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Abstract. Presented here is a version of my talk at the Tsinghua Sanya International Mathe-
matics Conference on Singularities in memory of John Mather. This article is partly expository. I
will briefly recount the rise of the modern theory of foliations, describe John Mather’s contributions
and then allow the discussion to lead to a report of work, old and new, on Real Analytic Gamma
Structures.

Key words. Classifying spaces, homology, real analytic.

Mathematics Subject Classification. 57R32.

1. Introduction. Presented here is a version of my talk at the Tsinghua Sanya
International Mathematics Conference on Singularities in memory of John Mather.
This article is partly expository. I will briefly recount the rise of the modern theory of
foliations, describe John Mather’s contributions, and then allow the discussion to lead
to a report of work, old and new, on Real Analytic Γ-Structures. Although the greater
part of John Mather’s research was focussed on Singularity Theory, in the early 1970’s,
while at Harvard, during a time of intense activity in Foliations, he worked on the
topology of Haefliger’s Classifying Spaces. I met John Mather in 1971, while I was
a graduate student at Dartmouth College attending Raoul Bott’s Foliations seminar.
Bott introduced me to Mather who subsequently became my thesis advisor. I am
indebted to Mather for the generosity he showed by taking me on as his graduate
student, and for his mentorship.

2. The Reeb Foliation. The modern theory of foliations began when George
Reeb produced a global example of a smooth co-dimension 1 foliation on the 3-sphere,
[13]. He conjectured that no co-dimension 1 foliation on a simply connected closed
manifold could be real analytic. Several years later Andre Haefliger proved it, [2],
and in the process initiated the homotopy theory of foliations. The constructions
introduced singularities in the definition of foliations and manifold structures. He
eventually expanded the notion of foliations to include more general structures, Γ-
Structures, which could be classified like topological groups.

Before elaborating on Haefliger’s classification I’ll describe the Reeb Foliation of
the 3-sphere. The construction begins by foliating a vertical strip by parabola-like
curves, then spinning the foliation around the central axis to obtain a foliation of
the infinite cylinder. Identifying vertically by the action of the integers gives a co-
dimension 1 foliation of the solid torus, with the torus itself as one of the leaves, as
shown in Figure 1.

The Clifford Sphere is the 3-sphere described as a union of two solid tori identified
along a torus which forms a common boundary. In Figure 2 the blue torus is the
common boundary. The viewer of the picture is standing inside the outside torus.
The z axis, identified at infinity, is the core of the outer torus. Foliating each torus
as before produces the Reeb Foliation. It can be constructed smoothly and has co-
dimension 1.
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Fig. 1. Foliated Torus

Fig. 2. Clifford Sphere

What makes this foliation not real analytic? Referring to the annulus in Figure
3, inside the inner circle the foliation produces a center. There is a transversal to
this central circle across which the leaves do not vary analytically, for the holonomy,
obtained by a rotating the transversal arc around the central circle in a neighborhood
of the central circle is the identity on one side and not on the other. Such a transition
cannot be analytic. This behavior is typical. There is always a closed transversal to the
leaves of a smooth codimension 1 foliation on a compact manifold. In a neighborhood
of the transversal Poincaré-Bendixson Theory implies that the structure must look
like a spiral toward a closed orbit. Inside the closed orbit the foliation produces
a singularity obtained by a local projection to the reals, which is a center. This
contradicts analyticity.

3. Haefliger’s Classifying Spaces. What Haefliger uncovered in his proof was
a homotopy theory of foliations. The appropriate generalization of foliation is Γ-
structure. A Γ-structure can be classified in the same way as a G-structure, where
G is a topological group. The discovery of the classifying space BΓ led naturally
to attempts to determine its algebraic invariants. For example, as we will observe,
the obstruction to constructing a real analytic foliation of the 3-sphere is an element
of the fundamental group of the classifying space associated to the pseudogroup of
orientation preserving local, real analytic homeomorphisms of the reals.

The process of classification proceeds as follows, [3].
Classically a G-bundle on a space X is represented by a 1-coycle with values in
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Fig. 3. Transverse Structure

topological group G. A Γ-structure on a space X is represented by a 1-coycle with
values in a topological groupoid Γ. Relevant to foliations is the case where Γ is the
topological groupoid of germs of elements of a pseudogroup of local homeomorphisms
of a space X. More specifically a manifold or foliation is represented by a 1-coycle on
a manifold X with values in the topological groupoid Γr

n of germs of elements, with
the sheaf topology, of the pseudogroup of local Cr homeomorphisms of n-dimensional
Euclidean Space. The local projections should be submersions. The dimension n is
the codimension of the foliation. When n is the dimension of X, then a Γ-structure
provides X with a manifold structure.

The standard classifying space constructions work in this context to give the same
result as for topological groups.

Γ(X) = [X,BΓ].

The left hand side is the set of homotopy classes of Γ-structures on X; the right hand
side is the set of homotopy classes of maps from X to the classifying space of Γ.

4. Mather’s Legacy. Mather was essentially the first to produce a general result
describing the homology of the classifying spaces for foliations in a way that allowed
for some computations. His main contributions are to be found in the following three
works.

a) Integrability in codimension 1, [10],
b) The vanishing of the homology of certain groups of homeomorphisms, [11],
c) Commutators of diffeomorphisms, [12].

4.1. Remarks. In the first paper Mather proved that there is a homology equiv-
alence from the discrete group of Cr homeomorphisms of the real line with compact
support, Gr, r = 0, 1, 2, ...,∞, to the loop space of BΓr

1. Every space has functorially
the homology of a discrete group, [9], so the power of his result is the explicit nature
of the equivalence together with the fact that it provides a context in which some
homology calculations can be made.

In the second paper Mather showed that G0 is acyclic which implies that BΓ0
1

is contractible. Mather’s proof has been formalized and generalized, and applied
extensively. We refer the reader to J. Berrick’s works, in particular, [1], which has an
extensive bibliography.

In c) Mather proved that the first homology group of Gr is trivial for r ≥ 3. Oth-
erwise almost nothing is known about its homology in terms of explicit calculations.
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4.2. Calculations, a conjecture, and some questions. That BΓr
1 is simply

connected for 0 ≤ r ≤ ∞ is an elementary result following from the fact that Γr
1 is

connected as a topological space. However the latter condition is not necessary, for
the classifying space in the holomorphic co-dimension 1 case is also simply connected,
[6].

The main result of c) above implies, in particular, that H2(BΓ
∞
1 ) = 0.

William Thurston proved that H3(BΓr
1, Z) → R is onto for both r = ∞, and

r = ω = real analytic, [14]. On the other hand BΓω
1 is an Eilenberg Maclane Space

of type (G, 1) with H1(G,Z) = 0, [3]. These results led to speculation that BΓ∞
1 and

BΓω
1 were homology equivalent.

Alberto Verjovsky and I have shown that H2(BΓ
ω
1 ) is uncountable, [4]. The

remainder of this paper will be devoted to a discussion of this result.

Deep and fundamental questions arising from Reeb’s example and Haefliger’s
counterexample remain.

What is the relationship between smooth and real analytic foliations?

What is the relationship between the smooth and real analytic classifying spaces?

What is H2(BΓ
ω
1 )?

5. The Real Analytic Classifying Space.

5.1. The Basic Structure of G = π1(BΓ
ω
1 ). The group H2(BΓ

r
1) classifies

cobordism classes of Cr, co-dimension 1, Γ-structures on closed surfaces, [15]. The
theory changes drastically in the transition from smooth to real analytic. What was
a simply connected classifying space becomes a K(G, 1), and geometry and topology
turns into combinatorial group theory.

All the information about the classifying space for codimension 1 real analytic
Γ-structures is incorporated in the discrete group G, which has the following natural
presentation coming from the simplicial construction of BΓω

1 , [5].

G = G(S) is the free group with generating set S = maximally extended, local,
orientation preserving, real analytic diffeomorphisms of the real line with the relations
f · g = f ◦ g whenever the composition is defined.

Fig. 4. Composition

Composition in S has the following dynamics. Consider the composite h = f ◦ g
of two elements of K. Suppose the domains of g and f are respectively, (a, b) and
(c, d). Then the domain of h is g−1(domain f∩ range g), unless g(b) = d in which case
the right end point of the domain of h may be to the right of b, or g(a) = c in which
case the left end point of the domain of h may be to the left of a.



GAMMA STRUCTURES ON SURFACES 367

The structure of S is that of an associative partial group, and G(S) is its universal
group. The definition of partial group, and a description of several contexts in which
partial goups arise can be found in [8].

5.2. Poincaré-Bendixson = Word Problem in G(S). A fundamental obser-
vation is that every element of S corresponds to a real analytic manifold structure on
the circle. The essential step in Haefliger’s proof of the non-existence of real analytic
co-dimension 1 foliations on the 3-sphere is that no real analytic manifold structure
on the circle and be extended to a Γω

1 -structure on the disk. This translates in the
language of G to showing that no element of S other than the identity is trivial in G.

So the proof of his result can be reduced to solving the identity problem in G;
a combinatorial problem. That step effectively replaces the appliction of Poincaré-
Bendixson in Haefliger’s proof.

A combinatorial analysis of the partial group S and its universal group G(S) leads
to the following results, which, as remarked, imply the non-existence of co-dimension
1, real analytic foliations on simply connected compact manifolds, [5].

Theorem.

a) G = G(S) is uncountable and every generator represents a distinct element
of infinite order.

b) All elements of S other than the identity are conjugate in G.
c) H1(G) = 0.

6. H2(G) is uncountable. In this final section we present the ideas behind the
construction of an uncountable number of homologically distinct Γω

1 -structures on
surfaces. The proof is in [4].

First we give an algebraic context for the result.

6.1. Ideal extensions.

Definition. An exact sequence of non-trivial groups 1 → A → E
e→ G → 1 is

an ideal extension of G if e∗ : H1(E ,Z)→ H1(G,Z) is an isomorphism.

The extension gives rise to a homomorphism H2(G,Z)
δ→ H1(A)

E → 0. where
δ is the connecting homomorphism of the five term exact sequence associated to the
short exact sequence, and H1(A)

E is the quotient of H1(A) by the conjugacy action
of E.

Ideal Extensions are designed to detect elements in the second homology of a
group which are represented by closed surfaces of genus greater than 1. These appear
in H1(A)

E .
An ideal extension exists for
a) G = fundamental group of a surface of genus greater than 1,
b) G = orientation preserving homeomorphisms of the circle, and
c) G = G(S), the fundamental group for real analytic structures.

The invariant in a) is the fundamental class. In b) it’s the Euler class for flat
circle bundles, [7]. We now introduce the invariant in c).

6.2. An ideal extension of G(S). Let Π0 denote the subgroup of G consisting
of those elements f ∈ S whose domain contains an interval of the form (a, 0) and
which map (a, 0) to (f(a), 0). Let Π1 denote the subgroup of π consisting of those
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elements f ∈ K whose domain contains an interval of the form (1, b) and which map
(1, b) to (1, f(b)).

Consider the free product Π0∗Π1, and define the evaluation ε : Π0∗Π1 → G to be
the homomorphism induced by the inclusions Π0 → G, and Π1 → G If f ∈ Πa ⊂ G,
where a ∈ {0, 1}, the corresponding generator of Π0 ∗Π1 will be denoted by (f)a, and
“a” will be called its distinguished point. An element of A = ker(ε) is a cycle.

Fig. 5. A cycle of length 2

A general cycle has the form

F = (fn+1)an+1 ∗ (fn)an ∗ · · · ∗ (f1)a1 .

Each fi has a fixed point at ai, and fn+1 is given by f−1
n+1 = fn ◦ · · · ◦ f1. If F is

reduced the ai alternate between 0 and 1.
The shortest non-trivial cycles have length 2 and take the form (f−1)a2

∗ (f)a1
,

(Figure 5). Note, if (f−1)a2
∗ (f)a1

is such a cycle then it is analytic, at both 0 and
1, for it must extend from the left of 0 to the right of 1. This leads to the invariant
constructed in [4].

In [4] we show that the following extension is ideal, which leads to the construction
of an uncountable number of elements in H1(A)

E .

1→ A → Π0 ∗Π1
ε→ π → 1.

Theorem. The group H2(G) has a subgroup which maps onto R.Moreover there
are an uncountable number of non-vanishing classes represented by cycles of length 2.

6.3. A fundamental fact, and a question. The homotopy theory of real
analytic Γ structures in co-dimension 1 reveals that there is only one real analytic
foliation locally transverse to a circle up to free homotopy, but there are uncountably
many up to base point preserving homotopy.

Can the global differences between real analytic and smooth foliations be ex-
plained by this fact, and if not, what else is involved, algebraically and geometrically?
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