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INTRODUCTION TO THE STUDY OF ARNOLD DIFFUSION∗
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Abstract. This article is written for general dynamicists to understand the ideas for the proof
of Arnold diffusion conjecture, not in pursuit of rigorousness. Readers need not to be familiar with
the variational method based on the Mather theory.
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1. Introduction. The problem of Arnold diffusion is raised for nearly integrable
Hamiltonian systems to study the dynamical instability

H(p, q) = h(p) + εP (p, q), (p, q) ∈ R
n × T

n, n ≥ 3. (1.1)

Because the Hamiltonian H is autonomous, each energy level set is invariant for the
Hamiltonian flow, denoted by Φt

H . According to the KAM theory, large part of each
energy level set is occupied by invariant tori where each orbit of Φt

H is quasi-periodic.
However, with respect to (2n−1) dimensional energy level set, the complimentary part
of the set of n-dimensional KAM tori is open-dense and path connected if n ≥ 3. After
he constructed an example where there are initial conditions leading to a significant
drift in the action variables, Arnold foresaw a much more stronger form of instability in
which neighborhoods of any two points on a given energy surface would be connected
by a drifting orbit. Here is the precise formulation of what has come to be known as
Arnold’s conjecture for the system above (cf. [A66], or [A94] Section 1.8 p.17):

Arnold’s conjecture. For n ≥ 3, the general case for nearly integrable Hamil-
tonian H(p, q) = h(p) + εP (p, q) is represented by the situation that for arbitrary
pair of neighborhoods of tori p = p′ and p = p′′ in one component of the level set
h(p′) = h(p′′) there exists, for sufficiently small ε, an orbit intersects both neighbor-
hoods.

The study of Arnold diffusion conjecture has proved quite daunting, engaging
scores of investigators over the last half century. For long time, people used to apply
Arnold’s idea developed in [A64] to construct diffusion orbit. It relies on the existence
of NHIC (normally hyperbolic invariant cylinder). The difficulties encountered in this
direction are the gap problem and the transversality problem, the former puzzled people
for forty years while the latter appears to be more substantial (cf. [CY04, T04, DLS06,
B08, CY09]). The resolution of these problems opened the way to construct diffusion
orbits along the path of single resonance. However, as pointed out by Arnold [A66],
in order to take the final step in the proof of the above conjecture, it is necessary to
examine the transition from single to double resonance, because NHIC may collapse.
Since the announcement of Mather in 2001 ([M03]), it becomes known as a notorious
difficulty. We don’t know the details Mather designed to cross double resonance [M09],
his work in [M11] is obviously towards to the goal. Recently, Kaloshin-Zhang [KZ]
and Marco [Mar] proposed that a cylinder with hole could be used to cross double
resonance, their way in the cohomology space appears the same as Mather’s way.
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We shall discuss some issues in the final section which need to be well understood
if one wants to cross double resonance along their way. By turning around instead
of passing through the double resonant point, we found a different way to join two
pieces of cylinders, the problem of double resonance was therefore solved in [C17b].
Recently, the mechanism of turning around the point was observed numerically in
[GSV].

To bring readers to the stage of understanding what is the gap problem, we
illustrate Arnold’s idea for his celebrated example in the second section. The third
section is for the “proof” of diffusion along the path of single resonance (a priori
unstable case), to explain what are the gap problem and transversality problem and
to show how to solve them. In the fourth section, we explain why one has to handle
the problem of strong double resonance. The ideas to solve the problem in [CZ16,
C17a, C17b] are illustrated in the sections from 5 to 8.

2. What is the Arnold’s mechanism. Arnold’s model of instability is the
following Hamiltonian system with two and half degrees of freedom [A64]:

H(p, q, t) =
1

2
(p21 + p22)− ε(1− cos q1)(1 + μ(cos q2 + cos t)). (2.1)

If μ = 0, it is a decoupled rotator-pendulum system, the rotator 1
2p

2
2 and the pendulum

1
2p

2
1 − ε(1 − cos q1). The hyperbolic fixed point of the pendulum (p1, q1) = 0 has its

stable and unstable manifolds which merge into one separatrix

Γ0 = {(p1, q1) : p1 = ±
√
2ε(1− cos q1)}.

In the product phase space R
2 × T

2, the fixed point is suspended into a cylinder

Π0 = {(p, q) ∈ R
2 × T

2 : (p1, q1) = 0},
which is invariant and normally hyperbolic for the time-2π-map ΦH = Φt

H |t=2π. The
cylinder is the phase space of the rotator, admitting a foliation of invariant circles.
Each circle has its stable and unstable manifold with 2-dimension which is the product
of the separatrix with the circle.

For μ �= 0, the perturbation is chosen is so special that the dynamics on the
cylinder Π0 remains unchanged. However, the stable and unstable manifold of each
circle in the cylinder split and intersect transversally. Consequently, for any two
numbers A < B there is a sequence {p2,i : i = 0, 1, · · · , k} so that p2,0 < A < B < p2,k,
the unstable manifold of the circle where p2 = p2,i transversally intersects the stable
manifold of the circle where p2 = p2,i+1, denoted by Wu

p2,i
� W s

p2,i+1
. Arnold call it

transition chain. In this case, a long orbit with p2(t1) < A and p2(t2) > B can be
constructed by λ-lemma, see the left of Figure 1. It is so-called Arnold’s mechanism
for the construction of connecting orbits.

Let us look at it from variational point of view. Indeed, it was observed in [Bs]
that some homoclinic orbit minimizes the Lagrange action. The orbits homoclinic
to the circle Γp∗2 = {(p, q) : p2 = p∗2, (p1, q1) = 0} are obtained by searching for a
sequence of minimal curves

lim inf
k→∞

min
γ(−2kπ)=γ(2kπ)∈πΠ0

[γ]=(1,0)

∫ 2kπ

−2kπ

(1
2
(γ̇2

1(t) + (γ̇2
2 − p∗2)

2) + V (γ(t), t)
)
dt

where γ = (γ1, γ2), [γ] ∈ H1(T
2,Z), π denotes the projection along the cotangent

fiber T ∗
T
2 → T

2 and V (q, t) = ε(1 − cos q1)(1 + μ(cos q2 + cos t)). The observation
hints the possibility to apply Mather theory to the problem of Arnold diffusion.
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Fig. 1. The left: no gap, the right: there exist gaps.

Indeed, because we work in the symplectic space, both stable and unstable man-
ifold are Lagrangian sub-manifold. Restricted on the place where it keeps horizontal
(being graph over the configuration manifold), each Lagrangian has its own generating
function, as the symplectic form dp∧dq vanishes when it is restricted on a Lagrangian.
Let uu,s

p2
be the generating function for Wu,s

p2
respectively, it holds at the intersection

point that duu
p2

= dus
p2
, namely, each critical point of the barrier function

Bp2(q) = uu
p2
(q)− us

p2
(q) (2.2)

corresponds to a homoclinic orbit. Since the Hamiltonian (1.1) is positive definite, the
barrier function has its minimal points not lying on the circle πΠ0. Passing through
each minimal point there is a minimal configuration q(t) producing a homoclinic orbit
(p(t), q(t)). The transversal intersection implies that the orbit is disconnected to other
homoclinic orbits.

3. Diffusion along cylinders in generic case. The perturbation introduced
in Arnold’s example is so artificial that the dynamics on the cylinder is still integrable,
which guarantees the existence of transition chain. Under generic perturbation, al-
though the NHIC still exists with slight deformation, the dynamics on the cylinder
is no longer integrable. The restriction of the symplectic map on the cylinder is an
exact, area-preserving twist map. Generically, there does not exist invariant circle
with rational rotation number. Corresponding to each rational number k

k′ such that
k′ is not large there is a Birkhoff instability region looks like an annulus. Its width is
of order O(

√
ε) if the Hamiltonian takes the form

H(p, q, t) = h1(p1, q1) + h2(p2) + εP (p, q, t)

where h1, h2 represent the pendulum and the rotator respectively. In contrast with the
width of the Birkhoff instability region, the splitting of stable and unstable manifold
of each invariant circle is upper bounded by the order O(ε), much smaller than O(

√
ε).

It appears unclear whether the unstable manifold of the circle on a side of the Birkhoff
region intersects the stable manifold of a circle on the other side, namely, the transition
chain may break down. It is so-called the gap problem, see the right of Figure 1.

To cross the gap, let us recall a fact in the theory for twist maps. In each Birkhoff
instability region, there exist some orbits which connect the invariant circles on both
sides (cf.[M91]), namely, there exist orbits lying on the cylinder which cross the gap.
Such orbits shadow a sequence of successively connected orbits (γi(t), γ̇i(t)) which are
minimal in the sense that

AL′(γi(t))|[t0,t1] = min
ξ(t0)=γi(t0)
ξ(t1)=γi(t1)

AL′(ξ(t))|[t0,t1] (3.1)
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holds for any t0 < t1, where the action of L′ along a curve ξ(t) is defined as

AL′(ξ(t))|[t0,t1] =
∫ t1

t0

L′(ξ(t), ξ̇(t), t)dt,

where L′ = L+ L′′, L is related to the Hamiltonian H via Legendre transformation,
L′′ is carefully chosen such that d

dt
∂L′′
∂q̇ − ∂L′′

∂q vanishes in a neighborhood of the

curve γi(t). For local connecting orbits in Birkhoff instability region, the principle of
cohomology equivalence is applied to construct L′′. In Arnold’s example, the orbit
connecting the circle Γp2,i to the circle Γp2,i+1 is also minimal. The choice of L′′

in this case makes use of the fact that the minimal points of the barrier function is
totally disconnected, see [CY04, CY09]. In this way, one obtains a variational version
of (generalized) transition chain: along the path of diffusion there is a sequence of
minimal orbits, successively connected. The diffusion orbit is constructed shadowing
these local connecting orbits and dynamically connects two invariant circles. Two

Fig. 2. The red curve shows the projection of diffusion orbit in the normal direction, its
projection to the center manifold turns around the cylinder.

invariant sets S1 and S2 are said to be dynamically connected if there is an orbit
whose α-limit set is contained in S1 and the ω-limit set is contained in S2, or vice
versa.

Until now we have taken it as granted in generic case that, for every invariant
circle, the stable manifold intersects the unstable manifold transversally. However, it
is a challenging problem to verify the condition, we call it the transversality problem.

It would be trivial if we check the transversality condition for one, and conse-
quently for countably many circles only. The intersection of countably many open-
dense sets makes up a residual set in the function space. But one needs to check the
condition for a set of circles with positive Lebesgue measure.

Recall that the transversal intersection of the stable and unstable manifold implies
the non-degeneracy of the minimal point of the barrier function. If the barrier function
Bσ has a non-degenerate minimal point, then for σ′ sufficiently close to σ, the function
Bσ′ is non-degenerate at its minimal point either. However, one does not know how
small |σ − σ′| needs to be such that the non-degeneracy holds. The situation will be
changed if the barrier is parameterized by some number σ so that

sup
q
|Bσ(q)−Bσ′(q)| ≤ C|σ − σ′|μ. (3.2)

In this case, the size of the neighborhood of σ is of order O(|d|1/μ|), where |d| is the
size of the non-degeneracy. Therefore, one is able to solve the transversality problem
once certain modulus of continuity of barrier functions is established.



INTRODUCTION TO THE STUDY OF ARNOLD DIFFUSION 209

The modulus of continuity is also a hard issue. Fortunately, one obtains it in the
a priori unstable case, i.e. some NHIC already exists before the system is perturbed.
To do it, we arbitrarily choose one circle Γ0 and parameterize another circle Γσ by
the algebraic area between Γ0 and Γσ,

σ =

∫
(Γσ(q2)− Γ0(q2))dq2.

This integration is in the sense that we pull it back to the standard cylinder Π0. In this
way, we obtain one-parameter family of circles Γσ : T× S→ Π0 where S ⊂ [A′, B′] is
a Cantor set with positive Lebesgue measure. One can think Γσ as a map to function
space C0 equipped with supremum norm

‖Γσ − Γσ′‖ = max
q2
|Γσ(q2)− Γσ′(q2)|.

Since all circles are Lipschitz curve with uniform Lipschitz constant CL, the annulus
bounded by Γσ and Γσ′ contains a diamond, the length of its diagonals is ‖Γσ −Γσ′‖
and C−1

L ‖Γσ−Γσ′‖ respectively. As the area of the diamond is not larger than |σ−σ′|,
one obtains

‖Γσ − Γσ′‖ ≤
√
2CL|σ − σ′|.

The modulus continuity of barrier functions is then obtained by applying the theorem
of normally hyperbolic invariant manifold (NHIM). Certain modulus continuity also
holds for Aubry-Mather sets of twist map [Zm].

A sub-manifold Π, invariant for a diffeomorphism Φ, is called normally hyperbolic
if the tangent bundle over Π admits DΦ-invariant splitting

TzM = TzN
+ ⊕ TzΠ⊕ TzN

−

some Λ2 > Λ1 ≥ 1 such that the following hold

Λ−1
1 <

‖DΦ(z)v‖
‖v‖ < Λ1, ∀ v ∈ TzΠ,

‖DΦ(z)v‖
‖v‖ ≤ Λ2, ∀ v ∈ TzN

+,

‖DΦ(z)v‖
‖v‖ ≥ Λ−1

2 , ∀ v ∈ TzN
−.

The NHIM survives small perturbation to the diffeomorphism, the stable (unstable)
manifold admits a foliation of stable (unstable) fibers Υu,s

z , each of which depends on
its base point z ∈ Π smoothly. For each z′ ∈ Υu,s

z , ‖Φk(z′)−Φk(z)‖ → 0 exponentially
fast as k → ±∞. With this observation, we find that the modulus of continuity of
the invariant circles induces the modulus of continuity of the barrier function.

Not all invariant circles in the cylinder are smooth. Nevertheless, they are Lip-
schitz curve. Consequently, the stable (unstable) manifold can only be assumed of
Lipschitz. It does not make trouble for the approach. When an invariant circle disap-
pears, some invariant set still exists, looks like a Cantor set embedded on circle, called
the Aubry-Mather set. It has its stable (unstable) set, the pseudo-graph of the differ-
ential of the weak KAM solutions (certain viscosity solution of the Hamilton-Jacobi
equation), which can be treated as the substitute of the generating function of stable
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(unstable) manifold, also denoted by uu, us respectively. Since H is assumed to be
positive definite in p, each weak KAM solution is of Lipschitz. At each differential
point of uu (us), there exists an orbit emanating from (p = ∂uu(q), q) ((p = ∂us(q), q))
and approaching the Aubry-Mather set as t→ −∞ (t→ +∞).

Although the barrier function is only Lipschitz, it is differential at it minimal
point. Indeed, the backward weak KAM solution uu is semi-concave and the forward
weak KAM solution us is semi-convex. A function is said to be semi-concave (semi-
convex) if it is the sum of a C2-function plus a concave (convex) function. Therefore,
the barrier function uu − us is semi-concave which is differentiable at its minimal
point, where both uu and us must be differentiable (see [Fa]).

4. Reduction of normal form and diffusion path. Towards the resolution
of Arnold’s conjecture, let us consider small perturbation of integrable Hamiltonian
with three degrees of freedom

H(p, q) = h(p) + εP (p, q), (p, q) ∈ R
3 × T

3, (4.1)

where ∂2h(p) is positive definite, both h and P are Cr-differentiable with r ≥ 6.
As the first step to answer the question, we search for normal hyperbolic invariant

cylinder (NHIC) along resonant path. Once a NHIC is found, around which the system
turns out to be a priori unstable. In the system with three degrees of freedom, an
irreducible integer vector k′ ∈ Z

3\{0} determines a resonant path

Γ′ = {p ∈ h−1(E) : 〈∂h(p), k′〉 = 0}.

Along the path Γ′, there are countably many points {p′′ ∈ Γ′} where the frequency
vector ∂h(p′′) satisfies additional resonant condition, i.e. ∃ k′′ ∈ Z

3\{0} independent
of k′ such that 〈∂h(p′′), k′′〉 = 0. We call p′′ double resonant point.

One can choose the path so that k′ is totally irreducible. A vector k =
(k1, k2, k3) ∈ Z\{0} is said to be totally irreducible if the greatest common divisor
of ki and kj is equal to 1 for any i �= j and i, j = 1, 2, 3. It is based on the observation
that, for any k ∈ Z

3\{0}, one can choose totally irreducible k′ ∈ Z
3\{0} such that

〈k, k′〉/‖k‖‖k′‖ is close to 1.
To reduce the Hamiltonian (4.1) into a normal form, small disks {‖p − p′′i ‖ <

K−1
i εκ} are chosen to cover the resonant path Γ′, where {p′′i ∈ Γ′} are double resonant

points, 0 < κ < 1
6 , Ki ≤ K∗ε−

1
3 (1−3κ) is the period of the double resonance at p′′i ,

namely, Ki∂h(p
′′
i ) ∈ Z

3 and K∂h(p′′i ) /∈ Z
3 for any K < Ki, K∗ is a constant

independent of ε (see Chapter 3 of [Lo]). The radius of each disk is between O(ε
1
3 )

and O(ε
1
7 ).

Fix a disk {‖p − p′′i ‖ < K−1
i εκ

′}. To get the normal form around a double
resonance, we introduce a coordinate transformation ΦεF which is defined as the time-
2π-map ΦεF = Φt

εF |t=2π of the Hamiltonian flow generated by the function εF (p, q),
where F solves the homological equation

〈
ω′′
i ,

∂F

∂q

〉
= −P (p, q) + Z(p, q)

where ω′′
i = ∂h

∂p (p
′′
i ) and

Z(p, q) =
∑

〈k,ω′′i 〉=0

Pk(p)e
i〈k,q〉,
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in which Pk represents the Fourier coefficient of P . Expanding F into Fourier series
and comparing both sides of the equation we obtain

F (p, q) =
∑

〈k,ω′′i 〉	=0

iPk(p)

〈k, ω′′
i 〉

ei〈k,q〉.

Under the transformation ΦεF we obtain a new Hamiltonian

Φ∗
εFH =h(p) + εZ(p, q) + ε

〈∂h
∂p

(p)− ∂h

∂p
(p′′i ),

∂F

∂q

〉

+
ε2

2

∫ 1

0

(1− t){{H,F}, F} ◦ Φt
εF dt.

The function Φ∗
εFH(p, q) determines its Hamiltonian equation

dq

dt
=

∂

∂p
Φ∗

εFH,
dp

dt
= − ∂

∂q
Φ∗

εFH. (4.2)

For this equation, by choosing carefully a matrix M (see Section 3 of [C18]) we
introduce a linear transformation

q = M−1u, p = M tv,

followed by another transformation

G̃ε =
1

ε
Φ∗

εFH, ỹ =
1√
ε

(
v −M−tp′′i

)
, x̃ = u, s =

√
εt, (4.3)

with x̃ = (x, x3), ỹ = (y, y3), x = (x1, x2), y = (y1, y2). In the new canonical variables
(x̃, ỹ) and the new time s, Equation (4.2) turns out to be the Hamiltonian equation
with the generating function as the following:

G̃ε(x̃, ỹ) =
1

ε

(
h(p′′i +

√
εỹ)− h(p′′i )

)
− V (x) +

√
εR̃ε(x̃, ỹ),

where V = −Z(p′′i , 〈Mk′, x̃〉, 〈Mk′′, x̃〉) which is independent of x3, 2π-periodic in x1

and 2π/m-periodic in x2 with some m ∈ N determined by M , the term ‖√εR̃‖Cr−2

is bounded by a small number of order O(
√
ε) when (x̃, ỹ) is restricted in the domain

Ωε =
{
(x̃, ỹ) : |ỹ| ≤ εκ−

1
2 , x̃ ∈ T

3
}
, with 0 < κ <

1

6
.

Notice that M is set such that M tω′′
i = (0, 0, ω3). Let (I, θ) = ( ω3√

ε
y3,

√
ε

ω3
x3) be

another symplectic coordinate rescaling, the function I = Gε(x, y,
ω3√
ε
θ) with

Gε

(
x, y,

ω3√
ε
θ
)
=

1

2
〈By, y〉 − V (x) +

√
εRε

(
x, y,

ω3√
ε
θ
)
. (4.4)

solves the equation G̃ε(x, y,
ω3√
ε
θ, I) = 0, where B is a positive definite matrix. In the

domain {|y| ≤ O(εκ−
1
2 ), |I| ≤ O(εκ−1)}, the term

√
εRε is bounded by a quantity of

order O(
√
ε) in Cr−2-topology, see Section 3 of [C18] for the details of the reduction.

In the spirit of [B07], one believes in the correspondence between the set of minimal
orbits of the Hamiltonians H and the set of Gε.



212 C.-Q. CHENG AND M. ZHOU

The main part of Gε is a classical system of mechanics with two degrees of freedom
which was obtained in [A66] already

G(x, y) =
1

2
〈By, y〉 − V (x), (x, y) ∈ T

2 × R
2. (4.5)

It is generic to assume that V attains its minimum only at one point, by a translation
of coordinates, we assume this point is x = 0 with V (0) = 0. It is generic either to
assume that the Hessian matrix ∂2V (0) is positive definite.

The classical system G(x, y) is far from integrable, perturbation method does not
apply any more. Given a class g ∈ H1(T

2,Z), it is possible that there does not exist
cylinder which admits a foliation of periodic orbits associated with the class g. There
might be a singular cylinder with hole, taking homoclinic orbits as its boundary,
it does not survive small time-periodic perturbation. It is a main issue of double
resonance which will be discussed later.

Next, let us find the diffusion path connecting neighborhoods of two action
variables p and p′ with h(p) = h(p′) = E. Given any small δ > 0, there ex-
ist two irreducible integer vectors k, k′ ∈ Z

3\{0} such that the circles of resonance
Γk = {p ∈ R

3 : h(p) = E, 〈k, ∂h(p)〉 = 0}, Γk′ = {p ∈ R
3 : h(p) = E, 〈k′, ∂h(p)〉 = 0}

passes through a δ-neighborhood of p and p′ respectively. These two circles are ei-
ther coincide or intersect at two points. In both cases, one obtains a resonant path

Fig. 3. The resonant path in the surface of h−1(E), ω = ∂h(p).

connecting the δ-neighborhood of p and p′. This path is covered by finitely many
disks {‖p − p′′i ‖ < K−1

i εκ
′} where each p′′i is a double resonant point on the path.

A double resonance is called strong if there does not exist NHIC around the double
resonant point. Although the number of the points {p′′i } depends on ε, the number
of strong double resonant points is finite, independent of ε for Cr-generic P . Indeed,
if we expand P into Fourier series, then

Z(p, q) = Zk(p, 〈k, q〉) + Zk,ki(p, 〈k, q〉, 〈ki, q〉)
where

Zk =
∑

j∈Z\{0}
Pjk(p)e

j〈k,q〉i,

Zk,ki =
∑

(j,l)∈Z2,l 	=0

Pjk+lki(p)e
(j〈k,q〉+l〈ki,q〉)i.

As |Pk| decrease fast as |k| increases |Pk| ≤ O(|k|−r), the term Zk,ki is treated as a
small perturbation to Zk for big |ki|. Indeed, notice 〈k, q〉 = x1, the system

1

2
〈By, y〉+ Zk(p

′′
i , x1)
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is integrable, there exists a cylinder foliated into periodic orbits {y = const., x1 = x∗
1}

where x∗
1 is a maximal point of Zk. For Cr-generic Zk, the second derivative of Zk

in x1 at x∗
1 is negative. It implies the cylinder is normally hyperbolic, which survives

small perturbation. The term Zk,ki will be small enough provided |ki| is large enough.
Therefore, the number of strong double resonances is independent of ε. However, it
is unavoidable to encounter strong double resonance, the number depends on generic
P .

5. NHICs of classical systems. Unlike a priori unstable case, the main part
of the normal form (4.5) is a classical system of mechanics, far from integrable

G(x, y) =
1

2
〈By, y〉 − V (x), x ∈ T

2, y ∈ R
2.

To construct normally hyperbolic invariant cylinders we apply the variational method.
The details can be found in [CZ16]. Let A = B−1, the Hamiltonian G determines a
Lagrangian via the Legendre transformation

L(ẋ, x) =
1

2
〈Aẋ, ẋ〉+ V (x).

Notice each closed curve γ: [0, T ] → T
2 is associated with a class [γ] ∈ H1(T

2,Z).
Given a class g ∈ H1(T

2,Z), we wish to find minimal periodic orbits with rotation
vector λg where λ ∈ [λ0, λ1] (0 < λ0 < λ1 <∞). An orbit (γ, γ̇) is called λg periodic
if [γ] = g, γ(t) = γ(t+ λ−1) and γ(t) �= γ(t+ ν−1) for any ν > λ.

We look for periodic orbits by considering the minimal curves

F (x, λ) = min
γ(0)=γ(λ−1)=x

[γ]=g

∫ λ−1

0

L(γ(t), γ̇(t))dt. (5.1)

If the action along the closed curve γλ minimizes the function, A[γλ] = minx F (x, λ),
(γλ(t), γ̇λ(t)) is a periodic orbit of the Lagrange flow φt

L, namely, γλ solves the Euler-
Lagrange equation

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0.

To see why, we notice that each minimal curve with fixed boundary solves the Euler-
Lagrange equation. we only need to prove γ̇(0) = γ̇(λ−1). If it was not true, for
small δ > 0 we join two points γλ(δ) and γλ(λ

−1 − δ) by a minimal curve γ′. The
action along γ′ is obviously smaller than action along γλ|[0,δ]∪[λ−1−δ,λ−1]. It follows
that F (γ′(0), λ) < F (x, λ), but it is absurd. The periodic orbit obtained in this way
is called λg-minimal.

As F (·, λ) keeps constant along the minimal curve, it is sufficient to restrict F (x, λ)
on ζ × [λ0, λ1] where ζ is a smooth circle on T

2 such that [ζ] is independent of g.
Restrict suitably smaller sub-interval of [λ0, λ1], we can also choose a smooth circle
ζ such that each λg-minimal curve intersects ζ only once when the parameter λ is
restrict on the subinterval.

To answer the question whether the orbit is hyperbolic, one needs to examine the
smoothness of the function F . In general, F (·, λ) is not differentiable on the whole
circle. In particular, if x lies in the “cut locus” of itself, namely, there are two or more
minimal curve of F (x, λ). Fortunately, F is differentiable in x when it is restricted a
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neighborhood of its minimal point, see Lemma 2.1 in [CZ16]. This property allows us
to examine the hyperbolicity of the λg-minimal circle by studying the non-degeneracy
of F its minimal point, see Theorem 4.1 in [CZ16]. A minimal point of F is said to
be non-degenerate if its second derivative is positive.

Since F is obviously Lipschitz in λ, we have the following result. For the details
of the proof, one refers to the proof for Theorem 2.1 of [CZ16].

Theorem 5.1. There is an open-sense set O ⊂ Cr(T2,R) with r ≥ 5, for each
V ∈ O it holds simultaneously for all λ ∈ [λ0, λ1] that all minimal points of F (·, λ)
are non-degenerate. Indeed, there are finitely many parameters λi ∈ [λ0, λ1] such that
F (·, λ) has only one minimal point if λ �= λi and F (·, λi) has exactly two minimal
points.

Generically, a C2-function is Morse-function. However, it is no longer the case
for a family of functions. Here is an example. Let F (x, λ) = x3 − λx when it is
restricted on (x, λ) ∈ [−d, d] × [−δ, δ]. This function can be smoothly extended to
T
2× [−1, 1]. The point x = 0 is a degenerate critical point of F (·, 0). Under any small

C2-perturbation F (x, λ) → F ′(x, λ) = F (x, λ) + f(x), F ′(·, λ) still has a degenerate
point for some λ close to 0. We mention the smoothness condition. A Cr-perturbation
on the potential induces Cr−1-perturbation on F (·, λ). The theorem for a family of
functions F (·, λi) is under C

4-smooth condition.
Each minimal point corresponds to a λg-minimal orbit, since all minimal points

are non-degenerate, these minimal periodic orbits make up finitely many pieces of
NHICs. Although the number is finite, but it may approach infinite as λ1 →∞. Since
we are considering the NHICs in the region where |y| ≤ O(ε−κ), it seems possible the
number of cylinders depends on ε. It would make trouble for the construction of the
transition chain. Fortunately, it is not the case as one has the following result.

Theorem 5.2. There exists an open-dense set V∞ ⊂ Cr(T2,R) with r ≥ 2, for
each V ∈ V∞ and each g ∈ H1(T

2,Z) certain E0 > 0 exists such that there exists
exactly one λg-minimal periodic orbit lying in the energy level set G−1(E) provided
E ≥ E0. The hyperbolicity is lower bounded uniformly above zero.

To illustrate the proof, we recall that the classical system G is obtained around
the double resonant point p′′. On the resonant path Γ′ ∩ {|p − p′′| ≤ εκ} we chose
points {p′i} so that ∂1h(p

′
i) = Ki

√
ε, where K ∈ Z. The number of these points is

bounded by a quantity of O([K−1εκ−
1
2 ]). We consider the disks {|p − p′i| ≤ K

√
ε}

which are “quite away from” the double resonant point in the sense that Ki� 1. Let
Ki = Ωi, we obtain a normal form

Gi(x, y) = Ωiy1 +
1

2
〈By, y〉 − V (x), (5.2)

where Gi(x, y) = G(x, y) + 1
2ε 〈B(p′i − p′′), (p′i − p′′)〉. We claim that the cylinders in

these disks look like the cylinders in the case of single resonance when Ωi →∞, and
for typical potential V , the normal hyperbolicity of the cylinders are uniformly lower
bounded away from zero, independent of ε.

A set V∞ ⊂ Cr(T2,R) is defined such that ∀ V ∈ V∞, the function [V ]

[V ](x2) =
1

2π

∫ 2π

0

V (x1, x2)dx1.

has a unique minimal point which is non-degenerate, i.e. d2

dx2
2
[V ](x2) > 0 holds at the

minimal point. Clearly, the set V∞ is open-dense in Cr(T2,R) with r ≥ 2. For each
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V ∈ V∞, the normal hyperbolicity of the cylinders are lower bounded by the quantity

approximately equal to d2

dx2
2
[V ](x2).

To show it, we introduce a coordinate transformation

(x1, x2, y1, y2)→
(x1

Ωi
, x2,Ωiy1, y2

)
,

which reduces the Hamiltonian Gi turns out to be

G′
i = y1 +

1

2Ω2
i

B11y
2
1 +

B12

Ωi
y1y2 +

1

2
B22y

2
2 − V

(
Ωix1, x2

)
,

where Bij is the ij-th entry of B. The equation G′
i(x1, x2, y1(x1, x2, y2), y2) = EΩi is

solved by the function

y1 = EΩi − 1

2
B11E − 1

2
B22y

2
2 −B12Ey2 + V (Ωix1, x2) + Ω−1

i RH ,

where E ∈ [0, K̄] with K̄ independent of Ωi, the remainder Ω−1
i RH is of order O(Ω−1

i )
in Cr-topology. Let τ = x1 be the new “time”, the Hamiltonian −y1 induces a
Lagrangian up to an additive constant

L1 =
1

2B22

(dx2

dτ

)2

− B12E

B22

dx2

dτ
+ V +

1

Ω i
RL,

where RL is Cr-bounded for any large Ωi. The periodic orbit with rotation vector
(ν, 0) for Φt

Gi
is converted to be periodic orbit of φτ

L1
. Since Ωi ∈ N, the hyperbolicity

of such minimal periodic orbit is uniquely determined by the nondegeneracy of the
minimal point of the following function (see [C17a])

F (x2,Ωi, E) = inf
γ(0)=γ(2π)=x2

∫ 2π

0

L1

(
γ̇(τ), γ(τ),Ωiτ, E

)
dτ.

Due to the condition γ(0) = γ(2π) = x2, the term B12E
B22

ẋ2 does not contribute to F
(an exact form), so it can be dropped.

The Lagrangian L1 depend on Ωi in a singular way as Ωi → ∞, the function F
appears regular in Ω−1

i as Ωi →∞. Indeed, F admits a decomposition

F (x2,Ωi, E) = F0(x2,Ωi, E) +
1

Ωi
FR(x2,Ωi, E)

where

F0 =

∫ 2π

0

( 1

2B22
(γ̇Ωi,E(τ, x2))

2 + [V ](γΩi,E(τ, x2))
)
dτ,

FR =

∫ 2π

0

Ωi(V − [V ])(−Ωiτ, γΩi,E(τ, x2))dτ

+

∫ 2π

0

RL(γΩi,E(τ, x2), γ̇Ωi,E(τ, x2),Ωiτ)dτ.

Because V−[V ] is 1
Ωi

-periodically depends on τ with zero average, by using the method
to prove Riemann-Lebesgue’s Theorem, one can show that FR is uniformly bounded
in C2-topology as Ωi → ∞. Let γΩi,E(τ, x2) be the minimal curve of F (x2,Ωi, E).
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As F0 dominates the action and the minimal curve of F0 is obviously a straight line
γ̇ = 0, one can see that |γ̇∗

Ωi,E
(τ)| → 0 as Ωi → ∞. The non-degeneracy of the

minimal circle is obviously lower bounded by d2

dx2
2
[V ](x2), refer to Section 3 of [C17a]

for details.
Let us return to the coordinates before the transformation. That the new coordi-

nate x1 goes around the circle T once amounts to that the old coordinate x1 sweeps
out an angle of Ωi. In the original coordinate system, we have dx1

dt = Ωi + O(1).
Therefore, the normal hyperbolicity we obtain for τ = 2π-map is almost the same
as the time t = 2π-map determined by the Hamiltonian flow Φt

Gi
. Because there is

only one λg-minimal periodic orbit in each energy level set which is hyperbolic, these
circles make up one piece of NHIC.

In [B10, BKZ] a piece of NHIC was shown exist along single resonance. But it
keeps O(ε1/4)-away from double resonance. Transformed to classical system, the cylin-
der is O(ε−1/4) far away from the double resonant point, due to the transformation
(4.3).

6. The topological transitivity around double resonance. The way we
construct to cross double resonance is based on the understanding of the dynamics
around the double resonant point. Avoid being involved in too much details about
the variational method based on the Mather theory, we try to explain here what are
the geometrical counterparts behind.

Generically, there is only one fixed point {(x, y) = 0} ∈ G−1(0), which is hyper-
bolic. Its stable and unstable manifold W s(0), Wu(0) intersect “transversally” in the
sense that, at each intersection point z, one has

span{TzW
s(0), TzW

u(0)} = TzG
−1(0).

The intersection induces a Smale horseshoe, a uniformly hyperbolic invariant set where
the system is conjugate to a Bernoulli shift. Each horseshoe is strongly mixing,
contains infinitely many different periodic orbits which are approached by infinitely
many dense orbits. It hints that the Hamilton-Jacobi equation G(x, ∂xu) = E does
not have smooth solution for E = 0. It follows from the upper semi-continuity that
some small E0 > 0 exists such that, ∀ E ∈ (0, E0), the Hamilton-Jacobi equation
does not have classical solution either. One can refer to Section 3.3 of [C17b] for the
details of the proof which was finished in a completely different way.

The dynamics on the energy level set G−1(E) with E > 0 appears similar to twist
map. For each irreducible class g ∈ H1(T

2,Z), certain λ > 0 exists such that G−1(E)
contains a λg-minimal periodic orbit. Let λigi be such a sequence of rotation vectors
such that λigi converges to an irrational one if we treat each class ρ ∈ H1(T

2,R) as
a vector in R

2. These λigi-minimal periodic orbits approaches either to an invariant
torus or to a Cantor set. The latter one is the suspension of Aubry-Mather set
for twist map. To understand what is Aubry-Mather set of area-preserving twist
diffeomorphism, let us recall Denjoy’s theorem. For each homeomorphism f on circle
is associated with its rotation number ρ(f). If it is irrational and variation of the
differential of the map is unbounded, then there is a Cantor set in the circle, restricted
on which, the map is semi-conjugate to a rigid rotation x → x + ρ(f). This set is
called Denjoy set. One can refer to Section I of Chapter 3 in [A78] for details. The
Aubry-Mather set for the rotation number ρ is exactly the Denjoy set for the same
rotation number, embedded in a circle of degree one.

Therefore, for each E ∈ (0, E0), there does not exist invariant torus, because such
torus is the graph of the differential of the smooth solution of the Hamilton-Jacobi
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equation. Consequently, the whole energy level set G−1(E) with E ∈ (0, E0) appears
similar to a Birkhoff instability region of area-preserving twist map. Any two minimal
periodic orbits (Aubry-Mather sets) are connected by minimal orbits [M91]. Indeed,
the set of all minimal periodic orbits and Aubry-Mather set is topolically transitive,
as proved in Section 6 of [C17b].

The topological transitivity was studied by Birkhoff for the geodesic flow of a
closed surface with genus 2 [Bir]. The curvature is endowed negative everywhere, the
system is then uniformly hyperbolic. The curvature on torus can not be negative
everywhere, restricted by Gauss-Bonnet formula. However, the idea of Birkhoff still
can be applied if each minimal closed geodesic is disconnected others. We shall explain
later the idea of the variational construction.

7. A way to “cross” double resonance. Given a class g ∈ H1(T
2,Z) and any

small number E′ > 0, by the result obtained in [CZ16, C17a], there are finitely many
pieces of NHIC only, made up by λg-minimal periodic orbits of Φt

G, which extend
from the level set with very high energy E = ε−κ to the level set with very lower
energy E = E′. Therefore, these cylinders penetrate deeply into a layer of energy
level sets, each of which is topological transitive. Namely, we have the following

(1) some E0 > 0 exists such that ∀ E ∈ (0, E0] the set of minimal periodic orbits
and Aubry-Mather sets on G−1(E) is topologically transitive;

(2) given E′ ∈ (0, E0) and for any two classes g, g′ ∈ H1(T
2,Z), all λg, λg′

periodic orbits are hyperbolic provided they are located in the energy level
set G−1(E) with E ≥ E′. These periodic orbits make up finitely many pieces
of NHICs.

To consider the time-periodic perturbation G → Gε, we work in the extended
phase space T

2 ×R
2 × T. Because Gε is reduced from the Hamiltonian H with three

degrees of freedom, the extra-dimension corresponds to the coordinate x3. As the
Hamiltonian Gε is no longer autonomous, there does not exist a foliation of invariant
energy level sets in general. Nevertheless, it is also uncertain that the whole layer is
topologically transitive either. Fortunately, it is proved in [C17b] that the topological
transitivity exists among those Aubry sets if they share the same average action. In
autonomous case, the average action is nothing else but the energy. We shall explain
later what is Aubry set.

On the other hand, because of the normally hyperbolicity, the NHICs survive the
small perturbation and still extend into the layer admitting a “foliation” of Aubry
sets with the same average action. In the extended phase space, the NHIC is 3-
dimensional.

The phenomena allow us to construct diffusion orbits to cross double resonance
in a way as follows. Given any Aubry set Ãi on the cylinder Πi for i = 1, 2. Each
Aubry set Ãi is dynamically connected to an Aubry set Ã′

i ⊂ Πi with average action
less than E0. We choose Ã′

1 and Ã′
2 such that they share the same average action,

which implies that they are dynamically connected. Therefore, one obtains diffusion
orbits from Ã1 to Ã2, or vice versa.

The way we constructed to cross double resonance is essentially different from
what Mather suggested. The following figures show the paths in the first cohomology
class space. We shall explain a bit more after we introduce some concepts of Mather
theory.

Since the single resonant path is covered by finitely many disks {‖p − p′′i ‖ <

K−1
i εκ

′}, we find that a transition chain is constructed connecting small neighborhood
of two action variables p′, p′′ ∈ h−1(e) with e > minh. It moves along single resonance
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Fig. 4. The left figure: our way to skirt around double resonance; the right one, Mather’s way
to pass through double resonance.

path and turns around when it encounters strong double resonant points. Along the
chain, the diffusion orbits are constructed by the variational method, they shadow a
sequence of local minimal orbits, successively connected.

Therefore, the conjecture of Arnold diffusion for positive definite Hamiltonian
with three degrees of freedom is proved in the Ck-smooth category in the sense of
cusp-residual genericity with k ≥ 6.

8. Brief introduction to the variational proof. A function L : TTn×T→ T

is called Tonelli Lagrangian if it is convex in ẋ with superlinear growth on each tangent
fiber: L/‖ẋ‖ → ∞ as ‖ẋ‖ → ∞, and any solution of the Euler-Lagrange equation is
defined for t ∈ R. Notice that H1(Tn,Z) = R

n, each c ∈ R
n is thought as a first

cohomology class. Let Lc = L − 〈c, ẋ〉, we see that the Euler-Lagrange equation for
Lc is the same as it for L:

d

dt

(∂Lc

∂ẋ

)
− ∂Lc

∂x
=

d

dt

(∂L
∂ẋ

)
− ∂L

∂x
.

A curve γ(t) (an orbit (γ(t), γ̇(t)) is called c-minimal if for any t < t1, t2 one has

∫ t1

t

Lc(γ(s), γ̇(s), s)ds = min
t1=t2 modT
ζ(t)=γ(t)

ζ(t2)=γ(t1)

∫ t2

t

Lc(ζ(s), ζ̇(s), s)ds+ (t2 − t1)α(c),

where T is the period of L in t, α(c) is the average action, to be defined below. An
orbit (x(t), y(t)) of a Hamiltonian flow is called c-minimal if x(t) is c-minimal. To see
why a class c is related to minimal orbit let us consider an example L = 1

2 〈Aẋ, ẋ〉. In
this case, Lc = 1

2 〈A(ẋ − A−1c), (ẋ − A−1c)〉 − 1
2 〈c, A−1c〉, every quasi-periodic orbit

ẋ = A−1c is c-minimal.
In general, not every orbit is minimal for certain first cohomology class. However,

the set of minimal orbits for each class c is non-empty, invariant for the Lagrange flow.
Such set usually supports a probability invariant measure, called c-minimal measure.
The average action of the Lagrangian on minimal measure μ for class c is defined as

α(c) = −
∫

Lcdμ = lim inf
T→∞

− 1

2T

∫ T

−T

Lc(x(t), ẋ(t), t)dt

where the limit holds for almost every (x(0), ẋ(0), 0) ∈ suppμ, guaranteed by Birkhoff
ergodic theorem. For autonomous system, the average action is nothing else but the
energy. It is proved by Mather that α-function is convex in c, finite everywhere with
super-linear growth.

The set of all c-minimal orbits is denoted by Ñ (c) = ∪(x(t), ẋ(t), t), its projection
along tangent fiber is denoted by N (c) ⊂ T

n × T. We call it Mañé set.
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Aubry set Ã(c) is defined to be a set of so-called regular c-minimal orbits. Denoted
by A(c) = πÃ(c) its projection down to T

n+1, the inverse of π is of Lipschitz when it is
restricted on A(c). Roughly speaking, a point (x, t) ∈ A(c) if there exists a sequence of
closed curves γi starting from (x, t) such that the c-action along the curves approaches
zero as i→∞ see [M93].

Two ways have been found to connect Ñ (c) to Ñ (c′) if |c−c′| � 1. One is Arnold’s
mechanism applied in [A64], the variational version appears more applicable, another
one is based on cohomology equivalence. In both cases, one has H1(T

n+1,N (c),Z) �=
0.

The Arnold’s mechanism has been explained already. To establish the cohomology
equivalence, we need to choose a non-degenerately embedded section Σc of Tn+1, i.e.
∃ a smooth injection ϕ: Tn → T

n+1 such that Σc is the image of ϕ, and the induced
map ϕ∗: H1(T

n,Z)→ H1(T
n+1,Z) is an injection. A class c̃ ∈ H1(Tn+1,Z) is defined

to be c̃ = (c,−α(c)).
Given a class c̃, we assume that ∃ a non-degenerate embedded n-dimensional torus

Σc ⊂ T
n+1 such that each c-minimal curve transversally intersects Σc. Let

Vc =
⋂
U

{iU∗H1(U,R) : U is a neighborhood ofN (c) ∩ Σc},

here iU : U → T
n+1 denotes inclusion map. V⊥

c is defined to be the annihilator of Vc,
i.e. c̃′ ∈ V

⊥
c if and only if 〈c̃′, h〉 = 0 for all h ∈ Vc. There exists a neighborhood U of

N (c) ∩ Σc such that Vc = iU∗H1(U,R), V
⊥
c = keri∗U .

A class c′ with |c′− c| � 1 is said to be cohomologically equivalent to c if c̃′− c̃ ∈
V

⊥
c . In this case, some function u: T

n+1 → R exists such that du = 〈c̃′ − c̃, (dx, dt)〉
when it is restricted on a neighborhood U of N (c) ∩Σc. With this property, one can
show that Ã(c) is dynamically connected to the Aubry set Ã(c′).

To illustrate how they are connected by local minimal orbits, we obtain from the
cohomlogy equivalence that the Lagrange multiplier η = 〈c̃′−c̃, (ẋ, 1)〉−∑n

i=1 ∂xiuẋi−
∂tu = 0 when it is restricted in the neighborhood U of N (c) ∩ Σc and

d

dt

∂η

∂ẋ
− ∂η

∂x
≡ 0.

To introduce a modified Lagrangian, we consider a covering space M̄ of Tn+1 home-
omorphic to R × T

n such that the lift of Σc to M̄ consists of infinitely many com-
pact components Σ̄c = ∪Σc,i. For instance, Σ̄c = ∪i{x1 = i} if Σc = {x1 = 0},
M̄ = R× T

n.
We choose one section Σc,0 which separates M̄ into two parts M̄ = M̄− ∪ M̄+,

the lift of each c-minimal curve extends to infinity through M̄± as t → ±∞. Let ρ:
M̄ → R be a C2-function so that ρ = 0 as (x, t) ∈ M̄−\V0 and ρ = 1 as (x, t) ∈
M̄+\V0, where V0 is a neighborhood of Σc,0. With the preparation work we are able
to introduce a modified Lagrangian

Lc,c′ = L− 〈c̃, (ẋ, 1)〉 − ρη,

choose (x±, t±) ∈ M̄± and consider the minimal curve of

Ac,c′((x
−, t−), (x+, t+)) = min

ζ(t−)=x−
ζ(t+)=x+

∫ t+

t−
Lc,c′(ζ(t), ζ̇(t), t)dt.



220 C.-Q. CHENG AND M. ZHOU

Let dist((x±
i , t

±
i )),Σc,0)→∞ with t±i → ±∞, we consider the sequence of the minimal

curves γi along which the action approaches the limit infimum

lim inf
i→∞

Ac,c′((x
−
i , t

−
i ), (x

+
i , t

+
i )).

If c′ = c, the curves approach the set of c-minimal curves. It follows that they do not
touch the support of the 1-form η = 〈c̃′ − c̃, (dx, dt)〉 −∑n

i=1 ∂xiudxi − ∂tudt when
they pass through the neighborhood V0. Recall the upper-semi continuity of the set of
minimal curves with respect to Lagrangian. For c′ sufficiently close to c, each minimal
curve of Lc,c′ also does not touch the support of the 1-form η when it passes through
V0. Since ρ = 0 for (x, t) ∈ M̄−\V0 and ρ = 1 for (x, t) ∈ M̄+\V0 while η is closed,

d

dt

∂ρη

∂ẋ
− ∂ρη

∂x
= 0

holds along each minimal curve of Lc,c′ . It implies that every minimal curve of Lc,c′

solves the Euler-Lagrange equation of L. Clearly, the α-limit set of the minimal orbit
lies in Ñ (c) and the ω-limit set lies in Ñ (c′). Indeed, Lc.c′ = Lc when it is restricted
on TM̄−\V0 and Lc,c′ = Lc′−du when it is restricted on TM̄+\V0. The term du does
not contribute to the average action, its action along any closed curve equals zero.

Two classes c, c′ are said to be equivalent if there is sequence of classes {ci}0≤i≤K

such that c0 = c, cK = c′, |ci − ci+1| � 1 and ci is equivalent to ci+1 for 0 ≤ i < K.
In [M93], Σc is chosen as the time-section T

n×{t = 0}. It is very restrictive, e.g.
it does not apply in autonomous system to obtain interesting result. In fact, for the
problem to cross double resonance, the time-section does not work either.

Let us consider the classical system G first. In the energy level set G−1(E) with
E ∈ (0, E0), each curve in the suspension of Aubry-Mather set or minimal periodic
points is minimal for certain c with α(c) ≡ E. Given c ∈ α−1(E), all c-minimal curves
have the same rotation vector (ωc,1, ωc,2).

If ωc,1 �= 0, there exists a section Sc of T2 homotopic to {(x1, x2) : x1 = 0} such
that Sc ∩ N (c) ⊂ int ∪ Ic,i where {Ic,i} denote disjoint closed intervals, see the left
figure shown below. In the extended configuration space T

3 we choose Σc = Sc × T,
where T is for the time variable. Recall c̃ = (c,−α(c)), one has Vc = span{(0, 0, 1)},
from which one obtains

(c′,−α(c′))− (c,−α(c)) ∈ V ⊥
c , if α(c′) = α(c),

namely, c′ is equivalent to c provided α(c) = α(c′), see the figure in the middle.

Next, let us consider the time-periodic perturbation Gε of G. Because of the
upper semi-continuity of the Mañé set in the Lagrangian, there exist ε0 > 0 such that
for each ε ∈ [0, ε0] the following holds

N (c) ∩ Σc ⊂ (∪Ic,i)× T,
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i.e. c is equivalent to c′ if α(c) = α(c′) ∈ (0, E0), see the figure on the right. Therefore,
the set of c-minimal orbits is dynamically connected to the set of c′-minimal orbits.

Let us return back to Figure 4 to describe more precisely the way to cross double
resonance. Because the fixed point {z = 0} is hyperbolic, there exists a flat such that
α(c) = minα holds for any c lying in the flat. The flat is surrounded by an annulus
{c : 0 < α(c) ≤ E0} which admits a foliation of circles {c : α(c) = constant ≤ E0}.
Each circle establishes cohomology equivalence. The NHICs for a class g ∈ H1(T

2,Z)
corresponds a channel which extends into the annulus. For each c in the channel, the
Aubry set lies on NHIC. Therefore, we get a path in the first cohomology class space,
emanating from a point in one channel, it moves in the channel until it reaches one
of the circles of cohomology equivalence, then it skirts along the circle until it reaches
another channel, then it moves up. The Mather’s path in the first cohomology class
space passes through the flat, instead of skirting around the flat.

9. Discussions on another way to cross double resonance. Our way to
pass through double resonance illustrated in Section 7 is different from what was
suggested by Mather. The former does not touch the zero energy level of G, it turns
out to be applicable even for the systems with arbitrary degrees of freedom [CX].
Along Mather’s way one needs to understand the dynamics on the zero energy level
set where some singularity emerges.

In recent years, there are other works for the problem of double resonance such as
[KZ, Mar]. They suggest that the classical system (4.5) exhibits an invariant cylinder
with hole Π = Π+∪Γ+∪Γ−∪Π− where Π+ is made up by periodic orbits with energy
ranging over the interval (0, E], Π− is made up by periodic orbits with negative energy
ranging over [−E, 0) with small E > 0. Π+ and Π− are glued together along the figure
eight curve Γ+∪Γ−. The following picture was shown in [KZ, Mar] for classical system
with two degrees of freedom.

If the cylinder is smooth and normally hyperbolic, it survives small perturbation
(4.4). In this case, one is able to apply the method for a priori unstable system such
as [CY04, CY09] to construct diffusion orbits crossing the original system. From the
view point of cohomological class, the diffusion path is the same as Mather suggested,
see the right picture in Figure 4.

To reach the goal, we feel that the following issues need to be clarified.
First, one needs to consider all λg-minimal orbits which approach the homoclinic

orbit with the same class g as λ ↓ 0. Each λg-minimal curve corresponds to a minimal
point of the action (5.1). Although only finitely many bifurcation points exist for each
closed interval [λ0, λ1] with 0 < λ0 < λ1 <∞, it is necessary to exclude the possibility
that they may accumulate at λ = 0. The same problem needs to be considered for
negative energy.

Second, if there do not exist infinitely many bifurcations, a cylinder with a hole
will exist, passing through the double resonance, invariant for the Hamiltonian flow.
In this case, we need to check the smoothness of the cylinder along the homoclinic
orbits Γ+ ∪ Γ−.
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