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DIFFUSION-LIMITED REACTIONS IN NANOSCALE
ELECTRONICS*

RYAN M. EVANS f, ARVIND BALIJEPALLI ¥, AND ANTHONY J. KEARSLEY &

Abstract. A partial differential equation (PDE) is developed to describe time-dependent
receptor-ligand interactions for applications in biosensing with biological field-effect transistors (Bio-
FETs). This model describes biochemical interactions on a biochemical gate at the sensor surface,
which results in a time-dependent change in the Bio-FET’s conductance. It was shown that one can
exploit the disparate length scales of the solution-well and biochemical gate to reduce the coupled
PDE model to a single nonlinear integrodifferential equation (IDE) that describes the concentra-
tion of reacting species. Although this equation has a convolution integral with a singular kernel, a
numerical approximation is constructed by applying the method of lines. The need for specialized
quadrature techniques is obviated and numerical evidence shows that this method achieves first-order
accuracy. Results reveal a depletion region on the biochemical gate, which non-uniformly alters the
surface potential of the semiconductor.
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1. Introduction. The ability to tailor therapies to individuals or specific sub-
sets of a population to deliver personalized care has the potential to fundamentally
remake healthcare delivery. The most promising therapeutic candidates for such tar-
geted care are new classes of biologic drugs based on naturally occurring molecules,
made possible due to rapid advances in genomics and proteomics [10, 26]. Impor-
tantly, such therapies can be safer and yield better outcomes at lower doses when
treating debilitating conditions such as diabetes, Alzheimer’s disease, or certain can-
cers [2, 7]. The widespread use of personalized care is currently limited by our abil-
ity to routinely measure pathology in individuals including biomarkers, metabolites,
tissue histology, and gene expression. Moreover, existing clinical diagnostics are cum-
bersome, require specialized facilities, can take days to weeks to perform, and are in
many cases prohibitively expensive. This has led to the development of new portable
detection tools including antibody-based lateral flow assays [8, 19], microelectrome-
chanical sensor (MEMS) based resonators that can detect binding of biomarkers to
the sensor surface [15, 16, 21, 23], surface plasmon resonance [17, 27], ring cavity res-
onators [1, 4, 24|, and electronic measurements with biological field-effect transistors
(Bio-FETS) [6, 20, 22, 28]. The latter are particularly well-suited for biomarker mea-
surements due their high charge sensitivity and direct signal transduction, allowing
label-free measurements at physiological concentrations. Furthermore, by leveraging
semi-conductor processing techniques, measurements with Bio-FETs can be made
massively parallel, cost-effective, and portable.

A Bio-FET is a three-terminal device represented in Figure 1.1. A semiconductor
channel between the source and drain terminals conducts a current that is strongly
modulated by an electrostatic potential applied to the gate. Biomarkers in aque-
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ous solution exhibit a well-defined electrostatic surface potential [5, 14] arising from
charged hydrophilic residues that interact with water. When these molecules adsorb
to the Bio-FET’s biochemical gate, they strongly modulate the channel current pro-
portional to the magnitude of their surface potential. This allows Bio-FETSs to be used
to detect and quantify biomarkers adsorbed to the biochemical gate. Furthermore,
functionalizing the Bio-FET, by attaching molecules to the gate surface that have a
high inherent affinity for biomarkers of interest (see Figure 1.1), allows measurements
with high specificity that are tailored to one or more biomarkers of interest.
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Fic. 1.1: Schematic of biomarker measurements with a Bio-FET. Ligand molecules injected
at the top of the solution-well diffuse and bind with receptors immobilized on the Bio-FET’s
biochemical gate. This schematic is not drawn to scale. In particular, the width of the
solution-well is of on the order of millimeters, and substantially larger than the size of the
biochemical gate, which spans micrometers. See Table 2.1 for exact parameter values.

An accurate and dynamical model of receptor-ligand interactions at the biochem-
ical gate is a critical component in maximizing the sensitivity of Bio-FET-based mea-
surements. Specifically, quantitative descriptions of the distribution of adsorbed lig-
ands and their surface potentials can be combined with a model of the semi-conductor
physics to refine predictions of the measured signal. This in turn can be used to op-
timize sensor design, particularly the geometry of the biochemical gate. An accurate
quantitative description of the concentration of adsorbed ligands on the biochemical
gate must account for the coupling between diffusion and reaction on the biochemi-
cal gate. To the authors’ knowledge this is a previously unexplored area of mathe-
matical inquiry, though Poisson-Boltzman approaches to model sensor physics have
been studied. For example in [13] Heitzinger et al. use the Poisson-Boltzman equa-
tion to develop a multiple-scale model for the electric potential distribution within
semiconductors of planar and nanowire field-effect biosensors. Therein, the authors
model these devices using three layers: a semiconductor layer, a dielectric layer, and
a discrete layer of biomolecules immobilized on the dieletric layer. Homogenization
techniques are employed to reconcile the biomolecule length scale with the semicon-
ductor length scale, and interface conditions for the biomolecule-dielectric interface
are derived. It must be noted that there are several important differences between [13]
and the present manuscript. Perhaps the most important is that while [13] focuses
on the electric potential distribution within the semiconductor channel, the present
manuscript models the coupling between reaction and diffusion. Furthermore, while
the authors of [13] model the biomolecule layer with a discrete number of biomolecules
and use homogenization techniques, in the present manuscript a continuum perspec-
tive is presented. Finally, [13] assumes a steady distribution of biomolecules on the
dielectric layer, while the present manuscript concerns the time-evolution of the con-
centration of bound ligand on the surface which is directly related to the measured
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signal.

In [18] the one-dimensional Poisson-Boltzman equation was employed to model
the electrostatic potential from a layer of biological macromolecules on the biochem-
ical gate of a metal-oxide-semiconductor transistor. In contrast, [3] uses a three-
dimensional model of the electric potential in semiconductor channel, and couples
the aqueous and semiconductor regions through interface conditions obtained from
Monte Carlo simulations, which provide an estimate of the charge distribution from
adsorbed biomolecules on the biochemical gate.

In [25] Heitzinger, Mauser, and Ringhofer calculate numerical values for the ki-
netic parameters governing adsorption and desorption processes of CO at a SnOs
single-nanowire gas sensor. The authors adopt a continuum perspective by mod-
eling surface reactions on a single-nanowire gas sensor through a set of differential
equations. However, in [25] the authors simply apply the well-stirred kinetics ap-
proximation in which gaseous carbon monoxide transport is completely divorced from
adsorption and desorption processes at the surface. This reduces their model to a
set of nonlinear ordinary differential equations (ODE), which can be used to estimate
kinetic rate constants involved in the reaction of interest.

In the present manuscript a quantitative description of the coupling between
reaction and diffusion in Bio-FETSs is developed. In particular, we consider the exper-
imentally relevant limit of very low ligand concentrations—i.e., on the order of pico- to
femtomolar—and very fast assocation rates. This problem is particularly challenging
due to the disparate time and length scales involved. For example, the length scales
span three orders of magnitude, ranging from order of millimeters for the solution-
well to micrometers for the biochemical gate. Combining this fact with the diffusion-
limited nature of the kinetics under consideration leads to the conclusion that the
time-evolution of the reacting species concentration depends heavily on a diffusive
boundary layer near the surface.

2. Governing Equations.

. Mathematical Model. We take our domain to be the rectangle [0, L] x

[0, H ] shown in Figure 1.1, with the origin at the lower-left corner of the solution-well.
The parameters L and H are the length and height of the solution-well respectively;
for parameter values see Table 2.1. Throughout the manuscript tildes are used to
denote dimensional quantities. Receptors are confined to the biochemical gate, which
occupies the very narrow strip [—ls/2+ L/2, L/2+15/2] x 0 = [Zmin, Tmax] X 0, where
I, denotes the biochemical gate length and [Zmin, ZTmax| := [—15/2 + L/2, L/2 + 15/2].
It is important to note the disparate length scales involved: while the solution-well
length scale is on the order of millimeters, the biochemical gate spans micrometers
and is three orders of magnitude smaller.

Assuming that ligand molecules are continuously and uniformly injected at the
top of the well, ligand transport is governed by the diffusion equation, expressed in
dimensionless form as:

2 2
%? Dy, < gfg + %yg) , (2.1a)
C(,7,0) =0, (2.1b)
OF1,t) = 1, (2.1c)
ac ac )

7 (080 =5=(L7t) =0. (2.1d
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TABLE 2.1: Bounds for dimensional and dimensionless parameters are given below.

Dimensional Parameters Dimensionless Parameters
Parameter Range Parameter Range
D (cm?/s) 10°¢ D, 2.5 x 1072 to 2.5 x 10?
ka (em® - (mol -s)~1) 10! to 102 D 4% 103 to 4 x 107
kd (s7h) 1075 to 1 Day, 1.33 x 103 to 2.66 x 103
C’u (mol - ecm™3) 1071 to 10719 Da 3.32 to 66.42
R: (mol - cm™2) 6.6422 x 1014 K 1072 to 108

to 1.3284 x 1013

H (cm) 0.2 € 0.4
L (cm) 0.5 I 1073
I, (cm) 5x107*

Equation (2.1a) governs ligand transport in the interior of our domain 2 for positive
time ¢, (2.1b) is the initial condition, (2.1¢) imposes a continuous and uniform ligand
injection through the top boundary, and (2.1d) imposes no flux of ligand through the
left and right boundaries. The authors studied a sealed experiment in [9] by replac-
ing (2.1b) with a compactly supported Gaussian to model ligand injection, and the
inhomogeneous Dirichlet condition (2.1c) with a homogeneous Neumann condition.

In writing (2.1a)—(2.1d), the spatial variables Z and y have been nondimensional-
ized with the solution-well dimensions by setting 7 = 7/L and 5 = / H. Since we are
interested in reaction dynamics on the biochemical gate the time variable has been
scaled with the forward reaction rate—i.e., the product of the association rate constant
k and the total ligand concentration in the solution-well C —by setting t = k C t.
In equation (2.1a) the parameter e = H/L is the aspect ratio, and

2
Dy, = 13/ Ij (2.2)

kacu
is the ratio of the rate at which ligand molecules diffuse through the solution-well, as
characterized by the quotient of the molecular diffusion coefficient D and the squared
solution-well height H, to the forward reaction rate. The subscript w indicates that
this independent variable has been scaled with the well dimensions. It is seen in Table
2.1 that Dy, may assume values from O(1072) to O(102). In the former limit the rate
of forward reaction far exceeds the rate at which ligand molecules diffuse through the
solution-well, while in the latter forward reaction proceeds at a much slower rate than

diffusion through the solution-well.

The bottom boundary condition associated with (2.1a)—(2.1d) must reflect the
fact that while diffusive flux normal to the biochemical gate is used in forming bound
ligand, there is no-flux through the region (Z,%) € {[0,1] \ [Tmin, Tmax]} X 0. These
two conditions are expressed compactly as

(n-VCO)|g=o = Day xs [-(1 — B)C(%,0,t) + KB]. (2.3)

In (2.3) n = (0, —1) denotes the outward unit normal vector, and xs is the character-
istic function defined as

Xb(f) _ { (1) ; ; [fmin;?max]; (24)

[xmin; Tmax]-
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The parameter
K = ka/(kaCu) (2.5)
is the dimensionless equilibrium dissociation rate constant, given by the ratio of the

dimensional dissociation rate constant kq to the forward reaction rate. Since the
bound ligand concentration B(x,t) is governed by the kinetics equation

%_f — (1- B)C(z,0,t) — KB, (2.6a)
B(z,0) =0, (2.6D)

the bottom boundary condition (2.3) can be expressed as

@(E,O,t) = Day Xs %—fj

o (2.7)

Thus the complete partial differential equation system is given by (2.1), (2.6), and
(2.7).
In equations (2.3) and (2.7), the important dimensionless parameter
hR
D/H

Day, (2.8)

is the Damkdéhler number, defined as the ratio of the reaction velocity to the diffusion
velocity. Note that both the numerator and denominator have dimensions of unit
length per unit time. It is seen in Table 2.1 that Day > 1, which implies that
on these length scales the reaction velocity far exceeds the diffusion velocity. This
is a direct consequence of the fact that there are multiple time and length scales
associated with the experiment: ligand molecules must diffuse a distance on the order
of millimeters to arrive at the biochemical gate, and the speed at which this transpires
is far slower than the reaction velocity.
Using the fact that Day, > 1 reduces (2.7) to

OB
o =0 (2.9)

which implies that, to leading order on these length scales, the processes of interest are
in steady-state. To study reaction dynamics, we examine diffusion of ligand molecules
in the vicinity of the biochemical gate by introducing the boundary layer coordinates

T 1/2
x:£7la y_fg (2.10)

In (2.10) the very small parameter

Iy == (2.11)

is the ratio of biochemical gate length I5 to the solution-well length L. Introducing
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these scalings into (2.1a)—(2.1d) and (2.7) yields
2 2
ocC D (8 c 0 C’) 7

E = W + 8—y2 (2.12&)

C(z,y,0) =0, (2.12b)
C(z,e/ls,t) =1, (2.12¢)
oC oC
121,y 1) = S (1/(21),y, ) = 0, 2.12d
(12,1 = (121, ,1) = 0 (2124)
oC 0B
?y(:zr,(),t) = Daaxs. (2126)
The kinetics equation (2.6) becomes
%—l: = (1 - B)C(x,0,t) — KB, (2.13a)
B(z,0) = 0. (2.13b)

Observe that transitioning to boundary layer coordinates has the effect of rescaling
D, and Day. The parameter
D/i?
D=z /3 (2.14)
kaCy

is the ratio of the diffusive time scale in the boundary layer D /752 to the forward reac-
tion rate, and since D > 1 the rate of diffusion within the boundary layer far exceeds
the forward reaction rate. This is not surprising as we are considering picomolar to
femtomolar ligand concentrations. Furthermore
Da = kjpit

D/l

(2.15)

is the Damkohler number associated with these length scales. Since Da is an O(1) to
0O(10) parameter, on these length scales the reaction velocity is the same as or only
slightly faster than the diffusion velocity. Equation (2.12e) then implies that reaction
balances diffusion within the boundary layer.

2.2. Integrodifferential Equation Reduction. Since D >> 1, we neglect the
left hand side of (2.12a) which reduces this equation to

ViC = 0. (2.16)

Physically, equation (2.16) implies that near the surface C' is in a quasi-steady-state
and change in the unbound concentration is driven by the surface-reaction (2.12e).
Furthermore, since [ < 1 we are not concerned with satisfying the no-flux conditions
(2.12d) and take our domain to be the infinite strip R x [0,€/ls]. This idealization
is physically motivated and justified by the fact that the biochemical gate occupies
a very narrow portion of the well surface, so the left and right boundaries of the
solution-well will not appreciably affect ligand binding.
To solve the resulting set of PDEs we seek solutions of the form

C(IE,y,t) = 1+Cb(zay7t)a (217)
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where C), satisfies

V3¢, =0, (2.18a)
Ch(z,€e/ls,t) =0, (2.18b)
oCy 0B

8—y((E,O,t) = Dagxs, (218C)

for (x,y) € Rx|0,¢/ls]. To solve (2.18) we introduce a Fourier transform in z, defining
the Fourier transform as

(Fu)(w) == a(w) :/ u(z)e™? dz, (2.19a)
so that the inverse Fourier Transform is given by

(F7la)(z) = u() ! /00 a(w)e” ™" da. (2.19b)

:% .

Applying a Fourier transform to (2.18) and solving the resulting equations in the
frequency domain gives

where the convolution product * has been defined so that

oB sin(w/2) >~ 9B sin(v/2)
E(w,t)* (w/2> = /_OO E(w —v, t)W dv. (2.21)

However, in order to study the dynamics of interest a closed-form of C'(z,y,t) on the
surface y = 0 is required. This is aquired by applying the convolution theorem after
calculating

Fla) = 2 /mweﬂw dw, (2.22)

21 J_ w

Observe that when x = 0 the integrand decays at a rate of 1/w as w — +oo. Thus
the integrand of (2.22) is not integrable when z = 0, and f is singular at the origin.
The evaluation of (2.22) may then be separated into two cases: when > 0 and when
x < 0. We consider the latter by constructing a sequence of contours in the complex
plane in the manner depicted in Figure 2.1. To fix notation we let C(") = > OJ(").

The hyperbolic tangent function has countably infinite singularities along the
imaginary axis, so the path of integration cannot intersect any of these singularities.
The singularities will occur when w = 0 or

mi(2n 4 1)
w = g . (2.23)

Note the contour depicted in Figure 2.1 does not pass through the singularity at the
origin; in fact, since

lim tanh(aw) =0 (2.24)

w—0
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Fia. 2.1: The contour used to calculate (2.22) when x < 0.

this singularity would not have contributed to (2.22) if we had placed the semi-circle
of radius p,, in the lower half-plane. Thus taking the radii of our semi-circles to be

pn =7/((n+ 2)a), (2.25a)
R, =mn/a, (2.25b)

the path of integration will never intersect any of the singularities and Cauchy’s
Residue Theorem may be applied:

n—1
h - h /
% tanh{aw) (aw)e_“” dw = 2mi ZI(C("),ak) Res (Me_ww;an> . (2.26)

c) w k=0 @

Calculating residues and letting n approach infinity gives

h ) L (2k+1)7x/(2a)
lim tanh(aw) i g, 7l YR (2.27)
n— o0 C(n) w =0 (2k + 1)
On the other hand,
4

tanh . tanh .
lim tanh{aw) e " dw = lim Z]{ tanh{aw) e " dw. (2.28)
n—roo Cc(n) w n—oo jfl Cj(n) w

One may show that the integral along C2(n) vanishes as n — oo, and by using the fact

that < 0 it can also be shown that the integral along the far contour Cin) vanishes.
From these facts and the Maclaurin series for tanh™*(z) it follows that

2
f(x) = = tanh ! (e™s/(29)) (2.29)
™
when = < 0. To evaluate (2.22) when = > 0 one may extend this integral to the

complex plane by using the reflection of the contour depicted in Figure 2.1 about the
real axis, shown in Figure 2.2, and use analogous arguments to show

2
f(x) = = tanh ™! (e~ ™/ (29)) (2.30)
T
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R, —Pn  Pn R,

4 Re w
A

Im w

Fi1a. 2.2: The contour used to calculate (2.22) when x > 0.

when z > 0.

In summary the integral (2.22) is singular at the origin, given by (2.29) when
x < 0, and (2.30) when x > 0. Putting these three observations together leads to the
conclusion that

f(z) = ztaumhfl(e_”ls‘””‘/(26)) (2.31)
T

almost everywhere on [—-1/2,1/2]. Thus applying the convolution theorem to (2.20)
evaluated at y = 0 and substituting the resulting expression into (2.17) gives:

2 Da [!/? OB
C(x,0,t) =1— a/ tanh ™! (e~ ™12/ N (1 1) dv. (2.32)
T Jo1/2 ot

Hence, the bound ligand concentration is governed by the IDE

1/2
G_B =(1-B)|1- 2 Da/ tanhfl(e_”ls‘m_”l/(%))a—B(u, t)dv | — KB, (2.33a)
ot T “1/2 ot

B(z,0) = 0. (2.33b)

In (2.32) the term 1 represents the uniform injection concentration and the convolution
integral represents depletion of unbound ligand at the surface due to reaction. As
we shall see in Section 4 the non-local nature of the convolution (2.32) reflects the
probabilistic nature of diffusion in the boundary layer near the surface, and the finite
limits of integration encode the reflective boundary conditions to the left and right
of the biochemical gate. However, we first turn our attention to finding a numerical
approximation to the solution of (2.33).

3. Numerical Method.

3.1. Method of Lines Approximation. To discretize (2.33) we choose N
equally-spaced discretization nodes z; and partition [—1/2,1/2] into N distinct subin-
tervals of length Az = 1/N:

11 Ax Ax
[‘55] :U[%‘?”””T ’ (3.1)

i=1
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where —1/2 =21 — Az/2 and 1/2 = xny + Az /2. Then an approximation to (2.33) is
found by applying the method of lines

N

B(z,t) ~ Zhi(t)@'@) (3.2)

i=1

where the functions h;(t) are to be determined and subject to the initial condition
hi(0) = 0, and the functions ¢;(x) are locally defined piece-wise linear hat functions
given by,

2 .
E[a:f(:ci—Ax/Z)] if x € [z; — Ax/2,2;),
dil) = é[(mi +Az/2) —a] if @€ [as s + Ax/2], (3.3)
0 else.

Substituting (3.2) into (2.33a) and evaluating each side of the resulting equation at
x = x; yields

hi(t) = (1 — hy(t)) <1 - Z M /1/2 tanh ! (e~ 1T ¥IT/(29) 4. (1)) du)

=1 —-1/2
— Khy(t),

(3.4)
for j =1, ..., N. The solution of this nonlinear set of ODEs determines the time-
dependent functions h;(t), however solving this system requires computing

1/2
/ tanh ™t (e~ 1 ~¥Imls/ 29y g (1) du. (3.5)
—-1/2

Since tanhfl(e_‘””f_”ws/ (26)) exhibits logarithmic singularity at v = x;, computing
(3.5) using a quadrature rule requires great care, although (3.5) may be evaluated
exactly. This is done by decomposing the basis functions (3.3) into their left and
right parts:

Al[x (@i — Az/2)] iz € [z — Ar/2, 1),

0 else,

and

Ai[(xi +Az/2) — x| if x € [z, x5 + Az /2],

else.

o
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Having decomposed the basis functions into their left and right parts (3.5) can be
written as

1/2
/ tanh ™! (e 712 ~¥Im/ (2, (1)) dw
—-1/2
1/2
= / tanh ™! (e~ 12 ~¥Im/ Y, 1 (1) dw (3.8)
—1/2

1/2
+/ tanh ! (e~ 12 ~¥Im/ g, (1) du.
~1/2

Since the two terms on the right hand side are related through a change of variables,
it is sufficient to calculate

1/2
/ tanh ! (e~ 1T ~¥Im/ (2 g, 1 (1) dw. (3.9)
—1/2

After changing variables, one may use the definition of tanh71(~) and expand the
integrand in terms of its Maclaurin series to find that it is a telescoping sum:

1/2
/ tanh71(e_l’”f_”‘”ls/(%))@,](V) dv
~1/2

Az/2 (—|w—z;+z;—Ax/2|(2n+1)7ls /(2€) (3.10)

—il/ w dw
_n:OAI 0 2n+1 '

In writing (3.10) we have formally exchanged the limit operations. Observe that the
absolute value prevents one from integrating by parts directly; however, by using the
fact that the discretization nodes are equally spaced one can show the computation
may be partitioned in two distinct cases: when z; > z; and z; < z;. Since the
computation is analogous in each case we concern ourselves only with the former.
Thus taking x; > x; and integrating the right hand side of (3.10) by parts shows that
(3.9) is equal to

Az (2n + 1)27l, (2n + 1)372i2
n=0 (3.11)
462 e—[Am/2+(mj—mi)](2n+1)ﬂ'ls/(2e)>

(2n + 1)372(2

i( 2 ) (ALL‘E e~ (@j—zi)(2n+1)7ls/(2€) 4¢2 o~ (@j—zi)(2n+1)mls/(2€)

To sum the series (3.11), we observe that one can use the definition of the polyloga-
rithm of order s

ok
Lis(z) =Y = (3.12)
to show

> 27 = Lis(z) — lsLis(ZQ)- (3.13)
(2n+1) 2
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Hence when z; > z;

1/2
/ tanh ! (e~ e ~¥Im/ (29 g 1 (1) dv

P

—1/2
2 A:EE o —\Tj—X4 )T € 3 —\ZTj—XT4)T €
— (E) {7 (ng(e (w5 —2)mle/(20)) _ L, (e~ (@5 =2/ ( >)/4)
P s (3.14)
-5 (Li3(e—<wj—m>wls/<2e>) — Lig(e~(@i—a0mls/(e)) /8)
462 : —[Az/24(xj—x;)]7ls /(2€) . —[Az/24(zj—x;)]7ls /(€)
+ (ng(e ) ) — Lis(e ) » )/8) .

The form of (3.14) when z; < x; is similar. With a closed-form expression for the
value for (3.8), the nonlinear set of ODEs (3.4) may be integrated with one’s favorite
linear multistage or multistep formula.

3.2. Convergence. Convergence of the previously described numerical method
was measured by first computing a reference solution Byef(,t) from ¢t = 0 to t = 150
with N = 37 = 2187 spatial basis functions. Then solutions B;(x,t) were computed
with NV = 3% basis functions and convergence was measured by calculating

I Bret (2, 1) = Bi(x, t)l2, «lloo, ¢ (3.15)

for i =1, ...,6. In (3.15) || - ||2, » denotes I norm in x and || - ||oc, + denotes
the infinity norm in ¢. A logarithmic plot of these values is depicted in Figure 3.1.
Despite the logarithmic singularity in (2.33a), the evidence in Figure 3.1 shows that
our method of lines approximation to (2.33) enjoys excellent convergence on the order
of O(Az'0762),

Az Error B
-5 ; ‘ :
e Error
-6l y ]
-7
=
g2 -8r
g
T -9
<
-10 |y = —1.0762z — 4.2067
R? = 0.9987
-11+
-12 ]
0 2 4 6
log(N)
Fi1G. 3.1: The values of (3.15) fori =1, ..., 6 depicted together with the liney = —1.0762x—

4.2067, which was fit to the values of (3.15) with coefficient of determination of R* = 0.9987.
Parameter values of Da =66.42, K =1, ls = 1073, and e = 1 were used.

4. Results and Discussion. The results of our numerical simulations are de-
picted in Figure 4.1. Upon inspection one immediately notices the presence of a
depletion region in the center of the biochemical gate for small ¢. As time progresses,
the depletion regions narrows and becomes more shallow as the rate of bound ligand
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production near the boundary decreases. The bound ligand concentration continues
to become more spatially uniform until a chemical equilibrium is achieved, resulting

in a balance between association and dissociation.

Concentration

m 0.005

0.05

. 0 -0.5 -

(A) Space-time curve of B(z,t) for t in the
interval [0, .1]

(¢) Space-time curve of B(z,t) for ¢ in the
interval [0, 50].

Concentration

(B) Space-time curve of B(z,t) for t in the
interval [0, 10].

(D) Space-time curve of B(z,t) for ¢ in the
interval [0, 150].

Fia. 4.1: Method of lines approzimation to the solution of (2.33) during different time
intervals. Parameter values of Da =66.42, K =1, 1 =1072, and e = 2/5 were used.

Mathematically, the depletion region results from the singular convolution kernel
tanh ™! (e~ I(@—V)Iml/(29)) (4.1)

and the finite integration limits. In Figure 4.2 the convolution kernel has been de-
picted, centered at both z = 0 and « = —1/2. When the convolution kernel is centered
at x = 0 it acts as a two-sided influence function. The singularity at = = 0 reflects
the high likelihood that a ligand molecule directly above the origin will diffuse to the
surface and bind with an available receptor site there; however, in the unstirred layer
ligand molecules diffusing into the surface bind with neighboring receptor sites. Figure
4.2 reveals the likelihood of binding with a neighboring receptor site decays with the
distance away from the source, although it is never zero since tanh™*(e~1#=I7 /(2¢))
is supported almost everywhere on the real line. Conversely, when the kernel is cen-
tered at © = —1/2 Figure 4.2 shows that it acts as a one-sided influence function. The
finite limits of integration in (2.33a) imply that in this case the convolution kernel
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influences the bound ligand concentration most at v = —1/2, and has a monotonically
decreasing influence progressing from v = —1/2 to v = 1/2. Thus the finite limits
of integration encode the reflective boundary conditions. To the right of x = —1/2

ligand molecules spread out and diffuse into the surface, while to the left they are
merely reflected.

1

1

1
T
0
v

FIG. 4.2: The convolution kernel tanh™*(e~|2=¥Ims/29)) centered at 2 = 0 (solid line), and
at x = —1/2 (dashed line). Parameter values of ls = 1072 and ¢ = 2/5 were used.

The average concentration across the biochemical gate

B(t) = v B(z,t) dx (4.2)
~1/2

is shown in Figure 4.3a for three values of Ea. The average concentration (4.2) is pro-
portional to the electrostatic potential applied to the biochemical gate, and thereby
the electric current across the semiconducting channel, allowing direct comparison to
measurements. Increasing the association rate constant results in a larger Damkdohler
number, reflecting the enhanced velocity of reaction relative to diffusion. From (2.33)
it is clear that this results in wider and deeper depletion regions, which impede current
flow near the boundaries of the biochemical gate before the rest of the semiconductor
channel. This remarkable result is not directly observable experimentally, and pro-
vides physical insight into the origin of the measured signal. We also remark that
the transient phase of the signal grows with the association rate constant, behavior
directly following from the fact that while the Damkoéhler number is directly propor-
tional to k, the equilibrium dissociation rate constant is inversely proportional to this
quantity.

In Figure 4.3b the average concentration (4.2) has been shown for three values
of Cy. One notices the existence of a linear regime for small time during which all
three signals exhibit identical behavior, until they depart on different trajectories to
chemical equilibrium. The small-time linear regime is expected because primarily
association occurs during this window and the kinetic association constants are all
identical. Indeed, mapping (2.33a) to dimensional time shows the first term on the
right hand side of this equation that drives association is proportional to Eaéu, so after
a critical concentration of unbound ligand at the surface is achieved the three signals
transition to different dynamic behavior. Different chemical equilibria are achieved
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because the steady solution to (2.33) is

1

Beo = ——, 4.3
1+ K (43)

and the equilibrium dissociation rate constant K is inversely proportional to éu.
This agrees with our physical intuition since increasing C, results in more kinetic

interactions at the surface, and in turn a higher bound ligand concentration.

Average Concentration

—J, = 10" cm®/(mol - 5)
- ==k, =5x 10" cm®/(mol - s) ||
ko = 10" cm®/(mol - s)

50 100 150
t

(A) The average concentration has been de-
picted for Ea = 10!, 5 x 10, and
1012 ¢m3/(mol-s). This corresponded to Da =
6.64, 33.21, and 66.42; and K = 1.67, 0.33,
and 0.17. In addition parameter values of
ls =103, and ¢ = 2/5 were used.

Average Concentration

0.8
0.6 ——C, = 10"'7 mol/cm?
: -- -5“ =5x10"17 mol/cm3
= Cy =5 x 10716 mol/cm?
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(B) The average concentration has been de-
picted for Cy = 1017, 5 x 10717, and 5 x
10716 mol/cm3. This corresponded to K =
10, 2, and 0.2. In addition parameter values
of Da = 6.6420, Is = 1073, and ¢ = 2/5 were
used.

Fi1G. 4.3: The average concentration (4.2) for different values of ka and Ch.

5. Conclusions. Accurate mathematical descriptions of Bio-FET experiments
are required to enhance our qualitative and quantitative understanding of these in-
struments, making them more useful. These mathematical models form a basis for
optimal design. The mathematical model developed herein takes the form of a dif-
fusion equation, coupled to an equation describing reaction on the biochemical gate.
Analysis of this set of nonlinear equations was complicated by the presence of multiple
disparate time and length scales: ligand molecules diffuse a distance on the order of
centimeters to arrive at the reacting surface, whose length scale is on the order of
micrometers. Furthermore, kinetic interactions on the surface proceeded on a much
faster time scale than diffusion through the solution-well. However, by employing the
appropriate characteristic time and length scales our model reduces to a quasi-steady
transport equation for the unbound ligand concentration C, coupled to an equation
describing the evolution of the bound ligand concentration B. Employing the residue
theorem allows the further reduction of this set of equations to a single nonlinear
IDE in terms of the reacting species concentration. Despite the presence of a singular
convolution kernel, this equation has been solved to first-order accuracy without the
need to resort to specialized quadrature techniques to evaluate (3.5). Results of our
numerical simulations reveal the presence of a depletion region in the center of the
biochemical gate, which influences the measured signal by non-uniformly altering the
surface-potential of the semiconductor channel.

In addition to providing insight into the origin of the measured signal, the present
model provides a sound theoretical basis for parameter estimation and optimal design.
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One could seek to maximize sensitivity by coupling the present model with one for
carrier-transport, such as presented in [13]. In this case, the resulting coupled IDE-
PDE system would undoubtedly require numerical treatment, most likely a nonlinear
variational approach [11] and associated optimal control [12]. An analysis of how
control and observability properties change as a function of the biochemical gate [29]
is a future research direction the authors plan to pursue.
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