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Abstract. In this article we study Whitney (B) regular stratified spaces with the action of a
compact Lie group G which preserves the strata. We prove an equivariant submersion theorem and
use it to show that such a G-stratified space carries a system of G-equivariant control data. As an
application, we show that if A ⊂ X is a closed G-stratified subspace which is a union of strata of
X, then the inclusion i : A ↪→ X is a G-equivariant cofibration. In particular, this theorem applies
whenever X is a G-invariant analytic subspace of an analytic G-manifold M and A ↪→ X is a closed
G-invariant analytic subspace of X.
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1. Introduction. Mather’s concept of control data [12] has crystallized as an
indispensible tool for the proof of Thom’s first and second isotopy lemmata and more
generally for the proof of the topological stability theorem which was originally con-
jectured by Thom [18] and finally proved by Mather [12] Moreover, control data are a
powerful tool in stratified Morse theory [6], to prove triangulability of stratified spaces
fulfilling Whitney’s condition (B) [7], and to verify de Rham theorems in intersection
homology theory [3]. A further topological application of the concept of control data
is that it allows for a transparent proof that every submersed stratified subspace A
of a (B) regular stratified space X is a neighborhood deformation retract (NDR) or
equivalently that i : A ↪→ X is a cofibration. The assumption that A is a closed
submersed stratified subspace of X hereby means that A is a union of connected
components of strata of X; see Appendix A.

In this article we extend the existence of control data and the latter result to
the G-equivariant case, where G is a compact Lie group. More precisely, we show in
Theorem 2.12 that if M is a smooth G-manifold and X ⊂ M a (B) regular stratified
subspace such that G leaves the strata invariant, then there exists a system of G-
equivariant control data on X. We use this observation in Section 4 to prove that for
everyG-invariant closed submersed stratified subspace A ⊂ X the inclusion i : A ↪→ X
is a G-cofibration. More precisely, we prove the following which is the main result of
our paper.

Theorem 1.1. Let X be a G-invariant (B) regular stratified space in a G-
manifold M and A a G-invariant closed submersed stratified subspace of X. Then
there exists a G-invariant open neighborhood U of A in X and a stratified G-
equivariant strong deformation retraction r : U × I → U of U onto A such that
Us := r(U, s) for each s ∈ I = [0, 1] satisfies
(a) Us is open in X for all s ∈ [0, 1), and
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(b) Us =
⋃

s<t≤1 Ut and Us =
⋂

0≤t<s Ut for all s ∈ (0, 1).
In particular i : A ↪→ X is a G-equivariant cofibration.

We then consider the situation where X and A are G-invariant analytic subspaces
of an analytic G-manifold M with A ⊂ X being a closed subspace. Using methods
by Wall [20] we show in Theorem 3.1 that X possesses a G-invariant (B) regular
stratification such that A is a union of strata. Hence our main result applies to such
a G-invariant analytic pair (X,A).
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award nr. 359389 and an NSF Conference Grant, DMS-1543812. M.P. acknowledges
hospitality by the National University of Singapore and the Max-Planck-Institute for
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2. Control data compatible with a group action. Mather proved in [12]
that every (B) regular stratified subspace of a smooth manifold carries a system of
control data. In this section we extend his result to the G-equivariant case. To this
end we first introduce G-equivariant versions of stratifications, tubular neighborhoods,
their isomorphisms and diffeotopies. Afterwards we prove a G-equivariant submersion
theorem. This will be used to derive uniqueness and existence results for equivariant
tubular neighborhoods. These tools then entail the main result of this section.

2.1. Equivariant versions of stratifications and tubular neighborhoods.

Definition 2.1. Suppose that a compact Lie groupG acts on the total spaceX of
a stratified space (X,S). The stratification S is called aG-stratification orG-invariant
and (X,S) a G-stratified space if for all g ∈ G and x ∈ X the set germs gSx and Sgx

coincide and if for each open neighborhood U with an S-inducing decomposition Z
the map from a piece R ∈ Z to gR given by the g-action is a diffeomorphism of
smooth manifolds. We also say in this situation that the G-action on X is compatible
with the stratification.

Example 2.2. The orbit type stratification of a G-manifold M is G-invariant
since the group action leaves the orbit types of the points of M invariant.

Proposition 2.3. Each stratum of a G-stratified space (X,S) is preserved by
the G-action. Moreover, G acts smoothly on the strata of X.

Proof. Let x be a point of a stratum S of X. Choose a decomposition Z of an
open neighborhood U of x inducing the stratification S over U . Then gU is an open
neighborhood of gx, and gZ a decomposition of gU . Moreover, if y ∈ U and Ry is
the piece of Z through y, then gRy is the piece of gZ through gy. Hence gZ induces
the stratification S over gU . But that means that gx has the same depth as x and
that the dimension of the piece in which gx lies has the same dimension as the piece
of Z through x. So gx and x lie in the same stratum. So we have proved that G acts
on each stratum of X. This action is smooth since it is smooth locally by definition.
The claim is proved.

Definition 2.4. By G-equivariant system of control data on a stratified space
(X,S) with a compatible G-action we understand a family T = (TS , πS , �S)S∈S of
triples called tubes consisting for each S ∈ S of an open neighborhood TS of S, a
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continuous retraction πS : TS → S called projection and a continuous map �S : S →
[0,∞) called tubular function such that the following control conditions hold true:
(CC1) For any S ∈ S the neighborhood TS is G-invariant, the projection πS is G-

equivariant, and the tubular function �S is G-invariant.
(CC2) For any S ∈ S the tubular function �S satisfies S = ρ−1

S (0).
(CC3) For any R,S ∈ S with R < S, the map

(πR,S , ρR,S) : TR,S → R× (0,∞)

is a smooth submersion, where TR,S := TR ∩ S, πR,S := πR|TR,S
and ρR,S =

ρR|TR,S
.

(CC4) For any Q,R, S ∈ S with Q < R < S

πQ,R ◦ πR,S |TQ,R,S
= πQ,S |TQ,R,S

and ρQ,R ◦ πR,S |TQ,R,S
= ρQ,S |TQ,R,S

,

where TQ,R,S = π−1
R,S(TQ,R).

If G is the trivial group one recovers the original definition of a system of control
data by Mather [12]. A stratified space (X,S) together with some control data T
will be called a Thom-Mather stratified space. If (X,S) carries a compatible G-action
and the control data are G-equivariant in the sense defined above, we call (X,S, T ) a
Thom-Mather stratified space with a compatible G-action or briefly a Thom-Mather
G-stratified space.

We will now introduce some further language where G always denotes a compact
Lie group and G a smooth G-manifold. Let S ⊂ M be a G-invariant smooth manifold.
By a G-equivariant tubular neighborhood of S in M we understand a triple T =
(E, ε, ϕ) where πE : E → S is a G-vector bundle over S carrying a G-invariant inner
product 〈−,−〉 : S → E ⊗ E, ε : S → (0,∞) is a G-invariant smooth map, and ϕ is
a G-equivariant diffeomorphism from B(ε, E) := {v ∈ E | 〈v, v〉 < ε(πE(v))} onto an
open neighborhood TS of S such that the composition of ϕ with the zero section of E
coincides with the identical embedding of S into M . Note that by the requirements
TS is a G-invariant open neighborhood of S in M .

Following Mather [12] we define the projection πS : TS → S as the composition
πE ◦ ϕ−1 and the tubular function �S : TS → [0,∞) as the function which maps a
point x ∈ TS to

〈
ϕ−1(x), ϕ−1(x)

〉
.

If N is a a second G-manifold and f : M → N a G-equivariant smooth map, then
a tubular neighborhood T = (E, ε, ϕ) is said to be compatible with f if f ◦πS = f |TS

.

Example 2.5. Let η be a G-invariant riemannian metric on M and πN : N → S
the normal bundle of S in M . Identify N with the orthogonal complement of TS
in TSM via η. Then there exists an open neighborhood U of the zero section of N
such that the exponential function exp : U → M is a G-equivariant diffeomeorphism
onto an open neighborhood of S in M . Since G is compact there exists a G-invariant
continuous function ε such B(ε,N) := {v ∈ E | 〈v, v〉 < ε(πN (v))} ⊂ U The inner
product 〈−,−〉 on N hereby is the one induced by the riemannian metric η. The
triple T = (N, ε, exp |B(ε,N)) now is a G-equivariant tubular neighborhood of S in M .

Example 2.6. Consider the action of the Lie group SU(2) on itself by conjuga-
tion. Since a matrix g ∈ SU(2) is diagonalizable it is conjugate to a matrix of the form(
eiλ 0
0 e−iλ

)
with λ ∈ [0, π] uniquely determined. The conjugacy classes of SU(2) can
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therefore be labelled by the elements of the interval [0, π]. Denote the corresponding
map SU(2) → [0, π] by λ. Note that λ is continuous but not smooth. Next observe
that the latitude map 
 = 1

2 Tr : SU(2) → R is smooth, equivariant and has image
[−1, 1]. Moreover, if g has eigenvalues e±iλ, then 
(g) = cosλ, which in other words
means that the level map labels the conjugacy classes of SU(2) as well. Now equip
M := SU(2) with the stratification by orbit types. There are three of those, namely

M(SU(2)) = {±1} = 
−1
(
{±1}) = λ−1({0, π}

)
,

M(O(2)) = 
−1({0}) = λ−1({π/2}), and

M(U(1)) = 
−1
(
(−1, 1) \ {0}

)
= λ−1

(
(0, π) \ {π/2}

)
.

When endowing [−1, 1] with the stratification given by the open subset (−1, 1) \ {0}
and the discrete subset {0,±1} the level map 
 becomes a smooth stratified equivariant
submersion.

Let us now explicitly describe a system of equivariant control data on SU(2). Put

T(SU(2)) = λ−1
(
[0, π/4) ∪ (3π/4, π/4]}

)
,

T(O(2)) = λ−1
(
(π/4, 3π/4)

)
, and

T(U(1)) = M(U(1)) = λ−1
(
(0, π) \ {π/2}

)
.

Then T(SU(2)), T(O(2)) and T(U(1)) are tubular neighborhoods of M(SU(2)),M(O(2)) and
M(U(1)), respectively. The projections and tubular functions are defined for diagonal

g =

(
eiλ 0
0 e−iλ

)
∈ SU(2) as follws and then extended equivariantly:

π(SU(2))(g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 0

0 1

)
if λ ∈ [0, π/4) ,(

−1 0

0 −1

)
if λ ∈ (3π/4, π] ,

π(O(2))(g) =

(
i 0
0 −i

)
if λ ∈ (π/4, 3π/4) ,

�(SU(2))(g) =

{
λ2 if λ ∈ [0, π/4) ,

(λ− π)2 if λ ∈ (3π/4, π] ,

�(O(2))(g) = (λ− π/2)2 if λ ∈ (π/4, 3π/4) .

The projection π(U(1)) and tubular function �(U(1)) are the identity and zero map,
respectively. One checks that the thus defined data give a system of equivariant
control data for SU(2) carrying the conjugate action.

In Theorem 2.12 we will establish a general scheme to construct equivariant sys-
tems of control data under the assumption that the underlying stratified space is (B)
regular and that the stratification is compatible with the group action.

Given two tubular neighborhoods T = (E, ε, ϕ) and T′ = (E′, ε′, ϕ′) an iso-
morphism between T cand T′ consists of an isometric vector bundle isomorphism
ψ : E → E′ and a continuous map δ : S → (0,∞) such that δ ≤ min(ε, ε′) and such
that ϕ′ ◦ ψ|B(δ,E) = ϕ|B(δ,E). We denote such an isomorphism briefly by ψ : T ∼ T′.

In addition to isomorphisms of equivariant tubular neighborhoods there is a cor-
responding equivariant version of diffeotopies on a G-manifold M . By a G-equivariant
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diffeotopy on M we understand a smooth map H : M × I → M , where I denotes the
interval [0, 1], such that each of the maps Ht : M → M , x �→ H(x, t) with t ∈ I is
G-equivariant diffeomorphism and such that H0 = idM . If in addition a G-equivariant
map f : M → N is given, then a G-equivariant diffeotopy H : M × I → M is said
to be compatible with f if f(H(x, t)) = f(x) for all x ∈ M and t ∈ I. For every
diffeotopy H : M × I → M one calls the set suppH := {x ∈ M | ∃t ∈ I : H(x, t) �= x}
the support of H.

If h : (M,S) → (M ′, S′) is a G-equivariant diffeomorphism between pairs of G-
manifolds and G-submanifolds one defines the push-forward tubular neighborhood
h∗T of S′ in M ′ of a tubular neighborhood T = (E, ε, ϕ) of S in M by h∗T =(
(h−1)∗E, ε ◦ h−1, h ◦ ϕ

)
.

2.2. The Equivariant Submersion Theorem. Locally in charts, every sub-
mersion looks like a linear projection. The following equivariant versions of this result
appear to be folklore.

Proposition 2.7. Let f : M → P be a G-equivariant submersion between G-
manifolds M and P . Let x ∈ M be a point, H = Gx be the isotropy group of x and
K = Gf(x) ⊃ H the one of f(x). Then there exist a finite dimensional orthogonal
K-representation space N , a finite dimensional orthogonal H-representation space
W , a K-invariant open convex neighborhood of the origin B ⊂ N , an H-invariant
open convex neighborhood of the origin C ⊂ W , G-equivariant open embeddings Θ :
G ×H (B × C) ↪→ M and Ψ : G ×K B ↪→ P such that Θ

(
[e, 0]G×H(B×C)

)
= x,

Ψ
(
[e, 0]G×KB

)
= f(x) and such that the following diagram commutes, where π :

B × C → C is projection onto the first factor and idG ×π maps [g, (v, w)]G×H(B×C)

to [g, v]G×HB.

G×H (B × C)
idG ×π ��

Θ

��

G×K B

Ψ

��
M

f
�� P

(2.1)

Moreover, the dimensions of the manifolds and representation spaces fulfill the rela-
tions dimP = dimG−dimK+dimN and dimM = dimG−dimH+dimN+dimW .

Proof. First choose a G-riemannian metric � on P , identify for every p ∈ P the
normal space Np := TpP/TpGp with the orthogonal complement of TpGp in TpP ,
put N := Nf(x) and let B ⊂ N be an open ball around the origin of radius smaller
than the injectivity radius of the exponential function exp� (with respect to �) over
the orbit Gf(x). Then, N is an orthogonal K-representation space and, by the Slice
Theorem [9, p. 139], [15], & [4, Sec. II.4], the subset Z = exp�(B) ⊂ P is aK-invariant
submanifold and the map

Ψ : G×K B → P, [g, v]G×KD �→ g exp� v

a G-equivariant diffeomorphism onto an open neighborhood of Gf(x) in P . Following
[4, Sec. II.4], we call such a Z ⊂ P a slice through f(x). Next choose a G-equivariant
bundle H → M complementary to the vertical bundle V = kerTf → M in TM and
call it the horizontal bundle. For each v ∈ B let γ̃v : [0, 1] → M be the horizontal lift

of the geodesic γv : [0, 1] → P , t �→ exp�(tv) such that γ̃v(0) = x. Let Z̃ = {γ̃v(1) |
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v ∈ B}. Then Z̃ is a submanifold of M with a chart given by the inverse of B → Z̃,

v �→ γ̃v(1). Moreover, Z̃ is H-invariant since the action by h ∈ H maps the geodesic
γv for v ∈ B to the geodesic γhv and the lift of γv to the lift of γhv. After possibly
shrinking B and with it Z and Z̃ the map G ×H Z̃ → M becomes a G-equivariant

embedding and the composition G ×H Z̃ → M
f→ P a submersion. Now consider

the fiber F ⊂ M of f through the point x. Then F ⊂ M is a submanifold which is
invariant under the action of K. Choose a K-invariant riemannian metric η on F and
let W := TxF/TxKx be the normal space at x and identify it with the orthogonal
complement of TxKx in TxF . Observe that W is an orthogonal H-representation
space since H = Kx. For a suficiently small open ball C ⊂ W around the origin
the set Y := expη(C) is a slice of the K-manifold F through x. Now let γ̃y,v for
each y ∈ Y and v ∈ B be the horizontal lift of γv such that γ̃y,v(0) = y. Then,
after possibly shrinking B and C (together with the corresponding slices) the map
θ : B×C ↪→ M , (v, w) �→ γ̃expη w,v(1) is an embedding since T0θ is the linear injection
N×W ↪→ Hx×Vx

∼= TxM which maps (v, w) to the unique pair (vh, w) ∈ Hx×Vx such
that Tx(v

h) = v. Moreover, the embedding θ is H-equivariant since the horizontal
lift is H-equivariant. Hence the set X = {γ̃y,v(1) | v ∈ B, y ∈ Y } is an H-invariant
submanifold of M transversal to the orbit Gx.

Consider now the G-manifold G×H (B × C) and define

Θ : G×H (B × C) → M, [g, (v, w)]G×H(B×C) �→ gθ(v, w) .

This map is well-defined by equivariance of θ. The restriction of Θ to the zero section
of G ×H (B × C), which is canonically diffeomorphic to G/H, is a diffeomeorphism
onto to the orbit Gx since H = Gx. Moreover, the image of {e} × (B × C) under Θ
is the manifold X, so the image of Θ equals GX. Now recall that the orbit Gx and
X are transverse. By G-equivariance of Θ it follows that TgxΘ is an isomorphism for
all g ∈ G. After possibly shrinking B and C the map Θ therefore is a diffeomorphism
onto an open neighborhood of the orbit Gx by the Implicit Function Theorem. In
other words, X is a slice of M at x.

Finally let ψ : B → P be the embedding v �→ exp� v. The image of ψ then is the
slice Z, and ψ−1 ◦ f ◦ θ = π by definition of θ via horizontal lifts. This entails that
the diagram commutes and the proposition is proved. The dimension relation follows
from the definition of N and W and the Slice Theorem.

Corollary 2.8. Let f : M → P be a G-equivariant map between G-manifolds
M and P , and let S ⊂ M be a G-invariant submanifold such that the restriction
f |S : S → P is a submersion. Let x ∈ S be a point, H = Gx be the isotropy group of x
and K = Gf(x) ⊃ H the one of f(x). Then there exist an orthogonal K-representation
space N , orthogonal H-representation spaces W and W ′, a K-invariant open convex
neighborhood of the origin B ⊂ N , H-invariant open convex neighborhoods of the
origin C ⊂ W and D ⊂ W ′, and finally G-equivariant open embeddings Φ : G ×H

(B × C × D) ↪→ M and Ψ : G ×K B ↪→ P such that Φ
(
[e, 0]G×H(B×C×D)

)
= x,

Φ
(
[e, 0]G×KB

)
= f(x) and such that the following two properties hold true.

(1) The map

Θ : G×K (B × C) → M, [g, (v, w)]G×K(B×C) → Ψ
(
[v, w, 0]G×K(B×C×D)

)
has image in S and comprises a G-equivariant diffeomorphism onto an open neigh-
borhood of the orbit Gx in S.
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(2) With Π : B × C × D → B denoting projection onto the first factor the diagram
below commutes.

G×H (B × C ×D)
idG ×Π ��

Φ

��

G×K B

Ψ

��
M

f
�� P

(2.2)

Proof. Choose a G-invariant riemannian metric � on P and a G-equivariant
horizontal bundle H → P such that the restriction H|S is a G-equivariant subbundle
of TS. Let N = Tf(x)P/Tf(x)Gf(x) and choose B ⊂ N as in the proof of the
proposition. Then Z = exp� B is a slice and Ψ : G×K B → B defined as above a G-
equivariant diffeomorphism. Now let F ⊂ M be the fiber of the submersion f through
x. Then F is a K-invariant submanifold of M and F ∩ S a K-invariant submanifold
of S. Choose a K-invariant riemannian metric η on F . Put W = Tx(F ∩ S)/TxKx
and identify it with the orthogonal complement of TxKx in Tx(F ∩S). Let W ′ be the
orthogonal complement of Tx(K ∩ S) in TxF and choose small enough open convex
neighborhoods of the origin C ⊂ W and D ⊂ W ′. Then Y = expη(C ×D) is a slice
through x of the K-manifold F . Let γv for v ∈ B the geodesics as in the proof of the
proposition and denote for y ∈ Y and v ∈ B by γ̃y,v the horizontal lift of γv in M
which starts at y. Now define ϕ : B × C ×D → M by (v, w, z) �→ γ̃expη(w,z),v. Then

Φ : G×H (B × C ×D) ↪→ M, [g, (v, w, z)]G×H(B×C×D) �→ gϕ(v, w, z)

is a G-invariant diffeomorphism onto an open neighborhood of Gx in M and the
diagram (2.2) commutes by the proof of the proposition. By assumptions on the
horizontal bundle H and the construction of Θ property (1) holds true.

2.3. Uniqueness and existence of equivariant tubular neighborhoods.
For the construction of G-equivariant control data one needs stronger versions of
existence and uniqueness results of G-equivariant tubular neighborhoods. In the fol-
lowing we prove equivariant versions of [12, Prop. 6.1] and [12, Prop. 6.2].

Theorem 2.9 (Uniqueness of equivariant tubular neighborhoods). Let M ,
P be smooth G-manifolds, S ⊂ M a closed G-invariant smooth submanifold, and
f : M → P a G-equivariant smooth map such that the restriction f |S : S → P is a
submersion. Assume that T0 and T1 are two G-equivariant tubular neighborhoods of S
in M and that they are compatible with f . Further assume that U ⊂ S is a G-invariant
relatively open subset and that ψ0 : T0|U → T1|U is an isomorphism of G-equivariant
tubular neighborhhoods over U . Let A,Z ⊂ S be two G-invariant relatively closed
subsets such that A ⊂ U and let V ⊂ M be a G-invariant open neighborhood of Z
in M . Then there exists a G-equivariant diffeotopy H : M × I → M which leaves
S invariant, is compatible with f and has support in V \ A such that the tubular
neighborhoods (H1)∗

(
T0|A∪Z

)
and T1|A∪Z are isomorphic. If O ⊂ M × M is a G-

invariant neighborhood of the diagonal, one can choose H such that (Ht(x), x) ∈ O
for all t ∈ I and x ∈ M . Finally, the isomorphism ψ : (H1)∗

(
T0|A∪Z

)
→ T1|A∪Z is

G-equivariant and can be constructed so that ψ|A = ψ0|A.
Proof. Our proof adapts Mather’s argument in [12, Proof of Prop. 6.1] to the

G-equivariant case.
Step 1. We first consider the local G-equivariant case as stated in Corollary 2.8.

So we assume for now the following:
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(1) P is of the form G×Gf(s)
B, where Gf(s) ⊂ G is the isotropy group of some point

f(s) with s ∈ S and B is an open convex neighborhood of the origin of some
euclidean space R

k carrying an orthogonal Gf(s)-representation. The point f(s)
is then identified with [e, 0] ∈ G×Gf(s)

B.
(2) S is equivariantly diffeomorphic to an associated bundle of the form G×Gs

(B ×
C), where Gs ⊂ G is the isotropy group of s ∈ S and C is an open convex
neighborhood of the origin of some euclidean space R

l carrying an orthogonal
Gs-representation. Under the corresponding diffeomorphism the point s can be
identified with [e, 0] ∈ G×Gs (B × C). Note that Gs ⊂ Gf(s).

(3) M is equivariantly diffeomorphic to an associated bundle of the form G×Gs
(B×

C×D), where D is an open convex neighborhood of the origin of a euclidean space
R

m with an orthogonal Gs-representation and where the Gs-action on B×C×D
is the diagonal action.

(4) Under these identifications f : M → P coincides with the G-equivariant map
G ×Gs

(B × C × D) → G ×Gf(s)
B which maps [g, (v, w, z)] to [g, v]. So for

every x = [g, (v, w, z)] ∈ M the fiber through x in M coincides with Fx :=[
{g} × {v} × C ×D

]
, the image of {g} × {v} × C ×D in G×Gs

(B × C ×D).
In addition to this we also assume for the moment that Z is compact.

Since G is compact, there exists a bi-invariant riemannian metric μ on G. The
spaces B,C,D all carry natural invariant metrics induced by the ambient euclidean
spaces. Denote by η and � the induced G-invariant riemannian metrics on M and P ,
respectively. With these metrics, f then becomes a riemannian submersion. Actually,
the fibers of this riemannian submersion are even totally geodesic by construction of
η. Now assume that x and y are points of M which are both in the same fiber Fx.
Then x = [g, (v, w, z)] and y = [g, (v, w′, z′)] for some g ∈ G, v ∈ B, w,w′ ∈ C and
z, z′ ∈ D. The unique geodesic connecting x with y then is given by

γx,y(t) = [g, (v, (1− t)w + tw′, (1− t)z + tz′)] for all t ∈ I, where I = [0, 1].

Note for later that γx,y completely runs within the fiber Fx.
Denote by πN : N → S the normal bundle of S in M that is Nx = TxM/TxS ∼=

T0D ∼= R
m for all x ∈ S. Via the riemannian metric η one can identify N with

the subbundle of TSM orthogonal to TS. By assumptions and construction of the
riemannian metric η one has N ⊂ kerTSf .

Now observe that for i = 0, 1 the map

αi : Ei → N, v �→ Tϕi(v) + TπEi
(v)S

is a vector bundle isomorphism. Hereby we have identified Ei with the vertical sub-
bundle of TEi restricted to the zero section. By assumptions αi is an isomorphism
of G-bundles, hence α := α−1

1 ◦ α0 : E0 → E1 is one, too. Note that for x ∈ U ,
αx : E0,x → E1,x coincides with ψ0,x : E0,x → E1,x. By uniqueness of the po-
lar decomposition there exists a unique G-equivariant vector bundle automorphism
β : E1 → E1 such that for every x ∈ S the linear map βx : E1,x → E1,x is positive
definite and ψx := βx ◦ αx : E0,x → E1,x an orthogonal transformation. Then

ξt := (1− t)α+ tψ : E0 → E1

is an isomorphism for every t ∈ I which over U coincides with ψ0. After possibly
lessening ε1 and ε0, where both stay G-invariant and positive, the set T := T0,S ∩T1,S

is a G-invariant open neighborhood of S in M over which the maps

qt : T → M, x �→ ϕ1 ◦ ξt ◦ ϕ−1
0 (x)
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are well-defined and open G-equivariant embeddings for every t ∈ I. Note that over
S each qt is the identical embedding and that each qt acts as identity over some open
G-invariant neighborhood U ′ ⊂ T of A. Moreover, each qt is compatible with f since
both T0 and T1 are compatible with f . Put V1 = T ∩ V and observe that Z ⊂ V1.
By compactness of Z there exists a G-invariant open neighborhood V2 of Z which is
relatively compact in V1 and which satisfies V2 ⊂ qt(V1) for all t ∈ I. Next choose a
smooth G-invariant function χ : M → I with compact support in V2 such that χ is
identically 1 over a G-invariant neighborhood of Z in V2. Define Qs,t : M → M for
s, t ∈ I by

Qs,t(x) =

{
γx,qt◦q−1

s (x)

(
χ(x)

)
if x ∈ V2,

x if x ∈ M \ V2,

Since the qt are compatible with f , the geodesic γx,qt◦q−1
s (x) is well-defined for every

x ∈ V2. Hence the Qs,t are well-defined as well and also compatible with f . Next
observe that by construction Qt,t is the identity map for all t ∈ I and that there is
a compact G-invariant subset containing the support of Qs,t for all s, t ∈ I. Hence
there is some δ > 0 such that Qs,t is a diffeomorphism for all s, t with |s − t| < δ.
From here on we can follow Mather’s treatment of the local case in [12, Prop. 6.1]
almost literally. Choose a positive integer n such that 1

n < δ. Put

H̃t = Q0, t
n
◦Q t

n , 2tn
◦ . . . ◦Q (n−1)t

n ,t
.

Then H̃ is a G-equivariant diffeotopy, compatible with f , and leaves S fixed. Since
the qt acts as identity over U ′, H̃t does so, too. Moreover, H̃ coincides by construction
with q1 ◦ q−1

0 over some sufficiently small G-invariant open neighborhood of Z in V2.

Hence H̃ coincides with q1◦q−1
0 over U ′∪V ′. Furthermore H̃◦q0◦ϕ0 = q1◦ϕ0 = ϕ1◦ψ

over the G-invariant neighborhood ϕ−1
0 (U ′ ∪ V ′) of A ∪ Z in E0. Therefore, ψ is an

isomorphism between (H̃1q0)∗T0|A∪Z and T1|A∪Z . Moreover, the support of H̃ is
contained in V2 ⊂ V by construction. Finally, by requiring that the cut-off function
χ has support in a sufficiently small G-invariant open neighborhood of Z one can
achieve that with regard to the compact-open topology H̃t is uniformly in t ∈ I as
close to the identity map as one wishes.

By the following step there exists, after possibly shrinking U ′ and V ′, a G-
equivariant diffeotopy Ĥ of M which is compatible with f and leaves S invariant
such that for all t ∈ I the diffeomorphisms Ĥt act as identity over U ′ and such that
Ĥt = q0 over V

′. The mapH : M×I → M , (x, t) �→ H̃t◦Ĥt(x) then is a G-equivariant
diffeotopy with all the required properties.

Step 2. Here we show that there exists a G-equivariant diffeotopy Ĥ of M with
compact support which is compatible with f , leaves S invariant, acts as identity
over a sufficiently small open G-invariant neighborhood U ′ of A and coincides over
a sufficiently small open G-invariant neighborhood V ′ of Z with q0. Note that for
the non-equivariant case the existence of such a diffeotopy Ĥ has been claimed in the
proof of [12, Prop. 6.1] with the argument left to the reader. Since the equivariant
case is more subtle, we present a proof here which obviously covers Mather’s claim,
too.

Observe that for all x ∈ T the image q0(x) lies in the fiber Fx by construction.
Hence the geodesic γx,q0(x) is well-defined and fully runs in Fx. Now put K(x, t) =

γx,q0(x)(t) for all x ∈ T and t ∈ I. After possibly shrinking T , K̂ : T × I → M × I,
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(x, t) �→
(
K(x, t), t

)
is an open embedding since q0 acts as identity over S, one has

Txq0 = idTxM for all x ∈ S and finally since I is compact. Moreover, Kt acts as
identity for all x ∈ U ′ where U ′ is a G-invariant open neighborhood of A in T over
which q0 acts as identity. Finally, K is compatible with f since q0 is. Now define the
time-dependent vector field XK : T × I → TM by

XK(x, t) =
∂

∂s

∣∣∣∣
s=0

K(x, t+ s) .

Note that over U ′ × I the vector field XK vanishes and that XK is G-equivariant.
Next choose a sufficiently small relatively compact G-invariant open neighborhood V ′

of Z and a non-negative G-invariant smooth function δ : M → [0, 1] which is identical
to 1 over V ′ and has compact support in T . Define the time-dependent vector field
X : M × I → TM by

(x, t) �→
{
δ(x)XK(x, t) for x ∈ T ,

0 for x ∈ M \ T .

Then X is a time-dependent G-equivariant vector field on M with compact support.
By [8, Chap. 8, Thm. 1.1] it generates a diffeotopy Ĥ : M ×I → M . The diffeotopy is
G-equivariant since X is, and is compatible with f since X is tangent to the fibers of
f by construction. Since δ has compact support, Ĥ has so too. Over V ′ the diffeotopy
Ĥ coincides with K, hence one obtains in particular that Ĥ1|V ′ = q0|V ′ . Over U ′,
each Ĥt acts as identity for every t ∈ I. This finishes Step 2.

Step 3. Let us pass to the general case, now. Here we follow closely [12, Prop. 6.1].
By the Equivariant Submersion Theorem and Corollary 2.8 there exists for every x ∈ S
an open relatively compactG-invariant open neighborhoodWx of x inM together with
G-equivariant open embeddings called equivariant charts Φx : Wx ↪→ G ×Gx R

p+k+l

and Ψx : f(Wx) ↪→ G×Gf(x)
R

p, where R
p carries an orthogonal Gf(x)-representation

and R
k and R

l orthogonal Gx-representations, such that the following conditions hold
true:
(1) The image of Φx is of the form G ×Gx

(B × C ×D) with B ⊂ R
p, C ⊂ R

k, and
D ⊂ R

l open convex neighborhoods of the origin, and Ψx

(
f(Wx)

)
= G×Gf(x)

B.

(2) One has Wx ∩ S = Φ−1
x

(
G×Gx (B × C × {0})

)
= Φ−1

x

(
G×Gx R

p+k
)
.

(3) The diagram

Wx
Φx ��

f

��

G×Gx R
p+k+l

idG ×Π

��
f(Wx)

Ψx

�� G×Gf(x)
R

p

commutes, where Π is projection onto the first p coordinates.
After possibly shrinking the Wx one can achieve that

Wx ∩A �= ∅ =⇒ Wx ⊂ V

Wx ∩ Z �= ∅ =⇒ Wx ∩ S ⊂ U .
(2.3)

The family M \ S ∪ {Wx}x∈S then is covering of M by G-invariant open subsets.
Since the orbit space M/G is separable and paracompact one can find a locally finite
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countable refinement M \ S ∪ {Wi}i∈N∗ with each Wi being G-invariant, open in M
and contained in Wxi for some xi ∈ S. Moreover, the Wi are so that there exist
equivariant charts Φi : Wi → G ×Gi R

p+k+l and Ψi : f(Wi) → G ×Gf(i)
R

p fulfilling
conditions (1) to (3). Following Mather we discard all Wi for which Wi ∩ Z �= ∅ or
Wi ∩ A = ∅, and reindex the remaining Wi’s again by the positive integers. By (2.3)
we then have A ⊂ U ∪⋃

i∈N∗ Wi and Wi ⊂ V for all i ∈ N
∗. Next, choose G-invariant

closed subsets W ′
i ⊂ Wi ∩S such that A ⊂ U ∪⋃

i∈N∗ W
′
i . Since the Wx are relatively

compact, all W ′
i are compact. Finally put for all j ∈ N

Uj = ϕ0

(
π−1
E0

(U) ∩B(ε0, E0)
)
∪W1 ∪ . . . ∪Wj .

Note that the Uj are then G-invariant and open and that U0 ∩ S = U .
We now construct inductively G-equivariant diffeotopies H0, H1, H2, . . . of M to-

gether with a sequence ψ0, ψ1, ψ2, . . . of G-equivariant isomorphims of tubular neigh-
borhoods. We start with defining H0

t to be the identity map for all t ∈ I and let ψ0

be the ismorphism from the statement of the theorem.
For the induction step we assume to be given diffeotopies H0, H1, . . . , Hi−1 of

M together with G-equivariant isomorphisms ψ0, . . . , ψi−1 of tubular neighborhoods
having the following properties:
(a) The diffeotopies H0, H1, . . . , Hi−1 and isomorphisms ψ0, . . . , ψi−1 are G-

equivariant and compatible with f .
(b) The diffeotopies H0, H1, . . . , Hi−1 leave S pointwise fixed.
(c) For each j = 0, . . . , i − 1 the diffeotopy Kj of M defined by Kj

t := Hj
t ◦Hj−1

t ◦
. . . ◦H0

t for t ∈ I has support in Uj ∩ V .

(d) One has
(
Kj

t (x), x
)
∈ O for all x ∈ M , t ∈ I, and j = 0, . . . , i− 1.

(e) For each j = 0, . . . , i − 1 there exist G-invariant relatively compact open neigh-

borhoods U∗
j of A ∪W ′

1 ∪ . . . ∪W ′
j in S such that U

∗
j ⊂ U∗

j−1 ∪Wj when j > 0

and such that ψj is an isomorphism of tubular neighborhoods kj∗T0|U∗j → T1|U∗j ,
where kj : M → M is the diffeomorphism Kj

1 .
By the local G-equivariant case from Step 1 there exist a G-equivariant diffeotopy

Hi on M together with an isomorphism of tubular neighborhoods ψi such that the
conditions of the induction are satisfied. Let us provide a detailed argument by
adapting Mather’s argument to the G-equivariant case. First choose a G-equivariant
relatively compact open subset W 0

i of Wi with W ′
i ⊂ W 0

i . Then let U∗
i be a G-

equivariant open neighborhood of A∪W ′
1 ∪ . . .∪W ′

i in S with closure being compact
and in U∗

i−1 ∪W 0
i . By the local G-equivariant case there exists a diffeotopy Hj of Wi

which is G-equivariant and compatible with f , has support in W 0
i and leaves S ∩Wi

invariant. Moreover, since Zi := U
∗
i − U∗

i−1 is a G-invariant and compact subset of
Wi and ki−1

∗ T0|U∗i−1∩Wi
∼ T1|U∗i−1∩Wi

, the diffeotopy Hi can be chosen so that there

exists a G-equivariant isomorphism of tubular neighborhoods

ψi : (H
i
1)∗k

i−1
∗ T0|U∗i ∩Wi

→ T1|U∗i ∩Wi

which fulfills ψi|U∗i ∩Wi∩U
∗
i−1

= ψi−1|U∗i ∩Wi∩U
∗
i−1

. Finally, one can even achieve that

the Hi
t with t ∈ I are arbitrarily and uniformly close to the identity. Since the support

of the diffeotopy Hi is a compact G-invariant subset of Wi, one can extend Hi by
the identity outside Wi to a G-invariant diffeotopy on M which has support in Wi

and is compatible with f . By putting ψi|U∗i−1
= ψi−1|U∗i−1

, the isomorphism ψi can

be extended to U
∗
i and the thus extended isomorphism has all the desired properties.

This completes the induction step.
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Since the Lie group G is compact, one can shrink the G-invariant open neighbor-
hood O ⊂ M×M of the diagonal so that the projection pr2 : O → M onto the second
factor is proper. The sequences

(
Ki

t

)
i∈N

and
(
ψi

)
i∈N

then eventually become locally
constant. Hence the maps

H : M × I →M, (x, t) �→ lim
i→∞

Ki
t(x) and ψ : M → Hom(E0, E1), x �→ lim

i→∞
ψi(x)

By construction, H then is a G-equivariant diffeotopy of M compatible with f and
ψ : (H1)∗T0 ∼ T1 a G-equivariant isomorphism of tubular neighborhoods compatible
with f as well. Moreover, H and ψ have the properties claimed in the theorem.

Theorem 2.10 (Existence of equivariant tubular neighborhoods). Let M,N be
G-manifolds, S ⊂ M a G-invariant smooth submanifold, and f : M → N a G-
equivariant smooth map which is submersive over S. Let U ⊂ S be relatively open
G-invariant subset, and A ⊂ U relatively closed and G-invariant. Assume that T0

is a G-equivariant tubular neighborhood of U in M compatible with f |T0
. Then there

exists a G-equivariant tubular neighborhood T of S compatible with f such that T|A
and T0|A are G-equivariantly isomorphic.

Proof. Step 1. The Equivariant Submersion Theorem entails existence of tubular
neighborhoods in the local equivariant case. Let us explain this. The global case will
be considered in the following step. Assume that M is of the form G×H (B×C×D),
P is equivariantly diffeomorphic to G ×K B, and under these identifications S has
the form G ×H (B × C) and f the form idG ×Π. Hereby, H ⊂ K ⊂ G are closed
subgroups, B ⊂ R

p, C ⊂ R
k, and D ⊂ R

l are open convex neighborhoods of the
origin, where R

p carries an orthogonal K-repersentation, and R
k, Rl orthogonal H-

representations, and Π is projection onto the third factor. Now let E be the bundle
G ×H (B × C × R

l) → S ∼= G ×H (B × C), ε : S → (0,∞) a constant map such
that the ball of radius ε in R

l is contained in D, and ϕ : B(ε, E) ↪→ M the identical
embedding. Then T = (E, ε, ϕ) is a G-equivariant tubular neighborhood compatible
with f .

Step 2. We adapt Mather’s argument in the proof of [12, Prop. 6.2] to the equiv-
ariant case. Without loss of generality we can assume that S is closed in M . Now
choose G-invariant relatively compact open neighborhoods Wi, i ∈ N

∗ together with
equivariant charts Φi : Wi ↪→ G ×Gi

R
p+k+l and Ψi : Wi ↪→ G ×Gi

R
p+k+l fulfilling

conditions (1) to (3) in Step 3 of the preceding proof such that the family (Wi)i∈N∗ is a
locally finite covering of S. Next choose G-invariant closed subsets W ′

i ⊂ S ∩Wi such
that the family (W ′

i )i∈N∗ covers S as well. Put U0 := T0 = ϕ0

(
B(ε0, E0

)
and define

inductively Ui := Wi∪Ui−1 for i ∈ N
∗. Furthermore put U ′

0 := A and U ′
i := W ′

i ∪U ′
i−1

for i ∈ N
∗. Finally let U ′′

0 be a G-invariant relatively open neighborhhood of A in

S such that U
′′
i ⊂ U and then choose inductively for all i ∈ N

∗ relatively open
neighborhoods U ′′

i of U ′
i in S such that U ′′

i is contained in Wi ∪ U ′′
i−1 and such that

U ′′
i can be decomposed into G-invariant relatively open subsets Xi, Yi ⊂ U ′′

i so that
Xi ⊂ Wi \ U ′

i−1, Y i ⊂ U ′′
i−1 and so that Xi ∩ Yi is relatively compact in Wi.

Now we inductively construct G-equivariant tubular neighborhoods Ti of U
′′
i in

M . The tubular neighborhood T0 is the given one. Assume that for some i ∈ N
∗

a G-equivariant tubular neighborhood Ti−1 of U ′′
i−1 in M has been constructed and

that it is compatible with f . By Step 1 there exists a G-equivariant tubular neighbor-
hood T′

i of Wi ∩ S in Wi which is compatible with f . So we have two G-equivariant
tubular neighborhoods over the G-invariant subset U ′′

i ∩ Wi ∩ S, the corresponding
restrictions of Ti−1 and T′

i. By Theorem 2.9 there exists a G-quivariant diffeomor-
phism h of M which is compatible with f and has support within a sufficiently small
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relatively compact neighborhood of Xi ∩ Yi such that h∗Ti−1|Xi∩Yi
= T′

i|Xi∩Yi
. By h

having a sufficiently small support we in particular mean that h is the identity in a
neighborhood of U ′

i−1. One can now glue together h∗Ti−1 and T′
i to a G-equivariant

tubular neighborhood Ti over U ′′
i = Xi ∪ Yi. By construction Ti is compatible with

f .
Since for all i ∈ N

∗ the tubular neighborhoods Ti−1 and Ti are isomorphic over a
small neighborhood of U ′

i−1 in S there exists a G-equivariant tubular neighborhood T
of S in M such that T|U ′i ∼ Ti|U ′i for all i. This tubular neighborhood is compatible
with f since all the Ti are and fulfills the claim. The theorem is proved.

2.4. Existence of equivariant control data. Before proving the existence
of G-equivariant control data in Theorem 2.12 below, we first need the following
equivariant analog of [12, Lem. 7.3]. Given a stratum S, a tubular neighbourhood
T = (E, ε, ϕ) and a smooth function ε′ : S → R>0, define T ◦

ε′ := ϕ(Bε ∩Bε′).

Lemma 2.11. Let R and S be disjoint submanifolds of M which are preserved
by G, such that the pair (S,R) satisfies condition (B). Let T be a G-equivariant
tubular neighbourhood of R in M . Then there exists a G-invariant smooth function
ε′ : R → R>0 such that the mapping

(πT , �T ) : S ∩ T ◦
ε′ → R× (0,∞)

is a smooth submersion.

Proof. SinceG is compact, then the result follows from the non-equivariant version
in [12, Lem. 7.3] by averaging over the G-orbits in R.

Theorem 2.12. Let G be a compact Lie group and M,N smooth G-manifolds.
Assume that (X,S) is a (B) regular stratified subspace of M , that X is invariant under
the G-action and that the induced G-action on X is compatible with the stratification
S. Assume further that f : X → N is a G-equivariant smooth stratified submersion.
Then there exists a system of G-equivariant control data T = (TS , πS , �S)S∈S on
(X,S) compatible with f .

Proof. The proof is by induction on the dimension of the strata, following the
strategy of [12, Sec. 7]. Let Sk be the subset of S consisting of strata of dimension
less than or equal to k, and let Xk be the union of all strata in Sk.

Since the strata in S0 all have dimension zero, then there exists a system of G-
equivariant control data T0 = (TS , πS , �S)S∈S0 on (X0,S0) which is compatible with
f |X0

.
Now suppose that there exists a system of G-equivariant control data Tk−1 =

(TS , πS , �S)S∈Sk−1
on (Xk−1,Sk−1) which is compatible with f |Xk−1

.
Let S be a stratum of dimension k, and for each 
 = 0, . . . , k, define

U� :=
⋃

Y <S,dimY≥�

TY , S� := U� ∩ S.

For each 
, we will construct a tubular neighbourhood T� of S� which satisfies the
equivariant control data relations (CC1)–(CC4). Using the approach of [12, Proof of
Prop. 7.1], we will do this by descending induction on 
. Note that it is sufficient to
construct T� separately for each stratum Y of dimension 
, since if Y, Y ′ both have
dimension 
 then TY ∩ TY ′ = ∅.

For the base case 
 = k, note that Sk = ∅, and so there is nothing to prove.
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Now suppose that we have constructed T�+1 such that ��+1 : T�+1 → R is G-
invariant, π�+1 : T�+1 → S�+1 is G-equivariant, and if Y < S, dimY ≥ 
 + 1,
m ∈ T�+1 ∩ TY , then

�Y ◦ π�+1(x) = �Y (x)

πY ◦ π�+1(x) = πY (x).
(2.4)

If necessary, shrink the neighbourhood T�+1 so that x ∈ T�+1 implies that there exists
a stratum Z < S with dimZ ≥ 
+ 1 such that if x is also in TZ then π�+1(x) ∈ TZ .

Given x ∈ T�+1 ∩ TY such that π�+1(x) ∈ TY , then there exists Z < S with
dimZ ≥ 
+1, x ∈ TZ and π�+1(x) ∈ TZ . Therefore π�+1(x)∩TY ∩TZ and so TY ∩TZ

is non-empty, hence Y < Z. Note that the relations (CC1)–(CC4) hold for the pair
(Y, Z) by the inductive hypothesis, and also that since dimZ ≥ 
+1 then (2.4) holds
with Y replaced by Z. Therefore we have

�Y ◦ π�+1(x) = �Y ◦ πZ ◦ π�+1(x) = �Y ◦ πZ(x) = �Y (x)

πY ◦ π�+1(x) = πY ◦ πZ ◦ π�+1(x) = πY ◦ πZ(x) = πY (x).

Again, since dimY < k, then we can further suppose from (CC3) that (ρY , πY ) :
TY ∩ S → R × Y is a submersion, and from (CC1) that �Y is G-invariant and πY is
G-equivariant.

Therefore we have constructed a tubular neighbourhood T�+1 ∩ TY → S�+1 ∩ TY

and so it only remains to extend it to a neighbourhood TS,Y → S ∩ TY and then to a
neighbourhood TS → S.

Now if S◦
�+1 is an open subset of S whose closure lies in S�+1, then Theorem 2.10

shows that there exists a tubular neighbourhood TS,Y of TY ∩ S such that

�Y ◦ πS,Y (x) = �Y (x)

πY ◦ πS,Y (x) = πY (x),

the map πS,Y is G-equivariant and the function �S,Y is G-invariant, and such that
the restriction of TS,Y to |TY | ∩ S◦

�+1 is isomorphic to the restriction of T�+1.
Now in the same way as the second step of [12, Proof of Prop. 7.1], we can

inductively extend the tubular neighbourhood to a neighbourhood TS of all of S,
which is compatible with the submersion f , where we use Theorem 2.10 and Lemma
2.11 in place of [12, Prop. 6.2 & Lem. 7.3] in order to guarantee that the tubular
neighbourhoods are G-equivariant. This completes the inductive step, and hence also
the proof of the theorem.

3. A stratification compatible with a given set of subvarieties. In this
section we use a construction due to Wall [20] to prove the following theorem.

Theorem 3.1. Let G be a compact Lie group acting analytically on a real analytic
manifold M , and let (Ar)

n
r=1 be a finite family of analytic subvarieties, each of which

is preserved by the action of G. Then there is a (B) regular stratification of M in
which each Ar is a finite union of G-invariant strata.

As a preparation for the proof of Theorem 3.1, we make the following observation
and prove some preliminary results.

Remark 3.2. Recall that by the solution of (a variant of) Hilbert’s Fifth Problem
by Matumoto-Shiota [13] any smooth manifold M with a smooth compact Lie group
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action carries a real-analytic structure so that the Lie group action becomes analytic.
Hence it is no loss of generality when we assume that the action of the compact Lie
group G on the real-analytic manifold M is analytic.

Lemma 3.3. Let M be a real analytic manifold, and let G be a connected Lie
group acting analytically on M . If X is a subvariety of M preserved by G, then the
singular set Xsing is also preserved by G.

Proof. Given p ∈ X, let f1, . . . , fn be real analytic functions defining X in a
neighbourhood of p. Any g ∈ G defines a diffeomorphism ψg : M → M . In particular,
since X is preserved by the action of G then f1 ◦ ψ−1

g , . . . , fn ◦ ψ−1
g define X in a

neighbourhood of g · p. The Jacobian of these equations is df ◦ dψ−1
g , which has the

same rank as df . Therefore g · p is a singular point if and only if p is singular, and so
Xsing is preserved by the action of G.

Lemma 3.4. Let M be a metrizable topological space, and let G be a group acting
continuously on M . If X ⊂ M is any subset preserved by the action of G, then X
and X \X are also preserved by the action of G.

Proof. Given p ∈ X \ X, let (pn)n∈N ⊂ X be a sequence in X converging to p.
Since the action of G is continuous, then for any g ∈ G the sequence (g · pn)n∈N ⊂ X
converges to g · p. Since G preserves X and p /∈ X then g · p /∈ X also. Therefore
g · p ∈ X \X for all g ∈ G, and therefore X \X is also preserved by the action of G,
hence so is X.

Lemma 3.5. Let G be a Lie group acting smoothly on a smooth manifold M , and
let X and Y be two disjoint strata in a stratification of M . Then G preserves the set
of points x ∈ X ∩ Y where (X,Y ) is (B) regular.

Proof. Given g · x, let ψg : M → M denote the diffeomorphism associated to the
action of g ∈ G. Since G acts smoothly on M , then for each g ∈ G a chart ϕ : U → R

d

around x ∈ M determines a chart ϕ ◦ ψ−1
g : g(U) → R

d around g · x ∈ M . Since
Whitney’s condition (B) is independent of the choice of chart (cf. [16, Lem. 1.4.4])
then (X,Y ) is (B) regular at x ∈ X if and only if (X,Y ) is (B) regular at g · x.

We can now use the above results to prove the main theorem of the section.

Proof of Theorem 3.1. We closely follow the proof of the corresponding result of
Wall [20] when the group action is trivial, and use the above results to show that the
construction extends to the equivariant setting.

Suppose that there exists a filtration Ti ⊂ Ti+1 ⊂ · · · ⊂ Tm = M such that
• each Tj is a closed semianalytic set in M ,
• each Tj is preserved by the action of G,
• for each j = i+1, . . . ,m, the set Sj = Tj\Tj−1 is a j-dimensional real-analytic

manifold called the j-the stratum, and
• each Ar ∩ Sj is a union of components of Sj .

The above conditions are clearly satisfied for Tm = M , thus giving us the base case
for the induction. Define

B1 =

{
(Ti)sing if dimTi = i

Ti if dimTi < i

and

B2 =
⋃
r

(
Ar ∩ (Ti)reg \Ar

)
,
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By construction B1 and B2 are semianalytic. Lemma 3.3 shows that B1 is preserved
by G, therefore so is (Ti)reg. Together with Lemma 3.4 this implies that B2 is also
preserved by G. Hence Ti \ (B1 ∪ B2) is preserved by G. To finish the proof, define
the set B3 of points of Ti where some higher-dimensional stratum fails to be (B)
regular. Lemma 3.5 shows that this is preserved by G. By [20, p. 337, Proposition],
B3 is semianalytic of dimension less than the dimension of Ti. Then define Ti−1 :=
B1 ∪B2 ∪B3 and Si = Ti \Ti−1. By construction and the above arguments these sets
are both semianalytic and G-invariant. Since Ti\B1 either coincides with (Ti)sing or is
empty, and dim(B2∪B3) < i, the stratum Si is a real analytic manifold. Moreover, as
in Wall [20] one argues that for each r the intersection Ar ∩Si has no relative frontier
by construction and thus is a union of components. So we can continue inductively
to define a (B) regular G-invariant stratification by real analytic manifolds such that
each Ar is a finite union of strata.

4. Constructing the equivariant neighbourhood deformation retract.
Let M be a smooth manifold equipped with the action of a compact Lie group G,
and let A ⊂ X ⊂ M be closed subsets with inclusion map denoted i : A ↪→ M .
Suppose that X carries a (B) regular G-invariant Whitney stratification {S}S∈S ,
which restricts to a (B) regular G-invariant Whitney stratification {S}S∈SA

of A.
Theorem 2.12 shows that there exists a system of G-equivariant control data on (X,S)
and Theorem 3.1 shows that these assumptions are satisfied when A and X are G-
invariant analytic subvarieties of M with A ⊂ X.

In this section we prove Theorem 4.4 which shows that the inclusion A ↪→ X is
an equivariant cofibration of stratified spaces. In particular, the result of Corollary
4.5 shows that the homotopy equivalences in the Morse theory of [22] can be chosen
to be G-equivariant.

Using Theorem 2.12, construct a system of G-equivariant control data
(TS , πS , ρS)S∈S for X. Since A is a G-invariant stratified subspace of X then
(TS , πS , ρS)S∈SA

is a system of G-equivariant control data for A. On restricting
to a small enough open neighbourhood of A, we can assume that

(1) if S ⊂ X is a stratum of lowest dimension, then S ⊂ A, and
(2) if S ⊂ X is a stratum of X then S̄ ∩A �= ∅.
First we set up some notation and prove some preliminary results. On each

tubular neighbourhood TS , fix a radial vector field ∂
∂ρS

as in [16, Cor. 3.7.4]. Since

ρS is G-invariant then ∂
∂ρS

is G-equivariant and so is its integral flow. Using the
integral flow of radial vector fields, for each stratum S and each x ∈ S, there exists
a neighbourhood Ux ⊂ TS and a real number r > 0 together with an isomorphism of
stratified spaces

Ux
∼= (ρ−1

S (r) ∩ Ux)× [0, r]/ ∼, (4.1)

where (y1, 0) ∼ (y2, 0) if and only if πS(y1) = πS(y2). Equivalently, Ux is homeomor-
phic to the mapping cylinder of πS |Ux∩ρ−1

S (r) and this homeomorphism is determined

by the flow of the radial vector field ∂
∂ρS

.
Given any stratum S0 ∈ SA and a sequence of strata S0 < S1 < · · · < Sk ⊂ A of

increasing height, define

TS0,...,Sk
:= TS0

∩ TS1
∩ · · · ∩ TSk

\ (S0 ∪ S1 ∪ · · · ∪ Sk) . (4.2)

Given any x ∈ TS0,...,Sk
, there exists a neighbourhood U of x such that U is contained

in a trivialisation for each of πS0 , πS1 , . . . , πSk
. Therefore there exist r0, . . . , rk and
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ε > 0 such that

V :=

k⋂
�=0

ρ−1
S�

((r� − ε, r� + ε)) ⊂ U.

Let Y :=
⋂k

�=0 ρ
−1
S�

(r�). Again using the integral flow of radial vector fields, we have

V ∼= Y ×
k∏

�=0

(r� − ε, r� + ε), (4.3)

and for any x = (y, t0, . . . , tk) ∈ V we have ρS�
(x) = t� for each 
 = 0, . . . , k.

For each stratum S�, let ϕS�
be the integral flow of the radial vector field on the

tubular neighbourhoood TS�
. Recall that these flows have the following properties

• ϕS�
preserves the tubular distance functions ρSj

for each j �= 
,
• ϕS�

is G-equivariant,
• the flow on the cylinder ρ−1

S�
(r�)× (r� − ε, r� + ε) is given by ϕS�

((y�, t�), t) =
(y�, t� + t), and

• the flow preserves strata.
Therefore, on the neighbourhood V =

⋂k
�=0 ρ

−1
S�

((r�− ε, r�+ ε)) ∼= Y ×∏k
�=0(r�−

ε, r� + ε) the flow is given by

ϕS�
((y, t0, . . . , tk), t) = (y, t0, . . . , t� + t, . . . , tk).

In particular, ϕS�
is the flow of the vector field ∂

∂t�
on Y ×∏k

�=0(r� − ε, r� + ε), the

vector fields { ∂
∂t�

}�=0,...,k are linearly independent, and the flows ϕS�
for 
 = 0, . . . , k

all commute and preserve strata. Moreover, even though the above calculations have
been done with respect to the local neighbourhood V , these vector fields and flows
are well-defined and G-equivariant on the entire neighbourhood TS0,...,Sk

, since the
radial vector fields are well-defined and G-equivariant on TS0,...,Sk

.
Given functions a� : V → R for each 
 = 0, . . . , k, the vector field

χ(y, t0, . . . , tk) =

k∑
�=0

a�(y, t0, . . . , tk)
∂

∂t�

is also tangent to strata, and so the flow preserves strata. Moreover, if the functions
a� are independent of y, then this vector field is G-equivariant and hence the flow is
G-equivariant, since the G-action preserves the radial distance functions ρS�

.
The next lemma is used in the proof of Theorem 4.4.

Lemma 4.1. Let Q = [−1, 1], B = [0, 1]× [0, 1] and C = ({0} × [0, 1]) ∪ ([0, 1]×
{0}) ⊂ B. Then there exists a proper continuous mapping H : Q × [0, 1] → B such
that

H(Q× (0, 1)) ⊂ B \ C, H(Q× {0}) = C

and H|Q×(0,1) is a diffeomorphism onto its image.

Proof. Choose a smooth monotone function φ : [0, π
2 ] → [0, π] such that φ(θ) = θ

if 0 ≤ θ ≤ π
3 and φ(θ) = θ + π

2 if 2π
3 ≤ θ ≤ π

2 . For notation, let P : {(x, y) ∈ R
2 | y ≥
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0, (x, y) �= (0, 0)} → R>0 × [0, π] be the polar coordinate homeomorphism. Then the
map h : B → [−1, 1]× R≥0 given by

h ◦ P−1(r, θ) := P−1(r, φ(θ)), h(0, 0) = (0, 0)

is a homeomorphism onto its image, which restricts to a diffeomorphism of B \ C onto
h(B \ C). Moreover (in Cartesian coordinates), the image of h contains [−1, 1]×[0, 1

2 ].
Now define H : Q× [0, 1] → B by H(q, t) = h−1(q, t

2 ).

Let W ⊂ B be the image of H|Q×[0,1). The previous lemma shows that H

restricts to a diffeomorphism Q× (0, 1) ∼= W \ C. Using the homeomorphism H, for
any w ∈ W we can write w = H(q(w), s(w)), where (q(w), s(w)) ∈ Q× (0, 1). Define
a flow ϕ : W × [0,∞) → W by

ϕ(w, t) =

{
H(q(w), e−ts(w)) w /∈ C

w w ∈ C

Taking the vector field associated to this flow gives us the following lemma.

Lemma 4.2. There exist non-negative smooth functions a, b : W → R≥0 such
that the vector field

X(x, y) = −a(x, y)
∂

∂x
− b(x, y)

∂

∂y

defined on W satisfies the boundary conditions X(x, 0) = 0 = X(0, y),

X(x, 1) = −x
∂

∂x
for all x ∈

[
0, 1

2

]
, X(1, y) = −y

∂

∂y
for all y ∈

[
0, 1

2

]
, (4.4)

and the flow of X defines a smooth map

ϕ : W × [0,∞) → W

such that limt→∞ ϕ((x, y), t) ∈ C for all (x, y) ∈ W .

Now define the sets

W1/2 := H(Q× { 1
2}) ∼= Q

W≤1/2 := H(Q× [0, 1
2 ])

W<1/2 := W≤1/2 \W1/2.

Note that the flow ϕ of the vector field X from the Lemma 4.2 defines a deformation
retract of W≤1/2 onto C. Moreover, given such a vector field, for any w ∈ W \C there
exists a unique t = t(w) ∈ R such that ϕ(w,−t(w)) ∈ W1/2.

Definition 4.3. Given ε1, ε2 > 0, identify W1/2
∼= Q ∼= [−1, 1] and choose a

smooth monotone function f : [−1, 1] → R such that f(−1) = ε1 and f(1) = ε2. The
modified radial distance ρ̃ : W → [0, 1] is given by

ρ̃(x, y) =

{
e−t(w)f(ϕ(w,−t(w))) if w ∈ W \ C
0 if w ∈ C.

Now let h be the maximal height of a stratum in A. For each 
 = 0, . . . , h, let
Ŝ� ⊂ A denote the union of all the strata S ∈ SA such that ht(S) ≤ 
. Consider a
pair (U,ϕ�) consisting of an open set U ⊂ X containing Ŝ� and a flow ϕ� defined on
U . We say that (U,ϕ�) has property (R�) if all of the following are satisfied.



EQUIVARIANT CONTROL DATA AND NDRs 31

(1) ϕ� is continuous.
(2) limt→∞ ϕ�(x, t) ∈ Ŝ�.
(3) ϕ�(x, t) = x for all x ∈ Ŝ�.
(4) For any stratum S ∈ S, if x ∈ S then ϕ�(x, t) ∈ S for all t ∈ [0,∞).
(5) ϕ� is G-equivariant.
(6) For each r ∈ [0, 1), define Ur := ϕ�(U,− log(1 − r)), and define U1 := A.

Then Ur satisfies the following conditions
(a) Ur is open in X for all r ∈ [0, 1),
(b) Ur =

⋃
s>r Us and Ur =

⋂
s<r Us for all r ∈ (0, 1).

Note that the condition Ur =
⋂

s<r Us for all r ∈ (0, 1) implies that Ur ⊂ Us for
all r > s.

The following theorem is the main result of this section.

Theorem 4.4. Let M be a smooth manifold equipped with the action of a compact
Lie group G, and let A ⊂ X ⊂ M be closed G-invariant subsets with inclusion map
denoted i : A ↪→ M . Suppose that X carries a G-invariant (B) regular Whitney
stratification {S}S∈S and that there exists a subset SA ⊂ S such that A =

⋃
S∈SA

S,
therefore {S}S∈SA

is a G-invariant (B) regular Whitney stratification of A.

Then there exists a G-stratified space Ã, a proper continuous map η : Ã → A,
an open neighbourhood U of A in X, and a G-equivariant homeomorphism of U onto
the mapping cylinder ψ : U → Zη = (Ã× [0, 1])/ ∼ such that ψ|A is the identity and
ψ|A×(0,1] is a homeomorphism of stratified spaces.

Proof. We first construct a pair (U,ϕh) which has property (Rh) by constructing
a G-equivariant radial vector field, and then define the space Ã at the end of the
proof.

Consider the neighbourhood U (0) =
⋃

ht(S)=0 TS of Ŝ0, and define the vector field

X0 = −ρS
∂

∂ρS
. Note that the vector field is well-defined as the tubular neighbour-

hoods do not overlap since the strata S all have the same height. Since the radial
distance functions ρS are G-invariant and the radial vector field ∂

∂ρS
is G-equivariant,

the vector field X0 is also G-equivariant and so is its flow. It is easy to check the
first four conditions of property (R�). Since the flow is continuous and the tubular
distance function ρS is strictly decreasing, the remaining condition of property (R�)
is also satisfied. Note also that X0 commutes with ∂

∂ρS′
for each stratum S′ such that

ht(S′) > 0.

Now suppose that we have a vector field X�−1 defined on a G-invariant neighbour-
hood U (�−1) of Ŝ�−1 with G-invariant tubular distance function ρ̃�−1 and G-invariant
tubular size function ε̃�−1 such that U (�−1) = {ρ̃�−1(x) < ε̃�−1(x)} and such that the
flow ϕ�−1 of X�−1 satisfies property (R�−1). Suppose also that X�−1 commutes with

∂
∂ρS′

for each stratum S′ such that ht(S′) ≥ 
. In analogy with the non-equivariant

case studied by Verona [19] (see also [16, Sec. 3.9]), we define a G-invariant neigh-
bourhood U (�) of Ŝ� and a vector field X� satisfying property (R�) by “smoothing the
corner” using Lemma 4.2 as follows. First we define X� on U (�−1) ∪⋃

ht(S)=� TS by

(1) On the subset U (�−1) \
(⋃

ht(S)=� TS

)
, define X� = X�−1.

(2) For each stratum S with ht(S) = 
, on the subset (TS ∩ {ρS(x) < εS(x)}) \
U (�−1) define X� = −ρS(x)

∂
∂ρS

.

(3) For each stratum S with ht(S) = 
, on the subset (TS ∩ {ρS(x) < εS(x)}) ∩
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U (�−1) define

X�(x) = −a
(

ρS(x)
εS(x) ,

ρ̃�−1(x)
ε̃�−1(x)

) ∂

∂ρS
+ b

(
ρS(x)
εS(x) ,

ρ̃�−1(x)
ε̃�−1(x)

)
X�−1(x)

where the functions a and b are given by Lemma 4.2.
Now restrict to the subset

U ′ :=
(
U (�−1) ∩ {ρ̃�−1(x) < ε̃�−1(x)}

)
∪

⋃
ht(S)=�

(TS ∩ {ρS(x) < εS(x)}) .

The result of Lemma 4.2 shows that the vector field X� is smooth on U ′. By setting
ε1(x) = εS(x) and ε2(x) = ε̃�−1(x) (both of which are G-invariant), we can glue
the modified radial distance ρ̃� of Definition 4.3 with the radial distance ρ̃�−1 on

U (�−1) \
(⋃

ht(S)=� TS

)
and the radial distance ρS on TS \ U (�−1) for each stratum

S of height 
. Since ρS and ρ̃�−1 are both G-invariant then this gives us a smooth
G-invariant radial distance function ρ̃� : U

′ → R≥0, together with a G-invariant size

function ε̃� : Ŝ� → R>0 such that {ρ̃�(x) < ε̃�(x)} ⊂ U ′. Moreover, for each stratum
of height 
, on the subset TS \ U (�−1) we have ρ̃� = ρS and ε̃� = εS , and on the subset
U (�−1) \ ⋃

ht(S)=� TS we have ρ̃� = ρ̃�−1 and ε̃� = ε̃�−1.
Now define

U (�) := {x ∈ U ′ : ρ̃�(x) < ε̃�(x)}.

It only remains to verify that the conditions of property (R�) are satisfied. Since the
construction of X� only depends on the G-invariant functions ρ̃�−1, ε̃�−1, ρS and εS ,
as well as the G-equivariant vector fields X�−1 and ∂

∂ρS
then X� is G-equivariant.

Since the vector fields X�−1 and ∂
∂ρS

commute and their flows preserve strata, the
flow of X� also preserves strata.

Moreover, since X� is constructed from the vector fields X�−1 and ∂
∂ρS

where

ht(S) = 
, which commute with ∂
∂ρS′

for any stratum S′ such that ht(S′) > 
, and

the functions a
(

ρS(x)
εS(x) ,

ρ̃�−1(x)
ε̃�−1(x)

)
and b

(
ρS(x)
εS(x) ,

ρ̃�−1(x)
ε̃�−1(x)

)
where ht(S) = 
, which are

invariant under the flow of ∂
∂ρS′

for any stratum S′ with ht(S′) > 
, then X� commutes

with ∂
∂ρS′

for any stratum S′ with ht(S′) > 
.

The vector field from Lemma 4.2 satisfies the remaining conditions (1)–(3) and (6)
of property (R�), henceX� also satisfies these conditions. Therefore we can inductively
construct a vector field Xh on U (h) whose flow ϕh has property (Rh).

In the process of the proof, we constructed a G-invariant radial distance function
ρ̃h : U (h) → R≥0 and a G-invariant size function ε̃h. Define a rescaled distance
function ρ : U (h) → R≥0 by

ρ(x) =

{
0 x ∈ A
ρ̃h(x)
ε̃h(x)

x /∈ A

By G-invariance of ρ̃h and ε̃h the rescaled distance function ρ is G-invariant as well.
The space Ã is then defined to be

Ã := ρ−1(1/2)

and the map η : Ã → A is given by taking the limit of the flow ϕh.
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This immediately gives us the following result, which shows that the main theorem
of Morse theory from [22, Thm. 1.1] can be made to work in the equivariant setting.

Corollary 4.5. Let M be a smooth manifold equipped with the action of a com-
pact Lie group G, and let A ⊂ X ⊂ M be closed subsets with inclusion map denoted
i : A ↪→ M . Suppose that X carries a G-invariant (B) regular Whitney stratification
{S}S∈S , which restricts to a G-invariant (B) regular Whitney stratification {S}S∈SA

of A.
Then there exists a neighbourhood U of A in X and a G-equivariant flow ϕ :

U × [0, 1] → X defining a deformation retract of U onto A such that Ut := ϕ(U, t)
satisfies the following conditions
(a) Us is open in X for all s ∈ [0, 1),
(b) Us =

⋃
t>s Ut and Us =

⋂
t<s Ut for all s ∈ (0, 1).

Finally in this section we will sketch how to derive an equivariant version of
Thom’s First Isotopy Lemma [12, Prop. 11.1] from the existence of equivariant control
data. To this end assume that X,M are as in the corollary, that P is a smooth G-
manifold, and that f : M → P is smooth with restriction to X being an equivariant
proper controlled submersion. According to the Equivariant Submersion Theorem 2.7
the manifold M looks locally around a point x ∈ X ⊂ M like G×H (B×C), P around
f(x) like G×K B and f is identified in this representation locally around X with the
map idG × π. Here we have used the notation from 2.7. In particular H coincides
with the isotropy group Gx, K with Gf(x) and π : B × C → B is projection onto
the first coordinate. One now verifies that the intersection of X with C is a Whitney
(B) regular stratified space F . Hence locally around x the space X is of the form
G×H (B × F ). One thus obtains the following.

Theorem 4.6 (Equivariant version of Thom’s First Isotopy Lemma). Let M,N
be smooth G-manifolds, X ⊂ M a closed G-invariant subset admitting a G-invariant
Whitney stratification, and f : M → P a G-equivariant smooth map whose restriction
to X is a proper stratified submersion. Then the restriction f|X : X → P is equiv-
ariantly locally trivial which means, using notation from above, that locally around
x, the subspace X is of the form G ×H (B × F ) and the f|X coincides in this local
representation with the “projection” G×H (B × F ) → GK ×B.

Remark 4.7. An equivariant version of Thom’s First Isotopy Lemma has been
used by Bierstone [1] to show an openness theorem for equivariant transversality. The
verification of the equivariant version of Thom’s First Isotopy Lemma has been left to
the reader, see [1, Sec. 9]. In this work we presented the missing details which make
Mather’s machinery work also in the equivariant setting. The main non-trivial steps
hereby have been the proof of the Equivariant Submersion Theorem Prop. 2.7 and,
as a consequence, the existence of equivariant control data in Theorem 2.12.

Remark 4.8. An application of our main result is to Morse theory on singular
spaces carrying a compact Lie group action (cf. [22]). Given a real analytic manifold
M with the action of a Lie group G, a G-invariant closed analytic variety Z ⊂ M
and an invariant Morse function f : M → R satisfying some additional conditions,
[22, Thm. 1.1] shows that the main theorem of Morse theory holds in an equivariant
sense within this setting. In particular this means that for elements a < b in the
image of the restriction f |Z such that there is one critical value c in between a and
b, the set Zb = {x ∈ Z | f(x) ≤ b} is homotopy equivalent to the union of Za and
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the unstable set for the critical value c. Moreover this homotopy equivalence can
be chosen to be equivariant. The equivariant version of the main theorem of Morse
theory can be applied to the norm-square of a moment map on a (possibly singular)
affine variety (cf. [22, Thm. 1.3]). An important example of such a variety is the
space of representations of a quiver satisfying a finite set of relations, for which the
topological invariants have important applications in representation theory (see for
example [14]).

Appendix A. Stratified spaces in the sense of Mather. In this paper we
use stratified space in the sense of Mather [11]. Let us briefly recall the definition; for
further details see [16, Sec. 1.2].

By a prestratification or decomposition of a separable locally compact (Hausdorff)
space X one understands a partition Z of X into locally closed subspaces S ⊂ X each
carrying the structure of a smooth manifold such that the decomposition is locally
finite and fulfills the condition of frontier. The latter means that for each pairR,S ∈ Z
with the closure of S meeting R the relation R ⊂ S holds true. The elements of Z
are called the pieces or strata of the decomposition. If R,S are two strata of X one
calls R incident to S if R ⊂ S and denotes this by R ≤ S respectively by R < S if in
addition R is not equal to S.

A stratification of a locally compactX now is a map S which assigns to every point
x of X a set germ Sx at x such that there exists for each x ∈ X an open neighborhood
U of x and a decomposition Z of U with the property that for every point y in U the
set germ Sy coincides with the set germ [R]y at y of the piece R ∈ Z containing y.
One calls such a decomposition Z a decomposition inducing the stratification S over
U or a local S-decomposition around x.

By a stratified space we understand a pair (X,S) consisting of a separable locally
compact space X called the total space together with a stratification S on it. In the
following (X,S) will always denote a stratified space.

Given an element x of a stratified space (X,S) one defines its depth dp(x)
as the maximal number d such that there exist pieces S0, S1, . . . , Sd of a local S-
decomposition Z around x which fulfill

x ∈ S0 < . . . < Sd .

The depth of x is actually not dependent on a local S-decomposition Z around x,
see [11, Lem. 2.1] or [16, Lem. 1.2.5]. The depth function is locally constant on each
stratum of a local decomposition. It allows to define a global decomposition of X
inducing the stratification S. Namely for each pair of natural numbers d,m let Sd,m

be the set of points x ∈ X of depth d and for which the dimension of the set germ Sx

equals m. Then Sd,m is a smooth manifold and the set {Sd,m | d,m ∈ N} is a global
decomposition of X inducing S. It is the coarsest decomposition with that property,
see [16, Prop. 1.2.7]. We denote this decomposition by the symbol S also and call its
pieces the strata of (X,S). We often write S ∈ S to denote that S is a stratum of
(X,S). The supremum of all depths dp(x), where x runs through the points of X,
will be called the depth of the stratified space (X,S). It can be infinite. Note that
the depth is constant on each stratum so it is clear what is meant by the depth of a
stratum. It is denoted dp(S).

Closely related to the depth is the height ht(R) of a stratum R. It is defined
as the maximal natural number h such that there exists strata R0 < . . . < Rh with
R = Rh.
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If (X,S) and (Y,R) denote stratified spaces, a continuous map f : X → Y is called
stratified, if f(Sx) ⊂ Rf(x) for all x ∈ X and if the restriction of f to each connected
component S of a stratum of (X,S) is a smooth map from S to the stratum RS of
(Y,R) containing f(S). If in addition all the restrictions f|S : S → RS are immersions
(resp. submersions), one calls f a stratified immersion (resp. stratified submersion).

A subspace A of a stratified space (X,S) is called a stratified subspace if the map
SA which associates to each point x ∈ A the set germ A ∩ S is a stratification of A.
In this case (A,SA) becomes a stratified space and the canonical injection i : A ↪→ X
is a stratified immersion. If in addition i is a stratified submersion we call (A,SA)
a submersed stratified subspace. A subspace A ⊂ X is a closed submersed stratified
subspace of (X,S) if and only if it is a union of connected components of strata of X.

Whitney’s regularity conditions (A) and (B) play a crucial role in stratification
theory in particular in Mather’s proof of Thom’s isotopy lemmata [12]. They describe
properties how a stratum of a stratified space embedded in a smooth manifold M can
approach an incident stratum near its frontier. Let us recall the Whitney conditions
following [16, 1.4.3]. A pair (R,S) of smooth submanifolds of M is said to fulfill
Whitney’s condition (A) at x ∈ R or that (R,S) is (A) regular at x if the following
holds.

(A) Let (yk)k∈N be a sequence of points of S converging to x such that the sequence
Tyk

S, k ∈ N, of tangent spaces converges in the Graßmannian bundle of dimS-
dimensional subspaces of TM to some τ ⊂ TxM . Then TxR ⊂ τ .

The pair (R,S) is said to fulfill Whitney’s condition (B) at x ∈ R or that (R,S) is
(B) regular at x if for some chart χ : U → R

d of M around x the following is satisfied.

(B) Let (yk)k∈N be a sequence in S and (xk)k∈N a sequence in R such that both
converge to x and such that xk �= yk for all k ∈ N. Assume that the sequence
of lines χ(xk)χ(yk), where k is large enough so that xk, yk ∈ U , converges in
projective space RP

d−1 to some line 
. Assume further that the sequence of
tangent spaces Tyk

S, k ∈ N, converges to some subspace τ ⊂ TxM . Then 
 ⊂ τ .

By [16, Lem.1.4.4], Whitney’s condition (B) does not depend on the choice of the
chart ϕ around x. A stratified subspace (X,S) of a smooth manifold M is said to be
(A) respectively (B) regular if every pair of strata (R,S) with R incident to S is (A)
respectively (B) regular at each point x ∈ R. (B) regularity implies (A) regularity but
in general not vice versa. Complex algebraic varieties [21], orbit spaces of compact
Lie group actions [16] and of proper Lie groupoids [17], analytic varieties [10], and
subanalytic sets [2] all possess (B) regular stratifications.
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