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SURVEY ON DERIVATION LIE ALGEBRAS OF ISOLATED
SINGULARITIES∗
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Dedicated to the memory of Professor John Mather

Abstract. Let V be a hypersurface with an isolated singularity at the origin defined by the
holomorphic function f : (Cn, 0) → (C, 0). Let L(V ) be the Lie algebra of derivations of the moduli
algebra A(V ) := On/(f, ∂f/∂x1, · · · , ∂f/∂xn), i.e., L(V ) = Der(A(V ), A(V )). The Lie algebra L(V )
is finite dimensional solvable algebra and plays an important role in singularity theory. According
to Elashvili and Khimshiashvili ([15], [23]) L(V ) is called Yau algebra and the dimension of L(V ) is
called Yau number. The studies of finite dimensional Lie algebras L(V ) that arising from isolated
singularities was started by Yau [44] and has been systematically studied by Yau, Zuo and their
coauthors. Most studies of Lie algebras L(V ) were oriented to classify the isolated singularities.
This work surveys the researches on Yau algebras L(V ) of isolated singularities.
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1. Introduction. Let C[x1, · · · , xn] be the algebra of complex polynomials in n
indeterminates. The algebra of germs of holomorphic functions at the origin of Cn is
denote as On. Clearly, On can be naturally identified with the algebra of convergent
power series in n indeterminates with complex coefficients. For a polynomial f ∈
C[x1, · · · , xn], denoted by V = V (f) the germ at the origin of Cn of hypersurface
{f = 0} ⊂ Cn. In other words, if the origin is an isolated zero of the gradient of f
then V is a germ of isolated hypersurface singularity. The local (function) algebra of
V is defined as the (commutative associative) algebra F (V ) ∼= On/(f), where (f) is
the principal ideal generated by the germ of f at the origin. According to Hilbert’s
Nullstellensatz for an isolated singularity V = V (f) = {f = 0} the factor-algebra
A(V ) = On/(f, ∂f/∂x1, · · · , ∂f/∂xn) is finite dimensional. This factor-algebra is
called the moduli algebra of V and its dimension τ(V ) is called Tyurina number.

Recall that finite dimensional Lie algebras are semi-direct product of the semi-
simple Lie algebras and solvable Lie algebras. Brieskorn gave the connection between
simple Lie algebras and simple singularities. It is also important to establish connec-
tions between singularities and solvable (nilpotent) Lie algebras. Yau [47] provides a
general method of constructing a solvable Lie algebra L(V ) by taking a derivations of
A(V ), i.e., L(V ) := Der(A(V ), A(V )) and according to [44] this Lie algebra is finite
dimensional. The ideas are based on the well-known Mather-Yau Theorem [32]: Let
V1 and V2 be two isolated hypersurface singularities and, A(V1) and A(V2) be the
moduli algebra, then (V1, 0) ∼= (V2, 0) ⇐⇒ A(V1) ∼= A(V2). The Mather-Yau theorem
was raised two main questions. The first one is: which kind of commutative local
algebra is moduli algebra of an isolated singularity. The second one is: what kind
of information do we need from moduli algebra to determine the topological type of
singularity. On the one hand, it is well-known that moduli algebras are Artinian alge-
bras and their associated derivation Lie algebras are finite dimensional. According to
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Yau conjecture that proposed in 1983, these derivation Lie algebras are solvable. This
gives a necessary conditions for first problem. On the other hand, the Lie algebras
L(V ) in some sense only a generic topological invariant but it is not a topological
invariant. Seeley and Yau [37] shown that Lie algebra L(V ) is a useful invariant that
can be used to solve the moduli problems of singularities. They also distinguished
the complex analytic structure of simple-elliptic singularities Ẽ7 and Ẽ8 by using Lie
algebras L(V ). According to Yau ([47], [48]), the Lie algebra L(V ) is solvable for
lower dimensions. Few years later in 1991, Yau proved that the n dimensional Lie
algebras L(V ) is solvable [49]. The problem of solvability of n dimensional Lie alge-
bras L(V ) is divided in two parts: the first part consists of classification of sl(2,C)
actions on On via derivations preserving the m-adic filtration and second part is the
classification of gradient spaces invariants by sl(2,C) action. In [47] Kac-moody Lie
algebra was attached to an isolated hypersurface singularity and the generalized Car-
tan matrix was computed for simple hypersurface singularities. Yau and Benson [7]
made a computer program by using C programming language that computes the Lie
algebras of derivations and Lie algebra cohomology. Seeley [38] proved that the gen-

eralized Cartan matrix of simple-elliptic singularities Ẽ7 and Ẽ8 is not a topological
invariant. The order of the lowest nonvanishing term in the power series expansion of
f at 0 is called the multiplicity (denoted by mult(f)) of the singularity (V, 0). It is
well-known that a polynomial f ∈ C[x1, · · · , xn] is said to be weighted homogeneous
if there exist positive rational numbers w1, · · · , wn (weights of x1, · · · , xn) and d such
that,

∑
aiwi = d for each monomial

∏
xai
i appearing in f with nonzero coefficient.

The number d is called weighted homogeneous degree (w -degree) of f with respect
to weights wj . The weight type of f is denoted as (w1, · · · , wn; d). Without loss of
generality, we can assume that w -degf = 1. The Milnor number of the isolated hyper-
surface singularity is defined by μ = dimC[x1, · · · , xn]

/
(∂f/∂x1, · · · , ∂f/∂xn). The

Milnor number in case of weighted homogeneous hypersurface singularity is calculated
by: μ = ( 1

w1
−1)( 1

w2
−1) · · · ( 1

wn
−1). In 1971, Saito was the first person who computed

the necessary and sufficient condition for V to be defined by a weighted homogeneous
polynomial. It is well-known that f is a weighted homogeneous polynomial after a
biholomorphic change of coordinates ⇐⇒ μ = τ [36].

In [43] Xu and Yau showed that if an isolated hypersurface singularity admits
a weighted homogeneous structure, then its moduli algebra is isomorphic to finite
dimensional non-negatively graded algebra.

Another important class of isolated hypersurface singularity is fewnomial singu-
larities which is defined by Elashvili and Khimshiashvili [15]. Fewnomial singularities
are those which can be defined by n-nomial in n indeterminates, i.e., a weighted homo-
geneous polynomial f(x1, · · · , xn) is called fewnomial if number of variables coincides
with number of monomials ([15], [58]). According to Ebeling and Takahashi [16], the
fewnomial singularities are also called invertible singularities.

The nonexistence of negative weight derivation in case of zero dimensional
weighted complete intersection was studied in [33, 34]. For positive-dimensional
weighted homogeneous singularities the nonexistence of negative weight derivation
has been studied in following references ([31], [40, 41, 42]). Kantor ([21, 22]) proved
the nonexistence of weight derivation for weighted homogeneous hypersurface singu-
larities and weighted homogeneous curve singularities. Let R = C[x1, · · · , xn]/(f)
and where f is a weighted homogeneous polynomial defining an isolated hypersuface
singularity. Then R and Der(R,R) are graded and there is no non-zero negative
weight derivation on Der(R,R). Wahl conjectured as this is still true if f replace
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with f1, f2, · · · , fm weighted homogeneous polynomials defining an isolated, normal
and complete intersection singularity with same weight type (w1, w2, · · · , wn). Wahl
Conjecture and its generalization (without the condition of complete intersection sin-
gularity) for R was solved in [9] under the condition that the degree of fi, 1 ≤ i ≤ m
are bounded below by a constant C depending only on the weights w1, w2, · · · , wn. In
case of zero-dimensional quasi-homogeneous singularities the problem of nonexistence
of negative weight derivation on moduli algebras was solved in [59]. In [14], in case of
weighted homogeneous fewnomial isolated singularity f ∈ C[x1, x2, · · · , xn] with posi-
tive weights w1, w2, · · · , wn, the milnor algebra A(f) = C[x1, · · · , xn]/(f1, f2, · · · , fm)
has no non-zero negative weight derivation on A(f) with the multiplicity at least 5.

Classification of isolated hypersurface singularity through derivation Lie algebra
is another interesting topic. According to Elashvili and Khimshiashvili [15] the Lie
algebra L(V ) is called Yau algebra and its dimension λ(V ) is called Yau number.
They also proved the following main results: Suppose X and Y belong to simple hy-
persurface singularities, except the pair A6 and D5, then L(X) ∼= L(Y ), if and only
if X and Y are analytically isomorphic. They also defined the natural grading on
Yau algebra in case of simple hypersurface singularities and proved that all roots of
Poincaré polynomials lie on unit circle. It is interesting to note that Yau algebra of
simple hypersurface singularities have a property of completeness and commutative
polarization. Khimshiashvili [23] investigated the Yau algebra of binomial singu-
larities and used this algebra to distinguish the analytic isomorphism type of these
singularities. Pursell and Shanks [35] defined diffeomorphism type of a manifold by
using Lie algebra of smooth vector fields on a smooth manifold. Khimshiashvili [23]
proved the analog of Pursell-Shanks’s theorem for Yau algebras of binomial singulari-
ties. It is follows from ([7], [37]), two non-isomorphic isolated singularities defined by
4-nomial in 3 variables have isomorphic Yau algebra. Therefore, it is not sure whether
Pursell-Shanks’s theorem holds outside the fewnomial singularities.

It is interesting to bound the Yau number with a number which depend on weight
type. In [58], Yau and Zuo proposed the sharp upper estimate conjecture that bound
the Yau number. They also proved that this conjecture holds in case of binomial
isolated hypersurface singularities. In [19], Yau, Zuo and present author verified this
conjecture in case of fewnomial surface singularities. In this article we shall give a
survey on derivation Lie algebra and divided this work in to five sections. We shell also
gives some open problems related to derivation Lie algebras. Yau and Zuo’s series
papers are good references for singularity theory and recent progress of the above
topics ([54]-[61], [25], [6], [13], [26], [27]-[29], [45], [46], [51], [52], [24], [39], [11], [53]).

2. construction of derivation Lie algebras. It is important to know the
connection between derivation Lie algebras and isolated hypersurface singularity. The
moduli algebra is defined as A(V ) := On/(f, ∂f/∂x1, · · · , ∂f/∂xn) and where V is an
isolated hypersurface singularity defined by the holomorphic function f : (Cn, 0) →
(C, 0). Derivation Lie algebras L(V ) is an algebra of derivations of moduli algebra. It
follows from famous Mather-Yau theorem that the natural mapping (V, 0) −→ A(V )
is one to one. Yau was the first person who systematically studied the algebra of
derivation of A(V ). The Lie algebra L(V ) is finite dimensional Lie algebra that
contained in the endomorphism of moduli algebra A(V ). On the other hand, we have
another natural mapping which is defined as:

(V, 0) −→ L(V ) = Derivation Lie algebra of A(V ).

Suppose that holomorphic function f : (Cn, 0) → (C, 0) defining a ring of germ
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ϕV,0 at origin, we set ϕV,0 = On/(f)On is the local ring of V at 0. It was proved in
[44], the Der(ϕV,0) induces a Der(A(V )). Hence, there exist a natural map from the
algebra of derivations of ϕV,0 to L(V ) and this natural map is not surjective. This
fact can be observed from example 1.

Let f be a weighted homogeneous function, i.e., there exists p1, p2, · · · , pn, d ∈ N
such that f(tp1x1, · · · , tpnxn) = tdf(x1, · · · , xn) for all (x1, · · · , xn) ∈ Cn and t ∈ C∗.
Then p1x1

∂
∂x1

+ · · ·+ pnxn
∂

∂xn
is contained in Der(ϕV,0) and called Euler derivation.

Lemma 2.1 ([44]). Let ϕV,0 = On/(f)On, where V is an isolated hypersurface
singularity defined by weighted homogeneous holomorphic function f . Then the al-
gebra of Der(ϕV,0) is induced as an ϕV,0 module by Euler derivation and following
derivations

∂f

∂xj

∂

∂xi
− ∂f

∂xi

∂

∂xj
.

Example 1. Let V = {(x1, x2, x3) ∈ C3 : x3
1 + x3

2 + x3
3 = 0}. Then the moduli

algebra

A(V ) =< 1, x1, x2, x3, x1x2, x2x3, x3x1, x1x2x3 > .

The derivation Lie algebras L(V ) is defined as

L(V ) = < x1∂1, x1x2∂1, x3x1∂1, x1x2x3∂1, x2∂2, x1x2∂2, x2x3∂2, x1x2x3∂2, x3∂3,

x2x3∂3, x1x3∂3, x1x2x3∂3 > .

It is observed that the natural mapping from the algebra of Der(ϕV,0) to Der(A(V ))
is highly nonsurjective in the context of above lemma.

It follows from following proposition that the derivation Lie algebra L(V ) is non-
trivial invariant.

Proposition 2.1 ([47]). Let V = {(x1, · · · , xn) ∈ Cn : f(x1, · · · , xn) = 0} be an
isolated singularity at origin defined by f(x1, · · · , xn) weighted homogeneous function.
Then derivation Lie algebras L(V ) is abelian if and only if (V, 0) is either A1 or A2.

2.1. Derivations. A linear endomorphism D of commutative associative alge-
bra A that satisfying the Leibniz rule: D(ab) = D(a)b + aD(b) is called deriva-
tion of A. The set Der(A,A) denoted the derivation on A (sometimes use as
DerA). The Der(A) has natural Lie algebras structure with Lie bracket de-
fined by the commutator of linear endo-morphisms. In case of moduli algebra
A(V ) = C[x1, · · · , xn]/(f, ∂f/∂x1, · · · , ∂f/∂xn), one can consider the Lie algebras
Der(A(V ), A(V )). The Lie algebras of other kinds are also studied in ([3], [5], [7]).
According to Yu [50] and Khimshiashvili [23] the Lie algebras L(V ) is called Yau
algebra of V and its dimension λ(V ) is called Yau number. The Yau number is an
analytic invariant. Yau algebras of many concrete singularities can be computed by
using the following basic concepts and results.

Let B1, B2 be a associative algebras over C and M(B1) is multiplication algebra
of B1. The algebra M(B1) is the subalgebra of endomorphisms of A generated by the
left and right multiplications by elements of B1 and identity element. The centroid
algebra C(B1) is defined as the set of endomorphisms of B1 which commute with all
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elements of M(B1). Therefore, the algebra C(B1) is a unital subalgebra of End(B1).
Follow the proposition 1.2 of [8], we have following statement.

Let W = B1 ⊗ B2 be a tensor product of finite dimensional associative algebras
with units. Then

DerW ∼= (DerB1)⊗ C(B2) + C(B1)⊗ (DerB2).

It is noted that this result is only used for commutative associative algebras with unit,
when the centroid coincides with the algebra itself. Thus for commutative associative
algebras B1, B2 we have following:

Theorem 2.1 ([8]). For commutative associative algebras B1, B2,

DerW ∼= (DerB1)⊗B2 +B1 ⊗ (DerB2).

Definition 2.1. Let J be an ideal in an analytic algebra W . Then DerJW ⊆
DerCW is Lie subalgebra of all σ ∈ DerCW for which σ(J) ⊂ J .

We use the following well-known result to compute the derivations.

Theorem 2.2 ([58]). Let J be an ideal in R = C{x1, · · · , xn}. Then there is a
natural isomorphism of Lie algebras

(DerJR)/(J ·DerCR) ∼= DerC(R/J).

3. Solvability of Derivation Lie algebras .

Definition 3.1. Let L be a Lie algebra and this Lie algebra is called nilpotent
if lower central series: L(∗) = {L(i)}, L(0) = L,L(1) = [L,L], · · · , L(i) = [L,L(i−1)] is

terminate for i = 2, 3, · · · , L. If upper central series: L(∗) = {L(i)}, L(0) = L,L(1) =
[L,L], · · · , L(i) = [L(i−1), L(i−1)] for i = 2, 3, · · · , L is vanished then L is called solv-
able.

It is natural question that under what conditions an Artinian algebra can be a
moduli algebra. The following main theorem gives the positive answer to this question.

Theorem 3.1 ([44]). Let (V, 0) be an isolated singularity. Then finite dimen-
sional Lie algebras L(V ) is solvable.

In following theorems solvability of L(V ) for n ≤ 3 and n ≤ 5 was proved by Yau.

Theorem 3.2 ([47]). Let V = {(x1, x2, x3) ∈ C3 : f(x1, x2, x3) = 0} has an
isolated singularity at (0, 0, 0). Then the Lie algebra L(V ) with finite dimension is
solvable.

In general, to prove the solvability of the Lie algebras L(V ), we need to assume
that the multiplicity of f > 2.

Theorem 3.3 ([48]). Let V = {(x1, x2, x3, x4, x5) ∈ C5 : f(x1, x2, x3, x4, x5) =
0} has an isolated singularity at (0, 0, 0, 0, 0). Then the finite dimensional Lie algebras
L(V ) associated to the singularity is solvable.
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It is natural question whether the finite dimensional Lie algebras L(V ) is solvable
for general n. The proof of this more general problem consist of two main parts. First
part consists of classification of sl(2,C) actions on power series ring On, which was
proved in [48] under the derivations preserving the m-adic filtration. The second one
is the characterization of gradient spaces invariants under sl(2,C) action and this part
was proved in [50] under the condition n ≤ 5.

Theorem 3.4 ([49]). Let V = {(x1, · · · , xn) ∈ Cn : f(x1, · · · , xn) = 0} be a
hypersurface with an isolated singularity at (0, · · · , 0). Then the finite dimensional
Lie algebras L(V ) associated to V is solvable.

4. characterization of isolated singularities. Characterization of isolated
singularities is an important problem in singularity theory. Since Lie algebra L(V ) is
a complete invariant and this invariant was studied to classify the isolated singularities.
By using this invariant we can also introduce some new invariants, which we discuss
later.

P. Griffiths studied the Torelli type problem by using given family of complex
projective hypersurface in CPn and his school asks an interesting question: when a
period map is injective on that family. In other words whether the family of com-
plex hypersurface can be distinguished by using their Hodge structure. It is well-know
that complex projective hypersurface in CPn can be viewed as a complex hypersurface
isolated singularity in CPn+1. Seeley and Yau [38] distinguished the complex ana-
lytic structures of isolated singularities and also constructed the continuous numerical
invariants by using the Yau algebra.

Recall that the class of simple (Kleinian, rational double point) singularities have
following series Al : {xl+1

1 = 0} ⊂ C, l ≥ 1, Dl : {x2
1x2 + xl−1

2 = 0} ⊂ C2, l ≥ 4, and
other three singularities E6 : {x3

1+x4
2 = 0}, E7 : {x3

1+x1x
3
2 = 0} and E8 : {x3

1+x5
2 =

0}. It is well-knows that simple elliptic singularities consist of three types Ẽ6, Ẽ7 and

Ẽ8. The first type defined as Ẽ6 : {(x1, x2, x3) ∈ C3 | x3
1 +x3

2 +x3
3 = 0} and it follows

from [44] that the (μ, τ)-constant family of Ẽ6 is defined as:

Vt = {(x1, x2, x3) ∈ C3 | ft(x1, x2, x3) = x3
1 + x3

2 + x3
2 + tx1x2x3 = 0}

with t3 + 27 �= 0. The second type of simple elliptic singularity defined as Ẽ7 :
{(x1, x2, x3) ∈ C3 | x4

1 + x4
2 + x3

2 = 0} and in [37], the authors showed that its (μ, τ)−
constant family is defined as:

Vt = {(x1, x2, x3) ∈ C3 | ft(x1, x2, x3) = x4
1 + x4

2 + tx2
1x

2
2 + x2

3 = 0}

with t2 �= 4. The simple elliptic singularity Ẽ8 is defined by {(x1, x2, x3) ∈ C3 |
x6
1 + x3

2 + x2
3 = 0} and in [37], the authors had studied the (μ, τ)− constant family of

Ẽ8, which is defined as:

Vt = {(x1, x2, x3) ∈ C3 | ft = x6
1 + x3

2 + x2
3 + tx4

1x2 = 0}
with 4t3+27 �= 0. It is natural to present the following question. Find out what type
of singularities such that L(V ) is a complete invariants, i.e., if V1, V2 are two such
type of singularities, then L(V1) ∼= L(V2) if and only if V1

∼= V2.

Theorem 4.1 ([37]). Simple elliptic singularities Ẽ7 satisfies the Torelli-type
theorem, i.e., L(Vt1)

∼= L(Vt2) as Lie algebras, for t1 �= t2 in C− {±2}, if and only if
Vt1 and Vt2 are analytically isomorphic.
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Theorem 4.2 ([37]). The Torelli-type theorem holds for simple elliptic singulari-
ties Ẽ8, i.e., L(Vt1)

∼= L(Vt2) as Lie algebras, for t1 �= t2 in C−{t ∈ C : 4t3+27 = 0},
if and only if Vt1 and Vt2 are analytically isomorphic (i.e., t31 = t32).

It is easy to see that for t �= 0 and 216 − t6

27 + 7t3 �= 0, the Lie algebra L(Ẽ6)

are isomorphic. Thus L(Ẽ6) is a trivial family. M. Benson and Yau construct the
one parameter family of all inequivalent representation of L(Ẽ6). This family of
representations can not be constructed through action of automorphism group of
L(Ẽ6) on a representation. It is interesting to study the following question which is
proposed by Yau, Zuo and present author.

Question 4.1. Does there exist another derivation Lie algebra that distinguish
the complex analytic structures of Ẽ6 singularity.

In [47] the isolated hypersurface singularities are attached with Kac-Moody Lie
algebra and compute the GCM(generalized Cartan matrix) for simple hypersurface
singularities. This new invariant was computed by using maximal ideal of Lie algebra
L(V ) which is consisting of nilpotent elements. GCM is another analytic invariant of
isolated singularities. Seeley and Yau [38] show that the GCM is not a topological
invariant of singularity. They also show that the Yau algebra of solvable Lie algebras
is not topological invariant.

An isolated hypersurface singularity (V, 0) = {(x1, · · · , xn) : f(x1, · · · , xn) =
0} ⊆ Cn is quasi-homogeneous if f belong to the jacobian ideal of f (i.e., f ∈
(∂f/∂x1, · · · , ∂f/∂xn)). According to beautiful result of Saito [36], after a biholo-
morphic change of coordinates the quasi-homogeneous polynomial f with an isolated
critical point at zero becomes a weighted homogeneous polynomial. It is natural
question what is necessary condition for a complex analytic isolated hypersurface sin-
gularity to be a quasi-homogeneous in terms of its moduli algebra. The following
theorem give the answer of this question.

Theorem 4.3 ([43]). Let (V, 0) = {(x1, · · · , xn) : f(x1, · · · , xn) = 0} ⊆ Cn

be an isolated hypersurface singularity. Then isolated hypersuface singularity has a
quasi-homogeneous structure ⇐⇒ A(V ) ∼= ⊕j≥0Aj, with A0 = C.

A derivationD of graded algebra⊕∞
j=0Aj have a weight k ifD sends Aj to Aj+k for

all j. Le Dung Trang asks a natural question whether it is possible to characterize the
quasi-homogeneous isolated hypersurface singularity in terms of its Lie algebra. The
following theorem have micro-local characterization of quasi-homogeneous isolated
hypersurface singularity.

Theorem 4.4 ([43]). Let (V, 0) = {(x1, · · · , xn) ∈ Cn : f(x1, · · · , xn) = 0} be an
isolated hypersurface singularity. Then isolated hypersurface singularity is a quasi-
homogeneous singularity, i.e., f ∈ (∂f/∂x1, · · · , ∂f/∂xn) if
(1) L(V ) ∼= ⊕k

j=0Lj without center.
(2) There exist H ∈ L0 such that [H,Dj ] = jDj for any Dj ∈ Lj.
(3) For any β ∈ u− u2 where u is maximal ideal of A(V ), then βH � L0.

It is noted that in above theorem the Lie algebra ⊕k
j=0Lj is non-negative graded

Lie algebra. It follows from above theorem the conditions (2) and (3) are necessary
for isolated singularity to be a quasi-homogeneous. We also believe that condition (1)
is also necessary. The above necessary condition (1) is a special case of Halperin Con-
jecture. The Halperin Conjecture has a important applications in rational homotopy
theory.
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Halperin Conjecture ([30]). Let A = F [x1, · · · , xn]/(f1, · · · , fn) where
f1, · · · , fn are weighted homogeneous polynomials and F is a field of characteristic
zero. Then both A and derivation Lie algebra L(V ) are graded.

Let A be a local Artinian algebra and m is maximal ideal, then complex vector
subspace Soc A = {a ∈ A : a.m = 0} defined a socle of A. Dimension of vector space
Soc A defined a type of A. The algebra A is Gorenstein if type of A is equal to one.

Proposition 4.1 ([43]). Let ⊕t
j=0Aj be a graded commutative Artinian local

algebra with A0 = C and t ≥ 1. Then dimC L(A) ≥ dimCA− dimC SocA.

Proposition 4.2 ([43]). Let A be a commutative Artinian local algebra. Let D
be any derivation of A. Then D preserve the m-adic filtration of A, i.e., D(m) ⊆ m
where m is the maximal ideal of A

Another way to define a wighted homogeneous isolated singularities is as fol-
lows: Let w1, · · · , wn (weights of x1, · · · , xn) be a positive rational numbers and d
is weighted homogeneous degree (w -degree) of polynomial f ∈ C[x1, · · · , xn] with
respect to weights wj . Then f is said be the weighted homogeneous if

∑
aiwi = d

for each monomial
∏

xai
i appearing in f with nonzero coefficient. The collection

(w1, w2, · · · , wn; d) denote the weight type of f . We can compute the Milnor num-
ber of weighted homogeneous isolated hypersurface singularities in following way
μ = ( 1

w1
− 1)( 1

w2
− 1) · · · ( 1

wn
− 1). In 1971, Saito gave a complete description of iso-

lated singularity which is defined by weighted homogeneous polynomial. The weighted
homogeneous polynomial f(x1, x2, · · · , xn) is called fewnomial if number of variables
coincides with number of monomials ([15], [14]), i.e., fewnomial singularities are those
which can be defined by n-nomial in n indeterminates. The fewnomial singularities are
also called invertible singularities [16]. Khimshiashvili [23] distinguished the analytic
isomorphism type of binomial singularities by using the Yau algebra. At the early
stage of the mirror symmetry fewnomial singularities have extensively been studied
for a long time and also applied to give a lot of topological mirror pairs of Calabi-Yau
manifolds.

According to Pursell-Shanks’s theorem the diffeomorphism type of a manifold can
be determined by using the Lie algebra of smooth vector fields on a smooth manifold.
In [23] the analog of Pursell-Shanks’s theorem was proved for Yau algebras of binomial
singularities. It was given in ([47], [7]) that there exist isolated singularities defined
by four nomials in three variables which are analytically non-isomorphic but have
isomorphic Yau algebra [37]. It is interesting to raise a question whether the Pursell-
Shanks’s theorem hold outside fewnomial singularities. It is conformed from ([47],
[7], [37]) that the analytically non-isomorphic isolated singularities which is defined
by four nomial in three variable have isomorphic Yau algebra. Therefore outside the
fewnomial singularities, it is not sure whether the Pursell-Shanks’s theorem holds.
The following results yield the analog of Pursell-Shanks’s theorem for certain classes
of isolated singularities.

Theorem 4.5 ([15]). Let X and Y are simple singularities except the pair A6

and D5, then L(X) ∼= L(Y ) as Lie algebras ⇐⇒ X and Y are analytically isomorphic.

Khimshiashvili [23] extend the method and main results of [15] to wider classes
of singularities and proved following main results:

Theorem 4.6 ([23]). The Lie algebras L(V ) completely characterizes the bino-
mial isolated singularities when μ > 6 .
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Theorem 4.7 ([23]). X The Lie algebras L(V ) completely characterizes the
decomposable fewnomial singularities when μ > 6.

The following open problem is proposed by Yau, Zuo and present author.

Question 4.2. Can we find such a derivation Lie algebra which completely
characterizes the simple hypersurface singularities.

5. structural properties of derivation lie algebras. In this section we shell
discuss the some natural properties of derivation Lie algebras. A Lie algebras which
have trivial center and all of its derivations are inner is called complete Lie algebras.
In [15] the simple singularities have only inner derivation.

Theorem 5.1 ([15]). The Lie algebras L(V ) of simple hypersurface singularities
except E6 singularity is complete when μ ≥ 8.

In general, the Lie algebra L(V ) needs not to be complete [15]. The present
author proposed another open problem for readers.

Question 5.1. Can we find another derivation Lie algebra of simple hypersurface
singularities which have a property of completeness without any exceptional case.

A Lie algebra L(V ) has a maximal commutative polarization if its commutative
subalgebra has dimension equal to 1

2 (dim L+ind L), where ind L is indices of Lie
algebra L(V ).

Theorem 5.2 ([15]). The indices of Lie algebra L(V ) is 0, if dim L(V ) is even
and if dim L(V ) is odd then indices of Lie algebra is 1. Moreover, the Lie algebras
L(V ) has commutative polarization.

There are some natural gradings on associated Lie algebras which we shell discuss
in detail. The first grading is Zn-grading which is also called Cartan grading. The
second grading is Z-grading which is also called Euler grading. Using the vector field
notation for elements of Lie algebras L(V ), we can establish following correspondence:
xak

k ∂j �→ (a1, · · · , an; j). To describe the Cartan grading we first need to define the
Cartan subalgebra, which is maximal commutative subalgebra H such that, for each
h ∈ H and ad H is semisimple. It follows that each element of Cartan subalgebra
have following form hi = (0, · · · , 1, · · · , 0; i) with i staying on the ith place. The basis
vectors are eigenvectors for each of operator ad hi. The eigenvalues of those operators
define the Cartan grading. Therefore, a basis elements of the form (a; j) has Cartan
grading (a1, · · · , aj−1, aj − 1, · · · , an). For an element of the form (a; j), the Euler
height is defined as h(a, j) = −1 +

∑
ai. The correspondence (a; j) �→ h(a, j) defines

the Lie algebras Z-grading called Euler grading. Thus a Euler grading is sum of
component of Cartan grading. Another natural grading can be defined on L(V ) by
setting the weight of ∂j equal to −wj . Therefore the vector field xm

k ∂j has a weight
mwk − wj . Thus this weight defines a grading on Lie algebra. This grading is called
quasi-homogeneous grading on L(V ).

Definition 5.1. The Poincaré polynomial PA of graded algebra A = ⊕β∈ZnAβ

with respect to Zn grading is defined as

PA(t1, · · · , tn) =
∑
β

dim(Aβ)t
β1

1 , · · · , tβn
n .
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In case of moduli algebra A(V ), the Poincaré polynomial P (V ) is equal to the product
of Poincaré polynomials P (Vi)(ti) of A(Vi):

P (V )(t) =

n∏
i=1

P (Vi)(ti), t = (t1, · · · , tn) ∈ Cn.

The derivation Lie algebra L(Vi) admit a Z-grading under following convention
deg(∂/∂x) = −deg(x) for all involved variables x. Similarly, the Zn-grading of moduli
algebra A(Vi) induces a Zn-grading on the derivation Lie algebra L(V ). Let PL(Vi) be
a Poincaré polynomials of derivation Lie algebra L(Vi) corresponding these gradings.
The Poincaré polynomial of L(V ) is defined as

PL(V )(t) =

n∑
i=1

PL(Vi)(ti)

P (Vi)(ti)
P (V )(t).

It is interesting to note that Cartan grading induces a various Z-gradings of
A(V ) and L(V ) via linear functionals ϕ : Zn −→ Z. In other words, we can define
a Z-grading on A(V ) and L(V ) as linear combination with integer weights wi of
the Z grading for Vi. The Poincaré polynomials Pϕ

L (V )(t) of L(V ) with respect to
the resulting grading will be just PL(V )(tw1

1 , · · · , twn
n ). The Poincaré polynomials of

moduli algebra with respect to quasi-homogeneous grading was computed in [17].

Recall that the Pham and Dk1,k2
series defined by polynomials Pk =

∑
x
kj+1
j , k =

(k1, · · · , kn), and Dk1,k2
= xk1

1 x2+xk2
2 , where ki are arbitrary natural numbers bigger

than 1. A real polynomial P =
∑

ait
i is called unimodal if, for some i the coefficients

ak monotonously increase up to k = i and monotonously decrease for k > i. If for
each i, one has ai = an−i, then real polynomial P is called palindromic. A polynomial
P is called unimodular, if all its roots lie on unit circle. A polynomial P which is
palindromic and unimodal simultaneously is called unipalindromic.

Theorem 5.3 ([15]). The Poincaré polynomials for Euler grading that arise from
Lie algebra L(V ) of Pham singularity and simple singularity are unipalindromic.

Since semisimple singularity is the direct sum of simple singularity. Jibladze and
Novikov [20] determined a large class of semisimple singularities with the property
that the roots of Poincaré polynomials of derivation Lie algebras lie on unit circle.
To prove the unimodularity of Poincaré polynomials they use the quasi homogeneous
grading. They also gave the correct version of theorem 4.5 from [15].

Theorem 5.4 ([20]). The Poincaré polynomials for quasi-homogeneous grading
that arise from Lie algebra of semisimple singularity V of type A⊕D has a all roots
on unit circle {|t| = 1}.

Let R = C[x1, · · · , xn]/(f) and where f is weighted homogeneous polynomial
defining an isolated singularity at the origin. It has been a natural and long-standing
problem whether the Der(R,R) is non-negative graded. Actually this problem has
been motivated from both algebraic topology and singularities. Since it is well known
that both algebras R andDer(R,R) are graded. The derivation of R has no negatively
graded component [40] and according to Wahl conjecture this fact is still true, if we let
R = C[x1, · · · , xn]/(f1, · · · , fm) to be an isolated, normal and complete intersection
singularity. In above higher codimensional case, f1, · · · , fm are weighted homogeneous
polynomials with same weight type (w1, · · · , wn). Wahl conjecture for singular cones
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give a beautiful cohomological characterization of complex projective space ([42], [31]).
In case of quasi-homogeneous normal isolated complete intersection singularity (ICIS)
Wahl conjecture is defined as:

Wahl Conjecture ([18]). Any quasi-homogeneous ICIS with dimension ≥ 2
has no negative weight derivations under the consideration of some positive grading.

Aleksandrov [1] proved the Wahl Conjecture in case of complete intersections.

Theorem 5.5 ([2]). Let (V, 0) be a positive-dimensional quasi-homogeneous ICIS
which is defined by f1, f2, · · · , fm ∈ C[x1, · · · , xn]. Then

A := C[x1, · · · , xn]/(f1, f2, · · · , fm)

has no negative weight derivation except the following two cases: 1). m = 1 and f1
has multiplicity 2; 2). m ≥ 2, n ≥ 3m, dim V ≥ 4 and fi has multiplicity 2 for every
i ∈ {1, 2, · · · ,m}. The grading in first exceptional case is not unique and this grading
always be chosen such that the singularity has no derivations of negative weight. In
the second case, the grading is defined uniquely and for such a singularity there may
be derivations of negative weight.

Generalized Wahl Conjecture ([41]). Let P = C[x1, · · · , xn] be the
weighted polynomial ring of n weighted variables x1, x2, · · · , xn with positive inte-
ger weights w1 ≥ w2 ≥ · · · ≥ wn, (n ≥ 2). Let (V, 0) be a positive-dimensional variety
which is defined by weighted homogeneous polynomials f1, f2, · · · , fm ∈ P . Suppose
(V, 0) is an isolated singularity. Then the graded ring R = P/(f1, f2, · · · , fm) has no
negative weight derivations if the (weighted) degrees of fi, 1 ≤ i ≤ m, are large.

Yau gave a conjecture that if f is weighted homogeneous polynomial then mod-
uli algebra A(V ) = C[x1, · · · , xn]/(∂f/∂x1, · · · , ∂f/∂xn) has no negatively weighted
derivation. By assuming this conjecture, Yau gave the characterization of of quasi-
homogeneous hypersurface singularities by using the derivation Lie algebra L(V ). This
Yau conjectured can be view as Artinian equivalent to Wahl conjecture. It was also
proved that Yau conjecture holds in case of lower and higher dimension singularities.
According to Yau and Zuo [59], Yau conjecture is still true under the consideration
the lowest weight is greater than or equal to half of the highest weight.

Yau Conjecture ([59]). Let (V, 0) = {(x1, · · · , xn) ∈ Cn : f(x1, · · · , xn) = 0}
is an isolated singularity and suppose that f(x1, · · · , xn) is a weighted homogeneous
polynomial. Then the moduli algebra A(V ) = C[x1, · · · , xn]/(∂f/∂x1, · · · , ∂f/∂xn)
has no non-negative weighted derivation.

It was shown in [43] a graded Lie algebra L(V ) has no negative weight in case of
homogeneous polynomial f.

Theorem 5.6 ([43]). Let A = ⊕t
i=0Ai be a commutative Artinian local algebra

with A0 = C. Assume that for some j greater than zero the maximal ideal of A is
generated by Aj. Then Lie algebras L(A) has no negative weight derivation.

The Yau conjecture studied in ([12], [10]) for n ≤ 4.

Theorem 5.7 ([12]). Let (V, 0) = {(x1, x2, x3) ∈ C3 : f(x1, x2, x3) = 0} be an
isolated singularity defined by the weighted homogeneous polynomial f(x1, x2, x3) of
type (w1, w2, w3; d). Suppose that d ≥ 2w1 ≥ 2w2 ≥ 2w3. Let D be a derivation of the
moduli algebra

C[x1, x2, x3]/(∂f/∂x1, ∂f/∂x2, ∂f/∂x3).
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Then D ≡ 0 if D is negatively weighted.

Theorem 5.8 ([10]). Let (V, 0) = {(x1, x2, x3, x4) ∈ C4 : f(x1, x2, x3, x4) =
0} be an isolated singularity defined by the weighted homogeneous polynomial
f(x1, x2, x3, x4) of type (w1, w2, w3, w4; d). Suppose that d ≥ 2w1 ≥ 2w2 ≥ 2w3 ≥
2w4. If D is negatively weighted then D ≡ 0 and where D is a derivation of moduli
algebra

C[x1, x2, x3, x4]/(∂f/∂x1, ∂f/∂x2, ∂f/∂x3, ∂f/∂x4).

In following theorem Yau and Zuo prove the above conjecture for high dimensional
singularities.

Theorem 5.9 ([59]). Let (V, 0) = {(x1, · · · , xn) ∈ Cn : f(x1, x2, · · · , xn) =
0} be an isolated singularity defined by the weighted homogeneous polynomial
f(x1, x2, · · · , xn) of type (w1, w2, · · · , wn; d). Suppose that d ≥ 2w1 ≥ 2w2 ≥, · · · ,≥
2wn without loss of generality. Let D be a derivation of the moduli algebra

C[x1, · · · , xn]/(∂f/∂x1, · · · , ∂f/∂xn).

If wn ≥ w1

2 , then Der<0(A(V )) = 0.

In [9] the Wahl Conjecture and its generalization for R =
C[x1, x2, · · · , xn]/(f1, f2, · · · , fm) has a positive answer without the condition
of complete and intersection singularity. In fact, this is true when degree of
fi, 1 ≤ i ≤ m are bounded below by constant C = (m− 1+w1)(w1w2)

n−1. Moreover
the bound C = (m − 1 + w1)(w1w2)

n−1 is improved when any two weights are
co-prime. In case of low degree of fi, there are counter examples for Wahl Conjecture
and its generalization. So the main result of [9], is more or less optimal in the sense
that the only lower bound constant can be improved.

It is well-known that in case of positive-dimensional isolated complete intersec-
tion singularity the derivation algebra is generated by Euler derivation and trivial
derivations. Thus the generators of derivations are completely known. But there is
no known description of all holomorphic vector fields in case of non complete inter-
section singularity. Consequently, the generalized Wahl Conjecture is more difficult
than Wahl conjecture for isolated complete intersection singularity.

Theorem 5.10 ([9]). Let R = C[x1, x2, · · · , xn]/(f1, f2, · · · , fm), where
C[x1, x2, · · · , xn] is weighted polynomial ring with positive integer weight w1 ≥ w2 ≥
· · · ≥ wn, (n ≥ 2). Suppose f1, f2, · · · , fm are weighted homogeneous polynomials
defining a positive-dimensional isolated singularity at the origin with degrees greater
than (m− 1 + w1)(w1w2)

n−1. Then R has no non-zero negative weight derivations.

It follows from counter examples given in [9], the non-existence of negative weight
derivation for positive dimensional singularities can not be expected for large degree.
But constant C = (m− 1 +w1)(w1w2)

n−1 may not be sharp. The following theorem
tells us that this bound can be improved under the condition that any two of the
weights w1, w2, · · · , wn are coprime.

Theorem 5.11 ([9]). Let P = C[x1, x2, · · · , xn] be the weighted polynomial
ring of n weighted variables x1, x2, · · · , xn with positive integer weights w1 ≥ w2 ≥
· · · ≥ wn (n ≥ 2) and f1, f2, · · · , fm be m weighted homogeneous polynomials of de-
grees greater than (m − 1 + w1)w1w2. Suppose that any two of the original weights
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w1, w2, · · · , wn are co-prime and f1, f2, · · · , fm define a positive-dimensional isolated
singularity at the origin. Then there are no non-zero negative weight derivations
on R = P/(f1, f2, · · · , fm).

Since dimension of derivation Lie algebra L(V ) is called Yau number and it is
denoted as λ(V ). The Yau number is an analytic invariant. Yau and Zuo [58] proposed
the following sharp upper estimate conjecture:

Yau-Zuo Conjecture ([58]). Let (V, 0) = {(x1, x2, · · · , xn) ∈
Cn : f(x1, x2, · · · , xn) = 0} (n ≥ 2) be an isolated singularity defined by the weighted
homogeneous polynomial f(x1, x2, · · · , xn) of weight type (w1, w2, · · · , wn; 1). Then
the Yau number

λ(V ) ≤ nμ−
n∑
i

(
1

w1
− 1)(

1

w2
− 1) · · · ̂

(
1

wi
− 1) · · · ( 1

wn
− 1),

where ̂( 1
wi

− 1) means that 1
wi

− 1 is omitted and μ is the Milnor number.

Finally, we get

λ(V ) ≤ n
n∏

i=1

(
1

wi
− 1)−

n∑
i

(
1

w1
− 1)(

1

w2
− 1) · · · ̂

(
1

wi
− 1) · · · ( 1

wn
− 1).

In [58] this conjecture was proved for a binomial isolated hypersurface singulari-
ties.

Proposition 5.1 ([58]). Let f be a weighted homogeneous fewnomial isolated
singularity with mult(f) ≥ 3. Then f analytically equivalent to a linear combination
of the following three series:

Type A. xa1
1 + xa2

2 + · · ·+ x
an−1

n−1 + xan
n , n ≥ 1,

Type B. xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n , n ≥ 2,

Type C. xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1, n ≥ 2.

Proposition 5.1 has an immediate corollary.

Corollary 5.1 ([58]). Each binomial isolated singularity is analytically equiva-
lent to one from the three series: A) xa1

1 + xa2
2 , B) xa1

1 x2 + xa2
2 , C) xa1

1 x2 + xa2
2 x1.

Theorem 5.12 ([58]). Let (V, 0) be a binomial singularity defined by the weighted
homogeneous polynomial f(x1, x2) with weight type (w1, w2; 1). Then λ(V ) ≤ 2( 1

w1
−

1)( 1
w2

− 1)− ( 1
w1

)− ( 1
w2

) + 2.

Let f(x1, x2, · · · , xn) = 0 of weight type (w1, w2, · · · , wn; 1) and
g(y1, y2, · · · , ym) = 0 of weight type (wn+1, wn+2, · · · , wn+m; 1) be two
weighted homogeneous polynomials which define two isolated hypersur-
face singularities (Vf , 0) ⊂ (Cn, 0) and (Vg, 0) ⊂ (Cm, 0). It is clear that
f(x1, · · · , xn) + g(y1, · · · , ym) = 0 (which is called addition of Thom-Sebastiani)
has weight type (w1, w2, · · · , wn+m; 1) and define an weighted homogeneous isolated
singularity (Vf+g, 0) ⊂ (Cm+n, 0).

Theorem 5.13 ([58]). Let (Vf , 0) ⊂ (Cn, 0) and (Vg, 0) ⊂ (Cm, 0)
be defined by weighted homogeneous polynomials f(x1, x2, · · · , xn) = 0 of
weight type (w1, w2, · · · , wn; 1) and g(y1, y2, · · · , ym) = 0 of weight type
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(wn+1, wn+2, · · · , wn+m; 1) respectively. Let μ(Vf ), μ(Vg), A(Vf ) and A(Vg) be the
Milnor numbers and moduli algebras of (Vf , 0) and (Vg, 0) respectively. Then

λ(Vf+g) = μ(Vf )λ(Vg) + μ(Vg)λ(Vf ). (5.1)

Furthermore if both f and g satisfy the Yau-Zuo conjecture, then f + g also satisfies
the Yau-Zuo conjecture.

Theorem 5.14 ([58]). Let f ∈ C{x1, · · · , xn} be a weighted homogeneous isolated
singularity which is a Thom-Sebastiani summation of the following three types with
mult(f) ≥ 3:

1) xa1
1 + xa2

2 + · · ·+ x
am−1

m−1 + xam
m , m ≥ 1,

2) xa1
1 x2 + xa2

2 ,
3) xa1

1 x2 + xa2
2 x1.

Then f satisfies the Yau-Zuo conjecture.

Wolfgang and Atsushi [16] give the following classification of weighted homoge-
neous fewnomial singularities in case of three variables.

Proposition 5.2 ([16]). Let f(x1, x2, x3) be a weighted homogeneous fewnomial
isolated singularity with mult(f) ≥ 3. Then f is analytically equivalent to following
five types:

Type 1. xa1
1 + xa2

2 + xa3
3 ,

Type 2. xa1
1 x2 + xa2

2 x3 + xa3
3 ,

Type 3. xa1
1 x2 + xa2

2 x3 + xa3
3 x1,

Type 4. xa1
1 + xa2

2 + xa3
3 x2,

Type 5. xa1
1 x2 + xa2

2 x1 + xa3
3 .

According to [4], classification of weighted homogeneous function of three variable
consists of seven types. The first five types are fewnomial singularities and remaining
two types are non-fewnomial singularities. In [19] Yau, Zuo and present author proved
the Yau-Zuo conjecture in case of fewnomial surface singularities. But in case of non-
fewnomial surface singularities the verification of Yau-Zuo conjecture is still open.
The Yau-Zuo Conjecture is also open for higher-dimensional weighted homogeneous
singularities. Zuo proposed the following open problem.

Question 5.2. Whether we can use other invariants of singularities to construct
a sharp upper or lower bound of the Yau number for isolated hypersurface singularity.
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