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SEISMIC INVERSION AND THE DATA NORMALIZATION FOR
OPTIMAL TRANSPORT∗

BJÖRN ENGQUIST† AND YUNAN YANG‡

Abstract. Full waveform inversion (FWI) has recently become a favorite technique for the
inverse problem of finding properties in the earth from measurements of vibrations of seismic waves
on the surface. Mathematically, FWI is PDE constrained optimization where model parameters in
a wave equation are adjusted such that the misfit between the computed and the measured dataset
is minimized. In a sequence of papers, we have shown that the quadratic Wasserstein distance from
optimal transport is to prefer as misfit functional over the standard L2 norm. Datasets need however
first to be normalized since seismic signals do not satisfy the requirements of optimal transport.
There has been a puzzling contradiction in the results. Normalization methods that satisfy theorems
pointing to ideal properties for FWI have not performed well in practical computations, and other
scaling methods that do not satisfy these theorems have performed much better in practice. In this
paper, we will shed light on this issue and resolve this contradiction.
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normalization.
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1. Introduction. There are two major processes in exploration seismology. One
is migration or reverse time migration (RTM), which determines details of the reflect-
ing surfaces assuming an approximate model of wave velocity [1]. Seismic inversion
or full waveform inversion (FWI) is a process of recovering the quantitative features
of the geophysical structure. The focus is currently on the nonlinear inverse problem
of building an accurate model of the wave velocity in the earth. This is done in an
iterative process where a forward seismic simulation based on the unknown veloc-
ity is matched to the actual recordings [25]. There are many related techniques in
seismic exploration. Wave equation travel time tomography [21] and the ray-based
tomography are phase-like inversion methods [28]. Least-squares inversion is known
as linearized waveform inversion [20, 30] and the least-square reverse time migration
(LSRTM) [9] based on the Born approximation [17, 33] is one example, where the
background model is not updated after each iteration.

FWI is a high-resolution seismic imaging technique, which recently has been get-
ting great attention from both academia and industry [35]. The goal of FWI is to find
both the small-scale and the large-scale components, which describe the geophysical
properties using the entire content of seismic traces. A trace is the time history of
seismic vibrations measured at a receiver. In this paper, we will consider the inverse
problem of finding the wave velocity of an acoustic wave equation in the interior of
a domain from knowing the Cauchy boundary data together with natural boundary
conditions [8]. This is implemented by minimizing the difference or mismatch be-
tween computed and measured data on the boundary. It is thus a partial differential
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equation (PDE) constrained optimization.
FWI is increasing in popularity even if it is still facing major computational

challenges. Depending on the parameterization of the velocity model this inverse
PDE-constrained optimization problem is often highly non-unique and non-convex in
nature. The least-squares norm (L2), which is classically used in FWI to measure the
data mismatch, suffers from local minima trapping, the so-called cycle skipping is-
sues, and sensitivity to noise [29]. We will see that optimal transport based quadratic
Wasserstein metric (W2) is capable of dealing with some of these limitations by in-
cluding both amplitudes mismatches and travel time differences.

The idea of using Wasserstein metric for seismic inversion was first proposed in
[11]. This metric is based on optimal transport [34]. We first transform our datasets
of seismic signals into density functions of two probability distributions. Next, we
find the optimal map between these two datasets and compute the corresponding
transport cost as the misfit function in FWI, either by solving a Monge-Ampère
equation for the entire dataset or by using the explicit 1D formula [34] measuring the
misfit trace by trace [39]. Following the idea that changes in velocity cause a shift
or “transport” in the arrival time of a seismic signal, we demonstrated in [12] the
advantageous mathematical properties of the quadratic Wasserstein metric (W2) and
provided rigorous proofs that laid a solid theoretical foundation for this new misfit
function.

There are two main requirements for signals f and g in optimal transport theory:

f(t) ≥ 0, g(t) ≥ 0, < f >=

∫
f(t)dt =

∫
g(t)dt =< g > . (1)

Since these constraints are not expected for seismic signals, some data pre-processing is
needed before we can implement the Wasserstein-based FWI. In [38, 39] we normalized
the signals by adding a constant,

f̃(t) =
f(t) + c

< f + c >
, g̃(t) =

g(t) + c

< g + c >
, c = min

t
(f(t), g(t)). (2)

This worked remarkably well in realistic large scale examples [38, 39] together with
the adjoint-state method for optimization in either the 1D or the Monge-Ampère
based techniques. This linear normalization does, however, not give a convex misfit
functional with respect to simple shifts. Other normalizations that generate convex
misfits were also tried as, for example, only using the positive part of the signals,
squaring or taking the envelope or the absolute values [11, 12]. It was puzzling that
these misfit functionals performed poorly with realistic datasets.

FWI will be introduced in section two, and we will present relevant parts of
optimal transport theory as background in section three. The new material is in
section four where data normalizations are discussed. We will see that it is desirable
to require the scaling function to be differentiable so that it is easy to apply chain
rule when calculating the Fréchet derivative for FWI backpropagation and also better
suited for the Monge-Ampère solver. Other aspects of normalization are also discussed
that explain the contradictions mentioned above and finally ending up with a new
normalization that satisfies most of the essential properties:

f̃(t) =

{
(f(t) + 1

c )/b, f(t) ≥ 0, c > 0
1
c exp(cf(t))/b, f(t) < 0

(3)

where b =< (f + 1
c )1f≥0 +

1
c exp(cf)1f<0 >.
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2. Full Waveform Inversion. Full Waveform Inversion (FWI) is a nonlinear
inverse technique that utilizes the entire wavefield information to estimate the earth
properties. The notion of FWI was first brought up three decades ago [19, 32] and
has been actively studied and applied with the increase in computing power. It is
now a common technique in practice.

Wave-propagation modeling is the most basic step in seismic imaging. Without
loss of generality, we will explain everything in a simple acoustic setting in this paper:⎧⎨

⎩
m(x)∂

2u(x,t)
∂t2 −�u(x, t) = s(x, t)

u(x, 0) = 0
∂u
∂t (x, 0) = 0

(4)

We assume the model m(x) = 1
c(x)2 where c(x) is the velocity, u(x, t) is the wavefield,

s(x, t) is the source. It is a linear PDE but a nonlinear operator from model domain
m(x) to data domain u(x, t). We note that there are numerous techniques for ap-
proximating (4), for example, discontinuous and continuous finite elements, spectral
elements and finite difference methods. As our focus is on the inverse problem rather
than on the solution of the forward problem, we will restrict our discretization to stan-
dard finite difference methods [23]. We use the absorbing boundary condition [13] in
the numerical scheme to approximate the effect of an unbounded domain.

As we will see, the mathematical formulation of FWI is PDE constrained op-
timization. The objective function is the misfit between the synthetic data which
is generated by solving certain wave equation numerically with predicted model pa-
rameters and the observed data measured from the field which is a result of natural
propagation with the real physics. For example, in time domain conventional FWI
defines a least-squares waveform misfit as

d(f, g) = J1(m) =
1

2

∑
r

∫
|f(xr, t;m)− g(xr, t)|2 dt, (5)

where xr are receiver locations, g is observed data, and f is simulated data which
solves (4) with model parameter m. This formulation can also be extended to the
case with multiple sources.

In large-scale realistic 3D FWI, there are typically millions of variables describing
m(x). It is not practical to compute the derivative of the misfit function with respect
to each model variable directly. With the adjoint-state method, one only needs to
solve two wave equations numerically to compute the Fréchet derivative, the forward
propagation and the adjoint wavefield propagation. Different misfit functions J(m)
typically only affect the source term in the adjoint wave equation [26, 31]. The gradient
is similar to the usual imaging condition [7]:

∂J

∂m
= −

∫ T

0

∂2u(x, t)

∂t2
v(x, t)dt, (6)

where v is the solution to the adjoint wave equation:⎧⎨
⎩

m∂2v(x,t)
∂t2 −�v(x, t) = RT ∂J

∂f

v(x, T ) = 0
vt(x, T ) = 0

(7)

Here R is a restriction operator only at the receiver locations.
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Fig. 1: (A) A signal consisting two Ricker wavelets (blue) and its shift (red) (B) L2

norm between f and g which is a shift of f . (C) W2 norm between f and g in terms
of different shift s

It is well known that the accuracy of FWI with L2 norm as misfit functional dete-
riorates from the lack of low frequencies, data noise, and poor starting model, which
may result in local minima trapping. These limitations are on top of the potential
ill-posedness of the inverse problem which we here treat as a PDE-constrained opti-
mization. Figure 1a displays two signals, each of which contains two Ricker wavelets
and f is simply a shift of g. The L2 norm between f and g is plotted in Figure 1b as a
function of the shift s. We observe many local minima and maxima in this simple two-
event setting which again demonstrated the difficulty of the so-called cycle-skipping
issues [37].

A recently introduced class of misfit functions to tackle the cycle-skipping issue
is the quadratic Wasserstein metric [5, 11, 12, 37, 38, 39]. The L2 misfit function
measures the difference in amplitude locally. The optimal transport based methods
compare the observed and simulated data globally and thus more effectively include
phase information.

As a useful tool from the theory of optimal transport, the quadratic Wasserstein
metric (W2) computes the minimal cost of rearranging one distribution into another
with a quadratic cost function. The squared Wasserstein metric has several properties
that make it attractive as a choice for misfit function [12]. One highly desirable
feature is its convexity with respect to several parameterizations that occur naturally
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in seismic waveform inversion. As seen in Figure 1c, W2 norm significantly improves
the convexity of the misfit sensitivity curve. Another important property of optimal
transport is the insensitivity to noise. One can find the more theoretical results in [12]
and the numerical examples in [39].

3. Optimal Transport and the Wasserstein metric. The topic of optimal
transport starts with the problem brought up by Gaspard Monge in 1781 [24]. Let X
and Y be two metric spaces with probability measures μ and ν respectively. Assume
X and Y have equal total measure:∫

X

dμ =

∫
Y

dν (8)

Without loss of generality, we will hereafter assume the total measure to be one, i.e.,
μ and ν are probability measures.

Definition 1 (Mass-preserving map). A map T : X → Y is mass-preserving if
for any measurable set B ∈ Y ,

μ(T−1(B)) = ν(B) (9)

If this condition is satisfied, ν is said to be the push-forward of μ by T , and we write
ν = T#μ

Given two nonnegative densities f = dμ and g = dν, we are interested in the
mass-preserving map T such that f = g ◦T . The transport cost function c(x, y) maps
pairs (x, y) ∈ X × Y to R ∪ {+∞}, which denotes the cost of transporting one unit
mass from location x to y. The most common choices of c(x, y) include |x − y| and
|x− y|2. We are interested in finding the optimal map that minimizes the total cost
which formally defines a class of metrics: the Wasserstein distance:

Definition 2 (The Wasserstein distance). We denote by Pp(X) the set of
probability measures with finite moments of order p. For all p ∈ [1,∞),

Wp(μ, ν) =

(
inf

Tμ,ν∈M

∫
Rn

|x− Tμ,ν(x)|p dμ(x)
) 1

p

, μ, ν ∈ Pp(X). (10)

M is the set of all maps that rearrange the distribution μ into ν.

The optimal transport in higher dimension has no explicit solutions. It is an
infinite dimensional optimization problem if we search directly in the function space
for T . An alternative is to solve the relaxed dual problem by outstanding techniques
in linear programming, for example, the alternating direction method of multipliers
(ADMM), see the survey [16] by Glowinski. However, the optimal map takes on
additional structure in the special case of a quadratic cost function (i.e. c(x, y) =
|x − y|2). The following Brenier’s theorem [3, 10] gives an elegant result about the
uniqueness of optimal transport map for the quadratic cost as well as its intrinsic
connection with the Monge-Ampère equation:

Theorem 1 (Brenier’s theorem [34]). Let μ and ν be two compactly supported
probability measures on R

n. If μ is absolutely continuous with respect to the Lebesgue
measure, then

1. There is a unique optimal map T for the cost function c(x, y) = |x− y|2.
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2. There is a convex function u : Rn → R such that the optimal map T is given
by T (x) = ∇u(x) for μ-a.e. x.

Furthermore, if μ(dx) = f(x)dx, ν(dy) = g(y)dy, then T is differential μ-a.e. and

det(∇T (x)) =
f(x)

g(T (x))
. (11)

According to Brenier’s theorem, in order to compute the misfit between distribu-
tions f and g, one can first get the optimal map T (x) = ∇u(x) via the solution of the
following Monge-Ampère equation:

det(D2u(x)) =
f(x)

g(∇u(x))
, u is convex. (12)

Typically it is coupled to the non-homogeneous Neumann boundary condition

∇u(x) · ν = x · ν, x ∈ ∂X. (13)

The squared Wasserstein metric is then given by

W 2
2 (f, g) =

∫
X

f(x) |x−∇u(x)|2 dx. (14)

We have followed [2] for the numerical solution to the Monge-Ampère equation
when computing the quadratic Wasserstein distance for the global comparison in
FWI [39]. For a survey of recent numerical methods for nonlinear second order PDEs,
see [14].

4. Data Normalization. The primary constraints for applying optimal trans-
port to general signals are that the functions should be restricted to nonnegative
measures sharing equal total mass (e.g., probability distributions). This is a crucial
limitation for many applications that need to compare general signals or allow for
only partial displacement of the mass.

4.1. Background. There are many proposals in the literature for dealing with
the mass balance constraint. Two notions particularly stand out, which are derived
rigorously as an extension based on the original optimal transport problem. One is
the unbalanced optimal transport, which is formulated as another well-defined metric
named the Wasserstein-Fisher-Rao distance [6, 18]. The other approach is the optimal
partial transport whose mathematical properties are discussed in detail by [4, 15]. As
a comparison, there are very few papers discussing the positivity constraint. In [22],
a proposal is made to recombine the data using the decomposition in positive and
negative part to compare positive measures with mass conservation. It is based on
the following special dual form of the W1 metric, i.e., p = 1 in (10), between density
functions f = dμ and g = dν :

W1(f, g) = max
ϕ∈Lip1

∫
X

ϕ(x)(f(x)− g(x))dx, (15)

where Lip1 is the space of all 1-Lipschitz functions.
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Fig. 2: The optimal transport may map f+ to f− and g+ to g− if formulated as (20)
(arrows indicate transport)

Based on the dual formulation above, one can easily extend it to signed measures
f and g by defining

W̃1(f, g) = W̃1(f
+ − f−, g+ − g−) (16)

= max
ϕ∈Lip1

∫
X

ϕ(x)(f+ − f− − g+ + g−)dx (17)

= max
ϕ∈Lip1

∫
X

ϕ(x)(f+ + g− − (f− + g+))dx (18)

= W̃1(f
+ + g−, f− + g+) (19)

= W1(ρ1, ρ2), (20)

where ρ1 = f++ g−, the sum of the positive part of f and the negative part of g,
and ρ2 = f− + g+, the sum of the negative part of f and the positive part of g. The
W1 in (20) is same as the standard 1-Wasserstein distance in (15).

The formulation above defines a cost for transporting signed measures. However,
it is not a canonical optimal transport distance. There is a risk that the true optimal
transport represented in (20) matches f+ to f− and g+ to g− under certain circum-
stances (Figure 2). Especially in FWI, we want to map one signal to the other instead
of compensating within one signal itself.

4.2. Early ideas. In this section, we will introduce some normalization ideas
which we proposed in the past to transform seismic data into probability signals such
that the standard optimal transport theory will apply. We will analyze their properties
and in particular why they often have problems with realistic large-scale FWI.

In [11, 12], the signals were separated into positive and negative parts f+ =
max{f, 0}, f− = max{−f, 0} and scaled by the total mass 〈f〉 =

∫
X
f(x) dx (Fig-

ure 3). Inversion was accomplished using the modified misfit function

J2(m) = W 2
2

(
f+

〈f+〉 ,
g+

〈g+〉
)
+W 2

2

(
f−

〈f−〉 ,
g−

〈g−〉
)
. (21)
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Fig. 3: The optimal transport plan maps f+ to g+ and f− to g− if formulated as
(21) (arrows indicate transport)

Recall the adjoint-state equation introduced earlier (7). In order to compute the
gradient of the misfit function with respect to the model parameters for FWI, we
simply need the Fréchet derivative of the misfit function with respect to the synthetic
data f . Therefore, the critical element in the backpropagation is ∂J

∂f . Once we sep-

arate the signals as in (21), discontinuities are introduced in derivatives of f which
causes problems in the optimization process and for the wave equation solvers. The
same principle applies to the absolute-value scaling W 2

2 (|f | , |g|) since absolute-value
function is not differentiable at zero.

The linear scaling we used in our earlier papers, i.e., Equation (2), on the other
hand, works very well even if the related misfit lacks strict convexity with respect
to shifts (see Figure 4). Here are several beneficial properties about the linear scal-
ing. First, it has a wider basin of attraction than L2 norm when it comes to simple
shifts [38]. The two-variable example described in [37] is based on the linear scaling.
It gives the convexity with respect to a subset of model variables in velocity compared
to the result of L2. Second, it provides a smooth bijection between the original data
and the normalized data, which is favorable when combining with the adjoint-state
method. Third, realistic seismic data always has the mean-zero property after a stan-
dard data processing. This indicates that < f+c > is equal to < g+c >. This means
that if two short seismic signals or, so-called events, are well matched between f and g
they will stay so even after the normalization process and not be influenced by other
events further away. The property is essential in the early iteration steps when the
simulated signals do not include all details that are in the measured signal. On the
other hand, if the individual events are void of zero frequencies the transport defining
W2 may be local as is seen in Figure 4, which can cause trapping in local minima.

One scaling method which theoretically should work well with the adjoint-state
method is to square the signals first and normalize it to be mass balanced:

J3(m) = W 2
2 (

f2

< f2 >
,

g2

< g2 >
). (22)

As seen in Figure 5, the two curves are the squares of the two functions in Figure 3.
This particular normalization keeps the convexity of the quadratic Wasserstein metric
concerning simple shifts like the setting in Figure 1c. In [5], squaring the data was used
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Fig. 4: The linear scaling: f → f + c and g → g + c; there is chance of having local
transport (arrows indicate transport)

Fig. 5: Square of the data: f → f2 and g → g2 (arrows indicate transport)

as the normalization to recover a four-variable linear source inversion. However, it has
been puzzling since this normalization rarely works well in large-scale inversions with
thousands of variables, such as the Camembert example and the standard Marmousi
benchmark which we will show later.

It has been a dilemma until recently we can point to three potential factors that
may lead to the difficulties. First of all, taking the squares boosts the higher frequency
of the signal. It is well known that FWI becomes more difficult as the frequency
increases. The robust convergence range is typically within half wavelength [36]. Just
consider a simple oscillartory pulse sin(t)2 = (1−cos(2t))/2. Second, the refracted, or
so-called, diving wave and the reflection wave may reach the receiver at the same time
with a similar amplitude but entirely different polarity. The positive and negative
parts of the signal are interchanged. Squaring the signals may lose the important
phase information here. Third, when we are dealing with one event in f and multiple
events in g, < g2 > can be significantly larger than < f2 >. This is often the
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Fig. 6: (a) True velocity and (b) inital velocity for the Camembert model
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Fig. 7: The gradient in the first iteration of the inversion by using (a) the linear scaling
as the data normalization, and (b) the squaring scaling as the data normalization.

case in the initial state of inversion when only one or a few reflections interfaces are
known. The measured data g naturally contains the effect of all reflections. The mass
normalization step can distort the correct parts of the signals that both f and g share,
and consequently leads to a wrong update in the correct model variables.

We want to demonstrate the issues above with a Camembert model. The true ve-
locity is shown in Figure 6a and the initial velocity we use in the inversion is Figure 6b.
Figure 7 illustrates a comparison in gradients of the first iteration between the linear
scaling and the squaring scaling as different normalizations in optimal transport FWI.
There are wrong features in Figure 7b even in the first iteration. The final inversion
results are shown in Figure 8. The linear scaling converges to a reasonably well model
(Figure 8a) while squaring the data in normalization leads the inversion to a local
minimum (Figure 8b). In both of these two experiments, we use the trace-by-trace
techqniue (1D optimal transport) to compute the W2 distance between the synthetic
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W2 inversion with the linear scaling
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W2 inversion with the squaring scaling
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Fig. 8: (a) The inversion result of using (2) as the data normalization (b) The
inversion result of using (22) as the data normalization.

Fig. 9: One normalization combining both the linear and the exponential methods
(Equation (3))

data and the observed data.

4.3. A sign-sensitive normalization. Based on the analysis of the squaring
scaling in the previous section, a bijection between the original data and the normal-
ized data is essential not to deteriorate the ill-posedness of the inverse problem. An
exponential based normalization was proposed in [27] to transform seismic signals to
probability distributions:

f̃(t) =
exp(cf(t))

< exp(cf) >
, g̃(t) =

exp(cg(t))

< exp(cg) >
, c > 0. (23)

Here we propose a new normalization (Equation (3)) that satisfies most of the
essential properties. This normalization (Figure 9) can be seen as a compromise
between the linear scaling (2) and the positive part scaling (21). For the limit of
small c > 0, it is a linear scaling, which directly follows from Taylor expansion of
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Fig. 10: The W2 misfit regarding signal shift s by using the sign-sensitive scaling, i.e.,
W 2

2 (f(t− s), f(t)).
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Fig. 11: (a) True velocity and (b) inital velocity for full Marmousi model

the exponential part. In the limit of large c values, f obviously converges to f+.
It is a C1 function which is compatible with the adjoint-state method. It keeps the
convexity of the quadratic Wasserstein distance with respect to signal shifts as shown
in Figure 10. One needs to select the coefficient c based on the data range. The sign-
sensitive scaling is similar to the exponential scaling (23) by suppressing the negative
part of the signal, but it does not have the risk of exaggerating large f and g values in
the exponential normalization. The computational cost for all the data normalization
methods are the same and negligible in each iteration since the major cost of the
inversion is the forward and backward wave propagation.

If we denote the normalization function in (3) as an operator P . One idea to
use all the information of the signal (instead of just f+) is to consider the following
objective function:

J4(m) = W 2
2 (P (f), P (g)) +W 2

2 (P (−f), P (−g)). (24)

The final experiment is to invert full Marmousi model by conventional L2 and
trace-by-trace W2 misfit with J4(m) as the actual objective function. Figure 11a is
the P-wave velocity of the full Marmousi model, which is 3km in depth and 9km in
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L2 inversion
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W2 inversion with the sign-sensitive scaling
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Fig. 12: Inversion results of (a) L2 and (b) trace-by-trace W2 with the sign-sensitive
scaling (24)
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Fig. 13: The convergence rates for the Marmousi model inversion

width. The inversion starts from an initial model that is the true velocity smoothed
by a Gaussian filter with a deviation of 40 (Figure 11b). We place 11 evenly spaced
sources on top at 150m depth in the water layer and 307 receivers on top at the
same depth with a 30m fixed acquisition. The discretization of the forward wave
equation is 30m in the x and z directions and 30ms in time. The source is a Ricker
wavelet with a peak frequency of 15Hz, and a high-pass filter is applied to remove
the frequency components from 0 to 2Hz. Inversions are terminated after 300 l-BFGS
iterations which take about 3 hours on a normal workstation. Figure 12a shows the
inversion result using the traditional L2 least-squares method and Figure 12b shows
the final result using trace-by-trace W2 misfit function. Again, the result of L2 metric
has spurious high-frequency artifacts while W2 using the sign-sensitive scaling (24)
correctly inverts most details in the true model. The convergence rates in Figure 13
illustrates that L2-based inversion ends up at a local minimum due to the nonzero
data misfit after 300 iterations while W2-based inversion fits the data and reduces the
relative data mismatch from 1 to 0.
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5. Conclusion. Full waveform inversion for seismic imaging and the application
of optimal transport for computing the misfit between simulated and measured data
are summarized. Seismic signals need to be transformed by some normalization to
satisfy the requirements from optimal transport. Advantages and disadvantages of
different normalization techniques are discussed. The dilemma that methods, which
have provable desirable properties for simple model problems do not work well in prac-
tical large-scale settings and other methods that theoretically fail for simple examples
perform very well in practice is illuminated. Quadratic scaling belongs to the first
class, and linear scaling belongs to the second class of normalizations, which do very
well in realistic tests. A new sign-sensitive normalization aiming at bridging these
two classes is introduced, and numerical examples are presented.
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[6] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, An interpolating distance between
optimal transport and Fisher–Rao metrics, Foundations of Computational Mathematics,
pp. 1–44.

[7] J. F. Claerbout, Toward a unified theory of reflector mapping, Geophysics, 36:3 (1971),
pp. 467–481.

[8] R. Clayton and B. Engquist, Absorbing boundary conditions for acoustic and elastic wave
equations, Bulletin of the Seismological Society of America, 67:6 (1977), pp. 1529–1540.

[9] W. Dai, P. Fowler, and G. T. Schuster, Multi-source least-squares reverse time migration,
Geophysical Prospecting, 60: (2012), pp. 681–695.

[10] G. De Philippis and A. Figalli, The Monge-Ampère equation and its link to optimal trans-
portation, Oct 2013.

[11] B. Engquist and B. D. Froese, Application of the Wasserstein metric to seismic signals,
Communications in Mathematical Sciences, 12:5 (2014), pp. 979–988.

[12] B. Engquist, B. D. Froese, and Y. Yang, Optimal transport for seismic full waveform
inversion, Communications in Mathematical Sciences, 14:8 (2016), pp. 2309–2330.

[13] B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves,
Proceedings of the National Academy of Sciences, 74:5 (1977), pp. 1765–1766.

[14] X. Feng, R. Glowinski, and M. Neilan, Recent developments in numerical methods for fully
nonlinear second order partial differential equations, SIAM Review, 55:2 (2013), pp. 205–
267.

[15] A. Figalli, The optimal partial transport problem, Archive for rational mechanics and analysis,
195:2 (2010), pp. 533–560.

[16] R. Glowinski, On alternating direction methods of multipliers: a historical perspective, in
“Modeling, simulation and optimization for science and technology”, pp. 59–82. Springer,
2014.

[17] J. A. Hudson and J. R. Heritage, The use of the Born approximation in seismic scattering
problems, Geophysical Journal International, 66:1 (1981), pp. 221–240.

[18] S. Kondratyev, L. Monsaingeon, D. Vorotnikov, et al., A new optimal transport distance
on the space of finite radon measures, Advances in Differential Equations, 21:11/12 (2016),
pp. 1117–1164.

[19] P. Lailly, The seismic inverse problem as a sequence of before stack migrations, in “Conference
on inverse scattering: theory and application”, pp. 206–220. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1983.

[20] P. Lailly, Migration methods: partial but efficient solutions to the seismic inverse problem,



DATA NORMALIZATION FOR OPTIMAL TRANSPORT 147

Inverse problems of acoustic and elastic waves, 51 (1984), pp. 1387–1403.
[21] Y. Luo and G. T. Schuster, Wave-equation traveltime inversion, Geophysics, 56:5 (1991),

pp. 645–653.
[22] E. Mainini, A description of transport cost for signed measures, Journal of Mathematical

Sciences, 181:6 (2012), pp. 837–855.
[23] P. Moczo, J. OA Robertsson, and L. Eisner, The finite-difference time-domain method for

modeling of seismic wave propagation, Advances in Geophysics, 48 (2007), pp. 421–516.
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