to simplify notation, we
shall refer to any germ (X, 0) of complex space, as well as to its suitable representa-
tive as a singularity or the germ of a singularity (even if the distinguished point o is
nonsingular).

By definition, the coherent sheaves of regular (holomorphic) p-forms Q% p > 1,
on X are determined by the restriction to X of the corresponding quotient modules:

B = /(froo S+ AR AQG 4+ dfi AQET M

so that Q% = APQL%, p > 1, where Q) is the coherent sheaf of regular Kdhler
differentials on X, Q% = Ox and Q% =0 for p < 0 and p > m. Next, if dim X =n
then the support of the sheaf QX is contained in the singular locus of X, whereas
n < p < m. We note also that in the case of smooth manifolds or nonsingular spaces
the elements of these sheaves are usually called holomorphic functions, holomorphic
differential forms, etc. Sometimes we shall use these terms in the singular case as
well.

At that, the usual differential d, extended to this quotient, is also denoted by the
same symbol; it endows all this family of sheaves with the structure of an increasing
complex, which is called the Poincaré complex, or the de Rham complex, of X; it
is denoted by (2%,d). The Ox-module of regular vector fields on X is denoted by
Der(X) = Homg, (2%, Ox).

It should be remarked that for nonsingular varieties one of the main results of
the theory of differential forms is the classical Poincaré lemma, which asserts the
acyclicity of the complex (Q%,d).

Let us also give an equivalent definition of regular p-forms in slightly different
notations. In short, we use the notation A to denote the dual local analytic C-algebra
Ox,, of the germ X, so that A is the localization at the distinguished point of the
quotient algebra H/I, where H = C(z1,..., zy,) is the ring of convergent power series
in z1,...,2zn. In what follows, for simplicity, instead of analytic objects we shall often
consider their affine counterparts; in this case the ring H can be replaced by the ring of
polynomials P = C[z1, ..., z;,], the ideal T is generated by a sequence of polynomials
fi,---, fr, and so on. We shall often denote the ground field of characteristic 0 by k.

Then the A-module QY /k of Kéhler differentials of k-algebra A is determined by
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the exact sequence

/1?25 Qb @p A — QY ) — 0, (2)
where the homomorphism D is given by the rule D(f) = d(f)®1 for an element f € [
and its class f in the conormal module I/I?, and where d: P — Q) is the universal
differentiation. Thus, Q%/k = A, Qi/k =N\ Qk/k for all p > 1, and Qi/k = 0 for
p < 0 and p > m. In fact, D can be represented by the jacobian matrix of the
map determined by the sequence of functions (f1,..., fr). Recall that, for any exact
sequence of A-modules N — M — M/N — 0, there exists a representation

ANP(M/N)ZANPM/{nAmiA...Amp_1}

foralln € Nym; € M,i=1,...,p—1. This yields the equivalence of both definitions.

Remark also that, in the standard notations of deformation theory, there is a
canonical isomorphism QY = T;(A), and the kernel of the map D from the funda-
mental sequence (2) is isomorphic to T1(A), where T;(A4), ¢ = 0,1, are the lower
cotangent homology modules of the k-algebra A. In particular, we can complete the
sequence (2) to a left exact sequence in the following way:

0 — Ty(A) — I/1* 25 Qb @p A — Qly , — 0. (3)

EXAMPLE 1. Suppose that the singularity X is determined in (Ci,y by the two
functions f; = 2% and fo = xy. That is, X is the germ of the union of coordinate axes
with an embedded point at the origin, since (2%, 2y) = (x) N (z,y)? = (z) N (22, y).
Hence, X is an isolated nonreduced 1-dimensional singularity, which is not Cohen-
Macaulay. One can readily verify that QY = C(dz, dy, ydz, ydy, y*dy,y*dy, . ..), and
T1(A) = C(x3, 2%y).

ExaMpLE 2. If the ideal I is generated by a regular sequence of functions
f1,---, fr, then the corresponding germ is called a complete intersection. It is well-
known that, in this case, T;(A) = T(A) = 0 for all i > 2. If such a germ is, in
addition, reduced, then Ti(A) = 0 and the sequence (2) is left-exact (cf. [21, §4,
Example (1)]).

Note also that a local k-algebra A for which Ty(A) = 0, is called an L-algebra
(see [21, (1.1), (2.2)]).

It should be mentioned that one can find in [7, Sections 11 & 15] a more detail
discussion of the basic properties of the first cotangent homology T1(A), as well as
some useful applications.

2. Quasihomogeneous singularities. Suppose now that the germ of an n-
dimensional singularity X is determined by an ideal I C P generated by a sequence
f1,. .., [r of functions in variables z1, ..., z,, which are quasihomogeneous of degrees
di,...,dy relatively to weights wi,...,w,,. Then this germ is said to be of type
7(X) = (dy,...,dg;wi,. .., wy,) € ZF x ZM.

Under the same conditions, the modules QF for all p > 0, as well as T;(X) and
Ti(X) for ¢ > 0, are equipped with a natural Z-grading in which deg(df;) = dj,
j=1,...,k and deg(dz;) = w;, i = 1,...,m. The elements of the homogeneous
component T%(X), = Der(X), are called vector fields of weight v. In particular,
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the weight of the partial derivatives 0/9z; is equal to —w;, i = 1,...,m; the element
Vo = Zj; w;2;0/0z; € Der(X)g of zero weight is usually called the Euler vector field.
If the grading is positive, then w(X) € Zﬁ_ x Z'7', and the germ is called a singularity
with an effective C*-action.

Suppose that M = @, ., M, is a Z-graded A-module whose homogeneous com-
ponents are finite-dimensional. Then the formal Laurent series

P(M;t) = dimg(M,) "
VEL

is called the Poincaré series of M. If the sum is finite, then P(M;t) is usually called
the Poincaré polynomial; in this case &2(M;1) = dimy(M).
In the case of Example 1 one can easily verify

P(Ox;t) = (L+t—13)/(1—-1) = 1+2+ 8+ +t"+80+..,
POit) = t2-)/1-t) = 22420+ 40+,
P(T1(X);t) = 2t3, and so on.

Now, we proceed to a description of the modules of differential forms QF, p > 0,
for certain types of graded singularities using the technique of Poincaré series calculus.

Let X be the germ of an n-dimensional isolated complete intersection singularity
given by a regular sequence of quasihomogeneous functions fi,..., fr of weighted
degrees d1, ..., dy relative to variables with weights w1, ..., w,, so that m — k =n.

If n > 1, that is, the singularity X has positive dimension, then the type of
quasihomogeneity is determined uniquely, except in the case of a hypersurface with
multiplicity 2, and 7(X) € Z¥ x Z7. In other words, the singularity X is Z. -graded,
or positively graded, and the Euler vector field generates the 0x-module Der(X)
modulo Hamiltonian vector fields (see [1, Theorem 6.1]). In the exceptional case,
a grading is defined not uniquely, but there always exists the normalized canonical
Z-grading introduced by K.Saito (see further details in [1, (6.3), (6.4)]).

LEMMA 1 ([1, Lemma 3.2]). Let X be the germ of an n-dimensional isolated
complete intersection singularity. Then the Poincaré series of modules of regular
(holomorphic) forms of order p, 0 < p <mn, on X can be represented as follows:

PO t) = P(Ox;t) gi%f""l H(1 + gtwi)/H(l + &%),
where P(Ox;t) = [[(1 —t%)/T](1 — t¥9).

REMARK 1. In the author’s paper cited above, the Poincaré series of the modules
Der(X) and T'(X) were also computed.

A detail proof of this statement with the use of a generalized de Rham lemma can
also be found in [5]. Yet another approach, based on the use of an explicit form of the
Lebelt resolvents for the modules of holomorphic forms on complete intersections with
isolated singularities, is discussed in [7]. Modifying these methods in an appropriate
direction, one can adapt them for computing the Poincaré series of modules of regular
holomorphic forms on varieties of divers kinds.

For example, in describing the modules Q% on hypersurfaces with nonisolated
singularities, it is convenient to use the four-term exact sequences (13) (see Section 5
below), which are closely related to the modules of logarithmic differential forms.
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3. Graded L-algebras. Developing the methods mentioned above, one can also
learn how to compute the Poincaré series of modules of differential forms given on
noncomplete intersections: on Cohen-Macaulay curves, normal, determinantal and
toric varieties, and others.

Hereinafter, for the sake of simplicity, we shall examine a few examples of non-
complete intersection singularities whose first cotangent homology is trivial. In this
case, the exact sequence (2) can be presented in the same form as in the case of
reduced complete intersections, namely (in view of Example 2) we have

0—>I/12£>Q}3/k®pA—>Qh/k—>0, (4)

with the only difference that the conormal A-module I/1? is not free.

The class of such singularities contains the normal Cohen-Macaulay germs of
embedding codimension 2 (see [22, (4.6)]), some types of determinantal singularities
(see [14]), singular loci of germs with nonisolated singularities of linear type, etc.

As an important example we shall compute the Poincaré series of modules of
differential forms for a series of surface singularities with embedding dimension 4,
which are quotients of smooth manifolds by cyclic groups. Deformation theory of
such singularities were investigated in detail in [19].

More precisely, let (z:y:z:u) denote homogeneous coordinates in projective
space P3. Then A = k[x,y, z,u]/I, and the prime ideal I = (f12, f13, f23) is generated
by the maximal minors of the matrix

r oy z
Moy=| T , 5
o= } ®)

where a,b > 2, so that

b

a0 pu,  foz = yu — 25

fiz=xz—y*, fiz=y
It should be remarked that the first element of this series for a = b = 2 is a
remarkable determinantal surface of embedding codimension 2, which occurs in many
works and is called the Hilbert cubic. In fact, it is the affine cone over the rational
curve of degree 3 in projective space P3, given by the embedding P — P3 by the
sheaf Op1(3) (see [17, §8]).
It is readily seen that a rational parameterization p: (C2,0) — X of this normal
cubic surface singularity is determined by the formulas

z=E"0"1 y=¢, =60 u=(" (6)

so that p*(A) = k(€1 €b¢, €¢2,¢~1) C k(€,¢). Next, the germ X is a determi-
nantal isolated singularity of embedding codimension 2. In particular, X is a normal
Cohen-Macaulay germ, and hence T1(A4) = 0. We also note that the germ X is an
almost complete intersection and, consequently, it is not a Gorenstein germ.

First show how to compute the Poincaré series &?(A;t) of the structure analytic
algebra A. In what follows, to simplify notation, for a graded A-module M we shall
denote by M()) the graded A-module, which is obtained from M by shifting the
grading to the left by A € Z, i.e. [M(N)], = My+x. It is well-known (see, e.g., [19,
Section 4, Remark]), that there exists a P-free Hilbert resolvent of the ideal I:

0— P2(—(a+b—1)) 25 P(—a)® P(—(a +b) — 2) & P(—b) 2% I — 0,
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where o = [f12, f13, f23]T, and the rows of the matrix

b—1
R y x
a=| 00 ™

are given by the two evident syzygies of the first order between the generators fio,
f13, and fo3. Here we have used the usual grading:

degx =a—1, degy =degz =1, degu=b—1,

so that the weighted degrees of the generators f1s, f13, fo3 of the ideal I are equal to
a, a +b— 2, and b, respectively. Taking into account the shifting of grading, we see
that deg(yp) = deg(y1) = 0. As a result,

P(I;t) = (t* + 17072 4 ¢b — 240 T0=1y 1y (¢),

where 9(t) = (1 —t*1)(1 —t*"1)(1 — ). Next, since A = P/I and Z(P;t) = 1/9(t),
we obtain

P(Ast) = 1/0(t) — P(I;t) = (1 — @ — @072 b 4 209+0=1) Jy(¢).

The Poincaré series 22(1%;t) can be computed in a similar way. Indeed, the ideal
I? is generated by the six elements:

f1227 f12f137 f12f237 f1237 f13f237 f223

The first row of the matrix ¢ determines a syzygy between the first three gen-
erators, since they have a common factor fio. The same procedure yields syzygies
between the second, fourth, and fifth generators, as well as between the third, fifth,
and sixth generators, because the former triple has a common factor fi3, while the
latter has a common factor fa3. Similar relations are derived from the second row
of the matrix ¢ by using cyclic permutations of the variables in the first row. As a
result, we obtain a complete system of six syzygies of the first order, which can be
represented by the matrix

270 0 0 0
y 201 0 z U 0
T 0 2b=1 gl 0 U
Si=1 y 0 0 z 0 (8)
0 x y 0 y*t 2z
0 0 T 0 0 yot
Finally, there exists the only syzygy of the second order between the six columns
of the matrix: Sy = [u, z,y* "1, =21, —y, —x]. Let us now denote by v; the weighted

degrees of the generators of the ideal I?, that is,
vy =2a, v3=2a+b—-2, v3=a+0b, vy =2a+2b—4, vs =a+ 2b— 2, vg = 2b.
Similarly to the above we obtain a P-free resolvent

0= P(=2(a+b—1)) 2
8

P2(—(2a+b—1))® P*(—(2a+2b—3))® P*(—(a+2b—1)) —

@0, P(—ui) 2% 12 0,
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where f3y is a vector-column determined by the six generators of the ideal I?, while
B1 and 3y are given by the matrices S¥ and Sa, respectively. It is clear that in our
grading deg 5y = deg 1 = deg 2 = 0. Hence,

P(I2t) = (N0 v — 2f20Fb=1 _ 942042b=3 _ 9pa+2b—1 4 42a+2b-2) /g (p),

Taking into account the exact sequence (4), where deg(D) = 0, we get
PQLt) = (¢ F 2+ NP (A) — P(It) + 2(1%5).

To obtain Z(0%;t) without tedious computations, we apply a simple trick (see
[7, Example 15.9]). Namely, it is well known (see [16, Lemma 2.1.1]) that, for isolated
singularities with an effective C*-action, the generalized Koszul complex

0— 04 505 504 50 B4 S5k—0 (9)

is acyclic in all dimensions. Here ¢ denotes the contraction along the Euler vector
field £ = :1:6% —I—ya% +z£+u% and ¢ is the augmentation epimorphism. In particular,
X(€2%, tg) = 0. This immediately implies the following identity for the Poincaré series:

> s (P P(Qhit) = 1. (10)

Moreover, the modules Q% and Q%, as well as the corresponding Poincaré series,
are very easy to compute. Indeed, both modules are finite-dimensional vector spaces
over the ground field k. Next, the space 0%, as a k-module, is generated by the
differential form dx A dy A dz A du, so that 22(Q4;t) = to+b.

Further calculations show that the module Q3 is generated over k by the a — 1
forms (1,y, 92, ...,y 2)dx Ady Adz, the b forms (1,x, 2, 22, ..., 2*72)dy Adz A du and
the two forms dz A dy A du and dx A dz A du. That is, dim, Q3 = a+ b+ 1 and

P3Gt) =t At 4+ t072) 40T TN 4 072 et

It is useful to note that the 3-form of weight a + b is equal to zdy A dz A du =
tg(dx Ady A dz A du). Finally, making use of the identity

P Qait) =1 P(Ait) + Z(Qst) + (s t) — P(Qs ),

one can derive the desired explicit formula.

EXAMPLE 3. In the case of Hilbert cubic (@ = b = 2), one obtains

P(I;t) = (312 = 2t3) /(1 = t)*, P(A;t) = (1 =32 +23) /(1 —t)* = (1 +2t) /(1 — t)?,
P(I%t) = (6t* — 6t5 +1°) /(1 — )4,

PQit) =4 P(Ast) — P(L;t) + P(1%t) = t(4+ 5t — 42 +¢3) /(1 — t)?,

PV5t) =483 + 1, P4 t) =4, P(D%5t) = 2(6 — TE2 +463) /(1 — t)%

As a consequence, in the notation of [11] or [5], we get the following value of the
homological index for a suitable Euler vector field % of weight 0 on the Hilbert cubic:

Idhom,o(%0) = (P(A;1) = 2(Q4; 1) + 2(4:0)]
=1+ 2Q%t) - 2(Qs1)|,_, = (1 +46%)| _, =5.
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It is possible to continue these calculations and analyze a lot of others, more
complicated examples just as easily.

EXAMPLE 4. Set a = k41, b = 2, so that the quotient surface singularity X112
is determined by the maximal minors of the matrix

|z oy oz
Mk+1,2—[yk s u]

In this case, we obtain

Pt =83+t L 2B 4+ tRTL), P4t =t
Idpom,o(%0) = (1+ P(Q%st) — 2(Q431))],,
=14+ + 2@+t 4.+t = k+4

REMARK 2. In general, for arbitrary n-dimensional isolated singularity X one
may consider the Euler characteristic of the torsion subcomplex (TorsQ%,d) of the
truncated de Rham complex (5\23{, d) (see [5, 7]) as a basic analytic invariant of the
set of vanishing cocycles of different dimensions. Let denote it by 7/(X). Then

7(X) = (D)"Y _ (- (X),

i=1

where 7/(X) = dimy Tors Q%, i =1,...,n.
Assume that the singularity X is endowed with an effective C*-action. Then, in
virtue of relation (10),

7(X) = (=) Z (—1)" dimy Tors QY,
1=n—+1

where m is the embedding dimension of the singularity X.
As a result,

Indpom,o (%) = 1+ (=1)"7'(X).

In particular, this implies 7/(Xj41,2) = k + 3. Moreover, it is well known also (see,
e.g., [13]) that, for graded isolated complete intersection singularities, 7/(X) = 0 for
all 0 <7 < n, so that

p(X) =7(X) =7'(X) = 7,(X),

where p(X) and 7(X) are the Milnor and Tjurina numbers of X, respectively.

It should be also underlined that in the case of an isolated complete intersection
singularity the homological index Indpom (%)) coincides with the Poincaré index of
the vector field 7 on the singularity (see [11]). Developing this idea, one can compute
other important topological and analytic invariants of singularities of divers kinds (see,
e.g., [7]).

In the same vein, we can compute the Poincaré series of modules of differen-
tial forms for many types of affine toric varieties and, more generally, of varieties
associated with semigroups.
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4. The Poincaré index and the Cauchy integral. First recall that, one
of the best familiar problems considered by Poincaré in his pioneer research, is the
analysis of the system of differential equations

dx d
E :P(Iay)v d_?; :Q(:zr,y),
where P(x,y) and Q(x,y) are continuous functions, given on an open domain G of
the Euclidean plane R? with coordinates x,y, and having continuous partial deriva-
tives in this domain. It should be remarked that such systems, whose right parts do
not depend on the parameter ¢ in an explicit way, are often called autonomous or
dynamical systems on the plane.

Thus, at each point of G we can define a vector whose components are values of
the functions P(z,y) and Q(z,y), so that the dynamical system determines the vector
field in the domain G

0 0

If at least one coefficient of the field does not vanish at some point of the domain
then the length of the vector r = /P? + 2 at this point differs from zero and the
angle ¥ between the axis = and the vector at this point (in the standard orientation)
is given by the following expressions:

sind =

Q P
——, o8V = ———.
Ni=Eoa Ni=Eoa

Otherwise, if P(x,y) = Q(z,y) = 0, then the direction of the vector is undefined
and the corresponding point is called the singular point of the vector field or the
equilibrium point of the system.

Let us now assume that the boundary of the domain G is a smooth closed curve
v = 0G, that is, v = y(t), t € [0,27], v(0) = v(27), and the vector field has no singular
points on the curve, that is, #(g) # 0 for all g € 4. One can regard the vector filed
¥ on the boundary as a periodical vector-function ¥'(t) = ¥ (y(t)), depending on the
parameter ¢ on the curve . By definition, the Poincaré index of the vector field ¥
on the boundary OG is the number of rotations of the vector ¥(t), bypassing along
the boundary when the parameter ¢ varies from 0 till 27. In fact, it is the index of
the curve v, which can be presented in terms of the famous Poincaré formula (1886):

1 dP — Pd
Indy = o j{ dy, where p = arctan @ dp = u (11)
T
¥

P’ P24 Q2

In addition, if the vector field ¥ has no singular points on G \ o, then Ind~ is
called the Poincaré index of 7 at the distinguished point.

The celebrated Poincaré theorem proclaims that, in the case when the index does
not vanish, there is an equilibrium point of the dynamical system in the interior part
of G. If the index vanishes then the vector field can be prolong from the boundary
into the domain, so that the interior part of G does not contain equilibrium points
at all. That is, analyzing the behavior of the vector field on the boundary, one can
understand whether equilibrium points exist inside the domain.

ExaMpPLE 5. Set P = z and Q = y. In complex analysis, the differential form

dp = ”‘iﬁ;ig” is usually referred (e.g., in Cauchy’s works) as the imaginary part of
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the complex differential form %, where z = x + 1y, or, in other terms, fv dp is “the
variation of the argument of the complex number z along the path ~”(see [9, Pt.I1,
81, n. 5]).

Among other things we shall see below (cf. Example 7) that the differential form
dy can be regarded as the imaginary part of a rational differential form in the plane
with logarithmic poles along the divisor D, determined by the equation P? + Q? = 0,
in the usual complexification of the real plane R%. Thus, the form % or its imaginary
part, as well as the form dy from (11) can be regarded as the first examples (or even
prototypes) of complex and real logarithmic differential forms.

5. The de Rham lemma towards logarithmic forms. First recall an ob-
servation due to de Rham, which plays an important role in analysis and geometry.

THEOREM 1 (see [10]). Assume that X is the germ of a smooth manifold M of
dimension m > 1 and all the coefficients of a differential 1-form w € Q}\Lu generate
a regular sequence in the local ring Opr,. Then the increasing complex (Q;\/M,/\w)
is acyclic in all dimensions 0 < p < m. In particular, there are exact sequences of
Ow,o-modules

p—1 D AW p+1 p+1
0— W/\QM,U ’ QM,o ’ QM,o ’ QM,o

JwAQ, , — 0, 0<p<m. (12)

Under the same assumptions, the classical de Rham lemma is usually formulated
as follows: if a differential form 7 € Q?\LO satisfies the condition w A = 0, then

1 =w A £ for a suitable holomorphic form £ € (21]7\4_7 i
The following assertion from [2, 4] can be regarded as a modified version of the
above statement for singular hypersurfaces in a smooth manifold.

LEMMA 2. Suppose that a reduced divisor D in a complex manifold M is de-
termined in o suitable neighborhood U of the distinguished point o € M by arbitrary
function h € Op,, without multiple factors. Then for p = 0,1,...,m — 1 there are
exact sequences of Opr,o-modules

0 — Qf, (logD) 5 b, A artt /ol qrtl 0. (13)

Proof. Taking ¥ € Ker(Adh) C Qf , we see that dhAY = h¢, where § is contained
in Qﬁji Then, in view of [20, (1.1)], the meromorphic form w = 9J/h is contained in
04 ,(log D), because dh A w = §. Therefore hdw = d(hw) —dh ANw = di - § € Q?\ji
is holomorphic on M. Thus, Ker(Adh) C h- Qf;  (log D) and vice versa. O

REMARK 3. It is not difficult to see that the preceding lemma, as well as the
traditional definition of logarithmic differential forms, has a significant meaning over
the ground field of real numbers R. In fact, making use of the approach developed
by the author in [2, 4], one can prove that many results from the theory of complex
logarithmic differential forms are valid in the real case with minor changes (see, for
example, [12]).

EXAMPLE 6. Suppose that M = (Ciu Let us consider the hypersurface D given
by the equation zy = 0, that is, h = xy, and D is a plane curve with a node. In other
words, it is an Aj-singularity, a very particular case of strongly normal crossings.
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Then the exact sequence (13) for p = 0 implies Ker(Adh) = hOy;, because
oANdh=h-& €Y, <= p=1h, p €Oy

Next, for p = 1 one gets Ker(Adh) = Op(dh,ydx — xdy) = Op{dx,dy), while
Ker(Adh) = Q3, = Op(dz A dy) for p=2. As a result, we derive

QS)W,U(IOgD) = OM.,aa Q}\/I,a(logD) = OM7°<%’ w> = OM=°<%E’ %>’

03, ,(log D) = Oy, o (L20%0),

All these Ojr,o-modules are free of rank 1, 2 and 1, respectively. It is not difficult to
verify that ¥ = ydx —xdy € Tors Qle. Indeed, taking a non-zero divisor z+y € Op ,,
one obtains the following identities in QF, , :

(z +y)-9 = zyde — 22dy + y*dzx — xydy = —(z — y)dh + 2h(dz — dy) = 0.

Moreover, in this case, Tors Qp , = Op () = C(¥), and the Milnor number
n(D) = 1.

EXAMPLE 7 (cf. [18, Pt. III, Ch. 2, §3]). In the notation and under assumptions
of Section 4, we set p = P +iQ, ¢ = P — iQ, so that the function h = pq = P? + Q>
determines the divisor D in the usual complexification of R?. Then

d _ QdP —PdQ ; qdp — pdq
TP T2 pg

so that hdp = QdP — PdQ and dh A dp = —2dP A dQ = —idp N dq are regular
(continuous) everywhere. Thus, one can regard the real 1-form ¥ = QdP — PdQ as
the imaginary part of the complex (torsion) 1-form (pdg — qdp) € Q. Similarly,
dy is a real rational 1-form and one can regard this form as the imaginary part of a
complex differential form with poles along the divisor D C C2.

ExaMpPLE 8. Let D C M be a complex plane curve with a cusp given by the
quasihomogeneous polynomial h = x2 — 3>, In other words, D is an As-singularity.
Routine calculations show that

Qi o(log D) = Onro (G, BT, O3 (log D) = Opy o *5%)

are free Oy o-modules of rank 2 and 1, respectively. Notice that the numerator
of the second generator of Q}mu(log D), the differential 1-form ¢ = 2ydx — 3zdy,

represents an element of the torsion submodule Tors Q}, , C QL . Indeed, in our case

Op.o = C(t2,3), the normalization g: D — D is given by formulas z = £3, y = ¢2.
Thus,

0" (¥) = 0" (2ydx — 3xdy) = 2t*dt> — 3t3dt* = 0,

that is, ¢ € Ker(p*) = Tors Q}:),o' Equivalently, taking a non-zero divisor z € Op ,,
one then obtains z -9 = 2xydx — 32%dy = ydh — 3hdy = 0 in the quotient module
Qb = o/ (h-Qy o + dh A Onro). Further calculations show that TorsQp, , =
Op .o (¥) = C(¥, y-9), that is, u(D) = 2.
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EXAMPLE 9 (cf. [3, §1]). For completeness, let now consider the unimodal
semi-quasihomogeneous singularity E;o given by the polynomial h = 3 + y” + zy°.
Then more complicated calculations show that the free Opr ,-module Q}w ,(log D) is
generated by the two differential forms w; = %191», 1 =1,2, where

= (By°—2lag—5yPg)dz — (Tay+ 35y"g)dy,
Vo = (3wy—5xy?g + Tytg)dx — (T2%—49y°9) dy,

and g = 1/(147 + 25y). In particular, it is not difficult to verify the following useful
relations: gdh = —%(zﬁl —yds), U1 A¥a = 147ghdz A dy, and so on.

6. Normal varieties. Now let us suppose that (X, o) is the germ of complex
space of dimension n > 1 determined locally by a sequence of functions fi,..., fr. Let
X be its suitable representative embedded in an open neighborhood U of the point
0 € C™. Then the local equation of any effective Cartier divisor D C X is given, in
the neighborhood U of the point 0, by a non-zero divisor h € Ox,, (see [15, Lecture
9]).

Thus, if z = (21,...,2m) is a system of local coordinates in a neighborhood U
of 0 € C™, then h(z)‘X = 0 is a local equation of the divisor D at o € X, so that
Op,o = Ox,o/(h) = Ocmo/(f1,- -, fr: h).

In what follows, unless otherwise specified, we shall suppose that the depth of
a Cartier divisor along its singular locus is positive, that is, in the standard nota-
tion, depth(Sing D, D) > 1. In particular, this means that the image of the Jacobi
ideal Jac(h) under the canonical epimorphism Ox, — Op,, contains at least one
reqular element g, which certainly is not a zero divisor. Such divisors do not have
multiple components of the mazimal dimension. However, they are nonreduced in
the commonly accepted sense, since they may have embedded components of lower
dimensions.

It should be noted that if D is a Cartier divisor in any complex space X such
that D is a Cohen-Macaulay space or variety of positive dimension, then there is
at least one non-zero divisor in the local ring Op,. In particular, the inequality
codim(Sing D, D) > 1 yields that D is reduced and vice versa (see [13, Lemma 1.1]);
in this case the inequality depth(Sing D, D) > 1 is also fulfilled.

One can regard the next assertion as an analog of the Lemma 2, as well as a variant
of the fundamental sequence (2) or sequence (13), in the case of Cartier divisors.

LEMMA 3. In the same notation and under the same assumptions for every p > 0
there exists the following exact sequence

0 — Kerly ,(Adh) — Q4 o "B Q8 /b0 L — Qb — 0, (14)

REMARK 4. Recall, in addition, the following useful observation: if X is a com-
plete intersection, then the generalized de Rham lemma from [13, Lemma 1.6] implies
that there are the following exact sequences of Ox ,-modules

Adh
0— Qb SRR/ QR — Q0 (15)
for all 0 < p < ¢ — 1, where ¢ = codim(Sing D, D). In particular, in these cases the
kernel of exterior multiplication by the total differential dh in the sequence (14) is

isomorphic to the sum (h)Q% , + dh A Q% .
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DEFINITION 1. Given a Cartier divisor D on a complex space X, the analytic
sheaves of logarithmic differential forms Q% (log D), p > 0, are locally defined via the
kernel of the operator of exterior multiplication as follows:

0% (log D) = + Ker ,(Adh): = § Ker (Adh: Q% , — QX /h-Q%" ),
where by Adh we denote the homomorphism of exterior multiplication by the total dif-
ferential of the function h. In particular, the analytic sheaves Q% (log D) are coherent

for all p > 0.

Tautologically, the set of regular p-forms, annihilated by the exterior multiplica-
tion by dh, coincides with h-Q%  (log D) (cf. Lemma 2).

ASSERTION 1.  In the notation of the above definition, the Ox ,-module
Q&)U(log D) consists of germs of meromorphic p-forms w on X such that w and dw
have at worst simple poles along D. In other words, hw and hdw are reqular at o, that

18,

h-Q% (logD) C Q% . h-d(Q% ,(log D)) € Q%'

In addition, Ak, (log D) € hQR' (log D), that is, 2% ,(log D) € Q%' (log D).

)0 )0

Proof. Taking ¥ € Ker’  (Adh) C Q% , we see that dh A = h -§ for a suitable

regular form £ € ngal Since h is not a zero divisor, then one can examine the
form w = ¥/h, which, evidently, is contained in Q% _(log D). Indeed, the condition

dh A9 = 0 implies dh A w = 0. Hence, hdw = d(hw) = dv € ngal is regular on X at

the distinguished point. Next, since the equality dh A = hi’ for a suitable ¥ € Q’;rol
follows from the definition immediately, the last inclusion is evident. O

REMARK 5. In fact, Definition 1 is closely related with another application of
Theorem 1 in the context of the theory of generalized functions: any distribution T'
of degree zero, satisfying the condition T' A w = 0, is equal to a multiple of the Dirac
distribution (see [10], eq.(5)).

The following statement from basic commutative algebra (see, e.g., [8, Ch. TV,
§1, Corollaire 2]) is very useful for explicit computations of the quotient modules

Q% /h-Q5F ! in the exact sequence (14).

ASSERTION 2. Given a Noetherian ring A, the homothety of an A-module M,
corresponding to any element h € A, is injective if and only if the element h does not
belong to any of the prime ideals associated with the module M.

The next proposition is concerned an extension of the basic properties of loga-
rithmic differential forms for divisors given on smooth manifolds to the case of normal
varieties. Although we do not use this statement later on, however, it is essential to
the understanding of the subject. For convenience, we reproduce the corresponding
results from [20, (1.1)] with relevant changes.

PRrROPOSITION 1. Let V be a domain of C™, let X be a normal subspace of
dimensionn > 2, U = XNV and D C X a Cartier divisor determined by an equation
h(z) = 0, where h € Ox,, is reqular on U, such that depth(Sing D, D) > 1. Then for
a meromorphic q-form w on X with poles along D the following four conditions are
equivalent:

(1) differential forms hw and hdw are regular on X,
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(it) differential forms hw and dh A w are regular on X,
(i4) there exists a regular function g € Ox o, a reqular (¢—1)-form § € ng_ul and
a reqular g-form n € Qg(,o on X, such that:

a) dim¢ DN {z € V:g(z) =0} < n—2, that is, g is not a zero divisor in
the local ring Op ,,

b) gw =4 NE+0,

(iv) there exists an (n — 2)-dimensional analytic subset W C D such that the
germ of w at any point p € D\ W belongs to % A Q?ijl +Qf, . where O, = Q% v
denotes the module of regular q-forms on U at p.

Proof. First note, that the local ring Ox , of any normal variety is a domain. In
particular, this ring does not contain zero divisors at all. The equivalence (i) < (i)
is evident, the proof of implications (i7) = (iii) and (¢ii) = (iv) goes similarly to the
proof in [20], taking into account that, by our assumptions, the image of the ideal
Jac(h) under the canonical epimorphism Ox, — Op, contains a non-zero divisor
g. Finally, let w be a differential form satisfying the condition (iv). Then hw and
dh Aw are regular on D\ W. Since codim(W,U) > 2, we can apply Hartogs’ theorem:
any regular function outside of an analytic subset of codimension at least two in a
normal variety can be extended to the whole variety in a regular way. As a result,
both differential forms hw and dh A w can be extended on U in such a way. O

It should be also noted that normal varieties are characterized by the latter prop-
erty completely. Moreover, in complex analysis and geometry it is often taken as a
definition of normal varieties.

COROLLARY 1. Assume that X is a normal variety. Then the direct sum
Q% o(log D) = @y Q% ,(log D) is an Ox o-exterior algebra.

REMARK 6. It should be underlined that this property is not true in general
(see Remark 8 in §9). Nevertheless, the direct sum Ker ,(Adh) = @) (Kerk ,(Adh)
is an Ox ,-exterior algebra for any variety X. In view of Assertion 1, the algebra
0% ,(log D) is always closed under the exterior differentiation d and the exterior
multiplication by dh/h (cf. [20, (1.3)]).

7. Graded ICIS. The case of graded complete intersections with isolated sin-
gularities one can analyze in the manner of Examples 6 and 8. Let us describe the
corresponding procedure in detail.

Thus, let us take the germ M = (C3,0) with coordinates z,y, z, and let X be
a hypersurface determined by the equation f = 22 + y? + 22 = 0. Indeed, it is a
normal cone over the rational quadric in P? with an A;-singularity at the vertex. In
particular, Ox , is a domain.

We shall consider the divisor D C X given by the function h = yz. In fact, the
divisor D is a hypersurface section of X in terms of [16, 1.1.3, p.19]. On the other
side, the germ D C M is an ICIS. In view of Lemma 1 we get

P Qxit) = Z(Ox;t) = (1= )/(1 = 1)* = (1 +1)/(1 = 1)?,
P(Qk;t) = P(Ox; threse—of 2(1+£6)% /(1 + &%) =13 — 1) (1 + 1) /(1 - 1)?,
P(Q;t) = P(Ox;t)rese=od (1 +61)° /(14 &) = 23 = 3t + ) (1 + )/ (1 - )?,
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since (1+ &t)%/(1+ &%) = 1+ (3t — t2)€ + (3t? — 3t + )&% + . Next, it is clear
that Q% = Ox/Jac(f). Hence Q% = C(dz A dy A dz), and

P(Q;t) = P(Tors Q% t) = P (Tors V% t) = 3,

so that 7(X) = pu(X) = 1 as required.
Since (14 &t)3/(1 4 &t2)% = 1+ (3t — 2t2)€ + (3t2 — 63 + 3t1)¢2 + - -+ | similarly
to the above we get
2(0%:t) = 2(Op;
2(0L:t) = 2(Op;

=1 =2/ -1)°=1+1)?/(1-1),
rese—o 21+ &3 /(1 + 22 = (3 —2t)(1 + )2 /(1 — ¢).

t)
t)
Moreover, 2 (Tors QL,;t) = 3t% + 23 by [1, Theorem (3.4)], so that 7(D) = u(D) =5
as required. Since Q3 = Op/(Jac(f), Jac(h)), simple observations show

P(hit) = P(Tors Q35 t) = 13,
P(O0%4;t) = P(Tors 033 t) = 3t2 + 3t = 3t2(1 + t).

For every p > 0 the exact sequence (14)

0 Kot () — 0% , ™5 0311 /1087 — 5] — 0,

implies the following identity for the Poincaré series:
P(Up3t) = PR Q555 t) = P P(OK o3 t) + £ P (Kerly  (AdR); 1)
since deg(Adh) = 2. Hence,
P (Kerl o (Adh);t) = P i) — 17> P - Q1) + 122 (55 0).

Recall (see [13, Proposition (1.11)]) that if X is an ICIS of dimension n > 1, then
the torsion modules Tors (%) are trivial for any 0 < p < n. In our case n = 2, so
that the relation hw = 0 in the module Q}(,o implies w = 0, since h is a non-zero
divisor in Ox , and Tors (%) = 0. Hence,

Pk o/h- Qx o3t) = (1= t)P(Qx oit) = (1= )B - ) (1 +1)/(1 - t)?
=t(3—t)(1+1)*/(1—1).
As a result, W(Kergm(/\dh);t) =
=(14+t)/1 -t -t 2=-tB -1 +t)/1—t)*+t2(3-2t) (L +1)*/(1 —¢t)
={Q+t) -1 =tNE-t)A+t)+t7 @ =20)A+1)>A 1)} /(1 —1)?
=t2(1+1)/(1 —t)? =22 (0Ox; t).
On the other hand, by [13, Lemma 1.6] there is an exact sequence

0— Q% 2l /h-0k, — Qb , — 0.

Since Q(J)D,o = Q%7U/h9%70, ie, Op, = Ox,/hOx.,, then Kergw(/\dh) = th@o'
This implies

P (Kerk o(Adh);t) = 2 (1+ 1) /(1 —1)* = P (Ox 0, 1);
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that confirms an accuracy of our computations. As a result, we obtain the isomor-

phism QgQ ,(og D) = Ox , which agrees with the usual case of divisors in a manifold.
Now one can compute the modules Q}(ﬂa(log D) and Qg(yo(log D) as follows.

The main difference with the above calculations lies in the fact that, in general,

Tors 2% # 0 and the homothety of the module Q% , (as well as of the module Q% ),

determmed by the multiplication by &, has a nontrivial kernel (cf. also Assertion 2)
Let us consider the exact sequence (14) in the case p = 1:

0 — Kerk o (Adh) — Q% , 2 0% /h0%, — 03, — 0 (16)

and compute the Poincaré series BZ(Q?X o/ D% oit). Tf w € Q% ,, then the relation

hw = 0 implies w € Tors QX o» Since h is a non-zero divisor of Ox ,.
On the other hand, the differential form

Yo = tp(de ANdy Ndz) = xdy AN dz — ydx A dz + zdx A dy

is contained in Tors Q?X_’a, where E is the Euler vector field on X; this expression
corresponds to the unique possible relation between the coordinate 2-forms, since
dimy Tors Q% , = p(X) = 1. That is, TorsQ% , = C(J). It is not difficult to
verify that, in fact, the non-zero divisor h annihilates 9o, so that hdy = 0 in Q% ,
deg(ty) = 3 and P (Tors Q% ,;t) = t*. As a result, we obtain

PV /h% oit) = (1 =) P(Q% o3t) +1° = *(3+ 3t — 2t%) /(1 — ).
From the exact sequence (16) we deduce the following identities:
P (Ker ,(Adh);t) = P(Q git) — 1 2{(1 = 1) P (0% ,3t) + 17} + 122 (0] 31)
=PV 1) =223+ 3t = 2t%) /(1 —t) + 3t > (1 + 1)
=tB-t)1+t)/(1—-t) = B+3t—2t3)/(1 —t) +3(1 +t)
={tB-t)(1+t)— (1 —-t)3+3t—2t3) +3(1 —t)>(L + 1)} /(1 — t)?
=4t?/(1 - 1)? # P(Ox.05t).

In particular, this implies that the Ox ,-modules Kerk_’a(/\dh) and Q% ,(log D) are
not free. It remains to compute explicitly a system of generators of Kerk)a(/\dh).

PROPOSITION 2. A system of generators of the Ox ,-module Ker}X’o(/\dh) consists
of the four differential forms of weight two
Y1 = zdy, VYo = ydz, 93 = xdy — ydx, V4 = xvdz — zdx,
so that the module Q}X’u(log D) has four generators 9;/h, i =1,2,3,4, and
P (0% ,(log D); t) = t722(Kerk ,(Adh);t) = 4/(1 — )2 % P(Ox,0: ).
Moreover, since Ox, o-module Q}X’u(log D) is not free, then there are nontrivial syzy-
gies between these generators.

Proof. Let us take 9 € Q%, ¥ = adz + bdy + cdz, where a,b,c € Ox ,. Then
one can transform the congruence ¥ A dh = 0 (mod h) in the quotient module Q% =
02 /(fQ2s + df AQgs) into the following system of equations:

az = (Bx — Ay) + &1 f + Unh,
ay = (Cx — Az) + ¢2f + 2h,
by — cz = (Cy — Bz) + ¢3.f + ¥3h,
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where A, B,C, ¢;,¢; € Ocs o, 1 = 1,2,3. If a = 0 one gets the two forms ¥, and s,
as a result of simple calculations of syzygies between x,y, f,h. If b = 0, then ¢ = =,
C =0, B = z, and the first equation transforms as follows: az = 22 — Ay + ¢ f +1h.
This yields a = —z, A = —y, ¢1 = —1. In other words, the differential form zdz — zdx
is contained in the kernel of exterior multiplication by the total differential dh, and
so on. [

For completeness, it should be noted that similarly to Example 6 one can choose
another system of generators of the module Q}X’u(log D), using the following 2-forms

from Kerﬁ(ﬂa(/\dh):
90 = 191 + 192 = dh, 91 = 191 - 192 = Zdy - de, 92 = 193, 93 = 194. (17)

Computing the Poincaré series c@(Ker?X’ »(Adh);t) and the generators of the mod-
ule Kerig)a(/\dh) is a more easy exercise. Thus, it is clear that ng = Tors ng =
Tors % , = C(dx A dy A dz) and hQ3 , = 0, since the polynomial h is contained in
the maximal ideal of Ox , and Jac(f) = (z,y, 2)Ox,,. Hence, the exact sequence (14)
looks like this:

0 —s Kerk o (Adh) — %, 2B 0% . — 0%, — 0.

Moreover, 2(Q% ,;t) = P(Q} ,;t) in virtue of previous computations and, conse-
quently,

P(Kerk o(Adh)it) = P (O o1t) =t 2P (0 o51) + 72 P(Q) 431) = P (X 31).

On the other hand, dhAQ% , = 0, since Jac(h) C Jac(f), that is, Kerﬁg)a(/\dh) = 0%,
Further, the Ox ,-module Q%w is generated by the three coordinate forms dx A dy,
dy N dz and dx A dz; there are nontrivial syzygies of the first and the second orders
between these forms. As a result, we obtain

1 deNdy dyNdz dx Adz
Qg{,a(logD) = Eﬂg(,a c OX,0< h ) A ) A >7
P (0% o(log D);t) = t722(Q%; 1),

so that Q% ,(log D) is not free and Tors Q% ,(log D) = Tors Q% .

REMARK 7. Tt should be underlined that ¢¥; A ¥; = 0(mod h) in Q% ,. More
precisely, 93 A9y = 2 -99 = 0 in Qg()a, where Jg = tg(dz A dy A dz) € Tors Q?X’u.
Next, 91 A¥y = z- 99+ hdx Ady = hdx Ndy, 92 ANVs = —y - Yo+ hdx ANdy = hdx A dy,
and so on. As a result, the Ox ,-module Q% ,(log D) = ©p_, Q% ,(log D) is, in fact,
an exterior algebra as Corollary 1 asserts.

Above all, it is not difficult to verify that the differential 1-forms 6,05 and 63 in
the presentation (17) are contained in the torsion module Tors Qba (cf. Example 6,
Example 8, [2, Lemma 1] or [4, §1, Proposition]).

8. Determinantal varieties. Now we are able to describe the logarithmic forms
for divisors given on the Hilbert cubic from Example 3. In the same notation, let
(z :y:2:u) be homogeneous coordinates in P3. Then Q% | = k(z,y, z,u)/I, where
the prime ideal I = (f1, f2, f3) is generated by the maximal minors of the Hankel

matrix M = [;gﬂ, so that

fi=zz—y% fa=yz—au, f3=yu— 2"
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The germ X is a determinantal Cohen-Macaulay surface singularity of codimen-
sion 2 and the local ring Ox , is a domain. In Example 3 we computed the following
Poincaré series:

P(Oxoit) = (1= 382+ 268)/(1 = ) = (1+20)/(1 - 1),
‘@(Q‘IX,a?t) t(4+ 5t —4t2 +3) /(1 — t)?,

P oit) = 12(6 — T62 4+ 4%) /(1 - 1)?,

PV git) =482 + 14 = 3 (4 + 1),

P (A o3t) =1,

so that 2(Q% ;1) = P(Tors Q% ;1) and P(Q ;1) = P (Tors Qx ;).

Taking the divisor D C X, which is determined by a quasihomogeneous poly-
nomial h € Ox,, one can compute the modules of logarithmic differential forms
Q’;(y ,(log D), p > 0, and the corresponding Poincaré series similarly to the method
described above. More precisely, let us take h = 22 —u2. The corresponding divisor D
consists of two pairs of straight lines and of two pairs of a line and a quadric. Further
computations show

P(Opo;t) =1 +t)(1+2t)/(1 1),
P(Qp o5t) = 262 =) (1 + 2t) /(1 — 1),
P(QF 4;t) = 263(3 + 4t),

P(Q} 5t) =3 (4 + 1),

PO} it) =t

so that (03, ,;t) = P (Tors QF, ,;t), and so on. Now we shall compute Kerg(yo (Adh).
First note, that

Py o/h- Qi o3t) =L+ 2004+t —17) /(1 — 1) # (1 = £2) P (U 31)-
In particular, Tors Qﬁw # 0. Hence,
P (Kerk o(Adh);t) = P (0 i t) =t 2P (D o /h-Q o5) + 12 P(Qp g3t)
=(1+2t)/(1—t)2 =t 21 +2)(d+t —t3) /(1 —t) +t722t(2 =t} (1 + 2t) /(1 — t)

=t Ht(1+2t) — (1 +2t) 4+t —t2) (1 —t) + 22— t2) (1 +2t)(1 — 1)} /(1 — t)?
=t B+ 2t /(1 —t)? =t2(1+2t) /(1 — t)? = 2P (Ox,03 1).

that is, Kerg(yo(/\dh) is a free Ox-module, similarly to the case of divisors in smooth
manifolds. Next,

PV o/ oit) = 6621+ = 17) /(1 = 1) # (1 = 2) P (0 o51),
that is, Tors Q% , # 0. Hence,
KerXo(/\dh) t) = 9(Q§,0§ )—t‘?@(ﬂ% o/ P QX0§ )—|—t‘233(QQD)0;t)
(445t =42 +3) /(1 —t)? —t726t2(1 +t — t2) /(1 — t) + t22t%(3 + 4¢t)

2(
t
{t(4+5t —4t? +13) —6(1 +t —t2)(1 — t) + 2(3 + 4t)(1 — )*}/(1 — t)?
(782 =263 +#4) /(1 — )2 = 2(T =2t + %) /(1 — )2 & P2 (Ox o; ).
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As aresult, the module Kerﬁg0 (Adh) is not free. Similarly to the proof of Proposition 2

one can verify that a system of generators of the Ox ,-module Ker}X’o(/\dh) consists
of the following differential 2-forms of weight two

Yo = xzdx — udu = %dh, Y = ady — ydx, 99 = xdz — zdz, U3 = xdu — udz,
WYy = ydz — zdy, V5 = ydu — udy, ¥¢ = udz — zdu.

Making use of rational parametrization (6), we see that ¥; € TorsQp, , for all
i=1,...,6. Moreover, ¥; A9J; = 0(mod h) in ng for all 0 < 4,7 < 6. For ex-
ample, 91 Ay = x - 1p(de Ady Adz) =0 in Q% ,, and so on (cf. Remark 7).

The computation of the Poincaré series of Ker?X’ o (Adh) goes similarly to Section 7.
Again, it is clear that Q3% , = TorsQ% , and one can easily verify that hQ3% , = 0.
Since P (0% ;1) = P(Q} ,;t), one obtains

P(Kerk o (Adh);t) = P(Vx oit) — t 2P (D% it) + 12 2(0}, 45t) = P (Vo t).

On the other hand, it is not difficult to verify that dh/\Q%w = 0. Hence, one gets
the identification Kery ,(Adh) = Q% ., so that the module Q% , (log D) is not free and
Tors % ,(log D) = Tors Q% ,. The same reasonings show that Ker%d/\dh) = 0%,
Tors Q% ,(log D) = Tors Q% ,, and so on.

9. Fans. In fact, the above methods are suitable and highly effective for com-
puting the modules Kerg(ﬁ ,(Adh) in very different situations, involving the case of
divisors on discriminants or, more generally, on (non-normal) Saito free divisors, as
well as on non-Cohen-Macaulay varieties of divers types whose structure algebra con-
tains at least one non-zero divisor. In the former situation the Poincaré series for
Q& , were described in [4], while in the latter case the corresponding Poincaré series
can be easily computed in the case of fans (which are rigid singularities); one of the
simplest examples has been studied in detail in [7, Example 15.9]).

Now, let X C (C*,0) be the coproduct of two copies of complex plane over the
origin. Then A = k(z,y) Xk k(z,u) is the structure local algebra of the corresponding
germ X, so that A = k(x,y, z,u)/I, where I = (vz,zu,yz,yu). It is clear, that X is
an isolated surface singularity. Moreover, X is not normal because it is not Cohen-
Macaulay. In particular, the singularity X is not determinantal and has no nontrivial
infinitesimal deformations of the first order, so that X is a rigid singularity.

In this case the local ring Ox , is not a domain. However, it contains enough
non-zero divisors such that = + 2z, z +y + z + u, 22 + y? + 22 + v?, and so on. It is
not difficult to check that the corresponding 1-dimensional germs D C X are neither
reduced, nor even equal-dimensional. Moreover, every such germ contains at least
one embedded component at the origin. Nevertheless, one can compute the modules
Ker ,(Adh) with the help of our methods, making use of exact sequence (14). For
explicit computations we need the Poincaré series

P(Ox.oit) = (1+2t —12)/(1 - 1),

P oit) =41+t =2t + %) /(1 - 1),

P (0% i) = 262(3 — 2t — 26 + 2t%) /(1 — t)?,
P oit) = (4 +1),

P (% it) =t

which have been obtained in [7, 15.9].
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Now let us take the divisor D C X, determined by the homogeneous polynomial
h = 22+ 3%+ 22 +u?. Remark, that the primary decomposition of the ideal I consists
of the two associated primes p; = (z,y) and po = (z,u). Hence, h is not a zero
divisor (see Assertion 2), and the germ D consists of 4 straight lines, passing through
the origin: o =y = 22 +u? =0, 22 + 4> = 2 = u = 0. Above all it contains an
embedded zero-dimensional component at the origin. One can verify that there exist
the following Poincaré series

P(Op.oit)=(1+2t—t2)(1+1t)/(1 1),
P(Qp git) = t(A+ Tt =Tt%) /(1 — 1),
P(QF, ;) = 23(3 + 2t),

PO} it) =3 (4 + 1),

P(Qp i) = t*

Next, making use of similar calculations described in the previous sections, one
can write down the Poincaré series of the modules Ker%, (Adh), p > 0, in an explicit
form. First, we compute the series

P(Qx o/ h- U git) = 4t(1 42t — t7) /(1 — 1).
This implies that
P (Kerk o(Adh);t) = P(Q i t) =172 P (D o /h-Q o31) + 12 P(Qp git)
=1 +2t—1)/(1—t)2 —t724t(1 + 2t —t2) /(1 —t) + t 2t (4 + Tt — Tt2) /(1 — 1)
=2t2/(1 = 1) £ 2P (Ox,03 )

In particular, the module Kerg(yo(/\dh) is not free. Next, let us consider the two
polynomials hy = 22 + y? and hy = 22 4+ u? from the structure algebra Ox ,, so that
h = hi+hs. First we check that h; € Kergm(/\dh). Let us denote the four generators
of the ideal I = (zz,2u,yz,yu) by fi,...,fs, respectively. Then, in the module
0%, there exist the following congruences: zdfy = 2*dx, udfs = u?dx, zdfs = 2°dy,
udfy = u?dy. Finally, it remains to use formal identities

1
§h1dh = zhydr + yhidy = —xzdfi — zudfs — yzdfs — yudfs,
taking into account that

rhidx + zzdfr + zudfs = xhdx, yhidy + yzdfs — yudfs = yhdx.

Similar considerations show that hy € Ker ,(Adh), i.e. the module Kerg(yo(/\dh) is
generated by the two elements hy and ho of Weighted degree two.

In the same vein one can describe the module Kerﬁ(yo(/\dh). Namely, let us first
compute

P (Vo /W5 o3t) =263 = 2t) (1 + 1) /(1 —t).
Therefore,
P (Kerx ,(Adh);t) = P(Q it) — t72P(0% ,/h-Q% oit) + 72 P2(QF, ,5t)

=4t(1+t—22+3)/(1 —1)2 =23 = 2t)(1 + 1) /(1 — t) + 2(3 + 2t)
=422 =2t +1?)/(1 = t)? = —42 P (Ox o5t) + 12t2 /(1 — )2 % P(Ox o3 1).
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Hence, the module Kerﬁw (Adh) is not free also, it has eight generators of weighted
degree two.

One can write down a system of generators in an explicit form. Since
dh = dhy + dhg, then dhy Adh = dhy A dhs = fidx Ndz + fodx A du+ fzdy N\ dz
~+fady N du = 0, in the module Q%(,o' As a consequence, we obtain two generators

of the module Kerﬁ(yo(/\dh), the differential 1-forms dhy and dhy, which are total
differentials. Remark also that for irreducible divisors there is one form of such kind
only; namely, it is dh.

Applying the scheme of calculations presented in the proof of Proposition 2, we
find that the remaining six generators, denoted by ¥1,. .., ¥, are the following differ-
ential 1-forms: zdr — xdz, udr — xdu, zdy — ydz, udy — ydu, ydr — xdy and udz — zdu;
they can be obtained by the contraction of appropriate coordinate 2-forms along the
Euler vector field. For example, zdz —xdz = —1gp(deAdz), udr —xdu = —ip(dzAdu),
and so on.

Let us verify that these forms are contained in the torsion module Tors Q}lu.
Thus, it is clear that (y + u) € Op, is not a zero divisor, and (y + u)¥y =
zudz — xydz (mod I). Next, zudx — xydz = zdfs — fidu — zdfs + fady = 0 in Qk
(as well as in Q}(O) Hence, ¥, € Tors Qba. Similar arguments are valid for the
differential forms 95, 3 and 4.

Next, (z + 2)d5 = aydz — x2dy = $ydh — y*dy — 2?dy (mod I) and there is the
following chain of identities: ydh — y*dy — 2*dy = Jydh — hdy + (z +u?)dy =
deh hdy + zdfs — fsdz + udfsy — fadu. Hence, (x + z)J5 = 0 in Q}, ,. This means
¥5 € Tors QD , and, analogously, we deduce that Jg € TorsQ}, Do

Finally, as in the previous section, Q% , = TorsQ% , and hQ% , = 0. Since
P (0% o5t) = P( ,;t), we have

'@(Kerif,a(/\dh); ) L@(QXU; ) i 2'@(9){07 )+t 2'@(QD ) ):'@(QXW )

In virtue of the equality dh A Q% , = 0, we get Ker?X’o(/\dh) Q% o, s0 that the
module Q% ,(log D) is not free, and Tors Q% ,(log D) = Tors Q% ,. Next, as in the

above cases, one obtains Kerg(yo(/\dh) = Qﬁ(ﬁa, Tors Qﬁ(ﬁa(log D) = Tors Q%(,o’ and so
on.

REMARK 8. It should be noted that in the case under consideration the direct
sum Q% ,(log D) = @y Q ,(log D) is not an Ox ,-exterior algebra (cf. Corollary 1
and Remark 6).
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