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BRAID MONODROMY COMPUTATION OF REAL SINGULAR
CURVES*
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Abstract. We generalize the Moishezon Teicher algorithm that was suggested for the compu-
tation of the braid monodromy of an almost real curve. The new algorithm suits a larger family of
curves, and enables the computation of braid monodromy not only of caspidal curves, but of general
algebraic curves, with some non simple singularities. Moreover, it works also when in the fiber the
curve admits any number of imaginary points. We also provide two examples of how to use the
generalized algorithm.
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Introduction. Classification of surfaces is a major area of study in algebraic
geometry. Hence, different methods for achieving this goal have grown to be very
important. It was discovered that branch curves of hypersurfaces are invariant in
some sense for those hypersurfaces, and the braid monodromy was suggested as an
invariant for the branch curves.

The braid monodromy is an important tool in order to compute invariants of
curves and surfaces, for example it is used as one way to compute the fundamental
group of the complement of a curve. This invariant was used by Chisini [5], Kulikov
[10] and Kulikov-Teicher [11] in order to distinguish between connected components
of the moduli space of surfaces of general type.

Many previous works were done using the braid monodromy in order to classify
surfaces, branch curves and in order to compute the fundamental groups of the com-
plement of curves (for example see [6, 1, 2] among many others). However, there is
still a growing need of computed examples. Until now, most examples were computed
on caspidal curves with only simple singularities and limited number of imaginary
points.

In this paper we improve the algorithm given in [9] for the computation of braid
monodromy of an almost real curve. The improved algorithm works on general al-
gebraic curves, it enables to consider other singularities which were not considered
in the past, where some of the singularities are not simple, and it also enables the
computation with any number of complex points in any fiber above the real line.

The paper is organized as follows: In Section 1 we give preliminaries and defi-
nitions. Section 2 is devoted to the computations of the local braid monodromy of
the new types of singular points. In Section 3 we present a new model for the fiber
of the curve above a given point. We introduce the algorithm, which calculates the
braid monodromy, and prove it’s steps in Section 4. Finally, in Section 5 we give two
examples for computations according to the algorithm.
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1. Preliminaries. We assume that the reader is familiar with the braid group
and the braid monodromy subjects (see for example [3, 4, 7, 9]); Therefore, we give
here only notations and some of the basic definitions involved.

DEFINITION 1.1. Braid group B, = B,[D,k] Let D be a closed disc in R?,
K C D, K finite. Let B be the group of all diffeomorphisms [ of D such that
B(K) = K, Bloa = Id|sq. For B1,P2 € B, we say that 1 is equivalent to Bo if (1
and By induce the same automorphism of m (D — K,u) The quotient of B by this
equivalence relation is called the braid group B,[D,K] (n = #K). The elements of
B, [D, K] are called braids.

Let S be a curve in C2. Denote by 71 : S — C and by 7 : S — C the projection
to the first and second coordinate respectively, defined in the obvious way. Let n to be
the degree of S with respect to my. For € C we denote K (z) the second coordinate
of the points in S which are in the fiber above x (i.e., K(x) = ma(m; ' (x))).

Let N C C be the set N = N(S) ={z € C | |K(z)| < n} = {z1,--- ,xp}. Take
E to be a closed disc in C for which N C E'\ E. In addition take D to be a closed
disc in C for which D contains all the points {K(z) | # € E}. That means that when
restricted to E, we have S C E x D.

With these definitions we define the braid monodromy

DEFINITION 1.2. Let M € OF be the base point of mi(E \ N), and let o be an
element of 1 (E\N). To o there are n lifts in S, each begins and ends at the points of
M x K(M). Projecting these lifts using mo : S — C we get n paths in D which begin
and end at the points of K(M ). These paths induce a diffeomorphism of m (D\ K(M))
this diffeomorphism define a braid . We call the homomorphism ¢ : 11 (E\ N) — B,
the braid monodromy of S with respect to E x D,my, and M.

1.1. Real singular curves. We call the curve S a real singular curve if it is
defined by a polynomial with real coefficients, and if the set N(S) C R. We restrict
ourselves to work with subset of real singular curves as follows:

DEFINITION 1.3. Let B = B(S) = {z € R | 321,20 € K(z) \ R s.t. S(z1) =
S(z2)}. that means that x is in B if there exist elements y1,ys in S where w1 (y1) =
m1(y2) = x,ma(y1) = 21, M2 (y2) = 22 where (z1) = (22) but 21, 20 are not reals.

Note that if z € K(x) \ R so does it’s complex conjugate z’ (because, S is defined
over R) so when 2 € B we have at least two pairs of points z1, 2o and 21, 25 such that
S(z1) = S(22), S(21) = 3(2h) and F(z1) = —S(21)-

We work with curve S which satisfies the following conditions:

(1) S is real singular.

(2) For all # € N there is only one singular points of S with x as it’s first

coordinate.

(3) The set B is finite.

(4) For all z € B the number of pairs 21,22 € K(x) \ R s.t. S(z1) = $(22) is 2.

(5) BNN = 0.

Our algorithm will apply to curves with the following types of singularities (look-
ing at these singularities was motivated by the fact that we are interested mostly, but
not only, in computing braid monodromy for branch curves of hypersurfaces).

(1) a1: a branch point, topologically equivalent to y?> — x = 0.

(2) as: a branch point, topologically equivalent to 2 + z = 0.

(3) b: a tangent point, topologically equivalent to y(y — 22?) = 0.
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4) c¢: intersection of m non singular branches of S, transversal to each other.
) di: a cusp point, topologically equivalent to y? — 2¥ = 0, (3 < v).
) ds a cusp point, topologically equivalent to y% + 2 = 0, (3 < v).
) ds: a cusp point, topologically equivalent to y* — 2% = 0.
) e1: two cusps intersecting at one point, topologically equivalent to (y? +

a%)(y? — 2%) = 0.

(9) ea: two cusps intersecting at one point, topologically equivalent to (y* +

az?)(y® — bxz?) =0 (a # b),(0 < a,b).

(10) fi: a cusp point intersecting a line, topologically equivalent to y(y% —x*) = 0.
(11) fo: a cusp point intersecting a line, topologically equivalent to y(y?+2z") = 0.
(12)

(
(
(
(
(

12) g1: a cusp point intersecting a line, topologically equivalent to (y — ax)(y* —
") = 0.

(13) go: a cusp point intersecting a line, topologically equivalent to (y — ax)(y? +
x¥) =0.

(14) g3: a cusp point intersecting a line, topologically equivalent to (y)(y>® —2?) =
0.

REMARK 1.4.

(1) In our case topologically equivalent means that there is a deformation which
transforms the given singular point in the curve S into singularity types de-
fined above, without changing the multiplicity of any point with respect to the
projection Ty .

(2) Without loss of generality we assume that a > 0 in the cases of singularity of
type g1 and go since when a < 0 all constructions and proofs are similar.

(3) The points of type di and da generalize the results previously obtained in [9]
for the points ay and as. We keep the notations of the points a1 and as in
order to comply with previous works.

The computation of the braid monodromy of the curve is done using computations
of local braid monodromy at each singular point and combining the results. So our
aim now is to describe the local braid monodromy at each type of singularity defined
above.

2. Computation of local Braid Monodromy. In this section we compute the
local braid monodromy induced by each of the singularities defined above. We use the
connection between the geometrical braid and it’s description using Artin generators
[3, 4], by looking at the projection of the geometrical 3-dimensional braid to the zz
plane keeping in mind which strings come above the other at intersection points of
the projection. When two strings start or end at the same position we always rotate
the braid clockwise by a very small angle in order to get a general position of the
beginning and ending points of the strings.

Local braid monodromy of singular points of types a,as,b, ¢, d; were discussed
in [8], [9] we will not repeat these computations here.

2.1. Local braid monodromy of singularity type d>. The computation here
is similar to the one presented in [8][Proposition-Example VI.1.1]

PROPOSITION 2.1. Let S be the curve y?> +a¥. Then, the local braid monodromy
at the origin is generated by the braid oy .

Proof. Take E to be the unit disk, D be a closed disk sufficiently large such that
Sl C ExD. N=(0+0i) € E. We take I' = {z = 2™ | t € [0,1]} to be the
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element of m(E \ N, 1). Thus, when lifting T into S we get two paths:

)

01 (t) = (62”“76
(1) = (2, -

v(2mit+mi)
2

v(2mit+mi)
T

where ¢ € [0, 1].
Projecting them to D we get two paths:

v(2mit+mi
ar(t) = =T,
aQ(t) _ 761/(27ri2t+7ri),

which induce the braid ¢% which transpose the position of two strings v times, as
described in Figure 1.

Fic. 1. The curve of type da where v = 5.

2.2. Local braid monodromy of singularity type ds.

PROPOSITION 2.2. Let S be the curve y> — x?. Then, the local braid monodromy
at the origin is generated by the braid (o102)?.

Proof. Take E to be the unit disk, D be a closed disk sufficiently large such that
Slg CExD. N=(0+0i) € E. We take I' = {z = ¢>™ | ¢t € [0,1]} to be the
element of m1(E \ N, 1). Thus, when lifting I" into S we get 3 paths:

5k(t) _ (e2m't7 e%mt—k%m’k)’

where ¢t € [0,1] and k£ = 0,1, 2.
Projecting them to D we get 3 paths:

ak(t) — e%ﬂit—i-%wik7
where k£ =0, 1, 2.
Which induce the braid (o102)?, see Figure 2. 0
2.3. Local braid monodromy of singularity type e;.

PROPOSITION 2.3. Let S be the curve (y* + 23)(y?> — 2®). Then, the local braid
monodromy at the origin is generated the braid (oo0103)°.
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FiG. 2. The curve of type d3.

Proof. Take E to be the unit disk, D be a closed disk sufficiently large such that
Sl CExD. N=(0+0i) € E. We take I' = {z = > | ¢t € [0,1]} to be the
element of m1(E \ N, 1). Thus, when lifting I' into S we get 4 paths:

(51 (t) — (6271-1't7 637rit)
52 (t) _ (6271'7;15’ _e3m’t)
52 (t) _ (627rit’ 637Tit+%i)

(54(t) _ (eZwit’ _e3m't+gi>

where t € [0, 1].
Projecting them to D we get two paths:

al(t) — eSm’t
as (t) _ _637rit
ag(t) — eSﬂiH%i

ay (t) _ _637rit+%i

Which induce the braid (020103)%, as can be seen in Figure 3.

Fia. 3. The curve of type eq.
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2.4. Local braid monodromy of singularity type es.

PROPOSITION 2.4. Let S be the curve (y* + 2%)(y® — 22). Then, the local braid
monodromy at the origin is generated by the braid (0204010305)*.

Proof. Take E to be the unit disk, D be a closed disk sufficiently large such that
Slg CExD. N=(0+0i) € E. We take I' = {z = ¢>™ | ¢t € [0,1]} to be the
element of m1(E \ N, 1). Thus, when lifting " into S we get 6 paths:

51 k(ﬁ) _ (62””, e41§it+27r3ik)

. 4mit s 2wik
Soalt) = (0 2 %5)

Where, t € [0,1], and k= 1,--- ,3.
Projecting them to D we get two paths:

ayp(t) = e 5 T

a1 p(t) = e 5 TEHHEE

‘Which induce the braid (0204010305)4, as can be seen in Figure 4.

Fic. 4. The curve of type ea.

2.5. Local braid monodromy of singularity type f;.

PROPOSITION 2.5. Let S be the curve (y?>—z")y. Then, the local braid monodromy
at the origin is generated by the braid (oo0102)".

Proof. Take E to be the unit disk, D be a closed disk sufficiently large such that
Slg CExD. N=(0+0i) € E. We take I' = {z = ¢>™ | ¢t € [0,1]} to be the
element of m1(E \ N, 1). Thus, when lifting T into S we get Three paths:

51 (t) — (627rit, ewm't)

(52(t) _ (62771'75’ _ewrit)

53 (t) — (627rit, 0)
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Where, ¢ € [0, 1].
Projecting them to D we get three paths:

al(t) _ ez/m’t

as (t) —_ _emrit

Which induce the braid (o20103)", as can be seen in Figure 5.

Fic. 5. The curve of type f1 where v = 5.

2.6. Local braid monodromy of singularity type fs.

PROPOSITION 2.6. Let S be the curve (y>+z")y. Then, the local braid monodromy
at the origin is generated by the braid (o20102)Y.

Proof. The proof is similar to the proof of Proposition 2.5. O
2.7. Local braid monodromy of singularity type ¢;.

PROPOSITION 2.7. Let S be the curve (y*> — z¥)(y — axz). Then, the local braid
monodromy at the origin is generated by the braid (co01050109).

Proof. Without loos of generality we may choose a = 2, this will help us to avoid
multiple intersections between the line and the cusp inside the unit disk. Take E to
be the unit disk, D be a closed disk sufficiently large such that S|p C E x D (in case
where a # 2 we may need to take E to be a smaller disk). N = (04 0i) € E. We
take I' = {z = > | t € [0, 1]} to be the element of w1 (£ \ N,1). Thus, when lifting
I" into S we get Three paths:

(51 (t) _ (627”'167 emri,t)
52 (t) _ (627rit’ _emrit)

53 (t) — (627rit, 2627rit)

Where, ¢ € [0, 1].
Projecting them to D we get three paths:

al(t) — emrit
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as (t) _ _euﬂ'it

az(t) = 2>

Which induce the braid (o901050109), as can be seen in Figure 6.

F1G. 6. The curve of type g1 where v = 5.

2.8. Local braid monodromy of singularity type gs.

PROPOSITION 2.8. Let S be the curve (y* + 2¥)(y — ax). Then, the local braid
monodromy at the origin is generated by the braid (co01050103).

Proof. The proof is similar to the proof of Proposition 2.7. O
2.9. Local braid monodromy of singularity type g3.

PROPOSITION 2.9. Let S be the curve (y)(y® — x?). Then, the local braid mon-
odromy at the origin is generated by the braid (o1090302)2.

Proof. Take E to be the unit disk, D be a closed disk sufficiently large such that
Slg CExD. N=(0+0i) € E. We take I' = {z = ¢>™ | ¢t € [0,1]} to be the
element of m1(E \ N, 1). Thus, when lifting I" into S we get 4 paths:

5k:<t) _ (627rit7€%7rit+%7rik)

(54 (t) _ (e2m't, O)

Where, t € [0,1] and Where k =0, 1, 2.
Projecting them to D we get two paths:

ak(t) _ e%ﬂ'it-‘r%ﬂ'ik

a4(t) =0

Where k = 0,1,2. Which induce the braid (o1020302)2, as can be seen in Figure 7. 0
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Fic. 7. The curve of type g3.

3. A model for the fiber.

3.1. Model definition. In the algorithm we use a model of the fiber above a

real point xo. In this fiber we distinguish n (the degree of the projection to the first
coordinate 1) real and complex points.
_ Since the model should be diffeomorphic to D we take the model to be a disk
D C C which is centered at the point n + 1 and have radius n + 1. The distinguished
real points will be in the set K’ = {1,--- ,n}, and the distinguished complex points
will be in the set K" = {n+144,--- ,n+ 1% [5]i}.

Usually, we shell assume that we have d (an even number) complex points and
therefore, we identify in D the set of points Ky = {1, -+, (n—d), (n+1)+i,--- , (n+
1) & &4},

For example, if n = 9 and d = 4 (i.e., we have 4 complex points), we get Ky =
{1,2,3,4,5,10 + i, 10 + 2i,10 — ¢,10 — 2} and the model is D with the set of points
K, identified, as can be seen in Figure 8

FiGg. 8. Ey

3.2. Half-twists. We need to define some braids using our model, hence we
need to describe an element of the MCG of the disk D punctured at the points K.

Let o be a simple path in D connecting two points of K; which do not intersect
any point of Ky besides its two end points. Take a small neighborhood U of ¢ and
a small neighborhood U’ of U, which contain from K, only the two end points of
o. We define a diffeomorphism which switchs the two end points of o along the
curve counterclockwise, and is the identity outside U’. We call the diffeomorphism
constructed the (positive) half-twist defined by o, and we denote it by H (o). Note,
different diffeomorphisms defined on the same curve o, using the above construction,
will induce the same braid, hence half-twists are well defined.
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DEFINITION 3.1. Let o be a non self intersecting path in D \ oD starting and
ending at two different points of K4, which go through all the points of K4. The points
of K4 induce a partition of o into n — 1 consecutive paths o1, ,0p—1. We call the
ordered system of half-twists H(o1),-+- ,H(op—1) a frame of B,,.

It is well known that if (H(o1),..., H(op—1)) is a frame of B, then the braid
group is generated by its elements, and the relations are just like the relations in
Artin presentation for the braid group [8].

3.3. Diffeomorphisms in the model. We will need to define braids using the
model D of the punctured disk D \ K(x). For this matter we will give here a few
diffeomorphisms which we will use as building blocks. Note that all diffeomorphisms
are the identity on 0D. Moreover, instead of giving tedious formal definition, we will
describe a continuous family of diffeomorphisms (starting with the identity), by the
action they induce on a closed or a finite set of points in the interior of D. The braid
we define will be the last diffeomorphism in the family.

DEFINITION 3.2. Let R™ (s,r) be the diffeomorphism which rotates counterclock-
wise in an angle of 2mn a closed disk centered at s and of radius .

DEFINITION 3.3. L {c, k) is the diffeomorphism which maps the point ¢ € C to the
point k € C and the point ¢ (the complex conjugate of ¢) to the point k (the complex
conjugate of k), along a simple path (usually a straight line) which does not intersect
K".

DEFINITION 3.4. M ((h, j), (k1)) is the diffeomorphism which maps all points in
the real segment [h, j] onto the real segment [k,l] (note that j —h =1—k).

DEFINITION 3.5. C is the diffeomorphism which maps the points along the straight
line between n+ 1414 ton + 1+ %i onto the straight line between n + 1 + 2i and
n+1+ (g + 1)i, and the straight line between n+1—1i ton+1— %i onto the straight
line between n+1—2i and n+ 1 — (% + 1)i.

DEFINITION 3.6. A™ (c,r1,72) is the diffeomorphism which rotates counterclock-
wise by angle of 2wn the annulus centered at ¢ between the radiuses vy and r3.

We now turn to define several diffeomorphisms, each one of them in connection
with a specific type of point defined in Section 1. Note, that since usually A denotes a
half-twist in the braid group the powers of the A will be twice the angles of rotations
used in Definitions 3.2 and 3.6.

1 .
AZ (k) =L{n+1+ik+L+ oM ((kn—d),(k+2,n—d+2)oRi (k+3,1)oC!

AZ (k1) =Ri(k+3, ) 0CoLl{k+L+in+1+i)oM((k+2,n—d),(kn—d—2)
A7 (k1) =R'(k+%,1)
1 _
Ac (k1) = B (552, 150) |
LénJr1+i,k+%+%>oM((k,nfd),(kJr?,nquLZ))o if v is odd
Af gy =] BUEt55)0C0T
1
R%<k—|—%,%> if v is even
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R%<k+1 WoCoL(k+3+4n+1+i)o if v is odd

272

M ((k+2,n —d), (k,n —d —2))
AZ (k1) =

R4 k;+
M((k+2,n—d+2)7(lc,n—d))0L<k:+%—i—%,n—&-l—&-i}

A§3(k>:L<n+1+ik+l+@i>oM((k,nfd),(k+1,n7d+1)>o
Rs<k+2,2 o M{(k+1,n—d+1),(k,n—d))
L<k+1+7i,n+1+i>

3

A2 (k1) L<n—|—1+zk+ DY oRE(k+1,1)o0

Lk+3+%n+1+i)

AL () oy, —L<n+1+zl——+—z>oL<n—|—1—|—21k+ +—z>oR% (k
<k+ + zn+1+22>oL<l—1+%z,n+l+z>

A§2<k,l><a>b>:L<n+1+z’,k+i+§z’>oL<n+1+2i,l—i+{f’z>oR%
L<l—§+@i,n+1+2i>oL<k+i+§i7n+1+z>

For the next diffeomorphism we need to define D as follows:

D=L{n+1+ik+1+i)oM{(k+1,n—d),(k+3,n—d+2))o
M ((k k), (k+ 1,k +1))

) DoR% (k+1,1)oC~1 if vis odd

A3 (k1) = )

R1{k+1,1) if v is even
Ri(k+1,1)oCoL{(k+1+in+1+i)o ifvisodd
(

(

M~

, M{((k+1,k+1),(kE))o
Az (k)= M((k+3,n—d),(k+1n—d-2))

DoRT{(k+1,1) oD} if v is even
M((k+1,n—d),(k+3,n—d+2))o if v is odd
L{n+1+ik+1+3)0

Al 2 o R kr 1 8) o

AS ey = 4 Mk =gkt ). (b k+1)) 0 C!

>o if v is even

[NS][e; SI[GVEN
S 2 s

S rwe T e
I+

S N[

Bl

+

.

—

~

[¢]

N

ol

~

Pl

+

= oW

[N [Y]

— o

+ £+
S
==

=
+
o T
20

5
+
o T
=

=

N[ poj ot

+ >0A2<k+274,i>o if v is odd
L</€+ +§,n—|—1—|—z>o

7(l<:,l<:)>o

), (k+1,n—d—2))

+ ¥+
Olowolee =
~
o]
e
o =
l\')\»—\

Ag, (k1) = (k+1,n—d),(k+3,n—d+2)o if v is even

n+l+ik+1+%)0
(k+1,3,5)0 R (k+1,3)0
k+1+Z,n+1+i)o
(k+2,n—d+2),(kn—d))

ST E EE3ETEIE

+

[SIE

N\H

Sn—i—l—i—zk—&— + LYo M {((kn—d),(k+2,n—d+2))o ifviseven

=

N
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A9§3<kvl>:M<(k+1ak+1)a(k+%,k+%)>OL<n+l+i,k—%+§i>o
R%<k»%>OL<k—%+§i7n+1+i>o
<(k+§,k+1) (k+1,k+1)>
Al k) =R3 (n+1+(k+1)i,3) o R 3 (n+1— (k+1)i, 1)

4. Description of the algorithm. In this section we develop the theory needed
for the algorithm. We prove the theorems which form the heart of the algorithm, and
at the end of this section we give the algorithm’s steps.

4.1. Definitions.

DEFINITION 4.1. Let 0 < a < € be two very small real numbers. Let xy € N and
Ao = (x0,90) the singular point of the projection map 71 above xg. Let x, € ENR be a
point such that |xo—xy| < a. Then it is possible to enumerate the points of K (z() NR
and get that K(z() NR = {y1 < -+ < yn}. For sufficiently small € there exists a
unique pair of numbers k and | (1 <k <1 <mn) such that K(z{) N (yo — €,yo + €) =
{yr < -+ < yi}. We call (k1) the Lefschetz pair associated with the point xy and
denote it by L(xg).

REMARK 4.2. Definition 4.1 does not hold when Aq is of type do, fo and v is
even. In these cases we enumerate the real points of K(xg) = {y1 < -+ < yn}, and
take k =1 = j where y; is the second coordinate of Ay.

REMARK 4.3. If Ag is a point of type
(]-) a17bv ¢, d17d37617627f17917g3 we take IE) > 20
(2) ag,d2(0dd v), fa(odd v), go we take x(, < xg.

REMARK 4.4. If Aq is a point of type

(1) ay,a9,b,dy,ds(0dd v),e1,e2,g3 we have l =k + 1.

(2) f1, f2(0dd v), g1, g2(0dd v) we have | = k + 2.

(3) ¢ we have l = k +n; — 1 where ny is the number of intersecting (locally) non
singular branches.

(4) ds,da(even v), fa(even v), ga(even v) we have | = k.

DEFINITION 4.5. Let zyg € B, and let (xo,y0), (z0,y,) € S be the pair of points
for which 0 < S(yo) = S(y(). Take xf, € ENR to be a point such that |x{—xo| < & for
a very small 0 < §. Then it is possible to enumerate by the S coordinate the points of
K (z)\R and get K(x)\R = {y1 <--- <wya}. Since the curve S is defined over R we
look at the set A ={S(y1), -+ ,S(ya) } NRT = {ry,--- rat ={S(yai1), o Sya)}-
For sufficiently small 0 < € there exists a unique pair of numbers k and | (1 < k <
1 < 2) such that AN ((S(yo) — €,S(yo) +€) = {rr,m}. We call the pair (k1) the
complex Lefschetz pair associated with the point xg and denote it by L(xq).

REMARK 4.6. Note that if ©o € B and we have L(xzg) = (k,1) we always have
Il =k+ 1. Moreover, if we take A" = {S(y1), - ,S(wa)} NR™ = {ry,--- ,T%} n a
decreasing order, we get an analogous definition to Definition 4.5, and the two complex
Lefschetz pairs achieved from the two analogous definitions are the same.

DEFINITION 4.7. Let xg € B with complex Lefschetz pair L(xg) = (k,1), let
(20, Y0), (xo,y,) € S be the pairs of points for which 0 < (yo) = S(y() and let A be
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as in Definition 4.5. Suppose that R(yo) < R(y,). Then, there exists a small enough
0 < & such that for every x € (xo — 6,20 + 0) if (x,y) is the lift of x to S which is
connected to the point (xo,yo) and (x,y') is the lift of x to S which is connected to the
point (xo,y,) we have R(y) < R(y'), and § is small enough to determine the complex
Lefschetz pair.

Now, take z(, € ENR such that 0 < xg — x5 < 6 and x5 € ENR such that
0 < axf —xo <. Denote by {2}, ,2,} = {z € K(z{) \R | S(2) € RT} and by

2

{1, 20} = {2 € K(2g) \R [ 3(2) e RT}.

We asszgn to xo an orientation O(xg) € {1,—1,0} as follows:

(1) If R(z;,) > R(z) and R(z) < R(z)") then, O(xo) = 1.

(2) If R(z;,) < R(z) and R(z) > R(z]') then, O(xo) = —1.

(3) Otherwise O(xy) = 0.

We are now going to use the model described in Section 3 in order to describe
the algorithm.

LEMMA 4.8. Let R be a connected component in E \ (N U B), and suppose that
we have n — d real points in K(x) for x € R. Then there exist a continuous family of
diffeomorphisms {5, | * € R} such that:

(1) Bx D—D

(2) Bu(K(2) = Kq

(3) Bulz = DR i

(4) For all x,x' € R we have B4(y) = B (y) € D for all y € OD.

Proof. The proof follows immediately when noticing that for any two points x, 2’
there are exactly n — d real points, and that since R does not contain any point in B
the order in terms of & coordinate of the non real points in K (z) is fixed. Therefore,
the points in K (z) can be identified with the points in E, the real points of K(x)
with the points in K’, and the non real points of K(z) with the points in K.

Now use a diffeomorphism which will transform the real points of K(z) to K’
maintaining the order described in Definition 4.1, the non real points of K (x) to the
non real points in D ordered by their & coordinate and fixing the image on dD. Since
S is a curve, above R its elements are continuous so we can make sure that the family
of diffeomorphisms is continuous as needed. [

REMARK 4.9. Although B defined in Lemma 4.8 is not unique, every two families
of diffeomorphisms B and 3’ are homotopic. This fact will ensure us to have the
correct result in the algorithm as we will describe later.

DEFINITION 4.10. Let s(t) be a curve in E\N parameterized by t € [0,1]. s(t) has
n lifts into S. Projecting these paths to D we get n paths in D starting at K(s(0)) and
ending at K(s(1)). These paths induce a homotopy class of diffeomorphisms called
the Lefschetz diffeomorphism induced by s(t) and denoted by V.

PROPOSITION 4.11. Let zg € N and denote Ay = (xo,y0) the singular point of
m1 above xq. Let s(t) be a parameterized semicircle of radius 0 < o (very small) below
the real line centered at xo, where s(0) = —a and s(1) = a. Let W be the Lefschetz
diffeomorphism induced by s, and L = (k,1) be the Lefschetz pair associated with xg.
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Proof. In order to simplify notations we assume that D = ﬁ, the equations of S
are all simple, and that the model suitable above the point « is E; as described in
Section 3.

The proof for points of types aj,as, b, ¢ can be found in Proposition 1.2 of [9].

Ap is of type dy:

By Remark 4.4 we know that £ + 1 = [. Moreover, the component of S passing
through Ay has equation (y — (k+ 3))* —2” = 0, and the other components of S have
equations y = ¢ where c € Kg\ {k,k+1} ={1,--- ,k—1,k+2,--- ,n—dn+1+
i,---,n+1=+ %z} Now when v is odd, we have that FE; is the model suitable above
the point «, and that E;49 is the suitalbe model above the point —a. In addition,
K(—a)={l,-,k—1,k+2,- ,n—dn+1%xi -, n+1t%i}u{k+1i=Ltiva}
and K (o) = {1, ,k—1Lk+2,-- ,n—dn+1=£i, - ,n+1xdi}u{k+1LtVar}
Therefore, 8~ : (D, Kq42) — (D, K(—a)) is induced by the motion: n 4 1 +i —
k + % +iv/av, and so B, is induced by the motion: k + % +var — k+ % + % and
n+1+ij—n+1+i(j—1) where j =2, , 42,

Above s, S is the union of n paths. Projecting them to D we get the following motions:

y=c where t: 0— 1 and c € Ky \ {k,k+ 1}
y=k+ 3+ /a’(emti ) wheret: 01
y=k+3—/a’(em ) wheret: 01

Therefore, U : (D, K(—a) — (D, K(«)) is induced from the motion of the points
k+ % +iv/a” along a circle of radius v/a” centered at k + % counterclockwise by angle
of XX to the points k + 3 = va".

When v is even, the model suitable above the point —« is E4 and so, K(—a) =
K(o)={1,-- k—=1k+2,- ,n—dn+1+i, - n+1+%i}u{k+i+Va"}
Therefore, 3~ : (D, K;) — (D, K(—a)) is induced by the motion: k — k + 3 —Va¥
and k+1+— k+ % + vav. Moreover, By = f—q.

Above s, S is the union of n paths. Projecting them to D we get the following motions:
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y=-c where ¢ : 0+ 1 and c € Kg \ {k,k+ 1}
y:k—i—%—&—\/al’(e”*”t)” where t: 0 — 1
y=k+3—/a(e™ ) wheret: 01

Therefore, U, : (D, K(—a) — (D, K(«)) is induced from the motion of the points
k+ % + /o along a circle of radius v/a* centered at k + % counterclockwise by angle
of &F to the points k + % +av.

Hence, in any case of v (odd or even), the composition of these motions is homo-
topic to the composition of the motions that induce Agl (k,1). Therefore, the induced

diffeomorphisms are homotopic, and we have 8;." , 0 U, 0 By 40 = A (kD).

Ap is of type ds:
The proof is similar to the case where Ay is of type dy.

Ap is of type ds:
Since Ej is the model suitable above the point «, E, is also the model suitable above
the point —a. The component of S passing through Ay has equation (y—k)% -2 = 0,
and other components of S have equations y = ¢ where ¢ € K4\ {k,n+1+1i} =
{1, k=1k+1,- n—dn+1£2i - ,n+1% %}

Now, K(a) = K(—a) ={1,--- ,k—=1,k+1,--- ,n—dmn+1+2i--- ,n+1+
YU {k + Va2 k — L Va2 i3 a?).
B=Lt :(D,K4) — (D,K(—a)) is induced from the motion n + 1 41i > k — \3/707 +
i@ﬁ, and k — k + Va2, Moreover, Bq = B_aq.

Above s, S is the union of n paths. Projecting them to D we get the following
motions:

y=c where ¢ : 0 +— 1

ce Ko\ {kon+1+i}
y =k + (aei™titt)3 where ¢ : 0+ 1
y =k — 3(ae™ )3 4 i@(ae”*”t)% where ¢ : 0+ 1
y=k— %(ae eimtintyg _ 'é(a ittty where £: 0 1

Therefore7 U, (D K(—a) — (D K(a)) is induced from the motion of the points

k+ Va2 and k — \/ 2442 ‘f Va2 along a circle of radius v/a2 centered at the point
k counterclockwme by angle of 2“ to themselves.

Hence, the composition of these three motions is homotopic to the composition

2
of the motions that induce Aj (k). Therefore, the induced diffeomorphisms are ho-
2
motopic so we have Bgol_a oWs 0 fryra = AF, (k).

Ay is of type eq:
Since Ej is the model suitable above the point « it is also the model suitable above
the point —a. By Remark 4.4 we know that k + 1 = [. Moreover, the component of
S passing through A has equation ((y — (k + 1))* — 2% = 0, and other components
of S have equations y = ¢ where ¢ € Ky \ {k,k+ 1,n+ 1+ i}.

Now, K(a) = K(—a) ={1,--- ,k—=1,k+2,--- ,n—dn+1+2i--- ,n+1+
i} U{k+ 3 £Vod k+ 1 +ivad}).

By i (D,Ky) — (D,K(—a)) is induced from the motion k + k + 5 — Va3,
k+1— k—|—%—|—\/o?, n+ldi—k+ % +iv/a3 in shortest lines. Moreover, 8, = A_q.

Above s, S is the union of n paths. Projecting them to D we get the following
motions:
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y=cwheret:0—1 ce Kg\{k,k+1n+1+i}
y=k+ 3+ /(ae™ )3 wheret: 01
=k+ 3 —/(ae™m)3  wheret: 0+ 1
y=k+3+iy/(ae™m)3  where t: 0+ 1
y=k+3—iy/(aemtim)3  where t: 0+ 1
Therefore, U : (D, K(—a) — (D, K(«)) is induced from the motion of the points
k + % + Va3 and k + % + Va3 along a circle of radius Va? centered at k + %
counterclockwise by angle of 37” to themselves.
Hence, the composition of these three motions is homotopic to the composition
of the motions that induce Ae%l (k,1). Therefore, the induced diffeomorphisms are

homotopic so we have ;" , 0 U0 By, ia = Ai (k,1).
Ap is of type es:
We deal with the two cases for points Ay of type es simultaneously. By Remark 4.4
we know that k + 1 = [, and we also know that the model suitable above the points
«a and —« is Ey. Moreover, the component of S passing through Ag has equation
((y — (k+ 3))* + az®)((y — (k+ 1)) — ba?) = 0, and other components of S have
equations y = ¢ where c € Kg\ {k,k+1,n+1+i,n+1=+2i}.
Now, K (o) = K(—a) ={1, -+ ,k—=1,k+2,-- ,n—d,n+1+3i,--- ,n+1+i¢}U
(k+ 3+ Vba? b+ 1 — Y82 4 i BYpa2 k41— Vaa? k+ 1 4+ YaoZ 4133407}
In order to know 8-} : (D, K,;) — (D, K(—a)) we need to separate between two
cases:

a>b
BZ4 1 (D, Kg) — (D, K(—a)) is induced from the motion k — k+ 4 — Va2, k+1—
ki VbaZnt1+im k41— 1V0a2+i 32, n+ 142 k+ 3+ 1Vaa? +
iém in shortest lines.
a<b
BZo (D, Kq) — (D, K(—a)) is induced from the motion k — k+ 5 — Vao? k41—
k+ i+ Vba?n+1timk+ it iVaa?£i 8 Vaa2, n+1£2ik+1-1Vba2+
z?W in shortest lines.

Moreover, B, = f_q-

Above s, S is the union of n paths. Projecting them to D we get the following

motions:
y=c where ¢t : 0 — 1

CEKd\{k,k+1,
n+14in+1+2i}

k—i—%—m where t: 0 — 1
k;—l—%—!—W where t: 0 — 1

k—l—%—l—%m—i—iém where ¢ : 0 — 1

k—l—%—i—%m—i@\?’/m where t: 0+ 1

k+%*%W+i§Bba262“t where t : 0 — 1

k—l—%—%W—i@W where ¢t : 0+ 1

Therefore, U, : (D, K(—a) — (D, K(«)) is induced from the motion of the points
kt+ L — Va2 k+ 5+ Vba? k+ L+ 1Vaa? +i3 Vaa? k+ § — 19/ba? £ 2 /ba?
centered at k + % counterclockwise by angle of 2?” to themselves.

The composition of these three motions is homotopic to the composition of the

motions that induce Ai (k1) (a<py OT AG%Q (k,1) (4>p) (depending whether a < b or b <
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a). Therefore, the induced diffeomorphisms are homotopic and we have 3, 01704 oW,o

Baota = Ai’ (k, 1) (the (a < b) or (b < a)) have been omitted to denote simultaneously
both cases).

Ag is of type fi:

By Remark 4.4 we know that k+2 = [. Moreover, the component of S passing through

Ap has equation (y — (k+1))((y — (k+1))? —2¥) = 0, and the other component of S

have equations y = ¢ where c € K4\ {k,k+ 1, k+2} ={1,--- ,k—1,k+3,--- ,n—

don+1+4,---,n+1+ %},

Now, when v is odd, we know that if the model suitable above the point « is

E,; then E;i9 is the suitable model above the point —a. In addition, K(—a) =

{1, k=1,k+3,-- ,n—dn+1+i, - n+1+%i}U{k+1,k+1+iv/a"} and

K(o)={1,-- ,k—=1,k+3,--- ,;n—d,n+1=£i, - ,n+1+£2i}U{k+1,k+1£Va"}.

Therefore, 5=} : (D, K412) — (D, K(—a)) is induced by the motion: j — j+2 where

j=k+1,--- ,n—d, k—k+1and n+14i— k+14iv/a”. Moreover, 8, is induced

by the motion: k+1++va* +— k+14+1landn+1+ij+— n+1+i(j— 1) where

j=2-.., 42

Above s, S i52 the union of n paths. Projecting them to D we get the following motions:
y=c where t: 0— 1 and c € Kg\ {k,k+ 1,k +2}
y=k+1 where ¢t : 0 — 1
y=k+ 1+ /(aei™rimt)v  where t: 0 1
y=k+1—/(aei™imt)v  wheret: 0 1
Therefore, U : (D, K(—a) — (D, K(«)) is induced from the motion of the points

k+14iv/a” along a circle of radius v/a¥ centered at k + 1 counterclockwise by angle

of “F to the points k + 1 4 N
When v is even, we have that the model suitable above the points a and —a« is

Eq K(—a)=K(a)={1,-- ,k—1,k+3,--- ,n—d,n+1=+i,--- ,n+1+%i}u{k+

Lk+14+vav}

Therefore, 3L : (D, K,;) — (D, K(—a)) is induced by the motion: k +— k41 —v/a”

and k+ 2 — k + 1+ +vav. Moreover, 8o = B_q.

Above s, S is the union of n paths. Projecting them to D we get the following motions:
y=c where t: 0+— 1 and c € Ky \ {k,k+ 1,k + 2}
y=k+1 where ¢ : 0 +— 1
y=k+1+ /(aei™imt)v  where t: 0 1
y=k+1—/(ae™timt)y  where t: 0+ 1
Therefore, U : (D, K(—a) — (D, K(«)) is induced from the motion of the points

k414 +/av along a circle of radius v/o¥ centered at k + 1 counterclockwise by angle

of XX to the points k + 1,k + 1 +vav.
Hence, in any case of v (odd or even), the composition of these motions is homo-
topic to the composition of the motions that induce A?l (k,1). Therefore, the induced

diffeomorphisms are homotopic. We have B;ol_a oW,0 fryta = A?l (k,1).

Ap is of type fo:
The proof is similar to the case where Ay is of type fi.

Ap is of type g;:

By Remark 4.4 we know that k + 2 = [. Moreover, the component of S passing
through Ap has equation (y — (k+1) —az)((y — (k+1))2 — 2¥) = 0, where 0 < a and
the other components of S have equations y = ¢ where ¢ € Ky \ {k,k + 1,k + 2} =
{1, k=1k+3,- ,n—dn+1=xi-- ,n+1=x2i}.
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Now when v is odd, we know that since the model suitable above the point
« is Eg4, the model suitable above the point —« is FEjio. In addition, K(—a) =
{1,--  k=1,k+3,--- ,;n—d,n+1+i,--- ,n+1+%i}U{k+1—aa,k+1+iva"} and
K(a)={1,-- ,k—1,k+3,--- ,n—d,n+1%3,--- ,n+1:ﬁ:%i}u{k+1+aa,k+1i\/o7}.
Therefore, 8=} : (D, Kqy2) — (D, K(—a)) is induced by the motion: j ~ j 42 where
j=k+1,--- n—d k—k+1—-—acand n+1+i— k+1%1iva*. Moreover,
Ba is induced by the motion: k + 1+ va¥ — k—&—%i%,k—&—l—i—aa — k+ 2 and
n+1+ij—n+1+i(j—1) where j=2,---, 4.

Above s, S is the union of n paths. Projecting them to D we get the following motions:
y=c where t: 0+ 1 and c € Kg\ {k,k+ 1,k + 2}
y=k+1+ aqe™ i where ¢ : 0+ 1
y=k+1+/(aem™timt)v  where t: 0+ 1
y=k+1—/(ae™timt)¥  where t: 0+ 1

Therefore, U : (D, K(—a) — (D, K(«)) is induced from the motion of the points
k+14iva” along a circle of radius v/a” centered at k + 1 counterclockwise by angle
of % to the points k +1 + va¥ | and the motion of the point k + 1 — ac to the point
k 4+ 1+ aa along a circle of radius aa counterclockwise by angle of 7.

When v is even, we have that Ey is the model suitable for both points a and —a.
K(—a)=K(a)={1,+ ,k—1,k+3,--- ,n—dn+1xi, - n+1+%i}u{k+1-
ac,k+1++av}.

Therefore, =} : (D, K4) — (D, K(—a)) is induced by the motion: k — k + 1 — aa,

E+1—k+1—+va¥and k+2— k+1++av. Moreover, o = f—aq.

Above s, S is the union of n paths. Projecting them to D we get the following motions:
y=c where t: 0+ 1 and ¢ € Kg\ {k,k+ 1,k + 2}
y=k+1+ aqe™ T where ¢ : 0+ 1
y=k+14+ /(aei™timt)y  wheret: 0~ 1
y=k+1—/(aeimtimt)y  wheret: 0~ 1

Therefore, U, : (D, K(—a) — (D, K («)) is induced from the motion of the points
k+ 1=+ +/av along a circle of radius v/o centered at k + 1 counterclockwise by angle
of “F to themselves, and the motion of the point k£ + 1 — aa to the point k + 1 + ax
along a circle of radius aa centered at k + 1 counterclockwise by angle of .

Hence, in any case of v (odd or even), the composition of these motions is homo-
topic to the composition of the motions that induce Agl (k,1). Therefore, the induced
diffeomorphisms are homotopic. We have ﬁ;olfa oW, 0 Bypta = Ag%l (k,1).

Ay is of type ga:

The proof is similar to the case where Ay is of type gi.

Ap is of type g3:

By Remark 4.4 we know that £+ 1 = [. We also know that the model suitable above

both points o and —« is E4. Moreover, the component of S passing through Ag has

equation (y — k)((y — k)® — 2?) = 0, and other components of S have equations y = ¢
where ¢c € Kg\{k,k+1,k+2,k+3} ={1,--- ,k—1,k+4,--- ;n—d,n+1+ti,--- ;n+

1+ 44}

Now, K(a) = K(—a) ={1,--- ,k—1,k+4,--- ;n—d,n+1%4,--- ,n—i—liz’%}u
{k,k+ Va2, k — LVa? +i/a?).

B=L:(D,Ky) — (D, K(—a)) is induced from the motion n+ 144 — k — %W:I:
igm, jr j+2where j=k+2,--- ,n—dand k+1+— k+ va? in shortest lines.
Moreover, B, = f—q-
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Above s, S is the union of n paths. Projecting them to D we get the following

motions:
y=cwheret:0+1 ce Kg\{k,k+1,k+2k+3}

y==k+ \/ (quetmtint)2 where ¢t : 0 +— 1
y=(k— 5 Y (qetmtint)2 z\/g {(aet™timt)2 where t: 0 — 1
y=(k— % (aemtimt)2 — \g (ae?™timt)2 where ¢t : 0 — 1
y==k where ¢ : 0 — 1
Therefore, U, : (D, K(—a) — (D K («)) is induced from the motion of the points

k.k+ Va? and (k — $Va? £ ¥ \/ 2) along a circle of radius Va2 centered at k
counterclockwise by angle of 2” to themselves.
The composition of these three motions is homotopic to the composition of the

motions that induce Ag; (k,). Therefore, the induced diffeomorphisms are homotopic
1
so we have 8,1, 0 W, 0 By 0 = Ag, (k,1).0

PROPOSITION 4.12. Let xg € B. Let u be a parameterized (from xo—a to xo+«)
the straight line segment [xo — o, o + ] (« very small), and let U, be the Lefschetz
diffeomorphism induced by u, and L = (k,l) be the complex Lefschetz pair associated
with xo. Then,

A?osflo <k l> zo a uﬁwo-‘ra

Proof. First it follows from Remark 4.6 that the diffeomorphism must be symmet-
rical along the real axis; Therefore, we concentrate on the half of the complex plane
which consists of the points with positive imaginary coordinate, keeping in mind that
what ever happens there also happens in the other half-plane in a mirror like image.
Recall from Definition 4.5 that if (zg, yo), (0, y}) € S is one of the pairs of points for
which 0 < S(yo) = S(y()) and A as in Definition 4.5 we take small enough 0 < « such
that the complex Lefschetz pair is well defined and that for every x € (x¢ — o, zo + @)
if (z,y) is the lift of x to S which is connected to the point (zo,yo) and (z,y’) is the
lift of = to S which is connected to the point (z¢,y,) we have R(y) < R(y’) when
R(yo) < R(y,) or R(y) > R(y') when R(yo) > R(y,) (It can’t be that R(yo) = R(yg)
or else the point z¢ will be in N instead of B). Without lose of generality we assume
that R(yo) < R(y})-

Now as in Definition 4.7, let 2, € ENR such that 0 < 29—z < e and z{f € ENR
such that 0 < z§j — 29 < . Denote by {z],---,2%} = {z € K(2/ \R|\s( eR"}

2

andby{z”--~ "t={ze K(x@")\R|S(z) e RT}.

10 o (D Kd) (D, K («)) is induced by the motion of the point n+1+ki — 2z,
n+1+1i — 2] and the points n+1—ki,n+1—1i goes to the complex conjugates of 2},
and z] along straight lines (we assume that all other components of S have equations
y =c where c € Kg\ {n+1+ik,n+1=+il}.

Brota (D, K(a)) = (D, Ky4) is induced by the motion of the points 2/, z;" and
their complex conjugates to the points n + 1 & ki,n + 1 £ I along straight lines.

We look at the following cases:
R(z5.) > R(z]) and R(=) < R(z/)
In this case the point (zf, 2},) is connected to the point (z¢,y)) and the point (zf, 2;)
is connected to the point (xg,y0). Because k < [ we know by Lemma 4.8 that
S(z.) < S(#]). Now, since R(z}) < R(z) the point (xy,z)) is connected to the
point (zo,yo) and the point (z(,2;") is connected to the point (z¢,y;). However,
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J(z) < I(z;") hence we have a motion in which the point on the left goes down and
the point on the right goes up crossing each other & coordinate once (see Figure 9
(left)). Therefore, the composition ,ngol_akllu,b’woJra is homotopic to the diffeomorphism
defining Al (k1) (see Figure 9 (right)).

com
Im
I —. 3 S
o " ( —
= - Re — —
I % Le— (Y .
I . \. .

F1G. 9. Positive motion in the fiber (left), ﬁ;ol_alllu610+a (right)

R(2;,) < R(2]) and R(z) > R(2;’) In this case the point (z(), z;,) is connected to the
point (zo,yo) and the point (xf, z;) is connected to the point (x¢, y(,). Because k <
we know by Lemma 4.8 that J(z,) < $(z;). Now, since R(z)) > R(z;') the point
(x(,z)) is connected to the point (xg,y;) and the point (x(,z;") is connected to the
point (z¢,yo). However, $(z;/) < I(2;") hence we have a motion in which the point on
the left goes up and the point on the right goes down crossing each other & coordinate
once (see Figure 10 (left)). Therefore, the composition 8% W, B, +a is homotopic

Tro—«

to the diffeomorphism defining AL (k,l) (see Figure 10 (right)).

com

0o — . —
Lo — <) P
{ ! A ¢ ] —
1 — : .

F1G. 10. Negative motion in the fiber (left), 5;0170(\11“6,00+a (right)

Otherwise In these cases we have either (z,) < (7)) and (=) < R(z]") or R(z},) >
R(z]) and R(z.) > R(z/'). Hence the point on the left and on the right move until
their & coordinates coincide and then retract back. In this case there is no crossing
therefore the diffeomorphism induced by the motion which induce ﬁ;ol_allluﬂmﬁa is
trivial as can be seen in Figure 11 (one of two possible cases).

K — U —
o - — . { 7 . / .
. — t.l \:
1 ———. Wil [

F1G. 11. Triwvial motion in the fiber (left), ﬁ;olfa\lluﬁzo+a (right)

|

We need to be able to describe the braids of the local braid monodromy at each
point of the set N in a way that will make it easy to conjugate them. This can be
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achieved by using a product of half-twists that define the resulted braid. This product
is the parallel of the skeleton definition given in [8] and [9].

DEFINITION 4.13. Let K ¢ K C D. A skeleton in (D, K,K) is a consecutive
sequence of paths each starting and ending in one of the points of K. Fach path starts
where it’s previous ends. A skeleton is denoted by &.

DEFINITION 4.14. We call a product of half-twists that describes the local braid
monodromy at the point xo € N the generalized skeleton of xg, and denote it by &, .

Recall that half-twists are defined by paths, so in order to describe the proper
generalized skeleton for each type of singularity, it is enough to describe the paths
defining its half-twists, and give their product form.

DEFINITION 4.15. Let 2y € N, and Ao = (z0,y0) be the singular point of m
above xo. Let L., = (k,1) be the Lefschetz pair associated with the point xy. We
define the generalized skeletons:

(1) If Ag is of singularily type aq, the generalized skeleton assigned to it is hy,

where hy is described in Figure 12 (a).

(2) If Ao is of singularity type as, the generalized skeleton assigned to it is hy,
where hy is described in Figure 12 (b).

(3) If Ag is of singularity type b, the generalized skeleton assigned to it is h3,
where hy is described in Figure 12 (a).

(4) If Ay is of singularity type c, the generalized skeleton assigned to it is
(hy---hi—g)(h1---hi—g—1) -+ (hiha)(h1), where h; are described in Figure 12
(c).

(5) If Ag is of singularity type dy, the generalized skeleton assigned to it is hY,
where hy is described in Figure 12 (a).

(6) If Ag is of singularity type da, the generalized skeleton assigned to it is hY,
where hy is described in Figure 12 (b).

(7) If Ao is of singularity type ds, the generalized skeleton assigned to it is
(h1ho)?, where h; are described in Figure 12 (d).

(8) If Ao is of singularity type ey, the generalized skeleton assigned to it is
(hah1h3)8, where hy, ha, hy are described in Figure 12 (e).

(9) If Ay is of singularity type es, the generalized skeleton assigned to it is
hohghyhshs, where h; are described in Figure 12 (f) when b < a, and in
Figure 12 (g) when a < b.

(10) If Ao is of singularity type fy, the generalized skeleton assigned to it is
(h1hohy)”, where hy, hy are described in Figure 12 (c).

(11) If Ao is of singularity type fa, the generalized skeleton assigned to it is
(hah1he)¥, where hy, ho are described in Figure 12 (h).

(12) If Ao is of singularity type g1, the generalized skeleton assigned to it is
hohih¥hiha, where hy, he are described in Figure 12 (c).

(13) If Ao is of singularity type go, the generalized skeleton assigned to it is
hoh1h¥hiha, where hy is described in Figure 12 (h).

(14) If Ao is of singularity type gs, the generalized skeleton assigned to it is
(h1hahshs)¥, where hy, ha, hs are described in Figure 12 (i).

THEOREM 4.16. Let xg € N, and Ao = (xo,yo) be the singular point of w1 above
xg. Let L., = (k,1) be the Lefschetz pair associated with the point xo. Then, the
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FiG. 12. Half-twists used in products defining generalized skeletons

generalized skeletons defined in Definition 4.15, describe the local braid monodromy
at the point xg.

Proof. The proof follows immediately from Proposition 2.1 to Proposition 2.9 and
the proofs in [9]. O

4.2. Description of a generating set for 7;(E\ N). We need to compute the
braid monodromy homomorphism. Recall that ¢ is a homomorphism from m (E'\ N),
which is the fundamental group of a punctured disk, to the braid group B,,. Therefore,
in order to describe the mapping, we choose a generating set for m(E \ N), and
compute the image of ¢ on these elements. The image of ¢ on this generating set not
only describe completely the braid monodromy homomorphism but also serve as an
important step in the computation of the fundamental group of the complement of
the curve.

We fix as a base point for the fundamental group of the origin of ¢ the point xg
which is the larger of the two points from F NRR. Moreover we enumerate the points
of N such that {x1 > --- > z,}. Then, we take an ordered system of paths below the
real axis. Each of the paths circles exactly one point in N, as can be seen in Figure
13. We denote the elements of this generating set by I'y,---T',.

Now we turn to describe these paths.

To each point x; € N we attach a real value 0 < o; which is not only sufficiently
small in order to determine the Lefschetz pair L£(x;) = (k;,1;) for the point x; but
also small enough such that (z; — «j,z; + ;) N (N U B) = {z;}. Denote by ¢y the
real segment between z1 + aq and x¢, and for any 1 < j < p, denote t;(¢) t € [0,1]
the real segment [z;11 + a1,z — o).

Denote also by s;(t) the parametrization of a semi circle below the real axis
centered at x; with radius a;, and r;(t) the full circle oriented counterclockwise
centered at z; with radius «; for ¢ € [0, 1], such that s;(0) = z; —; and s;(1) = x; +
aj, and r;(0) = r;(1) = z; +a;. We also denote the type of singularity of the singular
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F1G. 13. The generating set for mi(E\ N)

point of 7 above z; by p; (i.e., p; € {a1,a2,b,¢,d1,da, d3, €1, €2, f1, f2,91,92, 93}
The closed disk F with the notations above can be seen in Figure 14.

FiG. 14. w1 (E \ N) with notations

I'; is now homotopic to the following path:

j—1 1
T =t;" (H(sglt;1)> ri | T (tesw) | to-
k=j—

k=1 j—1

We take a closer look at the segment t;. Denote the ordered set of points ¢, N B =
{bk1 > -+ > bn,} the points of the set B in the segment t;. To each of these
points, using definition 4.5, we attached a positive small real number 0 < §;; where
l=1,---,ng. The set of points {xk—ozk, br14+0k1,b61 =0k, bk ny, T 0k my Ok ny —
Okny> Tht1 + Qpt1} induce a partition on t;. Here too, we take d;; (and «) small
enough such that (bk,l - 5]@’[, bk,l + 5k,l) n (NU B) = {bk,l}, and (bk,l - 5k,l; bk,l + ék,l) n
(xj — o, x5+ a;) = 0 For all k,1,j.

Denote:

(].) tk70 - [bk71 + 61@,17551@ - Ozk} Vk 75 0.

(2) teg = [brit1 + Okit1,060 — O] VI=1,--- ,np — 1.

(3) thn, = [Th+1 + ht1: Okny, — Okl

(4) Uk, = [bk,l — 5;@71, ka + (51@7[] Vi=1,---,ng.

(5) to,0 = [bo,1 + 0,1, Zo]-

This partition implies that:

1
ty = <H twuk,l) tr0-

l=ny
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() 1 (o (o))
AL () (1L )]

4.3. The computation of ¢(I';). Using the definitions above it follows that if

Hence,

1
0= H U, U, | U, .

k=j—1
1 1 1
= H (( H \Ijtk,lqluk,l)\ljtk,oqjsk> (H \I/to,lqjuo,1> \I/to,(J'
k-:j71 l:TL}C l:n()

Then, the Lefschetz diffeomorphism of I'; is the product:
Up, =07 'V,.Q
which implies that
e(l;)=0907"'A, Q.

Where A, is the local braid monodromy defined in Section 3, which complies

with the topological type of the singular point z; denoted p;, and with the Lefschetz
pair associated with it £(x;).

In the model defined above this is realized as follows:

\IIF]‘ = ﬂ:c_ol Q_lAPj Qﬂzo
- (ﬁ:;ol Qilﬁxj-ﬁ-oéj )(Bz_Jl-i-a] Al)j ﬂwj-i-@j)(ﬁm_jl-&-aj Qﬂato)

We turn now to ﬁ;]l_m] QBuy-

B oy QBao

1
/ngl-}-aj H \I/tklpsk \Iltoﬁfro

k=j—1

= H ( r_kl+1+ak+1qjtk6$k ak)(ﬂr_kl—akqjskﬂiﬂk“rak) (ﬁz_ll—&-alqltoﬁﬁo)

k=j—1

By Proposition 4.11 we know that 8" s, Buytar = Ap, (k, 1) where py, is the
bingularlty type as defined above, and the power is omitted. Therefore, we need to

study Bxk+1+ak+1\11tk By +a, - However, 1y is actually a product so if one identifies the
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point by n, 41 + Ok nyt1 as the point x4y1 + arq1 and takes ag = 0 we have:

—1
Tp4+1tQk41 \I/tkﬂwk*ak

1
_ np—1
— Prryi1tarsr <H \I’tk.l\puk,l> \I/tkoﬂxk—ak

l:nk

1
—1 —1
- <H (Bbk,l+1+5k,1+1\Ijtkvlﬂbkvl_‘;klxﬂbk,z—ék,l\Ijuk’Lﬂbk‘l—Mw))

l:nk

(/Bbk,l"l‘(skl,l \Ijtk,oﬁﬁ'«'k_ak )

However, by Lemma 4.8 we have that the following four diffeomorphisms all induce
the trivial braid:

(1) /3;)11+501 to.0Bz0

(2) ﬁbkl+1+5kl+1\:[ltk”8bkl sp, for k=0,---,p—landl=1,--- ,n; — 1
(3) By son YenoBrp—on for k=1, ,p—2.

(4) $k+1+(xk+1\ptk i Bogny —bm,, for k=1, ,p—1.

Therefore, by Propositions 4.11 and 4.12 as a braid we get the following diffeomor-
phism of the model:

B;.7‘1+04.7‘ Qﬁmo
1 1
= H (( H (Bb;:l—JkJ\Ijuk,l,ﬁbk,ﬂr&k,z)) (Bxklak\:[/skﬂzk+ak)>
k=j—1 l=ny
1
(H 5b0.1l—50,1q}“O,lﬂbo,lﬂL&)‘z))
l=ngo
1
H (( H A?O(Tl:lk l) kk’l’lk7l>) A;i 93k7 Tk > (H Acml;m(” kOlalOZ>>
k=j—1 I=ny I=ng

where Ak (kg ,l,) is the diffeomorphism in Proposition 4.11.

Recall that by Definition 4.15 each A, is a generalized skeleton which is a product
of half-twists. Therefore, it is possible to write A, = [],,(H,,) where H,, are the
half-twists from Definition 4.15.

Moreover, it was proved in [8] that on a half-twist conjugation is done by activating
on the path defining the half-twist the diffeomorphism conjugating it. Therefore, we
can calculate the braid monodromy ¢(I';) using the following:

THEOREM 4.17. Let S, N,l‘j,pj7£(.%'j) = <kmj7lzj>7£(bk,l) = <kk,l,lk,l>,ek,aj
and dx,; be as above. Then,

(L))

1 1 1
=11( II 11 AGEY (kreots Uet) b (ke Loy, ) 11 Ao (ko,islo1) | | (Hm)
m k=j—1 l=ny, l=ng

(as a braid).
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REMARK 4.18. [t is always possible to choose the point x¢ in such a way that
BN [z1,m0] = 0. Hence, we may assume that in to there are no points that belong to
the set B.

REMARK 4.19. The exact location of the points in the set N U B is not important
for the algorithm. What is important, however, is the order of the points with respect
to each other.

4.4. The algorithm. Now when the theory was established we can formulate
the algorithm for computing the braid monodromy of a curve S. It’s main idea is to
find all the critical points which effect the braid monodromy results, the singular points
of the curve and the points where complex switching occur. Then, using the computed
information take each element of the generalized skeleton and compute for the result
of the action induced by the diffeomorphisms conjugations as formulated in Theorem
4.17. The product of the results as a product of braids is the braid monodromy for this
generator of the fundamental group. The ordered set ¢(I';) (j = 1,--- ,n) define, as
a product, the braid monodromy factorization which describes the braid monodromy
homomorphism.

ALGORITHM 4.20. Algorithm for computing the braid monodromy of a curve S

(1) Find in S all the singular points with respect to the generic projection .

(2) Compute for each point found in step 1 its projection to the first coordinate.
The set of all projections is the set N.

(3) Compute for each point x; € N its Lefschetz pair L(x;) = (kz;,l;).

(4) Find for each x; € N the diffeomorphism A;j nduced by x; on the model by
Proposition 4.11.

(5) Find in S all the complex switching points with respect to .

(6) Compute for each point found in step 4 its projection to the first coordinate.
The set of all projections is the set B.

(7) Compute for each point by, € B its complex Lefschetz pair L(by;) =
(kk,1, k1), and find the orientation O(by,;) induced by the point using Def-
mnition 4.7.

(8) For each point x; find using Definition 4.15 the generalized skeleton [],, Hp,
defining its local braid monodromy.

(9) For each point x; compute the product which is the braid monodromy result
on I'; using the generalized skeleton from Step 7 and Theorem 4.17:

o(T5)

1 1 1
-T1 ( I1 (( [T asihe <kk,z,lk,z>) Apk <kzkvlz,c>> (H At <k0,z7lo,z>)> (Hm).
m k=1

=j—1 l=ny, l=ng

In the next Section we give examples for the computation of braid monodromy
using the algorithm.

5. Two examples for the algorithm use.

5.1. The computation of the braid monodromy of a cusp. In order to
demonstrate the algorithm we compute the braid monodromy for the image of the
curve S defined by the equation y?> — 23 = 0 under a linear transformation. In
order to properly modify the curve using a linear transformation we take it’s ho-

moganization to CP? which is defined by the homogenous polynomial: 3%w — z3.
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5 3 1
Then, we use the matrix 3 21 defining a linear transformation, to look
2 11

at the image of the curve under this transformation, which is the curve defined by
(32 + 2y + w)*(2z + y + w) — (52 + 3y + w)® = 0. In order to compute it’s braid
monodromy we choose generically a line at infinity and look at the curve’s affine part
which is (3z 4+ 2y + 1)°(2z + y + 1) — (52 + 3y + 1) = 0.

Following steps 1 and 2 of Algorithm 4.20, we find the points of the set N.
Figure 15 shows the real part of the curve with it’s singular points identified. This
also serve us in Step 2 so we know the order of the projections to the first coordinate
of the singular points of S.

-3 -2 -1 1

] \
x2

[2 N xd

Ls N

FIG. 15. The curve defined by (3z + 2y + 1)?(2z +y + 1) — (5z + 3y + 1)3 = 0.

By Step 3, we compute the Lefschetz pair for each one of the singular points.
Llwr) = (2,3), L(z2) = (1,2), L(zs) = (1,2), L{za) = (2,3).

In Step 4, we find the dlffeomorphlsms 1nduced by each point dependlng on it’s
Lefschetz pair and singularity type: Aaz (2,3, Ajl (1,2), A;’z (1,2, Agl (2, 3) for the
points x1, x2, X3, x4 respectively.

Note that since our curve is of degree 3, we could have at most 2 conjugate
complex points and therefore, B = (). Hence, Step 5,6 and 7 of the algorithm are
trivial.

In Step 8, we find the generalized skeleton for each singular point and so we may
summarize what we have until now in Table 1.

Finely, we compute the braid monodromy using Step 9:

Note, that all generalized skeletons consists of only one half-twist (besides the gener-
alized skeleton of the point x5 which is a half-twist taken to the power 3). Now, for
each j we need to conjugate the generalized skeleton of x; by all Agk (L(xy)), where
k=j—1,---,1. This is best summarized Table 3 (See Appendix B). Each part of
table is used for the computation of the braid monodromy of a different I';. First
line in the is the generalized skeleton half-twists determined by the singular point
which it’s product represents the local braid monodromy at the point ;. The left
side of each line (besides the first) is the diffeomorphism which acts on the generalized
skeleton elements, where the right side of each line is the result of this action. Finally,
taking the product of the generalized skeleton elements at the last line is the result
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TABLE 1
Results of steps 1-8 of Algorithm 4.20 on the curve (3z + 2y + 1)%(2z+y+1)— (5z+3y+1)3 =0

Point | Type L Agj

1 as | L(z1) = (2,3) A2 (2 3)

v | di | Llwa) = (1,2) / A (1,2)

IL,. Hn
|
3 ay | L(xs) = (1,2) C AMZ(12)

AL (2,3)

v | £<w4):<2,3>}

of the braid monodromy of I';.

F1G. 16. o1 (left) and o2 (right), the generators of B3 in the model above xg.

If the braid group of the model of the fiber above xg is generated by the two
half-twists o1 and o9 as shown in Figure 16, we conclude that:

p(l'1) = o2
¢(Tg) = o}
p(I's) =01
p(Ty) = 07 *o907

5.2. Example for the use of the algorithm when B # (). For the second
example consider the curve S defined by the polynomial (z? — (y + 3)* — 1)((z —
$)% —y? —1). We follow the steps of Algorithm 4.20 in order to compute it’s braid
monodromy.

In Step 1, we compute all the singular points with respect to the projection 7y,
and in Step 2, we project these points to get the set V. In our case the set N consists
of 6 points as can be seen in Figure 17.

Next step in the algorithm (3) is to compute the Lefschetz pair associated with
each point found in Steps 1 and 2. We get L(z1) = (3,4), L(z2) = (2,3), L(z3) =
(172)5 E([E4) = (1’2)7 £($5) = (253)7 [’(xﬁ) = (172)'

In Step 4, we find the diffeomorphisms induced by each singular point: A. (2, 3),
A,%l (2,3), Aél (1,2), Aéz (1,2), A,i (2,3), A.(1,2) for the points x1, -+ ,x¢ respec-
tively.

By Step 5, we find all the complex switching points with respect to m;. This
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/ N

FIG. 17. The real part of the curve defined by (z% — (y + 2)2 —1)((z — %)2 —y?—1).

can be done for example by solving the equations of the curve to y, isolating the &
coordinate, and finding real x for which we have equalities. It is also evident from
Figure 5.2 which shows only the & coordinates of the equation above the real axis,
that we have one point in B which is positioned between x3 and x4. Hence, we have
completed Step 5 and 6 and we have the set B = {b3 1 = b}. Moreover, since there are
at most 4 complex points at any fiber above the real axis, we know that the complex
Lefschetz pair associated with the point b is £(b) = (1,2). As for the orientation
induced by the point b we follow Definition 4.7. To the right of b the points n 4+ 1 +1
in the model belong to the imaginary points with smaller real coordinate, and the
points n 4+ 1 £+ 27 belong to the imaginary points with larger real coordinate. To the
left of b the points n + 1 £ ¢ in the model belong to the imaginary points with larger
real coordinate, and the points n+ 1+ 2¢ in the model belong to the imaginary points
with the smaller real coordinate. Hence, the orientation induced by b is O(b) = 1,
and so we have completed Step 7 of the algorithm.

FIG. 18. The & coordinates of the curve defined by (x2 — (y + %)2 —1)((z— %)2 — 42 —1) above
the real axis.

In Step 8, we find the generalized skeletons induced by each of the singular points
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found in Step 1. Results of the steps of the algorithm up to now are summarized in
Table 2.

TABLE 2

Results of steps 1-8 of Algorithm 4.20 on the curve (z2 — (y + %)2 —1)((z— %)2 —y?—1).

Point | type L IL,, Hm Agj
x c | L(x1)=(3,4) Coe 2 A, (3,4)
X9 aq £(.’L’2) = <2,3> . e . Aél <2,3>
vs | ar | Llxs)=(1,2) - A% (1,2)
b com | L(b)=(1,2) | No generalized skeleton | Al (1,2)
za | as | Llxa) = (1,2) . AZ, (1,2)
s | a4y | Llws)=(2.3) C A%, (2,3)
Ze c E(IG) - <1a 2> i AC <1a 2>

Finely, we compute the braid monodromy using Step 9:

For each z; we need to conjugate the elements constructing the generalized skeleton
of x; by all A%k (L(x)), where k = j —1,---,1, and pi is the singularity type of
the point zj or the diffeomorphism induced by the point b. This is best summarized
Table 4 (See Appendix B). In order to demonstrate the use of the algorithm we bring
here only full computations for the points x5 and xg, for the rest of the points we give
only the final result.

Fic. 19. The generators of By in the model above xqg

If the braid group of the model of the fiber above x is generated by the three
half-twists 01,09 and o3 as shown in Figure 19, we conclude that:
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6. Appendix A.
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Fra. 25. A2 (k,l) with v even
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F1G. 29. A2 (k1)
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Fia. 41. AL, (k,1)

7. Appendix B.

TABLE 3
Braid monodromy for the cusp defined by the polynomial (3z + 2y + 1)?(2z+y+1)— (5a+3y—+1)3

o(L'1) o(L'2)
Conj. diffeo. | Generalized skeleton || Conj. diffeo. | Generalized skeleton

s
AP <23> T
p(Ls) o)
Conj. diffeo. | Generalized skeleton || Conj. diffeo. | Generalized skeleton

<

ASZ <12 > . A <12

Ai{2<2,3> — A3{2<1,2>

<
Al <935 C
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TABLE 4

1
2
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Braid monodromy for the curve defined by the polynomial (z2 — (y + %)2 —D((x—2)2—9y2-1)

o('1)

¢(I'2)

Conj. diffeo.

Generalized skeleton

Conj. diffeo.

Generalized skeleton

Final result

Final result

N

¢(I'3)

o(l'y)

Conj. diffeo.

Generalized skeleton

Conj. diffeo.

Generalized skeleton

Final result

Final result

N

¢(L's)

e(I's)
Conj. diffeo. | Generalized skeleton || Conj. diffeo. | Generalized skeleton
< N

AZ (1,2) % AZ <2,3> T

Acom (1,2) C) AZ, (1,2) ;
1

A2 (1,2) Q Ao (1,2) ;

A% (2,3) D A% (1,2) T

A, (3,4) SO AZ, (2,3) 2.
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