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Abstract. The numerical solution of the Dirichlet problem for an elliptic Pucci’s equation in
two dimensions of space is addressed by using a least-squares approach. The algorithm relies on an
iterative relaxation method that decouples a variational linear elliptic PDE problem from the local
nonlinearities. The approximation method relies on mixed low order finite element methods.

The least-squares framework allows to revisit and extend the approach and the results presented
in (Caffarelli, Glowinski, 2008) to more general cases. Numerical results show the convergence of the
iterative sequence to the exact solution, when such a solution exists. The robustness of the approach
is highlighted, when dealing with various types of meshes, domains with curved boundaries, non-
convex domains, or non-smooth solutions.

Key words. Pucci’s equation, least-squares method, nonlinear constrained minimization, New-
ton method, mixed finite elements.

Mathematics Subject Classification. 65N30, 65K10, 49M20, 49M15, 35F30.

1. Introduction. Fully nonlinear elliptic equations have drawn a lot of attention
lately, in the wake of the Monge-Ampère equation [7, 24]. Theoretical investigations
of fully nonlinear equations [2, 17, 28], are now related to numerous models and appli-
cations, for instance in finance [32], in seismic wave propagation [11], in geostrophic
flows [14], in differential geometry [16], or in mechanics and physics. From the compu-
tational viewpoint, many approaches have been designed, both with finite differences
[2, 11], or with finite element methods [6, 15, 21].

Among those equations, the elliptic Pucci’s equation, despite not being the most
well-known fully nonlinear equation, has been addressed theoretically, e.g., in [13, 28].
Special solutions have been obtained (see, e.g., [27]), and the eigenvalues (see, e.g.,
[4, 30]), and bifurcation phenomena (see, e.g., [12]) have been studied. Meanwhile, a
few dedicated computational methods have been presented in, e.g., [8, 9, 10, 26, 31].

In this work, we revisit the approach from (Caffarelli, Glowinski, 2008) [8] for
the solution of the Dirichlet problem for a two-dimensional elliptic Pucci’s equation
and extend their results. Namely, we use a least-squares approach and a relaxation
algorithm, instead of considering splitting methods for the associated flow problem.
This allows in particular to reduce the number of numerical parameters. Moreover,
we incorporate structured and non-structured meshes, and arbitrary domains, which
may be non-convex or with curved boundaries.

More precisely, we consider here a bounded, smooth, two-dimensional domain
Ω ⊂ R

2. For boundary data g : ∂Ω → R sufficiently regular, the Dirichlet problem
for the 2D Pucci’s equation consists in looking for a function ψ : Ω → R satisfying

αλ+ + λ− = 0 in Ω ⊂ R
2,

ψ = g on ∂Ω,
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where λ+, λ− are the largest and smallest eigenvalues of the Hessian D2ψ of the
unknown function ψ, and α > 1 is a given parameter. Note that, in three space
dimensions, the Pucci’s equation consists in looking for a function ψ : Ω → R satisfying

α
∑
λ+ +

∑
λ− = 0 in Ω ⊂ R

3,
ψ = g on ∂Ω,

where λ+ and λ− are the positive and negative eigenvalues of the Hessian D2ψ respec-
tively. Fully nonlinear equations do not always admit classical solutions, see, e.g., [7],
and a concept of weak solutions has been introduced, based on Aleksandrov solutions
[1], or viscosity solutions [25, 28]. The least-squares approach we introduce here also
allows to define weak solutions in some sense when classical solutions do not exist
[6]. However, they do not necessarily correspond to viscosity solutions in the classical
sense.

The chosen least-squares formulation introduced here consists in minimizing the
L2-distance between the Hessian D2ψ and an auxiliary variable p in L2×2(Ω), where
ψ satisfies the boundary conditions of the problem (but not the Pucci’s equation)
and p satisfies point-wise, algebraically, the Pucci’s equation (without considering
any boundary conditions). Using a relaxation algorithm to minimize such a distance
allows to decouple the solution method into a sequence of linear variational problems
(solved with conforming finite element techniques), and local nonlinear algebraic min-
imization problems (solved with dedicated solvers). Linear variational problems are
solved with a conjugate gradient algorithm [19], coupled with a mixed finite element
method based on P1 finite elements, Local nonlinear problems (namely constrained
minimization problems locally at each point of the domain Ω) are solved with Newton-
type techniques, see e.g. [33].

The structure of this article is as follows. In Section 2, we describe the model
problem and the proposed methodology, while the relaxation algorithm is described
in Section 3. Sections 4 and 5 detail the algebraic and differential solvers respectively.
The mixed finite element discretization is proposed in Section 6, and numerical ex-
periments are treated in Section 7 for validation purposes and sensitivity analysis.

2. Pucci’s Equation and Least-Squares Approach. Let Ω be a bounded
convex domain of R2, with boundary ∂Ω and α ∈]1,∞[ a given parameter. Let us
consider boundary data g : ∂Ω → R that is sufficiently regular, The Dirichlet problem
for the Pucci’s equation reads as follows: find ψ ∈ H2(Ω) satisfying

{
αλ+ + λ− = 0 in Ω,
ψ = g on ∂Ω,

(1)

where λ+, λ− are respectively the largest and smallest eigenvalues of the Hessian D2ψ

of the unknown function ψ (defined by D2ψ = (D2
ijψ)1≤i,j≤2, where D

2
ijψ = ∂2ψ

∂xi∂xj
).

Note that, if α → 1, (1) reduces to the Poisson-Dirichlet problem Δψ = 0 in Ω, with
boundary conditions ψ = g on ∂Ω.

Following [8], a calculation shows that (1) is indeed a fully nonlinear equation, as
it is equivalent to: find ψ ∈ H2(Ω) satisfying

⎧⎨
⎩

α |Δψ|2 + (α− 1)2 detD2ψ = 0 in Ω,
Δψ ≤ 0 in Ω,
ψ = g on ∂Ω.
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This relation shows that the Pucci equation combines the Laplace operator Δ and
the Monge-Ampère operator detD2. Moreover, this expression shows that the Pucci’s
equation is actually equivalent to⎧⎪⎪⎨

⎪⎪⎩
p = D2ψ,
α(p11 + p22)

2 + (α− 1)2(p11p22 − p212) = 0 in Ω,
p11 + p22 ≤ 0 in Ω,
ψ = g on ∂Ω,

(2)

with p = pT and pij =
∂2ψ

∂xi∂xj
, i, j = 1, 2.

Let us consider in the sequel g ∈ H3/2(∂Ω). We use the Fröbenius norm and

product respectively defined by |T| = (T : T)1/2, S : T =
∑2
i,j=1 sijtij for each

S = (sij), T = (tij) ∈ R
2×2. A numerical method of the nonlinear least-squares type

is advocated for the solution of (2), similar to the methodology presented in [6]. More
precisely we want to solve the equivalent problem: find (ψ,p) ∈ Vg ×QP satisfying

J(ψ,p) ≤ J(ϕ,q), ∀(ϕ,q) ∈ Vg ×QP , (3)

where J(ϕ,q) =
1

2

∫
Ω

∣∣D2ϕ− q
∣∣2 dx. The functional spaces in (3) are respectively

defined by:

Vg =
{
ϕ ∈ H2(Ω) , ϕ = g on ∂Ω

}
,

Q =
{
q ∈ L2(Ω)2×2, q = qT

}
,

QP =
{
q ∈ Q , α(q11 + q22)

2 + (α− 1)2(q11q22 − q212) = 0, q11 + q22 ≤ 0
}
.

The space Q is a Hilbert space for the scalar product (q,q′) →
∫
Ω
q : q′dx, and

the associated norm ||q|| = (q,q)1/2. Note that the existence and uniqueness of a
solution to the least-squares problem (3) is, to the best of our knowledge, still an
open research topic and has not been proved yet. However, we can see that a solution
to (3) that corresponds to a vanishing objective function J(·, ·), is also a solution to
the original problem (1), by construction of the functional spaces QP and Vg. When
the objective function J(·, ·) does not vanish, the solution to (3) is the best one in a
least-squares sense. Numerical results will show that, for all numerical experiments
considered, the proposed algorithm finds the exact solution each time that such an
exact solution exists.

3. Relaxation Algorithm. Following [8], we propose a relaxation algorithm in
order to solve (3), which allows to decouple nonlinearities and variational problems.
We initialize the algorithm with the solution of

−Δψ0 = 0, in Ω, ψ0 = g, on ∂Ω.

This solution corresponds to the limit case α = 1 in (1), and therefore, the smaller the
value of α, the better the initial guess of the algorithm. Then, for n ≥ 0, assuming
that ψn is known, we compute pn, ψn+1/2 and ψn+1 as follows:

pn = arg min
q∈QP

J(ψn,q); (4)

ψn+1/2 = arg min
ϕ∈Vg

J(ϕ,pn); (5)

ψn+1 = ψn + ω(ψn+1/2 − ψn); (6)
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where 1 ≤ ω ≤ ωmax < 2 is a relaxation parameter.
Similarly to so-called alternating direction implicit methods, this relaxation algo-

rithm (4)–(6) alternates between the variables pn and ψn+1, to update one unknown
while keeping the other unknown fixed.

Such alternating direction schemes have been widely studied in the literature, in
particular coupled with augmented Lagrangian algorithms [18, 23]. The relaxation
step (6) is added with the main goal of accelerating the convergence speed of the
iterative algorithm. A complete study of the optimal value of the relaxation parameter
has not been undertaken, but numerical experiments have shown that the algorithm is
robust when ω = 1. We refer to, e.g., [23] for further general results on the convergence
of relaxation algorithms.

4. Numerical Solution of the Local Optimization Problems. An explicit
formulation of (4) is given by

pn = arg min
q∈QP

[
1

2

∫
Ω

|q|2 dx−
∫
Ω

D2ψn : qdx

]
. (7)

Since the objective function does not contain any derivatives of q, the minimization
problem (7) can be solved point-wise (in practice at the vertices of a finite element or
finite difference mesh). A finite dimensional minimization problem is solved for a.e.
x in Ω:

pn(x) = arg min
q∈EP

[
1

2
|q|2 −D2ψn(x) : q

]
, (8)

where

EP =
{
q ∈ R

2×2 , q = qT , q11 + q22 ≤ 0,

α(q11 + q22)
2 + (α− 1)2(q11q22 − q212) = 0

}
.

This corresponds to a family of constrained quadratic optimization problems. By
setting

(z1, z2, z3) := (q11, q22, q12) and

(b1, b2, b3) := (D2ψn11(x), D
2ψn22(x), D

2ψn12(x)),

problem (8) is equivalent to solving

min
(z1,z2,z3)∈E3

[
1

2
(z21 + z22 + z23)− (b1z1 + b2z2 + b3z3)

]
(9)

over the set

E3 =
{
(z1, z2, z3) ∈ R

3, α(z1 + z2)
2 + (α− 1)2(z1z2 − z23) = 0, z1 + z2 ≤ 0

}
.

Defining γ :=
α

(α− 1)2
, and eliminating the variable z3 through the equality con-

straint (with z23 = γ(z1 + z2)
2 + z1z2), (9) is equivalent to

min
(z1,z2)∈E2

[
1

2
(z21 + z22 + γ(z1 + z2)

2 + z1z2)− b1z1 − b2z2

− |b3| (γ(z1 + z2)
2 + z1z2)

1/2
]

(10)
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over the set

E2 =
{
(z1, z2) ∈ R

2, γ(z1 + z2)
2 + z1z2 ≥ 0, z1 + z2 ≤ 0

}
,

together with z3 = sign(b3)(γ(z1 + z2)
2 + z1z2)

1/2. Setting z1 = ρ cos(θ) and z2 =
ρ sin(θ), with ρ ≥ 0 and θ ∈ [0, 2π), we verify that (10) is equivalent to

max
θ∈Kθ

F (θ) (11)

where

F (θ) =

[
(b1 cos θ + b2 sin θ + |b3|

√
γ + (0.5 + γ) sin(2θ)√

1 + γ + (0.5 + γ) sin(2θ)

]
,

with Kθ = [π − 1
2φc,

3
2π + 1

2φc] and φc = sin−1[2γ/(2γ + 1)]. Let us denote by θm
the solution to (11), which can be obtained by a safeguarded Newton method. The
solution to (9) is thus given by (z1, z2, z3) = (0, 0, 0) if F (θm) ≤ 0, and, if F (θm) > 0,
it is given by⎛

⎝ z1
z2
z3

⎞
⎠ =

⎛
⎝ ρm cos(θm)

ρm sin(θm)

sign(b3)
√
γρ2m(cos(θm) + sin(θm))2 + ρ2m cos(θm) sin(θm)

⎞
⎠ ,

where

ρm =
(b1 cos θm + b2 sin θm + |b3|

√
γ + (0.5 + γ) sin(2θm)

1 + γ + (0.5 + γ) sin(2θm)
.

5. Numerical Solution of the Linear Variational Problems. Written in
variational form, the Euler-Lagrange equation of the minimization problem (5) reads
as follows: find ψn+1/2 ∈ Vg such that∫

Ω

D2ψn+1/2 : D2ϕdx =

∫
Ω

pn : D2ϕdx, ∀ϕ ∈ V0, (12)

where V0 = H2(Ω) ∩ H1
0 (Ω). The, biharmonic-type, linear variational problem (12)

is well-posed. It can be solved with a conjugate gradient algorithm operating in the
spaces V0 and Vg, both spaces being equipped with the scalar product defined by
(ψ,ϕ) →

∫
Ω
ΔψΔϕdx, and the corresponding norm. A complete description of such

conjugate gradient solution of linear variational problems in Hilbert spaces, such as
(12), has been given in, e.g., [18, Chapter 3]. Here, this conjugate gradient algorithm
reads as follows:

Initialization step:
• Let ψn+1/2,0 ∈ Vg be given.
• Find g0 ∈ V0 such that∫

Ω

Δg0Δϕdx =

∫
Ω

D2ψn+1/2,0 : D2ϕdx−
∫
Ω

pn : ϕdx, ∀ϕ ∈ V0. (13)

• Set w0 = g0.
Iteration step: For k ≥ 0, ψn+1/2,k, gk and wk being known, the last two different
from zero, we compute ψn+1/2,k+1, gk+1 and, if necessary, wk+1 as follows.



118 A. CABOUSSAT

• Find ḡk ∈ V0 satisfying∫
Ω

ΔḡkΔϕdx =

∫
Ω

D2wk : D2ϕdx, ∀ϕ ∈ V0. (14)

• Compute successively

ρk =

(∫
Ω

∣∣Δgk∣∣2 dx)(∫
Ω

ΔḡkΔwkdx

)−1

;

ψn+1/2,k+1 = ψn+1/2,k − ρkw
k;

gk+1 = gk − ρkḡ
k;

δk =

(∫
Ω

∣∣Δgk+1
∣∣2 dx)(∫

Ω

∣∣Δg0∣∣2 dx)−1

.

• If δk < ε (where ε is a given tolerance), take ψn+1/2 = ψn+1/2,k+1; otherwise,
compute:

γk =

(∫
Ω

∣∣Δgk+1
∣∣2 dx)(∫

Ω

∣∣Δgk∣∣2 dx)−1

;

wk+1 = gk+1 + γkw
k; (15)

and repeat (go back to (14)).
Numerical experiments have shown that the conjugate gradient algorithm converges
typically in less than 20 iterations for the range of mesh sizes considered (considering
ε = 10−5).

Concerning the solution of the bi-harmonic problems in (13) and (14), they are
both of the following type:

Find r ∈ V such that

∫
Ω

ΔrΔvdx = Λ(v), ∀v ∈ V, (16)

the functional Λ(·) being linear over V . Let us denote −Δr by ω. It follows that (16)
is equivalent to the following system of two coupled, well-posed, Poisson-Dirichlet
problems

ω ∈ V,

∫
Ω

∇ω · ∇vdx = Λ(v), ∀v ∈ V,

r ∈ V,

∫
Ω

∇r · ∇vdx =

∫
Ω

ω vdx, ∀v ∈ V.

This fundamentally allows to find solutions to the Pucci’s equation by only solving
local algebraic problems (point-wise), and elliptic Poisson problems.

6. Mixed Finite Element Approximation. Considering the highly varia-
tional flavor of the methodology discussed in the preceding sections, it makes sense to
look for finite element based methods for the approximation of (1). We use a mixed
finite element approximation (closely related to those discussed in, e.g., [19] for the
solution of linear and nonlinear bi-harmonic problems) with piecewise linear P1 and
globally continuous finite elements on a (structured or unstructured) discretization
made out of triangles.
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6.1. Finite Element Spaces. Let us define Th a finite element discretization of
Ω made out of triangles (see, e.g., [19, Appendix 1]). Let Σh be the set of vertices of
Th, Σ0h = {P ∈ Σh , P /∈ ∂Ω}, Nh = Card(Σh), and N0h = Card(Σ0h). We suppose

that Σ0h = {Pj}N0h

j=1 and Σh = Σ0h ∪ {Pj}Nh

j=N0h+1.

From Th, we approximate the spaces L2(Ω), H1(Ω) and H2(Ω) by the finite
dimensional space Vh defined by:

Vh =
{
v ∈ C0(Ω̄) , v|T ∈ P1, ∀T ∈ Th

}
,

with P1 the space of the two-variable polynomials of degree ≤ 1. We also define V0h
as

V0h = Vh ∩H1
0 (Ω) = {v ∈ Vh , v = 0 on ∂Ω} .

In the sequel, V0h is the approximation space of H1
0 (Ω) and H

2(Ω) ∩H1
0 (Ω).

The proposed method is based on mixed finite elements, as both variables (ψ,p) ∈
Vg × QP will be approximated in functional spaces relying both on piecewise linear
finite elements. However the unknowns p and ψ are decoupled, thanks to the Uzawa
iterative algorithm. Therefore, practically, all the local nonlinear problems or global
linear variational problems will be well-posed in the iterative algorithm. We refer to
[8, 20, 23] for further details; in particular [3, Chapter IV] treats inf-sup conditions
for biharmonic problems.

6.2. Finite Element Approximation of the Pucci’s Equation. When solv-
ing (12) with the conjugate gradient algorithm (13)-(15), one has to i) approximate
numerical equivalents of the second order derivatives, e.g., D2wk and D2u0, and ii)
solve biharmonic problems such as (13) or (14).

We would like to approximate numerical equivalents of the second order deriva-
tives with piecewise linear finite elements, which has to be handled carefully. For a
function ϕ being given in H2(Ω), it follows from Green’s formula that, for i, j = 1, 2:

∫
Ω

∂2ϕ

∂xi∂xj
vdx = −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂xj
+
∂ϕ

∂xj

∂v

∂xi

]
dx, ∀v ∈ H1

0 (Ω).

Consider now ϕ ∈ Vh. We define the approximations D2
hijϕ ∈ V0h of the second

derivatives ∂2ϕ
∂xi∂xj

by

∫
Ω

D2
hijϕvdx := −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂xj
+
∂ϕ

∂xj

∂v

∂xi

]
dx, ∀v ∈ V0h.

The functions D2
hijϕ are thus uniquely defined; in order to simplify the computation

of the above discrete second order partial derivatives, we could use the trapezoidal
rule to evaluate the integrals in the left hand side (mass lumping).

As emphasized in [6, 29], when using piecewise linear mixed finite elements, the a
priori error estimates for the second derivatives of the solution ψ are O(1) in the L2-
norm. Therefore, the convergence properties of the global algorithm strongly depends
on the type of triangulation, and could be completely jeopardized in some situations.
One way to regularize the approximation of the second derivatives D2

hijϕ and recover
some convergence properties is to use a Tychonoff regularization [34]. Let us introduce
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a stabilization constant C (to be calibrated in the numerical experiments), and replace
the previous relationship by:∫

Ω

D2
hijϕvdx+ C

∑
K∈Th

|K|
∫
Ω

∇D2
hijϕ · ∇vdx

= −1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂xj
+
∂ϕ

∂xj

∂v

∂xi

]
dx, ∀v ∈ V0h. (17)

Defining D2
hψh(Pk) =

(
D2
hijψh(Pk)

)2
i,j=1

, and assuming that the boundary function

g is continuous over ∂Ω, the affine space Vg can be approximated by

Vgh = {ϕ ∈ Vh , ϕ(P ) = g(P ), ∀P ∈ Σh ∩ ∂Ω}
and (2) is approximated by its discrete version: find ψh ∈ Vgh satisfying

α
∣∣D2

h11ψh(Pk) +D2
h22ψh(Pk)

∣∣2
+ (α− 1)2(D2

h11ψh(Pk)D
2
h22ψh(Pk)−D2

h12ψh(Pk)) = 0,

with D2
h11ψh(Pk) +D2

h22ψh(Pk) ≤ 0, for all k = 1, . . . , N0h.

6.3. Discrete Formulation of the Least-Squares Method. We define the
discrete equivalents of Q and QP as follows:

Qh =
{
qh ∈ (Vh)

2×2, qh(Pk) = qTh (Pk), k = 1, . . . , N0h

}
,

QPh =
{
q ∈ Qh , qh11(Pk) + qh22(Pk) ≤ 0, α(qh11(Pk) + qh22(Pk))

2+

(α− 1)2(qh11(Pk)qh22(Pk)− qh12(Pk)
2) = 0,

k = 1, . . . , N0h} ,
We associate on Vh (or V0h and Vgh) and Qh, the discrete scalar products: (v, w)0h =
1
4

∑Nh

k=1Akv(Pk)w(Pk) (with corresponding norm ||v||0h =
√

(v, v)h), for all v, w ∈
V0h, and ((S,T))0h = 1

4

∑Nh

k=1AkS(Pk) : T(Pk) (with corresponding norm |||S|||0h =√
((S,S))0h) for all S,T ∈ Qh, where Ak is the area of the polygonal domain which

is the union of those triangles of Th with Pk as a common vertex.
The solution of the discrete Pucci’s equation is then addressed with a nonlinear

least-squares method, namely find (ψh,ph) ∈ Vgh ×QPh such that

Jh(ψh,ph) ≤ Jh(ϕh,qh), ∀(ϕh,qh) ∈ Vgh ×QPh

where:

Jh(ϕh,qh) =
1

2

∣∣∣∣∣∣D2
hϕh − qh

∣∣∣∣∣∣2
0h

6.4. Discrete Relaxation Algorithm. The discrete relaxation algorithm
reads as follows: First start with the solution of the discrete elliptic problem:

−Δψ0
h = 0, in Ω, ψ0

h = g, on ∂Ω.

Then, for n ≥ 0, assuming that ψnh is known, compute as follows pnh, ψ
n+1/2
h and

ψn+1
h :

pnh = arg min
qh∈QPh

Jh(ψ
n
h ,qh);

ψ
n+1/2
h = arg min

ϕh∈Vgh

Jh(ϕh,p
n
h);

ψn+1
h = ψnh + ω(ψ

n+1/2
h − ψnh),
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with 1 ≤ ω ≤ ωmax < 2.

6.5. Finite Element Approximation of Local Nonlinear Problems. The
finite dimensional minimization problems, discrete equivalents of (8), are approxi-
mated, at each grid point Pk ∈ Σh, by:

pnh(Pk) = arg min
q∈EP

[
1

2
|q|2 −D2

hψ
n(Pk) : qdx

]
.

The same Newton method presented in Section 4 applies.

6.6. Finite Element Approximation of Linear Variational Problems.
The variational problems arising in the discrete version of the relaxation algorithm
can be solved similarly as in the continuous case with a conjugate gradient algorithm.
While keeping in mind that algorithm (13)–(15) can be transposed on the discrete
level, let us focus here only the particularities that arise in the discrete case. The

discrete version of (12) reads as follows: find ψ
n+1/2
h ∈ Vgh satisfying:

((D2
hψ

n+1/2
h ,D2

hϕh))0h = ((pnh,D
2
hϕh))0h, ∀ϕh ∈ V0h. (18)

The linear problem (18) may lead to excessive computer resource requirements. (in-
deed, to derive the linear system equivalent to (18), we need to compute-via the
solution of (17)-the matrix-valued functions D2

hw
j , where the functions wj form a

basis of V0h). To avoid this difficulty, we are going to employ an adjoint equation
approach (see, e.g., [22]) to derive an equivalent formulation of (18), well-suited to a
solution by a conjugate gradient algorithm, which reads

Find ψ
n+1/2
h ∈ Vgh such that

〈
∂Jh
∂ϕ

(ψ
n+1/2
h ,pnh), θh

〉
= 0, ∀θh ∈ V0h, (19)

where
〈
∂Jh
∂ϕ (ϕ,q), θ

〉
denotes the action of the partial derivative ∂Jh

∂ϕ (ϕ,q) on the test

function θ. In order to solve (19), we first determine D2
hijϕ via (17). Then, we find

λhij ∈ V0h, 1 ≤ i, j ≤ 2 by solving the (adjoint) systems:

(λhij , θh)0h + C
∑
K∈Th

|K|
∫
K

∇λhij · ∇θhdx = (phij −D2
hijϕ, θh)0h, ∀θh ∈ V0h,

and we can show (see, e.g., [22]) that, for all (ϕh,ph) ∈ Vgh ×Qh:

〈
∂Jh
∂ϕ

(ϕh,ph), θh

〉
=

∫
Ω

⎡
⎣ 2∑
i=1

2∑
j=1

∂λhij
∂xi

∂θh
∂xj

⎤
⎦ dx, ∀θh ∈ V0h.

This last relationship can be used directly in the conjugate gradient algorithm
(13)–(15), to solve (13) and (14). For instance, the discrete equivalent of (14) consists
in finding ḡkh ∈ V0h such that

(Δḡkh,Δθh)0h =

∫
Ω

⎡
⎣ 2∑
i=1

2∑
j=1

∂λhij
∂xi

∂θh
∂xj

⎤
⎦ dx, ∀θh ∈ V0h.

7. Numerical Experiments. Numerical simulations are performed in the se-
quel to validate the proposed method, reproduce some results from [8], and expand
those results to various domains and less regular examples.
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7.1. Smooth Validation Example. We first consider the unit square Ω =
(0, 1)2, with boundary ∂Ω, and set x := (x1, x2). The data to enforce Dirichlet
boundary conditions on ∂Ω are given by:

g(x) = −ρ(x)1−α, x ∈ ∂Ω, (20)

where ρ(x) = ρ(x1, x2) =
(
(x1 + 1)2 + (x2 + 1)2

)1/2
. The exact solution to (1) asso-

ciated with the boundary conditions (20) is thus given by

ψ(x) = −ρ(x)1−α, x ∈ Ω, (21)

for all values of α > 1; this solution satisfies ψ ∈ C∞(Ω) ⊂ H2(Ω), since the singularity
of (21) is located outside the domain Ω.

The outer loop iteration stops after 100 iterations, or if the tolerance between suc-
cessive iterates uk and uk+1 satisfies

∣∣∣∣uk − uk+1
∣∣∣∣
0h
< ε = 10−7. When computing

pnh, we take εN = 10−5 as the tolerance for the Newton’s method solving the discrete
analogues of problem (11), and limit to Nit = 100 the number of Newton’s iterations
(a number that is never reached). The stopping criterion for the conjugate gradient al-
gorithm (13)–(15) to compute ψn+1

h is applied with ε = 10−5, with a maximal number
of 100 iterations. We typically take no relaxation (ω = 1). The value of the parame-
ter C is set between 1.0 and 100.0, and we consider values of α = 2.0, 2.5 and 3.0 in
the numerical results. We consider both structured and isotropic triangulations of Ω
(structured meshes are obtained by splitting regular squares along the first diagonal
direction, while isotropic meshes are obtained via advancing front procedures).

Figure 1 shows snapshots of the solution after 100 iterations for two isotropic
meshes (h � 0.0509 and h � 0.0093), and α = 3.0.

Fig. 1. Smooth validation example on the unit square. Numerical approximation ψh of the
solution of the Pucci’s equation with Dirichlet boundary data (20) and α = 3.0. Snapshots for
h � 0.0509 (left), and h � 0.0093 (right).

In order to estimate the robustness of the algorithm with respect to curved
boundaries, we also consider the same Dirichlet problem on the unit disk Ω ={
(x1, x2) ∈ R

2 : x21 + x22 < 1
}
. Figure 2 shows snapshots of the solution after 100

iterations for two (isotropic) meshes (h � 0.0251 and h � 0.0099), and for both
α = 2.0 and α = 3.0. As in [8], we observe that, when α increases, the convergence is
more difficult to obtain, as the problem becomes more fully nonlinear, making it more
difficult to solve with an elliptic solver based approach. This translates into a larger
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residual
∣∣∣∣∣∣D2

hψh − ph
∣∣∣∣∣∣

0,Ω
(when α increases) at a fixed given number of iterations.

Fig. 2. Smooth validation example on the unit disk. Numerical approximation ψh of the
solution of the Pucci’s equation with Dirichlet boundary data (20) and α = 2.0 (first row) and
α = 3.0 (second row). Snapshots for h � 0.0251 (left), and h � 0.0099 (right).

Convergence properties are illustrated in Figure 3 for the two different triangu-
lations of the unit square, and for the isotropic triangulation of the unit disk. It
shows a consistent first order convergence order of the method, for all three values
of α = 2.0, 2.5 and 3.0, and for all triangulations of the unit square and unit disk.
However, the method loses some accuracy when considering unstructured meshes and
curved boundaries (this is also due to the polygonal approximation of Ω), and the
convergence properties of the algorithm deteriorate slightly when the value of α in-
creases (typically the number of outer iterations to reach convergence increases when
α increases).

Let us discuss shortly the influence of the smoothing parameter C, by considering
for instance an unstructured mesh of the unit square (with h � 0.01608 fixed) and
α = 2.0. Table 1 illustrates the residual, the error, and the number of iterations as
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Fig. 3. Smooth validation example. Convergence of the approximation error ||ψh − ψ||0,Ω for
α = 2.0, 2.5 and 3.0 using structured (left) and isotropic (middle) triangulations of the unit square,
and isotropic triangulations of the unit disk (right).

a function of the numerical parameter C. It justifies the choice of C = 1 (or below)
in the sequel. Moreover, note that, for instance for the unit disk, the value of C has
to decrease with h in some cases (typically from C = 100 to C = 0.01) to obtain the
convergence behavior exhibited in Figure 3.

Table 1

Smooth validation example. Sensitivity analysis of the numerical results with respect to the
smoothing parameter C. Isotropic mesh of the unit square (h � 0.01608) and α = 2.0.

C ||ψh − ψ||0,Ω |||D2
hψh − ph|||0,Ω/|||ph|‖|0,Ω # outer iter.

102 0.5045 · 10−1 0.6641 · 10−2 50
101 0.3497 · 10−1 0.6747 · 10−2 10
100 0.3167 · 10−1 0.6705 · 10−2 7
10−1 0.3086 · 10−1 0.6705 · 10−2 6
10−2 0.2967 · 10−1 0.6511 · 10−2 9
10−3 0.2964 · 10−1 0.6528 · 10−2 6
10−4 0.2973 · 10−1 0.6527 · 10−2 6

7.2. Regularization of Boundary Data. With the aim of reproducing results
from [8], we consider Ω = (0, 1)2 equipped with an unstructured mesh, and Dirichlet
boundary data given by the indicator function of a subset of the boundary ∂Ω:

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x ∈
4⋃
i=1

Γi

1 if x ∈ ∂Ω\
4⋃
i=1

Γi

where

Γ1 = {x = (x1, x2) ∈ ∂Ω : 1/4 < x1 < 3/4, x2 = 0} ;

Γ2 = {x = (x1, x2) ∈ ∂Ω : x1 = 1, 1/4 < x2 < 3/4} ;

Γ3 = {x = (x1, x2) ∈ ∂Ω : 1/4 < x1 < 3/4, x2 = 1} ;

Γ4 = {x = (x1, x2) ∈ ∂Ω : x1 = 0, 1/4 < x2 < 3/4} .

The boundary data g is a (multi-)step function, and thus g /∈ H3/2(Ω). There-
fore the corresponding Pucci’s equation (1) has no solution in H2(Ω). In order to
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address a problem with a solution, we consider a mollified version, gδ ∈ H3/2(Ω),
of the boundary data. It is regularized as follows, for instance on the edge
{x = (x1, x2) ∈ ∂Ω : 0 < x1 < 0, x2 = 0}:

gδ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x1 < 1/4− δ or 3/4 + δ < x1;
0 if 1/4 + δ < x1 < 3/4− δ;
1
2

(
1− sin

(
π
2
x1−1/4

δ

))
if 1/4− δ < x1 < 1/4 + δ;

1
2

(
1 + sin

(
π
2
x1−3/4

δ

))
if 3/4− δ < x1 < 3/4 + δ;

(with a similar definition on the other edges of ∂Ω). In the sequel, we consider
δ = 1/16. Figure 4 illustrates the numerical approximation ψh for various values of α,
while Figure 5 illustrates cuts of the graph of the solution along x1 = 0.5 and x1 = x2
respectively. These results compare well with [8], and strongly suggest convergence to
a limit solution. Together with Figure 6, they show that ψh := ψh(α) is an increasing
function of α.

Fig. 4. Regularization of the boundary data. Snapshot of the numerical approximation for
α = 1.005 (top left), α = 2.0 (top right), α = 2.5 (bottom left), and α = 3.0 (bottom right), for an
isotropic triangulation of the unit square (h � 0.009327)

Table 2 illustrates the number of iterations of the relaxation algorithm for various
meshes and values of the parameter α. It shows that the number of iterations increases
with α (since the fully nonlinear problem becomes more difficult to solve with linear
elliptic solvers), but that the method remains stable as the number of iterations
remains roughly constant when the mesh size decreases.
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α = 2.0 α = 2.5 α = 3.0

Fig. 5. Regularization of the boundary data. Cuts of the graph of the numerical approximation
along x1 = 0.5 (first row) and x1 = x2 (second row) for an isotropic triangulation of the unit square
with mesh size h � 0.0509 (dash dotted line), h � 0.0205 (dashed line) and h � 0.0093 (plain line).
α = 2.0 (left), α = 2.5 (middle), and α = 3.0 (right).

x1 = 0.5 x1 = x2

Fig. 6. Regularization of the boundary data. Cuts of the graph of the numerical approximation
along x1 = 0.5 (left) and x1 = x2 (right) for an isotropic triangulation of the unit square (h �
0.0093), and α = 2.0 (circles), 2.5 (diamonds), and 3.0 (squares).

7.3. Homogenization Example with Variable Periodic Coefficient. We
consider Ω = (0, 1)2, equipped with a isotropic triangular mesh, and extend our
methodology to a variable, periodic, coefficient α, like the coefficients that may appear
in homogenization theory. In order to do do, let us consider again a boundary data g
representing the characteristic function of a subset of the boundary ∂Ω:

g(x) =

{
0 if x /∈ Γ1

1 if x ∈ Γ1

(22)

where Γ1 =
{
(x1, x2) ∈ R

2 , x1 = 1, 1/4 < x2 < 3/4
}
. We consider a variable, peri-

odic, coefficient α defined by:

α(x1, x2) =
1

2
(α1 + α2) +

1

2
(α1 − α2) cos(2mπx1) cos(2nπx2),

where α1, α2 > 1.0 are two given values, and m,n ∈ N. The coefficient α thus
oscillates periodically between the two values α1 and α2, as illustrated in Figure 7
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Table 2

Regularization of the boundary data. Number of outer iterations of the least-squares algorithm
as a function of mesh size and α.

α = 2 α = 2.5 α = 3
h � 0.0509 20 28 35
h � 0.0205 18 26 35
h � 0.0093 21 28 38

when α1 = 2.0, α2 = 3.0 and m = n = 8.

Fig. 7. Homogenization example with variable periodic coefficient α. Visualization of α when
α1 = 2.0, α2 = 3.0 and m = n = 8.

Again, the boundary data g is mollified, as follows, to provide a boundary data
in Hs(∂Ω), s < 3/2, and Lipschitz continuous:

gδ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ∈ Γ;
(x2 − 1/4 + δ) /δ if x1 = 1, 1/4− δ < x2 < 1/4;
(3/4 + δ − x2) /δ if x1 = 1, 3/4 < x2 < 3/4 + δ;
0 if otherwise;

Figure 8 illustrates the numerical approximation ψh for various values of m and n
(m,n = 8, 16, α1 = 2, α2 = 3) for an isotropic discretization of the unit square
(h � 0.0093). Figure 9 illustrates cuts of the graph of the solutions along x1 = 0.5
and x1 = x2 respectively, compared with the cut of the graph of the solution obtained
for the same (regularized) boundary data and a constant coefficient α = 0.5(α1+α2) =
2.5. These results strongly suggest that the solution of the homogenization problem
converges to the solution of the Pucci’s equation with the average value α = 2.5 when
m,n→ ∞.

7.4. Non-smooth Solution on a Non-Convex Domain. In order to assess
the least-squares approach for a non-convex domain, let us consider the domain ob-
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(m,n) = (8, 8) (m,n) = (8, 16)

(m,n) = (16, 8) (m,n) = (16, 16)

Fig. 8. Homogenization example with variable periodic coefficient α. Snapshot of the graph
of the numerical approximation for (m,n) = (8, 8) (top left), (m,n) = (8, 16) (top right), (m,n) =
(16, 8) (bottom left), and (m,n) = (16, 16) (bottom right)

tained when removing a piece of angular size θ from the unit disk domain, namely:

Ω =

{
(x1, x2) :

√
x21 + x22 < 1

}
\
{
(x1, x2) : x1 ≥ 0,

∣∣∣∣x2x1
∣∣∣∣ ≤ tan(θ)

}
.

Let us also define ω := 2π − 2θ, and equip Ω with an isotropic discretization. The
Dirichlet boundary conditions on ∂Ω are given by:

g(x) = −ρ(x)1−α, x ∈ ∂Ω,

where ρ(x) = ρ(x1, x2) =
(
(x1 − ξ)2 + x22

)1/2
, and ξ > 0 is a given parameter, en-

forcing the singularity to be outside the computational domain. The exact solution
to (1) associated with those boundary conditions is ψ(x) = −ρ(x)1−α, for all x ∈ Ω,
and for all values of α > 1. This solution satisfies ψ ∈ C∞(Ω) ⊂ H2(Ω).

We consider here θ = π/100, and an isotropic discretization of the domain with
h � 0.0191, together with α = 2.0, and we vary the parameter ξ. Figure 10 illustrates
isovalues of the approximated solution to the Pucci’s equation for ξ = 1.0, 0.5, 0.01
and 0.0001. Note that, when ξ → 0, the singularity gets closer to the computational
domain; thus the minimal value of the function tends to −∞, and the convergence
of the algorithm is expected to be more difficult to obtain. One can observe that
the location of the singularity is indeed shifting, but remains very localized in space.
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(8, 8) (8, 16)

(16, 8) (16, 16)

Fig. 9. Homogenization example with variable periodic coefficient α. Cuts of the graph of
the numerical approximation for x2 = 0.5 (top), and x1 = x2 (bottom). Top left: (m,n) = (8, 8)
(diamonds), top right: (m,n) = (8, 16) (circles), bottom left: (m,n) = (16, 8) (crosses), and bottom
right: (m,n) = (16, 16) (squares). On all graphs, the black plain curve corresponds to the limit
solution with α = 2.5.
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Table 3 illustrates this effect, but shows that the increase in the number of outer
iterations remains reasonable when ξ → 0. Not surprisingly, the computed error (in
the L2-norm) is impacted, although more than 90% of the error is concentrated in a
patch of elements (triangles) adjacent to the vertex in the re-entrant corner.

Table 3

Non-smooth solution on a non-convex domain. Influence of the location of the singularity
(parametrized by ξ) on the performance of the numerical algorithm.

ξ 1 0.5 10−2 10−4

minψh −31.84 −63.69 −100 −1000
# iterations 24 26 35 39
||ψh − ψ||0,Ω 0.6097 · 10−1 0.6760 · 100 0.3555 · 101 0.4829 · 103

Fig. 10. Non-smooth solution on a non-convex domain. Contour maps of the numerical approx-
imation ψh of the solution to the Pucci’s equation, for ξ = 1.0 (top left), ξ = 0.5 (top right), ξ = 0.01
(bottom left), and ξ = 0.0001 (bottom right), for an isotropic mesh of typical size h � 0.0191.

Conclusions and Perspectives. A least-squares approach for the solution of
a Pucci’s equation in two dimensions of space has been presented. This versatile
method relies on a decoupling of the variational aspects of the problem from the local
nonlinearities, and allows to expand existing results from the literature to arbitrary
meshes and arbitrary domains. Mixed finite elements have been used for the space
discretization. Numerical results have shown the flexibility and the robustness of the
proposed approach. In particular, non-smooth problems in domains that are non-
convex or with curved boundaries have been treated.

Perspectives may include the derivation of a similar approach for the solution
of the Pucci’s equation in three space dimensions, namely looking for a function
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ψ : Ω → R satisfying

α
∑

λ+ +
∑

λ− = 0 in Ω ⊂ R
3,

with Dirichlet boundary conditions, and where λ+ and λ− are the positive and neg-
ative eigenvalues of the Hessian D2ψ respectively. The difficulty consists in writing
this equation as a function of the components of the Hessian the same way (2) was
derived in the 2D case. Once this step is done, the iterative algorithm is similar, and
discrepancies appear for the local problem, while the linear variational problems are
unchanged (the same way [5] is an extension of [6] in three space dimensions).
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