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GEOMETRIC EQUIVALENCE AMONG SMOOTH MAP GERMS∗

SHYUICHI IZUMIYA† , MASATOMO TAKAHASHI‡ , AND HIROSHI TERAMOTO§

Dedicated to the memory of John N. Mather

Abstract. We consider equivalence relations among smooth map germs with respect to geometry
of G-structures on the target space germ. These equivalence relations are natural generalization of
right-left equivalence (i.e., A-equivalence) in the sense of Thom-Mather depending on geometric
structures on the target space germ. Unfortunately, these equivalence relations are not necessarily
geometric subgroups in the sense of Damon (1984). However, we have interesting applications of
these equivalence relations.
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1. Introduction. In the history of the theory of singularities of smooth map-
ping, the notion of A-equivalence (i.e. right-left equivalence or isomorphism) among
smooth map germs in the sense of Mather is the most natural equivalence (cf. [27, 28])
from the view point of differential topology. In order to solve the stability problems
of Thom [35], Mather also introduced the notion of K-equivalence, which played a key
role in his theory. Moreover, Tougeron [36] introduced the notion of K[G]-equivalence
(it is G-equivalence in the terminology of Tougeron) for a linear Lie group G which
linearly acts on the target space germ. If G is a general linear group, then K[G]-
equivalence is K-equivalence. Recently, there appeared several applications of K[G]-
equivalence (cf. [1, 5, 6, 7, 20, 31, 33, 34]) which include applications to quantum
physics etc. In this paper we consider the case when the target space germ (Rp, 0) has
a G-structure. Then we introduce the notion of A[G]-equivalence among smooth map
germs analogous to K[G]-equivalence. If G = GL(p,R), then A[GL(p,R)]-equivalence
is the original A-equivalence in the sense of Mather. If G = {Ip} (Ip is the unit
matrix), then A[{Ip}]-equivalence is R-equivalence in the sense of Mather [27, 29].
Therefore, A[G]-equivalence is one of the direct and natural generalizations of A-
equivalence. Although K[G] is a geometric subgroup of K in the sense of Damon
[8], A[G] is not necessarily a geometric subgroup of A. Thus the usual techniques of
singularity theory cannot work generally. Moreover, it is known that A-equivalence
implies K-equivalence [27]. This fact does not hold for A[G] and K[G] generally. The
above properties are dependent on the Lie group G. However, we can seek out the
interesting examples of A[G]-equivalence, which have been investigated recently (cf.
[7, 9, 12, 13, 14, 23, 24, 25, 38]). Therefore it is worth while to study properties of
A[G]-equivalence for general Lie subgroup G ⊂ GL(p,R). In this paper, we consider
some fundamental properties of A[G]-equivalence and give some interesting examples.
As a first step, we investigate the infinitesimal algebraic structure of A[G]-equivalence.
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On the other hand, if we consider a G′-structure on the source space germ (Rn, 0),
we also have the notion of R[G′], A[G′;G] and K[G′;G]-equivalence among smooth
map germs, respectively. Even though there are interesting examples of those equiv-
alence relations, we need longer pages for describing those equivalence relations, so
that we only consider A[G]-equivalence in this paper.

The organization of this paper is as follows. In §2 we introduce A[G]-equivalence
and R×G-equivalence which are main subjects in this paper. We briefly review alge-
braic properties of infinitesimal version of A-equivalence following Mather [27] in §3.
For the study of A[G]-equivalence, we investigate algebraic properties of vector field
associated with a linear Lie group G in §4. Moreover, we calculate these vector fields
for some examples of Lie groups. Following the results of previous sections, we for-
mulate the infinitesimal version of A[G]-equivalence and investigate the relationship
between A[G] and R×G in §5. In §6 we give several examples of A[G]-equivalence,
where G is SO(p), SL(p,R), Sp(2p) or other cases. There are other interesting cases
which we do not mention here (for example, G = SO0(1, q), etc) which will be in-
vestigated in elsewhere. Following the observations in §6, we investigate relationships
between A[G]-equivalence and R × G-equivalence in §7. Finally we propose an im-
portant prospective problem.

We assume that all map germs and manifolds are class C∞ unless stated otherwise.

2. Geometric equivalence. We consider smooth map germs f : (Rn, 0) −→
(Rp, 0). One of the most natural equivalence relations among map germs is A-
equivalence (i.e. an isomorphism) in the sense of Mather [27]. We say that smooth
map germs f, g : (Rn, 0) −→ (Rp, 0) are A-equivalent if there exist diffeomorphism
germs φ : (Rn, 0) −→ (Rn, 0) and ψ : (Rp, 0) −→ (Rp, 0) such that ψ ◦ f = g ◦ φ. We
define the group of diffeomorphism germs on (Rp, 0) :

Diff (p) = {ψ | ψ : (Rp, 0) −→ (Rp, 0) : diffeomorphism germ }.

In this paper we consider the case when the target space R
p has a geometric

structure. Let G ⊂ GL(p,R) be a linear Lie group. Then G can be considered as a
structure group of the tangent bundle of Rp, so that the group G gives a G-structure
on the target space R

p. We define natural geometric equivalence among smooth map
germs with respect to G-structures, which is a generalization of A-equivalence as
follows: For a diffeomorphism germ ψ : (Rp, 0) −→ (Rp, 0), we have the Jacobi matrix
Jψ(y) at y ∈ (Rp, 0). We say that smooth map germs f, g : (Rn, 0) −→ (Rp, 0)
are A[G]-equivalent if there exist diffeomorphism germs φ : (Rn, 0) −→ (Rn, 0) and
ψ : (Rp, 0) −→ (Rp, 0) with Jψ(y) ∈ G for any y ∈ (Rp, 0) such that f ◦ φ = ψ ◦ g.
This equivalence is not a geometric subgroup of A in the sense of Damon [8] generally.
The situation depends on the Lie group G. We consider the group of diffeomorphism
germs with respect to G:

Diff[G](p) = {ψ ∈ Diff (p) |Jyψ ∈ G for any y ∈ (Rp, 0)}.

We remark that Diff[GL(p,R)](p) = Diff (p) and Diff[{Ip}](p) = {1Rp}. For ψ ∈
Diff[G](p), we say that ψ is isotopic to the identity if there exists a family Ψ : (Rp ×
R, 0 × [0, 1]) −→ (Rp, 0) such that ψt ∈ Diff[G](p), ψ0 = 1Rp and ψ1 = ψ, where
ψt(x) = Ψ(x, t). We define

Diff0[G](p) = {ψ ∈ Diff[G](p) | ψ is isotopic to the identity }.
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We say that f, g : (Rn, 0) −→ (Rp, 0) are A0[G]-equivalent if there exist a diffeomor-
phism germ φ : (Rn, 0) −→ (Rn, 0) and ψ ∈ Diff0[G](p) such that f ◦φ = ψ◦g. Follow-
ing the definition of the left equivalence of Mather [27], we say that f, g : (Rn, 0) −→
(Rp, 0) are L[G]-equivalent if there exists ψ ∈ Diff[G](p) such that f = ψ ◦ g.

Moreover, for any A ∈ G ⊂ GL(p,R), we have the natural linear isomorphism
ψA : (Rp, 0) −→ (Rp, 0) defined by ψA(y) = A.ty, where ty is the transposed column
vector of y = (y1, . . . , yp) and A.ty is the matrix product. We say that smooth map
germs f, g : (Rn, 0) −→ (Rp, 0) are R × G-equivalent if there exist a diffeomorphism
germ φ : (Rn, 0) −→ (Rn, 0) and A ∈ G such that f ◦ φ = ψA ◦ g. If G = {Ip},
then both of A[G]-equivalence and R×G-equivalence are equal to R-equivalence (i.e.
right equivalence) in the sense of Mather [27]. Moreover, A[GL(p,R)]-equivalence
is A-equivalence. By definition, if f, g are R × G-equivalent, then these are A[G]-
equivalent. There are several interesting examples of these equivalence relations.

We now define A(n, p) = Diff (n) × Diff (p). Since G ⊂ Diff[G](p) ⊂ Diff (p), we
have subgroups A[G](n, p) = Diff (n) × Diff[G](p) and (R × G)(n, p) = Diff (n) × G
of A(n, p).

3. Infinitesimal structures of A-equivalence. Following [27, 28], we briefly
review the infinitesimal properties of A-equivalence among map-germs. Let En be
the local R-algebra of function germs of n-variables at the origin with the unique
maximal ideal Mn. For a map germ f : (Rn, 0) −→ (Rp, 0), we have a pull-back R-
algebra homomorphism f∗ : Ep −→ En defined by f∗(h) = h ◦ f. We also consider an
En-module of germs of vector fields along f, which is defined by

θ(f) =

⎧⎨⎩
p∑

j=1

ηj(x)
∂

∂yj
◦ f
∣∣∣ ηj ∈ En, (j = 1, . . . , p)

⎫⎬⎭ ,

where, y = (y1, . . . , yp) ∈ R
p. Therefore, θ(f) is identified with

C∞(n, p) = {h | h : (Rn, 0) −→ R
p; map germ} ∼= En × · · · × En = Ep

n

as En-modules. Moreover, Mnθ(f) = MnC
∞(n, p) = Mp

n is an En-submodule of
C∞(n, p) consisting of all map germs (Rn, 0) −→ (Rp, 0). Therefore, we define the
action of A(n, p) on MnC

∞(n, p) by μ((φ, ψ), f) = ψ ◦ f ◦ φ−1. The orbit through
f is the set of all map germs which are A-equivalent to f . Since A[G](n, p) and
(R×G)(n, p) are subgroups of A(n, p), the above action induces the actions of these
subgroups on MnC

∞(n, p).
We now consider formal tangent spaces of an A-orbit. The tangent space of

MnC
∞(n, p) at f is defined to be the set of d(c(t))/dt|t=0 for a curve c(t) ∈

MnC
∞(n, p) with c(0) = f.We denote it by TfMnC

∞(n, p), which is called a (formal)
tangent space of MnC

∞(n, p) at f. Since c(t)(x) = ft(x) with f0 = f, we have

TfMnC
∞(n, p) =

⎧⎨⎩
p∑

j=1

ηj(x)
∂

∂yj
◦ f
∣∣∣ ηj ∈ Mn(j = 1, . . . , p)

⎫⎬⎭ .

Therefore TfMnC
∞(n, p) can be identified with Mnθ(f). We also define an extended

tangent space of MnC
∞(n, p) at f by TfMnC

∞(n, p)e = θ(f).
Following Mather [27], we define a mapping tf : θ(n) −→ θ(f) by tf(ζ) = df ◦

ζ, where θ(n) = θ(1Rn) and df : TRn −→ TRp is the differential map of f . We
remark that θ(n) is the En-module of vector field germs on (Rn, 0). Then tf is an
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En-homomorphism. We also define ωf : θ(p) −→ θ(f) by ωf(ξ) = ξ ◦ f. Then θ(f)
is an Ep-module through the pull-back homomorphism f∗ : Ep −→ En. In this sense,
ωf is an Ep-homomorphism. Therefore, (ωf, tf, θ(p), θ(n), θ(f)) is called a mixed
homomorphism of finite type over f∗ : Ep −→ En in [27]. The notion of mixed
homomorphisms plays a principal role in the theory of Mather in [27, 28].

In order to investigate A[G]-equivalence, we need to investigate infinitesimal prop-
erties of Diff[G](p).

4. Algebraic structures of vector field germs with respect to G. In order
to investigate general properties of the set of vector field germs with respect to a G-
structure, we consider a linear Lie group G ⊂ GL(p,R) and the Lie algebra g = TIG ⊂
Mp(R). Here, Mp(R) is the Lie algebra of p× p-matrices over R.

For any ψ ∈ Diff[G](p), we define the formal tangent space of Diff[G](p) at ψ by

TψDiff[G](p) =

{
dψt

dt
|t=0

∣∣∣ ψt ∈ Diff[G](p) for t ∈ (R, 0), ψ0 = ψ

}
.

If ψ = 1Rp , then

Jy

(
dψt

dt
|t=0

)
=

d(Jyψt)

dt
|t=0 ∈ TIG = g,

for any ψt ∈ Diff[G](p) with ψ0 = 1Rp and any y ∈ (Rp, 0). Since dψt/dt|t=0 is a
vector field germ, we have

dψt

dt
|t=0(y) =

p∑
i=1

ηi(y)
∂

∂yi
,

which can be identified with the map germ η = (η1, . . . , ηp) : (Rp, 0) −→ (Rp, 0).
Therefore, we have (

∂ηi
∂yj

(y)

)
∈ g for any y ∈ (Rp, 0).

Since g is a real vector space, T1RpDiff[G](p) is also a real vector space. Actually, we
have

T1RpDiff[G](p) =

{
p∑

i=1

ηi(y)
∂

∂yi

∣∣∣ ( ∂ηi
∂yj

(y)

)
∈ g for any y ∈ (Rp, 0), ηi(0) = 0

}
.

We now define R-linear subspaces of θ(p) by

θ[G](p) =

{
p∑

i=1

ηi(y)
∂

∂yi

∣∣∣ ( ∂ηi
∂yj

(y)

)
∈ g for any y ∈ (Rp, 0)

}

and

θ[G]0(p) =

{
p∑

i=1

ηi(y)
∂

∂yi
∈ θ[G](p)

∣∣∣ ηi(0) = 0

}
.

By definition, θ[G](p) and θ[G]0(p) are R-linear subspaces of θ(p). By the above argu-
ments, we have T1RpDiff[G](p) = θ[G]0(p). For any ψ ∈ Diff0[G](p), we consider ψt ∈
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Diff[G](p) for t ∈ (R, 0) such that ψ0 = 1Rp . Then we define ψ̃t = ψ ◦ψt ∈ Diff[G](p),

so that ψ̃0 = ψ. It follows that

dψ ◦ dψt

dt
|t=0 =

dψ̃t

dt
|t=0 ∈ TψDiff[G](p),

so that we have a linear isomorphism tψ : θ[G]0(p) −→ TψDiff[G](p) defined by
tψ(η) = dψ ◦ η. Therefore, we can identify θ[G]0(p) with TψDiff[G](p) through dψ.
Moreover, θ(p) is an Ep-module. We also define an Ep-module g(Ep) by

g(Ep) = {ζ | ζ : (Rp, 0) −→ g : C∞ }.
We now define a sub R-algebra Ep[G] of Ep such that θ[G]0(p) is a sub Ep[G]-

module of θ(p) as follows: For λ ∈ Ep, we define a map germ

gradyλ : θ(p) −→ Mp(Ep)
by

gradyλ(η) = η ⊗
(

∂λ

∂y1
, . . . ,

∂λ

∂yp

)
=

⎛
⎜⎝
η1
...
ηp

⎞
⎟⎠

(
∂λ

∂y1
, . . . ,

∂λ

∂yp

)
=

⎛
⎜⎜⎝
η1

∂λ
∂y1

· · · η1
∂λ
∂yp

...
...

...
ηp

∂λ
∂y1

· · · ηp
∂λ
∂yp

⎞
⎟⎟⎠ ,

where η = (η1, . . . , ηp) and y = (y1, . . . , yp). Then we define a subset of Ep by

Ep[G] =
{
λ ∈ Ep

∣∣∣ gradyλ(η) ∈ g(Ep) for η ∈ θ[G]0(p)
}
.

Since g(Ep) is an Ep-module,

grady(λ1 + λ2)(η) = gradyλ1(η) + gradyλ2(η) ∈ g(Ep)
and

grady(λ1λ2)(η) = λ2gradyλ1(η) + λ1gradyλ2(η) ∈ g(Ep)
for any λ1, λ2 ∈ Ep[G] and η ∈ θ[G]0(p). This means that Ep[G] is an R-algebra. For
any η ∈ θ[G]0(p) and λ ∈ Ep, we have(

∂ληi
∂yj

)
= gradyλ(η) + λ

(
∂ηi
∂yj

)
.

It follows that λη ∈ θ[G]0(p) if and only if gradyλ(η) ∈ g(Ep), so that θ[G]0 is an
Ep[G]-module. Then we have the following theorem:

Theorem 4.1. Let R be a sub R-algebra of Ep such that θ[G]0(p) is a sub R-
module of θ(p). Then R ⊂ Ep[G].

Proof. We consider any λ ∈ R ⊂ Ep. For any η ∈ θ[G]0(p), we have(
∂ληi
∂yj

)
= gradyλ(η) + λ

(
∂ηi
∂yj

)
.

Since η, λη ∈ θ[G]0(p), we have (∂ηi/∂yj), (∂ληi/∂yj) ∈ g(Ep). It follows that
gradyλ(η) ∈ g(Ep), so that λ ∈ Ep[G].
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We call Ep[G] a maximum R-subalgebra of Ep with respect to θ[G]0(p). Moreover,
Ep[G] is a C∞-ring in the sense of [10, 17]. We say that an R-subalgebra R of Ep is a
C∞-subring of Ep if

f(λ1, . . . , λr) ∈ R

for any λ1, . . . λr ∈ R and f ∈ Er. In this case R is a local ring with the unique
maximal ideal MR = Mp ∩R.

Proposition 4.2. The maximum R-subalgebra Ep[G] of Ep with respect to
θ[G]0(p) is a C∞-subring of Ep.

Proof. For any λ1, . . . , λr ∈ Ep[G] and f ∈ Er, we would like to show that

f(λ1, . . . , λr) ∈ Ep[G].

Since

∂f(λ1(y), . . . , λr(y))

∂yi
=

r∑
j=1

∂f(λ1(y), . . . , λ(y))

∂λj

∂λj

∂yi
,

we have

gradyf(λ1, . . . , λr)(η) =

⎛⎜⎝η1
∂f
∂λ1

· · · η1
∂f
∂λr

...
. . .

...

ηp
∂f
∂λ1

· · · ηp
∂f
∂λr

⎞⎟⎠
⎛⎜⎜⎝

∂λ1

∂y1
· · · ∂λ1

∂yp

...
. . .

...
∂λr

∂y1
· · · ∂λr

∂yp

⎞⎟⎟⎠
=

r∑
j=1

∂f

∂λj
(λ(y))grady(λj)(η),

for any η = (η1, . . . , ηp) ∈ θ[G]0(p). By definition, grady(λj)(η) ∈ g(Ep). Since g(Ep)
is an Ep-module, gradyf(λ1, . . . , λr)(η) ∈ g(Ep), for any η = (η1, . . . , ηp) ∈ θ([G])0(p).
This completes the proof.

We say that A is a differentiable algebra (or, DA-algebra) if A is an R-algebra
and there exists a surjective algebra homomorphism φ : En −→ A for some n ∈ N.
These algebras are local rings with maximal ideals denoted by MA. A homomorphism
α : A −→ B of DA-algebras is an algebra homomorphism such that there exists a map
germ g : (Rp, 0) −→ (Rn, 0) and ψ ◦ g∗ = α ◦ φ, where g∗ : En −→ Ep is the pull-back
homomorphism, φ : En −→ A and ψ : Ep −→ B are surjective homomorphisms as
R-algebras. We say that A ⊂ En is a DA-subalgebra if A is a DA-algebra and the
inclusion i : A ⊂ En is a homomorphism of DA-algebras. This means that there is
a map germ φ : (Rn, 0) −→ (Rp, 0) such that φ∗(Ep) = A. For DA-algebras, modules
over DA-algebras and homomorphisms of DA-algebras, the Malgrange preparation
theorem holds [21]. There exists a criterion when a C∞-subring is a DA-algebra [19,
Appendix].

Proposition 4.3. Let R ⊂ Ep be a C∞-subring. Then R is a DA-algebra if and
only if R is finitely generated as C∞-ring.

We now give some important examples.
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Example 4.4. We consider the special orthogonal group SO(p) ⊂ GL(p,R). A
diffeomorphism germ ψ : (Rp, 0) −→ (Rp, 0) with Jψ(x) ∈ SO(p) for any x ∈ (Rp, 0)
is an isometry germ. In this case, the corresponding Lie algebra is

so(p) = {X ∈ Mp(R) | tX = −X}.
For convenience, we consider the case when p = 2. In this case we have

θ[SO(2)](2) =

{
2∑

i=1

ηi(y)
∂

∂yi

∣∣∣ (∂η1

∂y1

∂η1

∂y2
∂η2

∂y1

∂η2

∂y2

)
∈ so(2)(E2)

}
.

Since so(2) is the Lie algebra of anti-symmetric matrices, we have

∂η1
∂y1

(y1, y2) =
∂η2
∂y2

(y1, y2) = 0,
∂η1
∂y2

(y1, y2) = −∂η2
∂y1

(y1, y2).

It follows that η1(y1, y2) = η1(y2) and η2(y1, y2) = η2(y1). Therefore, we have η1(y2) =
a1+b1y2+ξ1(y2) and η2(y1) = a2+b2y1+ξ2(y1) for some ai, bi ∈ R and ξi ∈ M2

1. Thus,
(∂η1/∂y2)(y1, y2) = −(∂η2/∂y1)(y1, y2) means that b1 = −b2 and (dξ1/dy2)(y2) =
−(dξ2/dy1)(y1). The last equality means that ξ1(y2) = ξ2(y1) = 0. Hence,(

∂η1

∂y1

∂η1

∂y2
∂η2

∂y1

∂η2

∂y2

)
∈ so(2)(E2) if and only if η1(y2) = a1+by2, η2(y1) = a2−by1 for ai, b ∈ R.

It follows that

θ(2) ⊃ θ[SO(2)](2) =

{
a1

∂

∂y1
+ a2

∂

∂y2
+ b

(
y2

∂

∂y1
− y1

∂

∂y2

) ∣∣∣ ai, b ∈ R

}
.

By the similar arguments to above, we have

θ[SO(p)](p) =

〈
∂

∂yi

∣∣∣ i = 1, . . . , p

〉
R

+

〈
yj

∂

∂yi
− yi

∂

∂yj

∣∣∣ 1 ≤ i < j ≤ p

〉
R

.

It follows that

θ[SO(p)]0(p) =

〈
yj

∂

∂yi
− yi

∂

∂yj

∣∣∣ 1 ≤ i < j ≤ p

〉
R

.

We can easily show that{
yj

∂

∂yi
− yi

∂

∂yj

∣∣∣ 1 ≤ i < j ≤ p

}
is linearly independent, so that dimR θ[SO(p)]0(p) = p(p−1)/2 = dimR so(p). For any
λ(y) =

∑
1≤i<j≤p λij(yj

∂
∂yi

− yi
∂

∂yj
), we have

Λ =

⎛⎜⎜⎜⎝
0 λ12 λ13 · · · λ1p

−λ12 0 λ23 · · · λ2p

...
...

...
. . .

...
−λ1p −λ2p −λ3p · · · 0

⎞⎟⎟⎟⎠ ∈ so(p).

It follows that we have the following proposition.
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Proposition 4.5. With the above notations, we have θ[SO(p)]0(p) ∼= so(p) as
Lie algebras.

Moreover, we have the following theorem.

Theorem 4.6. With the above notations, we have Diff0 [SO(p)](p) = SO(p).

Proof. Since SO(p) is connected, we always have Diff0 [SO(p)](p) ⊃ SO(p). For
any φ ∈ Diff0 [SO(p)](p), we consider φt ∈ Diff [SO(p)](p) such that φ0 = 1Rp and
φ1 = φ. Then, for any t0 ∈ (R, [0, 1]), we have

dφt

dt
|t=t0(x) =

p∑
i=1

ηi(y)
∂

∂yi
◦ φt0 such that

(
∂ηi
∂yj

(y)

)
∈ so(p) and ηi(0) = 0,

for any y ∈ (Rp, 0). By the previous arguments, ηi(y) are linear function germs. Since
φt(0) = 0, we can write φt(y) = A(t).y + ht(y) for some map germ A : (R, [0, 1]) −→
GL(p,R) and ht ∈ M2

pC
∞(p, p). Thus

dφt

dt
|t=t0(y) =

dA

dt
|t=t0x+

dht

dt
|t=t0(y),

so that (dht/dt)|t=t0(y) = 0. This means that ht(y) = h0(y), so that φt(y) = A(t).y+
h0(y). However, 1Rp(y) = φ0(y) = A(0).y + h0(y), so that h0(y) = 0. Therefore,
φ(y) = A(1).y. It follows that A(1) = Jφ(y) ∈ SO(p). Thus, we have φ ∈ SO(p).

We denote Diffω [SO(p)](p) as the subgroup of Diff [SO(p)](p) consisting of real
analytic germs of diffeomorphisms. By the above arguments in the proof, if we have
φ(y) = A.y+h(y) ∈ Diff [SO(p)](p) for some A ∈ SO(p) and h(y) ∈ M∞

p C∞(p, p) with
h 
= 0, then φ is not isotopic to the identity. Therefore, φ /∈ SO(p). This proves that
Diffω [SO(p)](p) = SO(p). We remark that we do not know Diff [SO(p)](p) = SO(p)
or not.

We now consider Ep[SO(p)]. By definition, λ ∈ Ep[SO(p)] if and only if
gradyλ(η) ∈ so(p)(Ep) for any η ∈ θ[SO(p)]0(p). The last condition is equivalent
to yi(∂λ/∂yj) = −yj(∂λ/∂yi) for i, j = 1, . . . , p. In particular, yi(∂λ/∂yi) = 0 as
function germs for i = 1, . . . , p. It follows that λ is a constant germ. This means
that Ep[SO(p)] = R. Since θ[SO(p)](p) is a finite dimensional R-vector space, it is a
finitely generated Ep[SO(p)]-module.

Example 4.7. We consider the special linear group SL(p,R) ⊂ GL(p,R). In this
case sl(p,R) is the Lie algebra of traceless p× p-real matrices:

sl(p,R) = {X ∈ Mp(R) | TraceX = 0}.
A diffeomorphism germ ψ : (Rp, 0) −→ (Rp, 0) with Jψ(y) ∈ SL(p,R) for any y ∈
(Rp, 0) is a volume preserving diffeomorphism germ. Therefore, the algebraic structure
of θ[SL(p,R)](p) might be deeply related to that of the space of differential forms.
Actually, we have the following proposition.

Proposition 4.8. Let d(Ω(p−2)) be the vector space of germs of exact differential
(p− 1)-forms. Then d(Ω(p−2)) and θ[SL(p,R)](p) are isomorphic as R-vector spaces.
Hence, θ[SL(p,R)](p) is an infinite dimensional vector space.

Proof. By definition, we have

θ[SL(p,R)](p) =

{
η =

p∑
i=1

ηi
∂

∂yi

∣∣∣ ( ∂ηi
∂yj

)
(y) ∈ sl(p,R)

}
.
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For any η =
∑p

i=1 ηi(y)
∂

∂yi
∈ θ(p), we define

ωη =

p∑
k=1

(−1)k−1ηk(y)dy1 ∧ · · · ∧ dyk−1 ∧ dyk+1 ∧ · · · ∧ dyp.

Then we have

dωη =

p∑
k=1

∂ηk
∂yk

(y)dy1 ∧ · · · ∧ dyp = div (η)dy1 ∧ · · · ∧ dyp.

Therefore, η ∈ θ[SL(p,R)](p) if and only if dωη = 0. Then we can define a mapping
Φ : θ[SL(p,R)](p) −→ d(Ω(p−2)) by Φ(η) = ωη. For any ω ∈ d(Ω(p−2)), by the
Poincaré lemma, there exists a germ of (p−2)-form θ ∈ Ωp−2 such that dθ = ω. Since
dθ = ω is a germ of (p− 1)-form, it is written by

dθ =

p∑
k=1

ζk(y)dy1 ∧ · · · ∧ dyk−1 ∧ dyk+1 ∧ · · · ∧ dyp.

If we define ηk(y) = (−1)kζk(y) and η =
∑p

i=1 ηi(y)
∂

∂yi
, then ωη = dθ = ω. Since

ddθ = 0, we have div (η) = 0, so that η ∈ θ[SL(p,R)](p). This means that Φ(η) = ω.
By definition, ωη1+η2 = ωη1 + ωη2 and ωcη = cωη for any c ∈ R. We also have that
ωη = 0 if and only if η = 0. Thus Φ is an R-linear isomorphism.

In order to simplify the arguments, we consider the case p = 2. For a vector field

η = η1(y1, y2)
∂

∂y1
+ η2(y1, y2)

∂

∂y2
,

η ∈ θ[SL(2,R)](2) if and only if ∂η1/∂y1 + ∂η2/∂y2 = 0. Therefore, we have

d(η2dy1 − η1dy2) =

(
∂η1
∂y1

+
∂η2
∂y2

)
dy2 ∧ dy1 = 0.

By the Poincaré lemma, there exists a function germ f ∈ E2 such that

η1 = − ∂f

∂y2
, η2 =

∂f

∂y1
.

Here, we can choose f ∈ E2 with f(0) = 0. Thus we have

θ[SL(2,R)](2) =

{
− ∂f

∂y2

∂

∂y1
+

∂f

∂y1

∂

∂y2

∣∣∣ f ∈ M2

}
.

We define a mapping Δ : M2 −→ θ[SL(2,R)](2) by

Δ(f) = − ∂f

∂y2

∂

∂y1
+

∂f

∂y1

∂

∂y2
.

Then Δ is an R-linear isomorphism. It follows that θ[SL(2,R)](2) ∼= M2 as R-
vector spaces. Therefore, θ[SL(2,R)](2) is an infinite dimensional R-vector space. If
η1(0) = η2(0) = 0, then f ∈ M2

2, so that θ[SL(2,R)]0(2) ∼= M2
2.
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On the other hand, suppose that λ(y1, y2) ∈ E2[SL(2,R)]. Then we have

η1(y1, y2)
∂λ

∂y1
+ η2(y1, y2)

∂λ

∂y2
= 0,

where ∂η1/∂y1+∂η2/∂y2 = 0 and η1(0, 0) = η2(0, 0) = 0. If we choose linear function
germs η1 = a1y1 + a2y2, η2 = b1y1 + b2y2, then b2 = −a1. It follows that

(a1y1 + a2y2)
∂λ

∂y1
+ (b1y1 − a1y2)

∂λ

∂y2
= 0.

If we substitute a1 = 0, a2 = b1 = 1, then

y2
∂λ

∂y1
+ y1

∂λ

∂y2
= 0.

Moreover, if we substitute a1 = 1, a2 = b1 = 0, then

y1
∂λ

∂y1
− y2

∂λ

∂y2
= 0.

Therefore, we have a system of linear equations:{
y2

∂λ
∂y1

+ y1
∂λ
∂y2

= 0

y1
∂λ
∂y1

− y2
∂λ
∂y2

= 0

If y21 + y22 
= 0, we have ∂λ/∂y1 = ∂λ/∂y2 = 0. Taking the limit (y1, y2) −→ (0, 0),
we also have (∂λ/∂y1)(0, 0) = (∂λ/∂y2)(0, 0) = 0. Therefore, λ is a constant function.
Hence, we have E2[SL(2,R)] = R. Therefore, θ[SL(p,R)](2) and θ[SL(2,R)]0(2) are
not finitely generated E2[SL(2,R)]-modules.

Example 4.9. We consider the symplectic linear group Sp(2p,R) ⊂ GL(2p,R),
which is defined by

Sp(2p,R) =
{
A ∈ GL(2p,R) | tAJ2pA = J2p

}
.

Here,

J2p =

(
0 Ip

−Ip 0

)
.

In this case, the corresponding Lie algebra is

sp(2p,R) = {X ∈ M2p(R) | tXJ2p + J2pX = O}.

A diffeomorphism germ ψ : (R2p, 0) −→ (R2p, 0) with Jψ(y) ∈ Sp(2p,R) for any y ∈
(R2p, 0) is a symplectic diffeomorphism germ for the canonical symplectic structure ω
on R

2p.
We now consider the case p = 1. In this case it is easy to show that Sp(2,R) =

SL(2,R), so that sp(2,R) = sl(2,R) and

θ[Sp(2,R)](2) = θ[SL(2,R)](2) =

{
− ∂f

∂y2

∂

∂y1
+

∂f

∂y1

∂

∂y2

∣∣∣ f ∈ M2

}
.
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On the other hand, E2[Sp(2,R)] = E2[SL(2,R)] = R. For p ≥ 2, the structure of
θ[Sp(2p,R)] is complicated.

Example 4.10. 1) We consider the following example:

D∗(p1, p2) =
{(

A O
O B

)
∈ GL(p,R)

∣∣∣ A ∈ GL(p1,R), B ∈ GL(p2,R)

}
,

where p = p1 + p2. Actually, we have D∗(p1, p2) = GL(p1,R) ⊕ GL(p2,R). Then we
have two Lie subgroups

H =

{(
A O
O Ip2

) ∣∣ A ∈ GL(p1,R)

}
= GL(p1,R)⊕ {Ip2

},

K =

{(
Ip1 O
O B

) ∣∣ B ∈ GL(p2,R)

}
= {Ip1

} ⊕GL(p2,R).

In this case, we have D∗(p1, p2) = HK ∼= H ×K. The corresponding Lie algebras are

h =

{(
A O
O O

)
∈ Mp(R)

∣∣∣ A ∈ Mp1(R)

}
= Mp1(R)⊕ {O},

k =

{(
O O
O B

)
∈ Mp(R)

∣∣∣ B ∈ Mp2(R)

}
= {O} ⊕Mp2(R)

and d(p1, p2) = h⊕ k = Mp1
(R)⊕Mp2

(R). Moreover, we have

θ[H]0(p) = Mp1
θ(p1), θ[K]0(p) = Mp2

θ(p2)

and

θ[D∗(p1, p2)]0(p) = θ[H]0(p)⊕ θ[K]0(p) ∼= Mp1
θ(p1)⊕Mp2

θ(p2)

as R-vector spaces. We can show that Ep[D∗(p1, p2)] = R, Ep[H] = {λ(y) | y =
(y1, . . . yp1

) ∈ (Rp1 , 0)} = Ep1
and Ep[K] = {λ(y) | y = (yp1+1, . . . yp) ∈ (Rp2 , 0)} =

Ep2
, where R

p = R
p1 × R

p2 . It follows that Ep[D∗(p1, p2)] = Ep[H] ∩ Ep[K] = R. By
definition, all of the above rings are DA-algebras.
2) We consider the following example:

T ∗
r (p1, p2) =

{(
A B
O C

)
∈ GL(p,R)

∣∣∣ A ∈ GL(p1,R), C ∈ GL(p2,R)

}
.

Here, we write T ∗
r (p1, p2) = GL(p1,R)⊕̃rGL(p2,R). Then we have two Lie subgroups

N =

{(
A B
O Ip2

) ∣∣ A ∈ GL(p1,R)

}
= GL(p1,R)⊕̃r{Ip2},

K =

{(
Ip1

O
O C

) ∣∣ C ∈ GL(p2,R)

}
= {Ip1

} ⊕GL(p2,R).

In this case, N is a normal subgroup of T ∗
r (p1, p2). Then we have T ∗

r (p1, p2) = NK ∼=
N �K (i.e. the semi-direct product). The corresponding Lie algebras are

n =

{(
A B
O O

)
∈ Mp(R)

∣∣∣ (A,B) ∈ Mp1×p(R)

}
,
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k =

{(
O O
O C

)
∈ Mp(R)

∣∣∣ C ∈ Mp2
(R)

}
= {O} ⊕Mp2

(R)

and tr(p1, p2) = n⊕ k. Moreover, we have

θ[N ]0(p) = Mpθ(πp1
), θ[K]0(p) = Mp2

θ(p2)

and

θ[T ∗
r (p1, p2)]0(p) = θ[N ]0(p)⊕ θ[K]0(p) = Mpθ(πp1

)⊕Mp2
θ(p2)

as an R-vector space, where πp1
: R

p = R
p1 × R

p2 −→ R
p1 is the canonical

projection and θ(πp1) = C∞(p, p1). We can show that Ep[T ∗
r (p1, p2)] = Ep[K] =

{λ(y) | y = (yp1+1, . . . yp) ∈ (Rp2 , 0)} = Ep2 , Ep[N ] = Ep, where R
p = R

p1 × R
p2 .

Since Ep[T ∗
r (p1, p2)] = Ep[K] ⊂ Ep = Ep[N ], we have Ep[T ∗

r (p1, p2)] = Ep[N ] ∩ Ep[K].
Therefore, θ[T ∗

r (p1, p2)]0(p) is an Ep2
-module, which is not finitely generated. How-

ever, θ[N ]0(p) is a finitely generated Ep[N ]-module and θ[K]0(p) is a finitely generated
Ep[K]-module, respectively. By definition, all of the above rings are DA-algebras.

Moreover, we have the following examples.

Example 4.11. 1) We consider the subgroup SO(p) ∩ T ∗
r (p1, p2) of T ∗

r (p1, p2)
for p = p1 + p2. Then we can show that

SO(p) ∩ T ∗
r (p1, p2) =

{(
A O
O B

) ∣∣∣ A ∈ SO(p1), B ∈ SO(p2)

}
= SO(p1)⊕ SO(p2).

It follows that

θ[SO(p) ∩ T ∗
r (p1, p2)]0(p)

∼= so(p1)⊕ so(p2).

2) We consider Sp(2n) ∩ T ∗
r (n, n). Then we can show that

Sp(2n) ∩ T ∗
r (n, n) =

{(
tC−1 B
O C

) ∣∣∣ C ∈ GL(n,R),tCB =tBC

}
,

which is denoted by L(2n). The condition tCB =tBC means that tCB is a symmetric
matrix. For any symmetric matrix D ∈ Mn(R), we have B =tC−1D, so that we have

L(2n) =

{(
tC−1 tC−1D
O C

) ∣∣∣ C ∈ GL(n,R),tD = D

}
.

It follows that the corresponding Lie algebra is

l(2n) =

{(−tX Y
O X

) ∣∣∣ X ∈ Mn(R),
tY = Y

}
.

Therefore, we can show that θ[L(2n)]0(2n) is{
−

n∑
i=1

(
n∑

k=1

∂ξk
∂yi

(y)xk +
∂η

∂yi
(y)

)
∂

∂xi
+

n∑
i=1

ξi(y)
∂

∂yi
| ξi(y) ∈ Mn, η(y) ∈ M2

n

}

and

θ[L(2n)](2n) =

〈
∂

∂x1
, . . .

∂

∂xn
,

∂

∂y1
, . . .

∂

∂yn

〉
R

+ θ[L(2n)]0(2n),
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where (x, y) = (x1, . . . xn, y1, . . . , yn) ∈ (Rn × R
n, 0).

By definition, Φ(x, y) ∈ Diff[L(2n)](2n) if and only if Φ : (Rn × R
n, 0) −→

(Rn × R
n, 0) is a symplectic diffeomorphism of the form Φ(x, y) = (φ1(x, y), φ2(y)),

where φ2 ∈ Diff (n). A symplectic diffeomorphism germ with this property is called
a Lagrangian diffeomorphism germ in the theory of Lagrangian singularities (cf. [2,
Part III]). In this case we can show that E2n[L(2n)] = R.

5. Infinitesimal structures of geometric equivalence. In this section we
now consider A[G](n, p) for a linear Lie group G ⊂ GL(p,R). For a map germ f :
(Rn, 0) −→ (Rp, 0), we have an R-linear map

ωf[G] = ωf |θ[G](p) : θ[G](p) −→ θ(f).

We define

TL[G]e(f) = ωf(θ[G](p)), TL[G](f) = ωf(θ[G]0(p)).

Then θ(f) is an Ep[G]-module through f∗
[G] = f∗|Ep[G] : Ep[G] −→ En and ωf[G] is an

Ep[G]-homomorphism over f∗
[G] : Ep[G] −→ En. In this case,

(ωf[G], tf, θ[G](p), θ(n), θ(f))

is the mixed homomorphism over f∗
[G], which is defined in [27]. In §4 we have consid-

ered the case for G = SL(p,R) or G = SO(p). Then we have Ep[SL(p,R)] = R and
the above mixed homomorphism is not a finite type. However, we have shown that
Ep[SO(p)] = R and the above mixed homomorphism is a finite type.

We define

TL[G]e(f) = ωf[G](θ[G](n)),

TL[G](f) = ωf[G](θ[G]0(n)),

TRe(f) = tf(θ(n)),

TR(f) = tf(Mnθ(n)).

Then we also define

TA[G]e(f) = TRe(f) + TL[G]e(f) = tf(θ(n)) + ωf[G](θ[G](n)),

TA[G](f) = TR(f) + TL[G](f) = tf(Mnθ(n)) + ωf[G](θ[G]0(n)).

If G = GL(p,R), then

TA[GL(p,R)]e(f) = TAe(f) and TA[GL(p,R)](f) = TA(f)

in [37].

Remark 5.1. Here, we have a natural question for A[G]: When is A[G] a
geometric subgroup ofA? It depends on the choice ofG. For example ifG = GL(p,R),
then A[GL(p,R)] is A itself, so that it is a geometric subgroup of A. There are many
examples of G ⊂ GL(p,R) such that A[G] is not a geometric subgroup of A (cf. §6.2
and §6.3). Since R is a geometric subgroup of A, the situation depends on L[G].

We now focus on R×G-equivalence. By definition, (R×G)(n, p) ⊂ A[G](n, p) ⊂
A(n, p). For a map germ f : (Rn, 0) −→ (Rp, 0), we set g(f) = {X.f | X ∈ g}, where
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X.f(x) = X. tf(x) for any x ∈ (Rn, 0). Then we define the extended tangent spaces
and the tangent spaces of the R×G-orbit through f by

T (R×G)e(f) = TRe(f) + g(f), T (R×G)(f) = TR(f) + g(f).

For any X ∈ g, we define ξX : (Rp, 0) −→ (Rp, 0) by ξX(y) = X.ty. Then ξX is a
linear mapping, so that it an element of θ(p). In this sense, we can embed g into θ(p).
Therefore we have ωf |g : g −→ θ(f), which is a R-linear mapping. This means that
g(f) = ωf(g). Here tf : θ(n) −→ θ(f) is an En-homomorphism and ωf |g : g −→ g(f)
is an R-linear mapping. Hence, (ωfg, tf, g, θ(n), θ(f)) is the mixed homomorphism of
finite type over f∗|R = ι : R ⊂ En. Therefore, R×G is a geometric subgroup of A in
the sense of Damon [8]. It sounds a good news, but it is not so good as the following
proposition shows.

Proposition 5.2. Let G ⊂ GL(p,R) be a Lie subgroup and f : (Rn, 0) −→
(Rp, 0) a map germ. If p > 1 and dimR θ(f)/T (R×G)e(f) < ∞, then f is a submer-
sion germ.

Proof. Since TRe(f) ⊂ T (R×G)e(f), we have

dimR θ(f)/TRe(f) = dimR θ(f)/T (R×G)e(f) + dimR(T (R×G)e(f))/TRe(f).

Here, dimR(T (R×G)e(f))/TRe(f) = dimR g(f) < ∞. Therefore, if dimR θ(f)/T (R×
G)e(f) < ∞, then dimR θ(f)/TRe(f) < ∞.

On the other hand, it is known (cf. [29, Proposition 1.11]) that if p > 1 and
dimR θ(f)/TRe(f) < ∞, then f is a submersion.

For p = 1, GL(1,R) = R
∗ = R \ {0}, so that there are only three cases: G = {1},

{±1}, or R∗. Therefore, all the cases, classifications by R×G-equivalence are almost
the same as the case G = {1} (i.e. R-equivalence). Moreover, if p > n, then there are
no finitely determined map germs relative to R×G.

6. Examples of A[G]-equivalence. In this section we give some interesting
examples of A[G]-equivalence for G ⊂ GL(p,R). We give a survey on the previous
results from the view point of our framework on A[G]-equivalence.

6.1. Isometric A-equivalence. For f = (f1, f2) : (R
n, 0) −→ (R2, 0), we have

TL[SO(2)]e(f) = ωf(θ(SO(2))(2))

=

〈
∂

∂y1
◦ f, ∂

∂y2
◦ f
〉

R

+

〈(
f2

∂

∂y1
◦ f − f1

∂

∂y2
◦ f
)〉

R

and

TL[SO(2)](f) =

〈(
f2

∂

∂y1
◦ f − f1

∂

∂y2
◦ f
)〉

R

.

On the other hand, let f = (f1, . . . , fp) : (R
n, 0) −→ (Rp, 0) be a map germ. By

the similar arguments to the above case, we have

TL[SO(p)]e(f) =

〈{
∂

∂yi
◦ f
∣∣∣ 1 ≤ i ≤ p

}〉
R

+

〈{(
fj

∂

∂yi
◦ f − fi

∂

∂yj
◦ f
) ∣∣∣ 1 ≤ i < j ≤ p

}〉
R
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and

TL[SO(p)](f) =

〈{(
fj

∂

∂yi
◦ f − fi

∂

∂yj
◦ f
) ∣∣∣ 1 ≤ i < j ≤ p

}〉
R

.

This is a geometric subgroup of A in [8]. By Proposition 3.5, we have
Diff0[SO(p)](p) = SO(p). Following the classical Euclidean differential geometry, we
say that f, g : (Rn, 0) −→ (Rp, 0) are congruent if there exists a diffeomorphism germ
φ : (Rn, 0) −→ (Rn, 0) and A ∈ SO(p) such that f ◦φ(x) = A.g(x) for any x ∈ (Rn, 0).
In our terminology f, g are congruent if and only if f, g are R×SO(p)-equivalent. By
Theorem 4.6, we have the following theorem.

Theorem 6.1. For map germs f, g : (Rn, 0) −→ (Rp, 0), f, g are A0[SO(p)]-
equivalent if and only if f, g are congruent.

This theorem means that the theory of A0[SO(p)]-equivalence among map germs
is the Euclidean differential geometry on map germs. Then we have the following
corollary of Proposition 5.2 and Theorem 6.1.

Corollary 6.2. If p > n, then there are no map germ f : (Rn, 0) −→ (Rp, 0)
such that dimR θ(f)/TA[SO(p)]e(f) < ∞.

In the case when n = 1, p = 2, a map germ f : (R, 0) −→ (R2, 0) is a planer curve
germ. If f is non-singular, we have the curvature function germ κf : (R, 0) −→ R.
Since the positive or negative sign of the curvature depends on the orientation of the
curve, we have κf◦φ(x) = sig(φ)κf (φ(x)) for a diffeomorphism germ φ : (R, 0) −→
(R, 0), where

sig(φ) =

{
+1 if φ̇ > 0,

−1 if φ̇ < 0.

By the classical classification theorem for regular curves in the Euclidean plane R
2,

we have the following proposition.

Proposition 6.3. Let f, g : (R, 0) −→ (R2, 0) be regular map germs. Then
f, g are A0[SO(2)]-equivalent if and only if there exists a diffeomorphism germ φ :
(R, 0) −→ (R, 0) such that κg(x) = sig(φ)κf (φ(x)) for any x ∈ (R, 0).

For a general map germ f : (R, 0) −→ (R2, 0), we define its type as follows:
For a function germ f : (R, 0) −→ (R, 0), we say that f has type Ak if f ′(0) =
f ′′(0) = · · · f (k)(0) = 0 and f (k+1)(0) 
= 0. We also say that f has type A≥k if
f ′(0) = f ′′(0) = · · · f (k)(0) = 0. We have the following lemma [4, Theorem 3.3].

Lemma 6.4. Let f : (R, 0) −→ (R, 0) be a function germ of type Ak. Then there
exists a diffeomorphism germ φ : (R, 0) −→ (R, 0) such that f ◦ φ(x) = ±xk+1, where
+ or − according as f (k+1)(0) is positive or negative.

We now consider a map germ f : (R, 0) −→ (R2, 0) with f(x) = (f1(x), f2(x)).
We say that f has type Ak if one of f1 or f2 has type Ak and another has type A≥k.
Then we have the following proposition.

Proposition 6.5. Suppose f : (R, 0) −→ (R2, 0) has type Ak. Then there
exists a function germ h : (R, 0) −→ R such that f is A0[SO(2)]-equivalent to
(±xk+1, xk+1h(x)).
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Proof. For f = (f1, f2), suppose f1 has type Ak and f2 has type A≥k. By Lemma
6.4, there exists a diffeomorphism germ φ : (R, 0) −→ (R, 0) such that f1 ◦ φ(x) =
±xk+1. By the Hadamard lemma, there exists h such that f2 ◦ φ(x) = xk+1h(x).
Instead, if f2 has type Ak and f1 has type A≥k, there exists a diffeomorphism germ
φ : (R, 0) −→ (R, 0) and a function germ g : (R, 0) −→ R such that f ◦ φ(x) =
(xk+1g(x),±xk+1) by the similar reason to above. Then we have(

0 1
−1 0

)(
xk+1g(x)
±xk+1

)
=

( ±xk+1

xk+1(−g(x))

)
.

If we put h(x) = −g(x), then f is A[SO(2)]-equivalent to (±xk+1, xk+1h(x)). Since∣∣∣∣ 0 1
−1 0

∣∣∣∣ = 1, it is actually A0[SO(2)]-equivalence.

Remark 6.6. In [3] a classification of A simple map germs (C, 0) −→ (C2, 0)
has been given. Here A = A[GL(2,C)]. They have shown that f is A-equivalent
to (xk+1, xk+1h(x)) and f is not A simple if k > 3 or k = 3 and h has type A≥4.
However, for the classification by A[SO(2)]-equivalence, there might be no A[SO(2)]
simple germs.

We consider a map germ f : (R, 0) −→ (R2, 0) with type Ak. By Proposition 6.5,
we may assume that f(x) = (±xk+1, xk+1h(x)). In this case we have

ḟ(x) = (±(k + 1)xk, xk((k + 1)h(x) + xḣ(x))),

so that the singular point of f is the origin. We define

μ(x) =
1√

(k + 1)2 + ((k + 1)h(x) + xḣ(x))2
(±(k + 1), (k + 1)h(x) + xḣ(x)).

Then μ(x) is a unit vector tangent to f(R) at x 
= 0 (i.e. a regular point of f). We

also define ν(x) = Jμ(x), where J =

(
0 −1
1 0

)
. It follows that {ν(x),μ(x)} is an

orthonormal frame along f. Moreover, we have a map germ (f,ν) : (R, 0) −→ R
2×S1

with ḟ(x)·ν(x) = 0, where a·b is the canonical scaler product of R2. This means that f
is a frontal in the sense of [14]. If we define �f (x) = ν̇(x)·μ(x) and βf (x) = ḟ(x)·μ(x),
we have the following Frenet-type formulae [14]:(

ν̇(x)
μ̇(x)

)
=

(
0 �f (x)

−�f (x) 0

)(
ν(x)
μ(x)

)
, ḟ(x) = βf (x)μ(x).

The following uniqueness theorem was shown in [14]:

Theorem 6.7. Let f, g : (R, 0) −→ (R2, 0) be frontal germs. Then f, g are
congruent if there exists a diffeomorphism germ φ : (R, 0) −→ (R, 0) such that φ̇(x) >
0 and

φ̇(x)(�f ◦ φ(x), βf ◦ φ(x)) = (�g(x), βg(x))

for any x ∈ (R, 0).
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As a special case, we have a classification theorem on map germ f : (R, 0) −→
(R2, 0) with type Ak. For f(x) = (±xk+1, xk+1h(x)), we can show that

�f (x) =
±(k + 1)((k + 2)ḣ(x) + xḧ(x))√

((k + 1)2 + ((k + 1)h(x) + xḣ(x))2)3
,

βf (x) = xk

√
(k + 1)2 + ((k + 1)h(x) + xḣ(x))2.

Therefore, the basic invariant (�f , βf ) depends on h(x).
On the other hand, we consider n = 2 and p = 3. For a regular surface, we have

the Monge normal form. By the classification theorem for quadratic forms, we have
the following proposition.

Proposition 6.8. Let f : (R2, 0) −→ (R3, 0) be an immersion germ. Then f is
R× SO(3)-equivalent (i.e. A0[SO(3)]-equivalent) to the following germ:

g(x1, x2) = (x1, x2, λ1x
2
1 + λ2x

2
2 + a30x

3
1 + a21x

2
1x2 + a12x1x

2
2 + a03x

3
2 +O(4)).

Here, λ1, λ2 are the principal curvatures of f at the origin.

The above map germ g is called a Monge normal form. Recently, R × SO(3)-
equivalence has been used for the study of differential geometry of singular surfaces
in R

3 (cf. [13, 15, 24, 25, 38]).

6.2. Volume preserving A-equivalence. We now consider the case when G =
SL(p,R). In this case, A[SL(p,R)]-equivalence is volume preserving A-equivalence
on the target space. By Example 4.7, θ[SL(p,R)](p) is not a finitely generated
(Ep[SL(p,R)] = R)-module, so that L[SL(p,R)] and A[SL(p,R)] are not geometric
subgroups of A in the sense of Damon [8]. Therefore, the usual techniques of the sin-
gularity theory cannot work properly. However, as Martinet (cf. [26, page 50]) pointed
out, the group Diff[SL(p,R)](p) is big enough that there is still some hope of finding
a reasonable classification theorem by volume preserving A-equivalence. Actually,
Domitrz and Rieger investigated this equivalence in [9]. In their paper A[SL(p,R)]
is written by AΩp

. They called the geometry associated with Diff[SL(p,R)](p) a uni-
modular geometry. For convenience, they adopted A[SL(p,C)] instead of A[SL(p,R)].
One of their classifications is as follows.

Proposition 6.9 ([9]). Any A[SL(2,C)]-simple map-germ f : (Cn, 0) −→
(C2, 0), n ≥ 2, is A[SL(2,C)]-equivalent to one of the following list of germs :

(x1, x2); (x1, x
2
2+Q); (x1, x1x2+x3

2+Q); (x1, x
3
2+xk

1x2+Q), k > 1; (x1x1x2+x4
2+Q),

where Q =
∑n

i=3 x
2
i for n > 2 and Q = 0 for n = 2.

Since SL(2,C) = Sp(2,C), the above list also gives a classification of A[Sp(2,C)]-
simple map germs (Cn, 0) −→ (C2, 0), n ≥ 2. For n = 1, Ishikawa and Janeczko
classified A[Sp(2,C)]-simple map germs (C, 0) −→ (C2, 0) in [18]. However, classifi-
cations by A[Sp(2p)]-equivalence for general p is much complicated.

Moreover, (R × SL(p,R))(n, p) is a proper subgroup of A[SL(p,R)](n, p). The
notion of R × SL(p,R)-equivalence is known to be equi-affine congruence. We say
that f, g : (Rn, 0) −→ (Rp, 0) are equi-affine congruent if there exist φ ∈ Diff (n) and
A ∈ SL(p,R) such that f ◦ φ(x) = A.g(x) for any x ∈ (Rn, 0). For a regular curve
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f : (R, 0) −→ (R2, 0) without inflection points, an equi-affine curvature of f is defined
and it is denoted by κe

f (cf. [30]). The following uniqueness theorem is known.

Proposition 6.10. Let f, g : (R, 0) −→ (R2, 0) be regular map germs without
inflection points. Then f, g are R × SL(2,R)-equivalent (i.e. equi-affine congruent)
if and only if there exists a diffeomorphism germ φ : (R, 0) −→ (R, 0) such that
κe
g(x) = sig(φ)κe

f (φ(x)) for any x ∈ (R, 0).

The equi-affine geometry for singular curves is also an interesting subject. More-
over, the surface theory (i.e. n = 2, p = 3) is also quite interesting. These are our
future assignments. As a consequence, there is a big gap between the unimodular
geometry and the equi-affine geometry. This is completely different from the case
when G = SO(p).

6.3. Bi-A-equivalence. We consider a map germ f = (f1, f2) : (Rn, 0) −→
(Rp1×R

p2 , 0) which is considered to be a divergent diagram of map germs (Rp1 , 0)
f1←−

(Rn, 0)
f2−→ (Rp2 , 0). The notion of bi-A-equivalence among map germs of the form

f = (f1, f2) : (Rn, 0) −→ (Rp1 × R
p2 , 0) was introduced in [7, 11, 31]. We say that

f = (f1, f2) and g = (g1, g2) are bi-A-equivalent if there exist diffeomorphism germs
φ : (Rn, 0) −→ (Rn, 0) and ψi : (R

p, 0) −→ (Rpi , 0), (i = 1, 2), such that fi◦φ = ψi◦gi.
We consider the Lie groupD∗(p1, p2) ⊂ GL(p,R), where p = p1+p2. Then f = (f1, f2)
and g = (g1, g2) are A[D∗(p1, p2)]-equivalent if and only if these are bi-A-equivalent.

In this case, we have θ[D∗(p1, p2)](p) = θ(p1)⊕ θ(p2). Then

TA[D∗(p1, p2)]e(f) = tf(θ(n)) + ωf(θ(p1)⊕ θ(p2)),

TA[D∗(p1, p2)](f) = tf(Mnθ(n)) + ωf(Mp1θ(p1)⊕Mp2θ(p2)).

This is not a geometric subgroup of A in the sense of Damon [8]. In particular, if
we consider the case p = 2, the bi-A-stable map germs were classified by Dufour [11].
Moreover, a formal classification for formal finite bi-A-codimensional map germs was
given by Mancini, Ruas and Texieira [23].

6.4. Strict bi-A-equivalence. Here we also consider divergent diagrams

(Rp1 , 0)
f1←− (Rn, 0)

f2−→ (Rp2 , 0). We say that f = (f1, f2) and g = (g1, g2) are
strictly bi-A-equivalent if there exist diffeomorphism germs φ : (Rn, 0) −→ (Rn, 0)
and ψ2 : (Rp, 0) −→ (Rp2 , 0) such that f1 ◦ φ = g1 and f2 ◦ φ = ψ2 ◦ g2. Then we
consider the following Lie group:

{Ip1
} ⊕GL(p2,R) =

{(
Ip1

0
0 A

) ∣∣∣ A ∈ GL(p2,R)

}
In this case, we have θ[{Ip1

} ⊕GL(p2,R)](p) = {0} ⊕ θ(p2), so that

TA[{Ip1} ⊕GL(p2,R)]e(f) = tf(θ(n)) + ωf({0} ⊕ θ(p2)),

TA[{Ip1
} ⊕GL(p2,R)](f) = tf(Mnθ(n)) + ωf({0} ⊕Mp2

θ(p2)).

This is a geometric subgroup of A in the sense of Damon [8]. By definition, f =
(f1, f2), g = (g1, g2) : (R

n, 0) −→ (Rp1 × R
p2 , 0) are A[{Ip1

} ⊕GL(p2,R))]-equivalent
if and only if these germs are strictly bi-A-equivalent. However, this equivalence is
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too strong. If f = (f1, f2), g = (g1, g2) are strictly bi-A-equivalent, then f1, g1 are
R-equivalent. By the same reason as Proposition 5.2 (cf. [29, Proposition 1.11]), f1 is
a submersion for p1 > 1 and dimR θ(f)/TA[{Ip1

} ⊕GL(p2,R)]e(f) < ∞. We remark
that even if p1 = 1, functional moduli appear for very low dimensions (i.e. p2 = 2,
[12]). In order to avoid functional moduli, we consider another Lie group defined by

(1+, GL(p2,R)) =

{(
1 b
0 A

) ∣∣∣ b ∈ R
p2 , A ∈ GL(p2,R)

}
⊂ GL(p,R).

Then f, g are A[(1+, GL(p2,R))]-equivalent if and only if there exist diffeomorphism
germs φ : (Rn, 0) −→ (Rn, 0), ψ : (Rp2 , 0) −→ (Rp2 , 0) and a function germ α :
(Rp2 , 0) −→ (R, 0) such that f1(x) + α(f2(x)) = g1 ◦ φ(x) and ψ ◦ f2 = g2 ◦ φ. In this
case, the corresponding Lie algebra is

(0+,Mp2(R)) =

{(
0 b
0 X

) ∣∣∣ b ∈ R
p2 , X ∈ Mp2(R)

}
⊂ Mp(R),

so that we have

θ[(1+, GL(p2,R))](p) =

〈
∂

∂x
,

∂

∂y1
, . . .

∂

∂yp2

〉
Ep2

,

where (x, y1, . . . yp2
) ∈ R× R

p2 = R
p. Therefore, we have

TA[(1+, GL(p2,R))]e(f) = tf(θ(n)) + ωf

(〈
∂

∂x
,

∂

∂y1
, . . .

∂

∂yp2

〉
Ep2

)
,

TA[(1+, GL(p2,R))](f) = tf(Mnθ(n)) + ωf

(〈
∂

∂x
,

∂

∂y1
, . . .

∂

∂yp2

〉
Mp2

)
.

This is a geometric subgroup of A in the sense of Damon [8]. In [12] a generic
classification of f = (f1, f2) : (R2, 0) −→ (R3, 0) = (R × R

2, 0) with respect to
A[{1} ⊕GL(2,R)]-equivalence was given. One of the normal form is

f1(x1, x2) = ±x1 + α ◦ f2(x1, x2), f2(x1, x2) = (x3
1 + x1x2, x2).

Here α : (R2, 0) −→ R is the functional modulus. By definition, it is
A[(1+, GL(p2,R))]-equivalent to (±x1, x

3
1 + x1x2, x2). Therefore, A[(1+, GL(p2,R))]-

equivalence is a strict bi-A-equivalence modulo functional uni-moduli. It is known
that the functional moduli play an important role in the geometry of webs.

6.5. Projections of map germs.

6.5.1. General projection. We consider map germ f = (f1, f2) : (R
n, 0) −→

(Rp = R
p1 ×R

p2 , 0) and the canonical projection π2 : (Rp1 ×R
p2 , 0) −→ (Rp1 , 0). We

say that f, g : (Rn, 0) −→ (Rp1 × R
p2 , 0) are projection A-equivalent with respect to

π2 if there exist φ ∈ Diff (n) and Ψ ∈ Diff (p) of the form Ψ(x, y) = (ψ1(x, y), ψ2(y))
such that Ψ◦f = g◦φ. Then we consider the Lie group T ∗

r (p1, p2) ⊂ GL(p,R). We can
show that f, g : (Rn, 0) −→ (Rp1 ×R

p2 , 0) are projection A-equivalent with respect to
π2 if and only if these are A[T ∗

r (p1, p2)]-equivalent. By Example 4.10, 2), we have

TA[T ∗
r (p1, p2)]e(f) = tf(θ(n)) + ωf(θ(πp1

)⊕ θ(p2)),
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TA[T ∗
r (p1, p2)](f) = tf(Mnθ(n)) + ωf(Mpθ(πp1)⊕Mp2θ(p2)).

This is a geometric subgroup of A in the sense of Damon [8]. We expect that there
might be interesting properties on this equivalence. For example, one of the results of
Romero-Fuster, Mancini and Soares-Ruas [16, Lemma 2] is interpreted by using this
equivalence as follows:

Proposition 6.11. Suppose that f = (f1, f2), g = (g1, g2) : (R
n, 0) −→ (Rp1 ×

R
p2 , 0) are immersion germs. Then f2, g2 are A-equivalent if and only if f, g are

A[T ∗
r (p1, p2)]-equivalent.

Since A-equivalence among projections of surfaces (i.e. n = 2, p = 3) is a useful
tool for the study of differential geometry of surface from the view point of contact with
lines or planes, there might be interesting applications of A[T ∗

r (p1, p2)]-equivalence for
general singular surfaces. Moreover, Mancini and Soares-Ruas [22] investigated the
following equivalence relation: Two map germs f = (f1, h), g = (g2, h) : (R

n, 0) −→
(Rp1 ×R

p2 , 0) are h-equivalent if there exists φ ∈ Diff (n), Ψ ∈ Diff (p1, p2) of the form
Ψ(y, z) = (ψ1(y, z), ψ2(z)) for (y, z) ∈ R

p1 × R
p2 such that Ψ ◦ f = g ◦ φ. By defi-

nition, f = (f1, h), g = (g2, h) are h-equivalent if and only if these are A[T ∗
r (p1, p2)]-

equivalent.

6.5.2. Lagrangian equivalence. We now consider a symplectic manifold R
n×

R
n with the canonical symplectic structure ω =

∑n
i=1 dxi ∧ dyi where (x, y) =

(x1, . . . , xn, y1, . . . , yn). We say that two map germs f, g : (Rm, 0) −→ (Rn × R
n, 0)

are Lagrangian equivalent if there exist φ ∈ Diff (m) and a symplectic diffeomorphism
Ψ : (Rn × R

n, 0) −→ (Rn × R
n, 0) of the form Ψ(x, y) = (ψ1(x, y), ψ2(y)) such that

Ψ ◦ f = g ◦φ. By Example 4.11, f, g are Lagrangian equivalent if and only if these are
A[L(2n)]-equivalent. In this case, we have

TA[L(2n)]e(f) = tf(θ(m)) + ωf(θ[L(2n)]),

TA[L(2n)](f) = tf(Mmθ(m)) + ωf(θ[L(2n)]0),

where θ[L(2n)]0 and θ[L(2n)] are given in Example 4.11.
We call f : (Rn, 0) −→ (Rn ×R

n, 0) an isotropic map germ if f∗ω = 0. Moreover,
f : (Rn, 0) −→ (Rn×R

n, 0) is said to be a Lagrangian immersion germ if f is isotropic
and an immersion germ. For Lagrangian immersion germs, there is a theory of gen-
erating families. A generic classification of Lagrangian immersion germs by using
generating families is well-known (cf. [2, Part III]). However, we do not know classi-
fications of general map germs f : (Rm, 0) −→ (Rn × R

n, 0) by A[L(2n)]-equivalence
so far.

7. A[G]-geometry versus classical G-geometry. The basic tools of the (local)
theory of A-equivalence are finite determinacy of map germs and the versality theorem
for unfoldings of map germs which are characterized by the algebraic structure of the
formal tangent space of the A-equivalence class. In [8] Damon gave a very wide class
of subgroups of A(n, p) for which the finite determinacy theorem and the versality
theorem hold. Those subgroups are called geometric subgroups of A. However, as we
already mentioned in this paper, A[G](n, p) for some G ⊂ GL(p,R) are not geometric
subgroups of A.

On the other hand, we defined R × G-equivalence among map germs (cf. §2).
From the view point of extrinsic differential geometry, we say that map germs
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f, g : (Rn, 0) −→ (Rp, 0) are G-congruent if they are R × G-equivalent. We call the
corresponding geometry a classical G-(differential)geometry. Since (R × G)(n, p) ⊂
A[G](n, p), a geometry corresponding to A[G]-equivalence is called an A[G]-geometry
(or, a differential G-geometry) which is categorically wider than the classical G-
geometry. The classical Euclidean differential geometry is a geometry which investi-
gates invariant quantities and properties of immersions f : (Rn, 0) −→ (Rp, 0) under
SO(p)-congruence, so that it is the classical SO(p)-geometry. It is known that the
curvatures of regular curves in R

2 are complete invariants in the Euclidian differential
geometry, which is also the functional moduli with respect to SO(2)-congruence (cf.
Proposition 6.3). We have shown in Theorem 6.1 that the A0[SO(p)]-geometry and
the classical SO(p)-geometry are the same. From this point of view, the A[GL(p,R)]-
geometry is the A-geometry, which should be called a local differential topology for
map germs. The classical GL(p,R)-geometry is usually called a full affine geometry.
Moreover, the A[SL(p,R)]-geometry is called the unimodular geometry in [9]. Since
SL(p,R) is big enough as a Lie subgroup of GL(p,R), there are not so much differ-
ence between the A[SL(p,R)]-geometry and the A[GL(p,R)]-geometry (cf. Proposi-
tion 6.9). The classical SL(p,R)-geometry is known to be the equi-affine geometry
(cf. [30]). In this case, the equi-affine curvatures for regular curves without inflec-
tions in R

2 are also the complete invariants and the functional moduli with respect
to equi-affine congruence (i.e. SL(p,R)-congruence).

Since the formal tangent space of an A[G]-equivalence class gives several informa-
tion, the calculation of tangent space might be the first step for the investigation of
the A[G]-geometry of map germs. For example, we have the following theorem which
is a generalization of Theorem 6.1.

Theorem 7.1. Let G ⊂ GL(p,R) be a connected linear Lie group. Then the
following conditions are equivalent :
(1) g ∼= θ[G]0(p) as R-vector spaces,
(2) For any η(y) =

∑p
i=1 ηi(y)(∂/∂yi) ∈ θ[G]0(p), ηi(y) (i = 1, . . . , p) are linear

functions,
(3) Diff0[G](p) = G,

Proof. We consider an R-linear mapping ι : Mp(R) −→ Mpθ(p) defined by
ι(eij) = yi(∂/∂yj), where {eij | i, j = i, . . . p} is the canonical basis of Mp(R).
Since {yi(∂/∂yj) | i, j = 1, . . . , p} are linearly independent, ι is a monomorphism.
Therefore, g ∼= ι(g) ⊂ θ[G]0(p), generally. Let {δ1, . . . δr} be a basis of g. Then
δi is denoted by a linear combination of eij . If g ∼= θ[G]0(p), then any η(y) =∑p

k=1 ηk(y)(∂/∂yk) ∈ θ[G]0(p) = ι(g) is denoted by a linear combination of yi(∂/∂yj),
so that ηk(y) are linear functions. Suppose that ηi(y) (i = 1, . . . , p) are linear func-
tions, for any η(y) =

∑p
i=1 ηi(y)(∂/∂yi) ∈ θ[G]0(p). Then ηi(y) =

∑p
k=1 aikyk.

By definition (aik) = ((∂ηi/∂yk)(y)) ∈ g for any y ∈ (Rp, 0). This means that
η(y) =

∑p
i,k=1 aikyk(∂/∂yi) = ι(

∑p
i,k=1 aikeki) ∈ ι(g). Thus we have ι(g) = θ[G]0(p).

We have shown that conditions (1) and (2) are equivalent.
We assume that conditions (1) and (2). Then we can show that condition (3)

holds exactly the same method of the proof for Theorem 4.6. If we consider the
formal tangent space of Diff0[G](p) = G, we can easily show that condition (3) implies
condition (1).

Corollary 7.2. Suppose that one of the conditions in Theorem 7.1 holds. Then
we have the following :
(1) TA[G](f) = T (R×G)(f) for any f : (Rn, 0) −→ (Rp, 0),
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(2) f, g : (Rn, 0) −→ (Rp, 0) are A0[G]-equivalent if and only if these are G-congruent.

Proof. If g ∼= θ[G]0(p) as R-vector spaces, then ωf(θ[G]0(p)) = g(f) for any f :
(Rn, 0) −→ (Rp), so that assertion (1) holds. If f, g are A0[G]-equivalent, then there
exists (φ, ψ) ∈ Diff (n)×Diff0[G](p) such that ψ◦f = g◦φ. Since Diff0[G](p) = G, f, g
are R×G-equivalent (i.e. G-congruent). The converse assertion holds by definition.

Corollary 7.2 shows that if one of the conditions in Theorem 7.1 holds, then the A[G]-
geometry and the classical G-geometry are the same. For a Lie subgroup H < G <
GL(p,R), we have θ[H]0(p) ⊂ θ[G]0(p). If condition (2) in Theorem 7.1 holds for G,
then it also holds for H. If G = SO(p1, p2), then we can show that condition (2) in
Theorem 7.1 holds, where we do not give the proof of this fact except in the case when
p1 = 0, p2 = p (cf. Example 4.4). For G = SO(4), we considerH = {1}⊕SO(3). Then
f = (f1, f2), g = (g1, g2) : (R2, 0) −→ (R × R

3, 0) are A0[{1} ⊕ SO(3)]-equivalent if
and only if these are R× ({1}⊕SO(3))-equivalent, which also means that there exists
φ ∈ Diff (2) and A ∈ SO(3) such that f1 ◦φ = g1 and f2 ◦φ = A.g2. Since f1 ◦φ = g1,
we have φ(g−1

1 (c)) = f−1
1 (c) for any c ∈ (R, 0). Therefore, if f2, g2 are immersive,

then the classical ({1} ⊕ SO(3))-geometry is the classical Euclidean geometry among
regular surfaces with singular foliations. On the other hand, the local differential
topology among surfaces with singular foliations is the A[{1} ⊕ GL(3,R)]-geometry
which is different from the full affine geometry among surfaces with singular foliations
(i.e. the classical ({1} ⊕GL(3,R))-geometry).

Moreover, we define an R-vector space

M(A[G];R×G)(f) =
TA[G](f)

T (R×G)(f)
,

which is called a relative infinitesimal moduli space of f with respect to A[G] and R×G.
By the calculations of tangent spaces of A[G]-equivalence and R×G-equivalence, the
moduli space clarifies the difference between the A[G]-geometry and the classical G-
geometry. By Theorems 4.6 and 6.1, M(A[SO(p)];R × SO(p))(f) = 0 for any map
germ f : (Rn, 0) −→ (Rp, 0). We have the following general result as a simple corollary
of Theorem 7.1 and Corollary 7.2.

Corollary 7.3. Suppose that one of the conditions in Theorem 7.1 holds for G.
Then M(A[G];R×G)(f) = 0.

However, M(A[SL(p,R)];R × SL(p,R)))(f) is an infinite dimensional vector
space. Following the examples in §6, there appear functional moduli for the clas-
sifications by G-congruence. In the previous theory of singularities, functional moduli
are usually unwelcome. However, these give important information such as curvatures
of curves etc.

On the other hand, we have other relative moduli spaces for Lie subgroups H <
G < GL(p,R):

(1) M(A[G];A[H])(f) =
TA[G](f)

TA[H](f)
,

(2) M(R×G;R×H)(f) =
T (R×G)(f)

T (R×H)(f)
.

Here, we call M(A[G];A[H])(f) a relative infinitesimal moduli space of f with respect
to A[G] and A[H]. We also call M(R×G;R×H)(f) a relative infinitesimal moduli
space of f with respect to R × G and R × H. For M(A[G];A[H])(f), we have the
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following exact sequence as R-vector spaces:

0 −→ tf(Mnθ(n)) ∩ ωf[G](θ[G]0)

tf(Mnθ(n)) ∩ ωf[H](θ[H]0))
−→ ωf[G](θ[G]0)

ωf[H](θ[H]0)

P−→ M(A[G];A[H])(f) −→ 0,

where P is defined by P ([η ◦ f ]) = {η ◦ f}. Since T (A[G])(f) = tf(Mnθ(n)) +
ωf[G](θ[G]0), P is surjective and the kernel of P is

(tf(Mnθ(n)) + ωf[H](θ[H]0)) ∩ ωf[G](θ[G]0)

ωf[H](θ[H]0)
∼= tf(Mnθ(n)) ∩ ωf[G](θ[G]0)

tf(Mnθ(n)) ∩ ωf[H](θ[H]0))
.

It follows that

dimR M(A[G];A[H])(f) ≤ dimR

ωf[G](θ[G]0)

ωf[H](θ[H]0)
≤ dimR

θ[G]0
θ[H]0

.

If G = GL(p,R) and H = SL(p,R), then θ[GL(p,R)]0 = Mpθ(p) and
θ[SL(p,R)]0(p) = ker(div), where div : Mpθ(p) −→ Ep is defined by

div η =

p∑
i=1

∂ηi
∂yi

, for η =

p∑
i=1

ηi
∂

∂yi
.

The detailed calculations of M(A[GL(p,R)];A[SL(p,R)])(f) were given in [9].
For M(R×G;R×H)(f), we also have the following exact sequence:

0 −→ tf(Mnθ(n)) ∩ g(f)

tf(Mnθ(n)) ∩ h(f)
−→ g(f)

h(f)

˜P−→ M(R×G;R×H)(f) −→ 0,

where P̃ is defined by P̃ ([X.f ]) = {X.f}. Since T (R× G)(f) = tf(Mnθ(n)) + g(f),

P̃ is surjective and the kernel of P̃ is

(tf(Mnθ(n)) + h(f)) ∩ g(f)

h(f)
∼= tf(Mnθ(n)) ∩ g(f)

tf(Mnθ(n)) ∩ h(f)
.

Moreover, we define the annihilator gf = {X ∈ g | X.f = 0}. Then we have g(f) ∼=
g/gf . Since gf = Mp(R)f ∩ g, we have

g(f)

h(f)
∼= g/gf

h/hf
∼= g+Mp(R)f

h+Mp(R)f
.

Therefore, we have

dimR M(R×G;R×H)(f) ≤ dimR

g+Mp(R)f
h+Mp(R)f

≤ dimR

g

h
= dimG− dimH < ∞.

Since dimR GL(p,R)−dimR SL(p,R) = 1, dimR M(R×GL(p,R);R×SL(p,R))(f) ≤
1. This means that the full affine geometry and the equi-affine geometry of map germs
are not so different. If one of the conditions in Theorem 7.1 holds for G, then

M(A[G];A[H])(f) = M(R×G;R×H)(f).

It follows that

dimR M(A[SO(4)];A[{1} ⊕ SO(3)])(f) ≤ dimSO(4)− dimSO(3) = 3.
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On the other hand, there is an interesting problem related to A[G]-equivalence
and R×G-equivalence which we should investigate. In [24, 25, 32] the normal forms
with respect to SO(3)-congruence of map germs (R2, 0) −→ (R3, 0), which are A-
equivalent to the cuspidal edge or the swallowtail, are detected. Since there are no
finitely determined map germs relative toR×SO(3), these are not exact normal forms
by the classification with respect to R × SO(3) = A0[SO(3)](2, 3). They only give
the Taylor polynomials of relatively lower orders by using ad hoc methods. However,
such normal forms give important geometric information of singular surfaces in R

3

which are A-equivalent to the cuspidal edge or the swallowtail. All basic geometric
invariants (i.e. various kinds of curvatures) at the origin are given by the coefficients
of these normal forms. Therefore, we propose the following important but ambiguous
problem:

Problem: semi-finite determinacy of map germs: How can we determine
the order of the Taylor polynomials whose coefficients provide enough (or, all) geo-
metric invariants with respect to R×G or A[G]?

For attacking this problem, we need extra new ideas beyond the Mather theory of
A-equivalence. We suppose that the algebraic structure of the tangent space of the
A[G]-equivalence class is one of the guideposts for solving the above problem.
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