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Abstract. This paper is concerned with continuous and discrete approximations of W2P strong
solutions of second-order linear elliptic partial differential equations (PDESs) in non-divergence form.
The continuous approximation of these equations is achieved through the Vanishing Moment Method
(VMM) which adds a small biharmonic term to the PDE. The structure of the new fourth-order PDE
is a natural fit for Galerkin-type methods unlike the original second order equation since the highest
order term is in divergence form. The well-posedness of the weak form of the perturbed fourth order
equation is shown as well as error estimates for approximating the strong solution of the original
second-order PDE. A C? finite element method is then proposed for the fourth order equation, and
its existence and uniqueness of solutions as well as optimal error estimates in the H? norm are shown.
Lastly, numerical tests are given to show the validity of the method.

Key words. Elliptic PDEs in non-divergence form, strong solution, vanishing moment method,
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1. Introduction. In this paper, we propose C! finite element approximations
of the following second-order linear elliptic PDE in non-divergence form:

Lu:=—A:D*u+b-Vutcu=f in Q,

P
u =0 on 0f), (P)

where €2 is an open and bounded domain in R™ and 0f) denotes its boundary. These

non-divergence form PDEs have several applications including game theory, stochastic
optimal control, and mathematical finance [12]. Moreover, non-divergence PDEs ex-
plicitly appear in several second-order fully nonlinear PDEs such as Hamilton-Jacobi-
Bellman and Issac’s equations as well as in the linearization of the Monge-Ampere
equation [5, 4].

When the coefficient matrix A is not smooth, (P) cannot be written in divergence
form. Thus, any standard notion of weak solutions to (P) must be abandoned, and,
indeed, the PDE theory respects this observation and seeks well-posedness of these
equations in a stronger sense. There have been three main theories for the existence
and uniqueness of these equations. First, Schauder (or classical) theory seeks solutions
in C%%(2) where a;;,b;,c, f € C%(Q) and 92 € C**. Second, strong solution theory
seeks solutions in W2P(£2) "W, * () that satisfy the PDE almost everywhere. There
have been two frameworks that guarantee unique strong solutions. The first requires
ai; € C(Q), b; € L=(Q), c € L*=(), and f € LP(Q), with 1 < p < 0o and 90 € C1!
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while the second requires p = 2, f € L?(2), 99 convex, and a;; € L>(2) where
the matrix A satisfies the Cérdes condition [13, 16]. The last theory, called viscosity
solution theory, seeks solutions in C(2) given a;j, b;, ¢ € L>(Q) and f € C(2), where
the underlying viscosity solutions satisfy the PDE in a much weaker sense [5].

Due to the lack of a divergence structure, constructing convergent numerical meth-
ods for (P), especially finite element methods, is not obvious. Only a handful of
Galerkin-type methods have been developed, and these methods did not appear in
the literature until quite recently [11, 17, 8, 16, 14]. All of these methods, however
diverse they are in their construction, share a common thread: a (nonstandard) direct
discretization of (P). The method we propose, however, is based upon the Vanishing
Moment Method (VMM) - a method developed by Feng and Neilan in [10] for second-
order fully nonlinear PDEs such as the Hamilton-Jacobi-Bellman and Monge-Ampere
equations. The main solution concept for these equations is that of the viscosity solu-
tion which requires passing the derivatives of the solutions to functions that locally lie
above or below the graph of the solution [5]. This notion of a solution is not natural
in the Galerkin framework since it is not based on integration by parts. The VMM
seeks to approximate (P) by a fourth order, quasi-linear PDE where the fourth order
term is a “nice” operator, such as the biharmonic operator. Since this new PDE is
in divergence form if the biharmonic operator is chosen, it can be readily adapted
to a weak solution concept and, more importantly, allow the natural formulation of
Galerkin-type methods. In our case of non-divergence form PDEs, the VMM is given
by

eA*u — A: D*uf +b-Vu +cu = f in Q,
u® =0 on 082, (P:)
Auf =0 on S

While strong solution theory for (P) is not as weak as viscosity solution theory for
fully nonlinear PDEs, by first applying the VMM to (P), the resulting approximate
equation (P:), whose highest order derivative is in divergence form, can be discretized
using a variety of conforming and nonconforming finite element methods. These nu-
merical solutions will converge to the solution of (P) as e — 0. Thus, from a numerical
standpoint, the application of the VMM is just as applicable to non-divergence PDEs
as they are to fully nonlinear PDEs.

Several papers have be written on ways to formally construct solutions to fully
nonlinear PDEs using the Vanishing Moment Method [10, 9]. This paper is the first to
offer a detailed analysis of the VMM for a particular class of PDEs. Moreover, since
non-divergence PDEs have close ties to many popular second-order fully nonlinear
PDESs, they serve as a natural starting point for the complete analysis of the Vanishing
Moment Method.

The goals of this paper are to provide a detailed PDE analysis of the Vanishing
Moment Method when it is applied to second order elliptic linear PDEs in non-
divergence form and to study its finite element approximations. This analysis requires
showing that the solution u® of (P.) exists and is unique; proving ¢ — u as € —
0, where u € H?(Q) N H(Q) is the strong solution to (P); and formulating error
estimates for ||u® — ul| in powers of e. We also formulate a C'! conforming finite
element method for approximating the weak solution to (P.) and derive its error
estimate in the energy-norm as well as provide some numerical experiments that test
the method and theory. We note that the PDE results given for the VMM will be
crucial for the analysis of any Galerkin-type scheme developed for (P.), including our
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C?! scheme.

The rest of our paper is organized as follows. In Section 2, we set the notation
and provide the preliminary information about the well-posedness and stability of
(P). In Section 3, we formally introduce and analyze the VMM applied to (P). In
Section 4, we propose a simple C'!' conforming finite element method for our fourth
order equation as well as give some tests showing the convergence of the method.

2. Notation and Preliminaries. Let 2 C R” be an open and bounded domain.
Consider a subdomain D C . Let L?(D) and H¥(D) be the standard Lebesgue and
Sobolev spaces with their respective norms. We define (-,-)p to be the L?-inner
product for all scalar and vector valued functions with (+,-) := (-, ). In addition, we
let HY(2) be the completion of all compactly supported smooth functions in H*(D)
and H~!(D) be the dual space of H}(D). Lastly, define the space H by

H:={ve H*(Q)N H}(Q) with Av € Hg(Q)}.

As mentioned in the introduction, there are three main well-posedness theories
for (P). We are choosing to focus on approximating W?2? strong solutions for linear
elliptic PDEs. To this end, we assume that A € [C(ﬁ)}nm is uniformly elliptic; that
is, there exist constants 0 < A < A such that

MEP < A@)E-E<AEP VEER z€Q (2.1)

and ¢ > 0 a.e. in Q. Let f € LP(Q2). From [13] we have that (P) exhibits a unique
strong solution u € W2?(Q) N WyP(Q) for 1 < p < oo that satisfies the PDE almost
everywhere. Moreover, we have the stability result

lullw2r@) S 1LullLr(0)- (2.2)

Here and in the rest of the paper we use a < b to denote a < Cb for some constant C' >
0 independent of relevant parameters. Estimate (2.2) is called the Colderén-Zygmond
estimate for £. For simplicity of presentation, we will assume for the remainder of
the paper that b,c = 0.

For the finite element method developed in Section 4, given an h > 0, we let T},
be a quasi-uniform and shape-regular mesh of Q. We set Vj, C H2(2) N H () to be
a C! conforming finite element space over 7T}, satisfying

Vi ={vn € CHQ) N H(Q) : vn|, € Pe(T) VT € Tn},

where P (T') is the set of all polynomials of total degree less than or equal to k.
Examples of such spaces include those defined using the cubic Hermite element in 1-
D where, k > 3, or the Argyris element in 2-D, where k > 5 [3]. Given a sub-domain
D C Q, we define

VhZ{UhEVhZ’UhZOOnQ\D}

and remark that Vj,(D) is non-trivial provided h < tdiam(D).
Define the discrete L? norm by

(Uv wh)D
iz (py == sup —l (2.3)
Lu(®) wneVn(D\{0} W llL2(D)
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Clearly we have

lvnllz2py < llonllzz(py  Von € Vi
There also holds

[vllzz(py < llvllzzpy Vv € L*(D).

Lastly, define the discrete H 2 norm by

(vah)
||UHH;2(D) = sup (2.4)

wnevin (D0} 1wnllm2(p)

For notational convenience, we will often write wy, € V(D) instead of wy, € V3, (D)\{0}
in (2.3) and (2.4).

3. The Vanishing Moment Method and its Analysis.

3.1. Construction of the Vanishing Moment Method. The Vanishing Mo-
ment Method is an approximation technique originally developed for second-order
fully nonlinear PDEs [10]. The approximation corresponds to converting the original
second-order equation into a quasi-linear fourth order equation. Let € > 0. In the
context of our problem, the solution u to (P) will be approximated by the solution
u®, where u® satisfies the fourth order problem:

LU = eA*u® — A: D*u® = f in Q,
u® =0 on 09, (P:)
Aut =0 on 0f.

Since (P.) is a fourth order equation, an additional boundary condition must
be added in order to guarantee a unique solution. We add the simply supported
boundary condition Au® = 0 for this particular method, due to being a natural
boundary condition for the biharmonic equation; moreover, it allows us to achieve H?
estimates near 9§2. We refer to [10] for other boundary conditions that may be used.

Using the fact that the highest order derivative of (P:) is in divergence form, we
can easily define a weak solution concept for (P:) as follows.

DEFINITION 3.1. A function u® € H?(Q) N HY(Q) is called a weak solution to
(P.) if it satisfies

e(Au®, Av) — (A: D*uf,v) = (f,v) Yo € H*(Q) N H(Q). (3.2)

Note that the simply supported boundary condition is naturally absorbed into
the weak formulation.

3.2. Stability Estimates for £° . We now give the analysis required to show
an estimate similar to the Calderon-Zygmund estimate (2.2) but for the operator L£°
by using a freezing coeflicient technique. This technique, used in [13, Chapter 9]
by Gilbarg-Trudinger to show (2.2), relies on that fact that since A is continuous,
it is approximately constant over small balls. For A constant, the non-divergence
operator —A : D?u is merely a change of basis and dilation away from the Laplacian
—Au. Since (2.2) is true for £ = —A, one can argue the estimate holds for all
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A constant and holds locally for all A continuous over a small ball. Then, using
a partition of unity argument and cut-off functions, the estimate can be shown to
hold over all of 2. Section 3.2.1 shows the global Calderon-Zygmund estimates for
LF for constant coefficient A while Section 3.2.2 shows the analogous estimates for
continuous coefficient A.

3.2.1. Estimates for Constant Coefficient Operators. First we consider
the case A = A for Ay a constant matrix satisfying (2.1). This gives us the following
two problems:

Lou = —Ay: D*u=f in Q, P
u=20 on 0f?

and
Liu® :=eA%u® — Ag: D*uf = f in Q,
ut =0 on 04, (PL)
Au® =0 on 0f).

It should be noted that since Ay : D?*u = div(AoVu), we immediately recover
weak solutions u € H{(2) and v® € H*(Q) N HE(Q) to (P') and (PL), respectively.
We seek to derive H! estimates for u°.

LEMMA 3.1. Fore > 0, let u® € H*(Q) N HL(Q) be the weak solution of (P.).
Then there holds the following estimate:

VEIIAWE | 120) + VIV [ 220) S I la-1()- (3.5)
Moreover, u® — u weakly in H(Q), where u is the weak solution to (P’).
Proof. Testing (P!) by u®, using the ellipticity condition (2.1), and applying
integration by parts, we have
6||Au5||2L2(Q) + >\||Vu€||i2(9) < e(Auf, Au®) + (Ao Vu©, VuF)
= (f,uv")
S - s L )
S ”fHH*l(Q)HVUEHL?(Q)

1 2 6 2
< 276||f||H*1(Q) + §||VUE||L2(Q)

for any § > 0. Choosing J, independent of ¢, sufficiently small allows us to move
[Vu®||L2(q) on the right side to the left and obtain (3.5). This estimate immediately
gives us the boundedness of {u®} in H}(€). Thus, by the weak compactness of H} (1),
there exists a subsequence {u®} (not relabeled) and u* € H{(f2) such that u® — u*
weakly in H(Q) as e — 0. Since u® is a weak solution of (P!), we have for every

o€ CF() 6
e(Au®, Ap) + (AgVus, V) = (f, ). (3.6)

Using the weak convergence of u® — u*, the uniform boundedness of €||Au5||%2(m,
and passing € — 0 in (3.6), we obtain

(AOVU*v VQO) = (fv (,0)~



172 X. FENG, T. LEWIS, AND S. SCHNAKE

Thus, u* is a weak solution of (P’). By uniqueness we have u* = u, and the whole
sequence u¢ — u weakly in H!(£2). The proof is complete. O
We now wish to derive local H? stability estimates for £°.

LEMMA 3.2. Let B CC Q and v € H with supp(v) C B. The following estimate
holds:

VEIVA| 128y + VAID? 0| 12(8) S I1£50]2(8)- (3.7)

Proof. By testing Liv by —Av and integrating by parts, we get
(L5v, —Av) = (eA*v — Ay : D*v, —Av) = E||VAU||2L2(B) + (Ag : D*v, Av).  (3.8)

Since Ag is symmetric and positive definite, there exists an orthogonal matrix @ €
R™*" such that Q7 AgQ = diag(A1, A2, ..., ) =: A, where A < A\; < Ay < -+ < A
Let y = QT and 9(y) = v(Qy) = v(x). Since the Laplacian is preserved under an
orthogonal change of basis, we have the following:

Ay : Dv(z) = A: Di’f)(y) = Z Ay, (Y)-
j=1

Without a loss of generality, we may assume that Ap = A in (3.8). Hence,
(A : D*v, Av) = (div(AgVv), Av)
= —(AoVv, VAv)
= —(AoVu,div(D?v))
= (V(AoVv), D*v)

= Z)‘jHV”qH%’z(B) > N[D*0|72 (-
=1

Combining (3.8) and (3.9) gives us
e VAV 25y + MID?*0]1F2 () < [1£50]12) | A0 £2(8)
S T R N e
< SUD% 0y + il
Choosing ¢ sufficiently small to move ||D2v||%2( p) to the left hand side gives the desired

result. The proof is complete. O

Next, we derive a similar boundary estimate. Let R% := {z = (2/,z,) € R" :
z, >0}, B = BNRY, and (0BT)™ = 9(BT) NR%, where B is a small ball with its
center on the x,-axis.

LEMMA 3.3. Let v € H*(B) N H}(B) with Av € HY(B) and v, Vv, Av = 0 near
OB™. Then we have the following estimate:

\/EHVA'U”H(Bﬂ + >\HD2’U||L2(B+) S ILGvll 2ty - (3.10)
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Proof. We will extend v from BT to B by an odd reflection, that is v(z/,x,) =
—v(a’, —x,) for all x € B\ B*. Since supp(v) C B after the reflection, we may test
the PDE by Av and use a similar argument as to the one in Lemma 3.2 to obtain

VeIV A28y + VD0l 28y S 1£50]|L2(5)- (3.11)
Since the odd reflection is a bounded linear operator, we have
VEIVA| 2oy + VAID?0l| 12 (p+) < VEIIVAD| L2(5) + VAID?0] L2(5)
S ||L(EJU||L2(B)
S ILGvll L2 (p+)-
The proof is complete. O

3.2.2. Estimates for Continuous Coefficient Operators. Suppose that A €

[C (ﬁ)] " s uniformly positive definite. In this section, we seek uniform H'! and H?
stability estimates for £°. Following the freezing coefficients technique, we first need
to derive local H' and H? stability estimates, which in turn require the following
lemma controlling the bound of the H~! norm of the Hessian.

LEMMA 3.4. Let B be an open ball and v € H*(B) and | - |1 denote the vector
1-norm. There holds

|1D20]| -1y < 2 |[Vol L2(m), (3.12)
I1D?0]1 | sr-1(8) < nl|Vollz2(m), (3.13)

where n is the dimension of the domain  and

N|=

HDQUHH*l(B) = Z ||’U$i$j||§{*1(3) )

ij=1

1Dl lar-28) = D lowee, -1

4,j=1

Proof. Let 4,5 =1,...,n and w € H}(B) with w # 0. Integration by parts yields

(vfﬁifﬂjaw) = _(Uﬂﬁivwwj) < Hvﬂﬁl LZ(B)||Vw||L2(B)‘

Thus, by the definition of ||v||z-1(5), we have

(U i "7w)B
Ve, le-1() = sup  roi—— < ||vg, |l L2(B)-
weri(s) IVwllzs)
wZ0

Summing over i and j gives us (3.12).

The proof of (3.13) follows the same lines with an additional help of some facts
from [13, Chapter 7. Let |vy, o, | = v, +vg,,,, where v* denotes perspectively the
positive and negative parts of v. Then

(vzmj,w) = /{ o Vziz, (2)w(z)dx = /{ o (0 (x)wzj (z)dx
”I¢,Ij> Uwi,1j>

< vz I3y IVwl L2 (B)-
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A similar result holds for v, ;- The proof is complete. O

We are now ready to prove the local H! and H? stability of £°.

LEMMA 3.5. Let zp € Q and Bgr(xzo) C Q be the ball of radius R centered at xg.
There exists Rs > 0, independent of €, such that, for all v € H with supp(v) C B :=
Br, (z0), the following estimates hold:

VEIVA| 128y + VAID? v 128y S I1£70]| 123, (3.14)
Ve Al 2 (m) + VAVl 228y S €50 1) (3.15)

Proof. Let 6 > 0, and define Ay := A(xg). Since A is continuous, there exists
Rs > 0 such that

[ A= Aol (Br, (z0)) < O
By Lemma 3.2, we have

VEIVAD| 125y + VAID* 0] 28y S L5012 ()
S L2 sy + (L5 — £7)vl[12(m)
= ||£EUHL2(B) + H(A - A(]) : D2UHL2(B)
S L2y + |4 = Aol ()| DVl L2(5)
< |I£%0]| 22 (B) + 61| D0l L2 (),
and (3.14) follows for ¢ sufficiently small (independent of € and B).
To show (3.15), we follow a similar technique. Using Lemma 3.1 and Lemma 3.4,
we have
Vel Al 2ipy + VIVl L2y S 1L501 -1 (8)
S L vllm-1m) + I0£5 = L0l 1)
= [£0ll-1(m) + (A = Ao) : D*vl| -1y
SNLv|g-1(m) + |4~ A0||L°°(B)H‘D2U|1HH*1(B)
S L0 -1y + 60|Vl 2By,
and (3.15) follows for § sufficiently small (independent of € and B). The proof is
complete. O
Finally, using a partition of unity argument, we can get an interior Garding
inequality.

LEMMA 3.6. Let v € H. For any Q' CC Q the following estimates hold:

VEIVAD| 120 + VAID?0| 20y

SIEL v L2) + 1vll2 @) + e(IVUllL2) + [[Av]| 2 @) + VAV L2(0)), (3.16)
VI Al 20y + VAVl L2y

SIE || 1) + vlL2) + (VY] L20) + [[Av][L2(0))- (3.17)

Proof. For a ball Br with radius R, let ¢ = 1/2 and consider the cutoff function
n € CP(Bgr) with0<n<1,n=1in By, and n =0 on B\ By, where 0’ = 3/4.
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Moreover, ||D*nl|pe(pm) S (1—0) ™ R7F for k =0,1,2,3,4. Applying (3.14) to the
function nv on the ball B, gives us

VEIVAV|| 25, ) + VAID?V| 2B, )
= Vel[VAM) 228, ») + \/X||D2(WU)HL2(BUR)

(3.18)
< VEIVAM) 128, ) + VAID2 ()| 125, 1)
SN )lla, ) = A% () = A - D* ()l 2281 )-
Expanding A?(nv) and A : D?(nv) gives us
A?(nv) = nA?v + 4V Av - V) + 6AvAn 4+ 4Vv - VAR + vA?y, (3.19)
A: D*(nqv) =nA: D*v+2AVv - Vn+vA: D% (3.20)

Using (3.19) and (3.20) gives us, with the L? norm taken over B, g,

1 1
2 . D2 -
o) = A Dmlee S W vloe+ =gyl Vel + =g vlles
€ 5
+ m”UHL2 + WHVUHL’Z (321)
¢ €
+ m”AUHLZ + m”VA’UHLz

The treatment of the first three terms on the right follows from the interpolation
technique in [13, p.236]. Keeping the rest of the terms on the right and using a
covering argument we arrive at (3.16). Since €’ is compact it will only take a finite
number of balls to cover €. Thus, the estimate does not depend on R.

To show (3.17), using the same 7 as prescribed above we first recover a similar
estimate to (3.18) for (3.17):

Ve AVl 2B, )+ VAV L2(8, 5)
< ”EE(WU)”H*(BU,R)

= eA?(pv) = A: D* (o)l -1(5,, ) (3.22)
2 _ . 2
Ly 8= A D))
wEHL (B, /) vaHLQ(BU,R)
wZ0

Let w € H}(By/g)). By integration by parts we have

(eA(v) — A+ D*(nu),w) = —e(VA®), Vw) — (A : D* (o), w)

(3.23)
= 6]1 + IQ.

We first focus on Ip. Expanding VA(nv) similar to (3.19) and integrating by parts
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gives us

I = —(VA(nq), Vw) (3.24)
= —(nVAv,Vw) — (3AvVn 4+ 3AnVv + u*VAn, Vw)
= (div(nVAw),w) — (3AvVn + 3AnVuv + u*VAn, Vw)
= (A%, nw) + (VAv, Viw) — (3AvVn + 3AnVo + u°VAn, Vw)
= (A%v,nw) — (Av,div(Vnw)) — (3AvVn + 3AnVv + v VAR, V)
= (A%, nw) — (Av,wAn + V1 - Vw) — (3AvVn + 3AnVv + vV An, Vw)
1

m”vv\m

1
< (AQU, nw) + ( e |Av|| L2 +

(1-0)
1
+m””“m [Vw]|Lz.
Using (3.20) on I, we get

I, = —(A: D*(nv),w) .
= —(nA: D*v+2AVv -V +vA: D>, w)
! 1
m”VvHLz + uﬁ)QRznanz) V]| 2.
Combining (3.24) and (3.25) with (3.23) gives us

Vel A 225, ) VAV 228, n)

< —(A: D*v,nw) + <

1 1
S| 1) + m“vv\\m + m””“m
€ € (3.26)
+ m”vnm + m”vv\\m
€
+ m“A’UH[ﬁ

Following a similar treatment as (3.21), we arrive at (3.17). The proof is complete. O
We now desire a global estimate instead of an interior estimate.
LEMMA 3.7. Let 00 € C%! and v € H. The following estimates hold:
VeIV AL L2() + VAID?0l| 12y S 1£50]|2(0) + Il 2 @) + (I Voll2)  (3:27)
+ 1 Av| 20y + VAV L2(0)),
VEIAv] 2@y + VIV L2@) S IL50 [ H-1(0) + [[0]l2(0) (3.28)
+e([[Vollz2(0) + [|A] 2 ()
Proof. Since 02 € C?!, for any xy € 0N, we may flatten 9Q near zy and
use Lemma 3.3 and the proof in Lemma 3.5 to create a local boundary estimate
mimicking (3.14) and (3.15). Following the same argument as in Lemma 3.6 we can

obtain estimates (3.16) and (3.17) near the boundary. These estimates combined with
(3.16) and (3.17) give us (3.27) and (3.28). The proof is complete. O

Now we must deal with the terms involving & on the right hand side of (3.27) and
(3.29). Noting that ¢/y/¢ — 0 as ¢ — 0, we may hide these terms for ¢ sufficiently
small.
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LEMMA 3.8. Let 9Q € C*! and v € H. There exits g > 0 such that for any

€ < gg the following estimates hold:
VEIIV A L2(0) + VAID? 0| 2(0) + VAVl L2 () S 150l 220 + 0]l 20y, (3:29)
\/E”A'UHLZ(Q) + \/XHV’U”LZ(Q) 5 ||£E’UHH—1(Q) + ||U||L2(Q). (3.30)

Proof. Adding (3.27) and (3.28) and noting that || £%v|| -1 (o) < [[£L%v[|12(q) yields

VEIIVAY| 20y + VE| AV £2(0) + VAIID?] 120y + VAV r2(0) (3.31)
< C([I£%] 2 + ol L2y + e(IVVll L2y + [[AV]| L2(0) + VAV 12¢0))

where C is independent of . Choosing g9 = min{4/C?,v/A\/(2C)} gives us Ce < /z/2
and Ce < \A/Z for all £ < g¢. Letting € < g¢, we can move the terms with coefficient
¢ on the right hand side of (3.31) and obtain

VEIVAD| L2y + VEII A L2y +VAI D0l 22 () + VAV L2(0)

' (3.32)
< C(I£5v] L2y + vl 220)) -

Dropping /e[| Av||2(q) gives us (3.29). (3.30) is an immediate consequence of (3.28).
The proof is complete. O

We can derive a full stability estimate from Lemma 3.8 through contradiction and
showing that £° is 1-1.

LEMMA 3.9. Let 02 € C*! and v € H. For all € < &g, we have the following
stability estimate:

VEIIVA| L2 (9) + VAID?0| 2 (0) + VAV L2(0) < ClL70]| 220, (3.33)
VeI Al gz + VAIVOla@) < CIL 0y, (334)

where C' in independent of € and u®.

Proof. Fix € < g9. We first show that the operator L£° is 1-1 using eigenvalue
theory. Define H=2(Q2) = (H?() N H}(Q))* and K : H*(Q) N H(Q) — H2(Q) by

(Kw,v) = (Aw, Av) Vv € H*(Q) N H(Q).

By the elliptic existence theory for fourth order problems, K is invertible with !
bounded. We see that the operator £ = eI + L satisfies

(Lfw,v) = e(Aw, Av) — (A : D*w,v) Yo € H*(Q)N HL (). (3.35)

Thus, a weak solution u® to (P.) satisfies £5u® = f in H~2(1).

Suppose L is not 1-1. Then there exists w # 0 such that Lfw = Lw+eKw = 0 in
H=2(Q). Hence, Lw = —K(sw) in H~2(Q). Since K is invertible we have, K~! Lw =
—ew in H?(Q). Thus, —¢ is an eigenvalue for K~1£. Since K1 is a symmetric and
compact operator, its eigenvalues are positive and tend to 0. Moreover, the eigenvalues
of £, while complex, have real parts greater than some positive constant r [7, p.361].
Since K1 is positive definite, repeating the proof given in [7, p.361], we can show
that the eigenvalues of 1L must have positive real parts (one may verify easily the
conclusion in the finite-dimensional case). Thus —e cannot be an eigenvalue, which
is a contradiction. Hence, £° must be 1-1.
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To show (3.33) we argue by contradiction. Suppose that, for all k € N, there
exists vy, € H with ||vg||2(q) = 1 and ||£L%vg||z2(0) — 0 as & — co. By Lemma 3.8
we have \/€||VAv| 2(0) + vk || g2(q) is uniformly bounded in k. Thus, we way may
extract a convergent subsequence (not relabeled) and a v, € H such that vy — v,
weakly in H and /e[|VAv,| 120) + [|vs]|m2(0) > 0. Moreover, since v, — v, and L°
is linear, we have £5vy — L5v, in H~2(Q) and

0 < HﬁEU*HHfz(Q) < lim inf ||£EkaH72(Q) < lim inf ||£E’Uk||L2(Q) =0.
k—o0 k—o0

Thus, ||£v.||r-2(0) = 0 and consequently L5v, =0 in H~2(Q2). Clearly u* =0 is a
solution to (P.) when f = 0. Since £¢ is 1-1, then v, = 0 in H which is a contradiction
to the fact that \/c||VAwv.| z2(q) + [|[v«||m2(Q) > 0. The proof is complete. O

We are now ready to show the well-posedness of L°.

THEOREM 3.10. Let € < g9 and 0 € C*1. Then, for every f € L*(Q), there
exists a unique weak solution u® € H to (P.). Moreover, the weak solution satisfies

VEIVAUE| L2y + VAID* || 20y + VAIVEE| L2y < Cll L2 (3.36)
Vel AU || 220y + VA VUS| r2(0) < Cllfla-1(0)- (3.37)

Proof. We approximate A by A; € [C*(Q)]"*", where Ay — A uniformly in Q.
Since Ay, is differentiable,

— Ay, : D*v = —div(4;Vv) 4 div(4y) - Vo,

which converts the non-divergence operator into a sum of a diffusion operator and an
advection operator. Consider weak solutions to the problem

eA?v — div(AL Vo) +div(AL) - Vo = fin Q,
v =0 on 9, (3.38)
Av =0 on 092.

By the fourth-order elliptic PDE theory [1, Chapter 8], there is a weak solution
u§, € H?(Q)NHJ () to (3.38). Moreover, u$, € H since 9Q € C*! and, by Lemma 3.9,
uy, satisfies

\@HVAUZHL?(Q) + \f/\HDZUiHB(Q) + ﬁHVUiHL?(Q) Sz ), (3.40)
Vel Augllzaie) + VAIVUillzz ) S 110 (3.41)

Thus, {uf } is bounded in H, and it follows that uj, weakly converges to some u® € H.
By the linearity of the PDE, u® is a weak solution of (P;). Since £¢ is 1-1, the solution
u® is unique. Taking the liminf as & — oo of (3.40) and (3.41) we arrive at (3.36)
and (3.37). The proof is complete. O

REMARK 3.1. In the above three lemmas we require that 0 € C%*'. This is
imposed in order to achieve the global estimates using a boundary flattening tech-
nique. More precisely, we use the assumption to preserve |[VAwv| 2 when flattening
the boundary, 0. Thus, to guarantee u¢ € H, we need 0Q € C*1. We note that if
90 € CYY, the argument still works, but all |[VAv| 2 terms must be dropped imply-
ing u® is only in H?. This does not affect convergence but does affect the H' error
estimate in Theorem 3.13 below.
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We now prove the convergence of the solutions u® — u, where u is a strong
solution to (P). We also give an H'! stability result which will be useful for the
numerical discretization of (P) and has not yet been obtained in the literature.

THEOREM 3.11. Let € < g¢ and u® be the solution to (P.). Then u® converges
touw € H*(Q) N HE(Q) weakly in H?(SY), where u is the strong solution to (P) with
b,c = 0. Moreover, we have the following H' stability result for L:

IVullz29) S [[Lullg-1(0)- (3.42)

Proof. Since Lfu® = f in Q and u® = 0 on 0f), we have the boundedness of
|u®||r2(q) from the Poincaré inequality and Lemma 3.9. By compactness we can
extract a subsequence {u} (not relabeled) and u* € H?(Q)NH} () such that u® — u*
weakly in H%(Q). Moreover, since L5u® = f, we have for any ¢ € C5°(Q)

E(Auaa ASD) - (A : D2u57 90) = (f, 50) (343)

Since e(Au®, Ap) < el| Au®|| g2 ()| Apll20) — 0 as € — 0, letting ¢ — 0 in (3.43) we
obtain

—(A: D*u*,0) = (f, ) Vo € C5°(Q). (3.44)

Thus, u* is a strong solution to (P). Since £ is 1-1, we have u* = u, and the whole
sequence u° — u as € — 0.

We now derive (3.42). Since ||[L5u||g-1(q) = || fllz#-1(q) is constant with respect
to €, we take the liminf of (3.34) and use u® — u to obtain

1£ull 1) = liminf [[ L5710
> lim inf (\/5||Au6||L2(Q) + fxnvufnp(m)
e—0
> liminf v/e[| Auf|| 120y + liminf VA Vaf|| 12 ()
e—0 e—0
2 [IVul[z2(q)-

The proof is complete. O

Now that we have the existence and convergence of u° to the strong solution u of
(P), in H?(£2), we note that indeed the regularity of u° can be higher than u — up to
H* dependent on the smoothness of 99 — and is shown in the theorem below.

THEOREM 3.12. Let € < g9, 0Q € C3, and u® € H be the weak solution to (P).
Then u® € H*(Q) with

5||UE||H3(Q) S Hf||L2(Q)- (3.45)
Moreover, if 9Q € C*, then u® € H*(Q) with the estimate

ellullmae) S 1flle2)- (3.46)

Proof. Since u® € H?(Q)NH () and A € [L>(Q)]9*? then A : D>uf+f € L*(Q)
with [|A : D?*u® + f||12¢0) < 1fllL2()- Moreover, since u¢ € H is weak solution to
(P:), we have

e(Auf, Av) = (A : D*uf + f,v)
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Thus u® is the weak solution to the biharmonic equation

A% = Ay : D*u + f in Q,
uE = Auz’;‘ = 0 on 89,
and the smoothness of u® is entirely dependent on the smoothness of 92, and the

desired estimates (3.45)-(3.46) follow from the elliptic theory for the biharmonic equa-
tion. The proof is complete. O

We conclude this section with some error estimates of u® — u in various norms.
THEOREM 3.13. Let e < gg, u € H*(Q) N HL(Q), and u® € H be the solutions to
(P) and (P.), respectively. Then we have the following error estimates:
[V (u® =)L) S Vel fllz2 (3.47)
[u® — ullr2(0) S Vel fllz2 - (3.48)

Proof. Let e¢ = u® — u. By the linearity of £ we get Lef = eA%u® € H1(Q)
since u® € H. Using (3.42) and (3.36), we have

Vel 20y S ell A% || 10
—&e(VAuE, Vo)
sup ———"—2
vert()  IIVollrz)
< e[ VAU 2 (e
S Vel fllze
which infers (3.47). Poincaré’s inequality yields (3.48). The proof is complete. O

We note that the rates in Theorem 3.13 may be suboptimal based on the numerical
experiments provided below.

4. C!' Finite Element Methods for Second Order Elliptic Linear PDEs
in Non-Divergence Form. Since the highest order derivative of (P.) is in diver-
gence form, we can easily and naturally discretize it using C'* conforming finite element
methods.

DEFINITION 4.1. We define our C* finite element method for (P.) as seeking
uj € Vi, such that

A (up,vn) = (fyvn)  Vop € Vi, (4.1)
where
A (wp, vp) = E(Awh,Avh) — (A : DQwh,vh).
4.1. Well-posedness of £;. In this subsection, we show the well-posedness of
Problem (4.1). We define the operator L : Vj, = Vj, by
(L5 vp, wp) = A° (v, wp) Ywy, € Vj,.

We can also naturally extend the domain of £5 to H?(Q) N Hg ().
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We assume that there is a unique weak solution u® € H2(Q) N H}(Q) of (P.) and
that the operator L£¢ satisfies the Calderon-Zygmond estimate

[vllz2(0) S I1£°0] L2 (4.2)

We note that Theorem 3.10 implies this result provided 992 € C?*! and ¢ is sufficiently
small.
Our goal is to derive a similar estimate to (4.2) for £, that is,

lvnllmz) S [1Lhvnllrz@)  Yon € Vi (4.3)

To this end, we will adapt the freezing coefficient technique as in Section 3.2 but at
the discrete level. Section 4.1.1 shows (4.3) for constant coefficient A which will be
used in Section 4.1.2 to give us (4.3).

4.1.1. Stability Analysis of £; for Constant Coefficient A. Suppose that
A= Ay = A(xg) for an ¢ € Q. Since A is constant, we have A : D?v;, = div(AVwvy,)
for all vj, € V},. Thus, we can define Eg’h : Vi — Vi by

(L‘&hvh,wh) = A5 (vp, wp) Ywy, € Vi,
where
A (v, wy) == s(Avh, Awh) + (AVvh, th).
Since A§(vp, wp) is clearly continuous and coercive on V3, with the norm
wnll% = ell Awnl[Z2 (o) + [VwnllFz),
we have the existence and uniqueness of a solution u;j satisfying
(L5 puns wr) = (f, wn) Ywp, € Vi, (4.4)
and the estimate
lu, = wlle S P2 (Ve + h)l|uf (o), (4.5)
where r = min{s, k 4+ 1} and u® € H*(Q2) is the solution to
AS(uf,v) = (f,w) Yw e H*(Q) N HE(Q). (4.6)
With all of the above in place, we can now show (4.3) for £ ,,.
THEOREM 4.1. Suppose € = O(h?) with 3 > 2. Then there holds

||wh||H2(Q) ,S ||£(€),hwh||L2(Q) Ywy € V. (4.7)

Proof. We first note that (4.7) is equivalent to

1(L5.0) " enllmz) S lenllz)  Veu € Vi (4.8)

Fix ¢p € V4, and let w® be the weak solution to (4.6) with f = ¢p and w, =
(£5.1) " "pn € Vi Since w® is a weak solution of (4.6), we have w® € H*(2) N Hj(Q)
with

HwEHH2(Q) N ||<P}LHL2(Q) (4.9)
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by (4.2). Since wyj, satisfies
Ab(wh, vn) = (en,vn)  Vop € Vi,
we can apply (4.5) to get
IV (w® = wi)llz2(e) < lw® —wille S (Ve + W) llwllaze) < hllenlliz@).  (4.10)

Let I} denote the P, continuous finite element interpolation operator on 7y,. By the
finite element interpolation theory, we have

IV (w® = Ihw) |22y S hlws |l a2@) S Bllenllrz), (4.11)

Let || - ||g2(7,) denote the piecewise H?*mnorm on 7. From (4.10), (4.11), the
triangle inequality, and an inverse inequality, we have

lw® —willaz(0) S 1w = Iyws ||z + 11w — willm2(7,)
1
S 1wl a2(0) + EHV(EU’E —wi)ll2 ()

1 1
S llenllrz ) + EHV(L}LWE = w9l + V(w0 = wh)llzz(o)
S llenllrz (@)
Hence,
HwiHm(Q) < JJw® - wi”m(n) + ”wEHHQ(Q) S ||</7h||L2(Q)-

Since wj, = ( §7h)_1cph, we have (4.5). The proof is complete. O

4.1.2. Stability Analysis of £; for Continuous Coefficient A. We need
some estimates before continuing with the freezing coefficient argument. The first is
to show L5 is bounded independent of & which is a result of the following lemma.

LEMMA 4.2. Let e = (’)(hﬁ) for B> 2 and D C Q be a subdomain. Then, for
any v € H?(D) N HE(D), there holds

||£zazv||L§(D) S vl a2 oy (4.12)

Proof. Let wy, € V(D). By Holder’s inequality and an inverse inequality we have
(L50,wy) = A% (v, wp) = e(Av, Awp,) — (A : D*v,wy,) (4.13)
S BP0l 2oy llwnll 2oy + |1 All Lo (o) 10l 7720y 1wl 22 ()
S W2l 2oy llwnll 2oy + 0]l g2() lwnll 220
S vllaz oy lwnl L2 (p)-
Diving both sides of (4.13) by ||wp||z2(p) yields (4.12). The proof is complete. O
Next we need to show that Eah and Lj are locally close to each other.

LEMMA 4.3. Let xg € Q and let § > 0. Then there exists Rs > 0 and hs > 0
such that

I(£6,n = LR)vnllL2 (Br,) S Sllvnllz(Bry) Vo € Vi(Brs), (4.14)
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where Br, is the ball of radius Rs centered at xo and h < hs.
Proof. Since A is continuous and € is compact, it is uniformly continuous on €.
Thus, given § > 0, there exists Rs > 0 such that
Ao — Al (Bg,) < 6. (4.15)
Choose hs such that V3 (Bg,) is nontrivial. Let wy, € Vj,(Bpr,) with wy, # 0. Then

((‘C’g,h - Ei)vh,wh) = ((Ao — A) : D2vh,wh)

S Ao = Allpee (B, lvnll 28R, lwn | L2(BRy)-

Dividing by ||wp||z2(p) gives us (4.14). The proof is complete. O

Lastly, we state some super approximation results similar to those given in [11].
Since the proof is almost the same by verifying the estimates on each element, we
omit it.

LEMMA 4.4. Let Ij, be a standard C' (e.g. Argyris) nodal finite element inter-
polation operator (cf. [3]) and n € C>(Q) with ||n|lwi=@) S d™7 for 0< j <k and
some d > 0. Then, for any subdomain D C Q, we have

h
lmvn = In(mua)ll 2oy < EH%HLZ(D) Vup, € Vh,

h
llvn = In(on)lla2o) S Zgllvnllazoy - Von € Vi

We also cite the following inverse inequality from [11].

LEMMA 4.5. Let v, € Vi(D) where D C Q is a subdomain. Then we have

lonll2py S ™ol z-1(p)-

To follow the freezing coefficient technique from here, we could employ arguments
similar to the likes of Section 3.2.2 to achieve a Garding-type estimate similar to (3.33);
namely,

lvallm2@) S I1L4vnllLz @) + lvnllz2@), (4.16)

which is almost (4.3) aside from the L? norm of v;, on the right hand side. To strip
this term off in the PDE theory, we used the fact that £° was injective. However,
we do not have the tools available at the discrete level to say the same for £5. To
overcome this difficulty, our idea is to utilize a duality argument in order to achieve
(4.3). Unfortunately, a standard duality argument would require an a-priori stability
estimate of (£%)*, the adjoint of £%, which is unknown at this time. Instead, we apply
the freezing coefficient technique to (L£5)*, the adjoint of £, for two reasons. First,
since L5, lives on a finite dimensional vector space, the invertibility of £} is equivalent
to the invertibility of (£5)*. Second, a duality argument applied to (L£5)* uses the
stability of £¢, which we have already proved in Theorem 3.10.
Define (£5)* : Vi, — V3, by

((EZ)*wh,vh): (Eivh,wh) Vvh S Vh.
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The entirety of the non-standard duality argument is given in the lemma below.

LEMMA 4.6. There exists hg > 0 such that for all h < hg and ¢ = O(hP) for
some 3> 2,

lonllzeie S 1L onlly 2y Von € Vi (4.17)

Proof. Since the proof is long, we divide it into three steps.
Step 1: Local Estimates for (L£7)*. Let g € Q. Given § > 0, define hs and
Rs as in Lemma 4.3. Let h < hs, Ry = (1/3)Rs, and B; be the ball centered at

xo with radius Ry. Let v, € Vu(Bgr,). From the assumption on L%, there exists
©° € H%(Q) N H(Q) with

A5 (0%, w) = (v5,w) Yw e H*(Q)N Hy(Q)
and
e lm2(0) < llvnllzze) = llvnllzz(sy)- (4.18)
We also note that
(L50,wp) = A% (Y,wp) = (L%, wy) YV € H*(Q)N Hy(Q), wy, € Vi, (4.19)
Let ¢f, = (£5 ;)" 'vn € Vi By (4.19), we have
lonll 22z, = lvnllz2@) = (on,vn) = (£59%,0n) = (L56%, vn) (4.20)
= (L5250 vn) + (L3(9° = 9h) on)

= ((£3)*vn, 95) + (£54(¢° — @), vn)
+ (L5, = L5,1)(9° — ¢5),vn)-

Since ¢j, = (L§, )" ‘v, we obtain the standard Galerkin orthogonality, namely
(L5,1(9° = @R),vn) = Ap(@" — @R, vn) = Aj(9", vn) — A5 (@5, vn) (4.21)
= (’Uh,vh) - (vh,vh) =0.
Moreover, by Theorem 4.1, (4.21), and (4.18), we have
1okl r20) S NL6n0RIIL2 ) < LG9 L2 (@) = 1£6,1¢% 2 (0) (4.22)
S e llaz) S llvnllz2s,)-

Employing Lemma 4.3, (4.18), (4.20), and (4.22), we obtain

lvnllZ2m,) = ((C5) vn, @5) + (L5 = L5 1) (" = ¢5), vn)
< ||(EZ)*Uh||H;2(Q)H<P2||H2(Q) + (L5 — S,h)(‘PE - @i)HLi(Q)thHL?(Q)
S ||(£i)*vh||H;2(Bl)||UhHL2(Bl) +d(¢° — 502)||H2(Q)”Uh“L2(Bl)
S IR onll g2 sy lonll2csy) + 0%l m2@) + 1Rl a2 (@) 1ol L2 8))
S ||(£i)*vh||H;2(Bl)||UhHL2(Bl) + 5||Uh||%2(31)'
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Taking 0 sufficiently small and then dividing both sides by ||vp||L2(p,) gives us a local
version of (4.17), that is,

ol ez < I0EE) 0n 25, (4.23)

Step 2: A Garding-type inequality. Let Rs = 3Ry, and n € C*°(£2) be a cutoff
function with the following properties:

0<n<1, g =1 77|Q\32 =0, [nlwme) =O[R™). (4.24)
Let vy, € V3. By (4.23) we have

lvnllz2(B,) = lInvell2 sy < lmvn — In(nor)l L2 s,y + (o)l 2(8y) (4.25)
S llmvn = In(mon)lz2(s,) + 1(£5) Tn(non) -2 5,
S llmon = In(pon) |2y + 1£5)" (I (non) = o)l =2 (s,
+ IR vl g2 s,y

Using Lemma 4.2, we have

((£5)" (In(nvn) — nvn), ws)

VR ) UnCron) = 0wz ) = whes\l/lhIzBl) lwnllm2(By)
< sup (L5wn, (In(non) — nun))
~ wnevi(B) |wn | z2(By)
< £ wnll L2 [ In(nvn) — nonllL2(sy)
- wp €Vp, (B1) ”wh”H?(Bl)
< swp lwallm2(B,) |1 1n(nvn) — nonllL2(s,)
~ wneVi(By) lwnllm2 (31

[[1r(nvn) — nonllL2(B,)-
Thus, (4.25) becomes
HUh”L?(Bl) S v — Ih(Wh)HH(Bl) + ||(£i)*77“h||H;2(31)~ (4.26)

Using Lemmas 4.4 and 4.5, we have
lonllz2(y) S illv IL2(By) + I1(£5) " nvnll g > (4.27)
PIL2(B1) ~ R IVRIIL2(Bs) h) VRN H-2(By) :
1 *
< EIIUthq—l(m) + IR vl g2 s,)-

We now wish to remove 7 from ||(£Z)*77Uh||H;2(BS) in (4.27). Let wy, € V},(Bs) and
decompose (L£5)*nuvy, as follows:

((£5)" (qun), wn) = (L5wn,1on) (4.28)
= (Liwnn, vn) + [(Lfwn,non) — (Liwpn, v)]
= (L5,(In(wnn)), vn) + (L5 (wnn — In(wnn)), vn)
+ [(Lrwn,mon) — (L5whn, vp)]
=11 + 1+ I3.
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We now bound each I; in order. For Iy, the stability of I, and (4.24) give us
Iy = ((£5) vn, In(mwn)) < (L3 Vnll -2 ) 0 (mwn) 122 (4 (4.29)
S IR onll g2 oy Imwnll 2 (Bs)
1 *
< R*%”(ﬁi) vh||H;2(Bg)||wh||H2(Bs)'
To bound I, we use Lemmas 4.4, 4.5, and 4.2 to obtain

h
Iy < [lnwn — In(mwn)ll m2 (s llvell 2 (Bs) S ?”wh”HQ(BS)th||L2(B3) (4.30)
1

1
N ﬁ”whHH?(Bg)||Uh||H71(B3)-
1

In order to bound I3, we reintroduce the operator Lg ; and define A=A— A4y We
then write

I3 = (ﬁiwh,nvh) — (E‘,iwhn,vh) (4.31)
= (L5, wn,nvn) — (L5 41wk vh)

+ [(ﬁiwh,m}h) - (ﬁinwhmh) — (Eahwh,m)h) + (ﬁahnwh,vh)]

= 5/ v Awp An + 2Aw, (V1 - Vop,) — wp,AnAvy, — 28w, (V) - Vwy,) da
B3
— / (whAO - D%n+ (Ao + AE)VU . th) vy, do
B3

— / (whjl : D%n+ (/Nl + /IT)Vn . th) vpde =: K1 + Ko + K3.
Bs

We now must bound each K;. Since ¢ < Ch? for some pure constant C' > 0, we bound
K using Lemma 4.5, standard inverse inequalities, and (4.24) as follows:
2 hg
K 5 R*%HUhHL?(Bg)||wh||H2(Bg) + E‘lvh||H1(B3)HwhHH2(Bg) (4.32)

+ B2 Avn || -1 (o) lwn Al (y) + W2 AVK -1 (B [ Vwh - V0l 1 (8)

< h 1
= R*%th”H—l(Bg)||wh||H2(Bs) + E||vh||H—1(Bg)||wh||H2(Bg)

2 2
+ ﬁ“vvhHLz(B@HwhHH2(Bg) + ﬁHVUhHL?(Ba)HwhHm(Bg)
1 1

<h 1
~ ﬁ%”vh”H*(Bs)||wh||H2(Bs) + E||vh||H—1(B3)||wh||H2(B3)
1 1
+ E,H”h”H-l(B;;)||wh||H2(Bs) + R*%th”H—l(Bs)HwhHHQ(Bg)
1
S Rigl),”whHH?(Bg)”Uh”H—l(BS).

To bound K5, we have

Kz 5 (llwndo s D20l ) + (Ao + AT)Vn - Vo H'(By) ) [onll -1y (4:33)

1
S " HwhHHQ(Bg)||vh||H*1(B3)-
1
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Bounding K3 requires Holder’s inequality and ||/~1|| Lo (By) < 0 which gives us
K3 S (||whf1 : D1l L2(sy) + (A + A7)V - thHL?(BS)) lvnllz2(Bs) (4.34)
1 1
S6 R*%HwhHL‘Z(BS) + PTlehHHl(Bs) lvrllL2(Bs)-
From Lemma C.1 of [8] we have
wnll ey S REHlwnllm2sy), 1=0,1. (4.35)
Combining (4.34) and (4.35) yields

K3 S ollwnll m2 By llvnll 22 (Bs)- (4.36)

From (4.32), (4.33), and (4.36) we get
1
IEDS ?HwhHHZ(Bg)th”H’l(Bs) + 0llwn | m2(Bs) lvn | L2(Bs), (4.37)
1

and from (4.29), (4.30), and (4.37), we have

E\* 1 £\ *
(23" Gren), wn) S g (1022 a2 + ooy ) en s s
+ 6l|wn |l 2 (Bs) lvnll L2 (Bs)-
Thus,

* 1 *
2R romlagz= s % g (2R 0l + Nomllrrcs))  (439)

+Ollvnlla-1(Bs)-

From (4.27) and (4.38) we obtain

]' *
ol S 5 (1E8) 0l a2y + Ionllirsm0) ) + Sllon 2.
1

Since €2 is compact and § is independent of Ry, by employing a covering argument we
can show that

1 *

lonll 22y < R—%(nww onllgz2y + Nonlla-ie) + Ollonllm-r@).  (439)

Choosing ¢ sufficiently small in (4.39) produces a Garding type estimate, namely
onllzacey S IC25) vl -2y + ol a2 - (4.40)

Step 3: A nonstandard duality argument. We now wish to remove [|vp,[|g-1(q) in
(4.40). To control this term we use a nonstandard duality argument on the operator
(£5)*. Let

X ={ge H}(Q): Vgl =1}.
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By the Poincaré inequality, there exists a constant C' = C(2) such that
l9llz2(@) < ClIVyllL2(n) < 0.
Thus, X is precompact in H!(2) by Sobolev embedding. Now we define
W={(£)"g:9€X}.
Let ¢ € W with £L5¢ = ¢g. Then by (4.2) we have

||%0||H2(Q) N HQHL?(Q) < Q. (4.41)

Thus, W is a bounded set in H2(2) N H}(Q). Let 7 > 0. Then from [15, Lemma 5]
there exists h, > 0 only dependent upon 7 and the closure of W such that for every
p € W and 0 < h < h,, there exists a ¢p € V} such that

o = enllaz@) < (4.42)

Note by the triangle inequality, (4.41), and (4.42), we have

lonlla2) < lella2@) + llon — ella2@) SC+T.
Thus, the set

{on € Vi llon — @llaz) < 7}

is uniformly bounded in ¢ and h. Let g € X and choose ¢, € W with Lf¢, = g. For
v, € Vi, and pp, € V), satisfying (4.42), we have

(g:vn) (4.43)
(L%¢g,vn) = (Lpg, vn) = (Lion, vn) + (L5, (99 — @n), vn)
((£5) vns o) + (L£5,(0g — 1), vn)

)V onll g2 llenlla2 @) + leg = enlla2@llvnllL2@)

)

*

(vn, 9)

L

€
h
€
L,

(
(

Taking the supremum of both sides of (4.43) over g € X gives us

/AN YA

onllg-2(ay + llonlz2(e.

lonllz-1@) S N(ER) vnllg-2(q) + TllonllL2 @) (4.44)

Combining (4.40) and (4.44) and choosing 7 sufficiently small gives us (4.17) upon
taking hg = min{hs, h.}. O

Lemma 4.6 allows us to prove the discrete Calderon-Zygmund estimate (4.3).
This is shown in the Lemma below.

LEMMA 4.7. Let hg be from Lemma 4.6 and ¢ = O(hP) for some 8 > 2. Then

lvnllmz) S I1Lhvnllz@)  Von € Va. (4.45)

Proof. We first show (L£5)* is 1-1. Suppose there is a wy, € Vj, with (£5)*w;, = 0.
By Lemma 4.6, we have

lwnlzz(ey < 10C5) wnll 20 = 0. (4.46)
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Thus wy, = 0, and it follows that (£7)* is 1-1. Since (L5)* : V), = V4, it is invertible
on Vj. Let vy € Vj,. Consider the problem of finding g, € Vj such that

(wn, (£5)*an) = (D*vn, D*wy) + (Von, Vwy) + (vp, wp). (4.47)

Since (L£3)* is invertible, such a g, exits. By (4.17) we have

. (wn, (£5,)"qn)
lanllz2) S N(£R) anll -2 () = sup Sazhe B2

4.48
wneVi  wnllm2(0) .

< sup

~J
wp €V

<||D21)h|L2(Q)||D2wh||L2(Q) + [Vnll 2@ IVwn | 220
lwallm2(0)

lvnllz2(@ llwal L2 )
||wh||H2(Q)

N ”vhHHz(Q)-
From (4.48) we obtain
th”%?(ﬂ) = (D?vp,, D?vp) + (Vop, Vou) + (v, vn) = (vn, (£5) an) = (L5vn, qn)
< ILhonllrz @ llanllz2@) S 1L5val L2 (o lon ]l m2(0)- (4.49)
Dividing both sides of (4.49) by ||va||g2(q) gives us (4.45). The proof is complete. O

We now present the well-posedness of our C! finite element scheme.

THEOREM 4.8. Let hg be from Lemma 4.6 and e = O(h®) for some B > 2. Then
there is a unique u§ satisfying (4.1) and

lufllmz2) S 1fllz2(o)- (4.50)

Proof. From a similar argument to (4.46), we assert that L5 is 1-1. Since Lj :
Vi, = Vi, it is invertible. Thus, given f € L?(f2), there is a unique u§ € V}, satisfying
(4.1). By (4.45) we have

(L5 un,vp) (f,vn)
[ugll ) S 1Chunllze @) = sup == = sup —=—"— < || f[l 20,
: oneVi IVnllz@)  wweva llvnllzz()

yielding (4.50). The proof is complete. O

Since Lj is consistent, we have a Céa type estimate which asserts an optimal
convergence in the H?()-norm:

THEOREM 4.9. Suppose ¢ = O(hP) for some 8 > 2. Let u® € H?(Q) N H(Q)
and uj € Vi, satisfy (4.1) and (3.2), respectively. Then

||’U,E — U]ELHHQ(Q) f/ inf ||'LL6 — ’UhHH2(Q). (451)
vREVh
Moreover, if u® € H*(QY) for s > 2, we have
lu® =i lla2ea) S B2 uE | e, (4.52)

where r = min{k + 1, s}.
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Proof. By the consistency of L5, we have the usual Galerkin orthogonality:

(L5 (u = i), vn) = A (u® — uj, vn) (4.53)
:(fvvh)f(fyvh)zo Yo, € Vj,.

Let v, € V3. By Theorem 4.8, Lemma 4.2, and (4.53), we have

(ﬁi(ui —vp), wh)

uy — vpllazi) S L (U5 —vn)|lz ) = sup 4.54
lui, = vallm2) S I1£5(ug — vn)llz (o i A T P (4.54)
L5 (uf — vp), wp,
S sup (£ ) S LW =)z o)
wp €V}, HwhHL2(Q) '
S lu® = vnllg2(0)-
Hence, by the triangle inequality and (4.54), we obtain
lu® = uillm2 ) S u” = vnllmzie) + llup, = vnllaz) S u® = valluz@). (4.55)

Taking the infimum of (4.55) over all v, € V}, yields (4.51). Estimate (4.52) follows
from taking vy, = Ipu and using the standard interpolation estimates. The proof is
complete. O

4.2. Numerical Experiments. In this section, we present a series of 2-D nu-
merical tests using the Cl-conforming (fifth order) Argyris finite element space. All
of the tests are performed using the COMSOL software package. The first three tests
correspond to choosing the continuous, positive definite matrix

(22 — y)/? 4 422 £ sin (10wy) — & (z + 2)!/2

Alx,y) =
(@9) Lsin (102y) — & (z +2)"/? ly —22|"* +3

(4.56)

and b,¢ = 0 in (P). The fourth test will correspond to choosing a degenerate elliptic
matrix A in (4.1) to gauge the impact of the method for approximating “harder”
problems with viscosity solutions instead of strong solutions. We use a very fine
mesh in all of the tests so that the error is dominated by the vanishing moment
approximation to the PDE problem. We will observe that the error is maximized
along sets where the solution is not as regular and along the boundary due to the
auxiliary boundary condition Au® = 0. The measured error does not appear to
correspond to sets where the coefficient matrix A is not as well-behaved. We also
observe better rates of convergence with respect to € than the rates guaranteed by
Theorem 3.13. Numerically we observe linear convergence in the L?-norm.

Test 1. Consider (P) with A defined by (4.56), Q@ = (—2,2) x (—2,2), and

solution u(x,y) = %|x|3 cos(y), where f and g are chosen accordingly. The given test

problem has a solution in H3(£2), where the third-order partial derivative with respect
to x is discontinuous along the line = 0. The results for varying € can be found
in Table 4.1. We can also see from Figure 4.1 that the error is largest along the line
r = 0, as expected.

Test 2. Consider (P) with A defined by (4.56), @ = (—2,2) x (—2,2), and
solution u(x,y) = %x‘x’ cos(y), where f and g are chosen accordingly. The given test
problem has a solution in H?(£2), where the second-order derivative is discontinuous
along the line x = 0. The results for varying € can be found in Table 4.2. Figure 4.2
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TABLE 4.1: Rates of convergence for Test 1 using the vanishing moment method.

€ [Jus, — uHLQm) Order | ||V (u, — u)HLzm) Order | [|A (u, — u)HLzm) Order
4e-2 9.44e-3 2.25e-2 2.55e-1
2e-2 4.89e-3 0.95 1.32e-2 0.76 2.15e-1 0.24
le-2 2.50e-3 0.96 7.84e-3 0.76 1.82e-1 0.24
5e-3 1.27e-3 0.98 4.64e-3 0.76 1.54e-1 0.25
2.5e-7 1.65e-7 2.09e-5 3.80e-3
(A) uf,. (B) A (u—us).

Fic. 4.1: Computed solution and corresponding error for Test 1 using the vanishing moment
method.

shows that the error is once again largest along the line z = 0. The figure also shows
the boundary layer due to the high-order auxiliary boundary condition.

Test 3. Consider (P) with A defined by (4.56), Q@ = B2(0) (the ball of radius 2
centered at the origin), and solution u(z,y) = (z — y)%/3, where f and g are chosen
accordingly. Observe that the solution is once again in H?(), where the second order
derivatives have a cusp along the line = y. The results for varying € can be found
in Table 4.3. We can also see the finite element method does not converge to u when
using € = 0, which verifies the fact that trivial H? conforming finite element methods
do not work in general for second order linear problems of non-divergence form even
when approximating an H? solution. The plot of an approximation can be found in
Figure 4.3.

It should be noted that for many biharmonic problems with the simply supported
boundary condition, approximating the circular domain Q by a sequence of inscribed
polygonal domains {2}, as we have done in this numerical test, can lead to the so-
called Babuska’s paradox [2, 6] in the sense that the limiting solution may not satisfy
the simply supported boundary condition on the circular boundary but, instead, sat-
isfies the clamped boundary condition. As a result, problems with this paradox fail
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TABLE 4.2: Rates of convergence for Test 2 using the vanishing moment method.

€ [Jus, — “HLZ(Q) Order | ||V (u, — u)HLzm) Order | [|A (u, — u)||L2(Q) Order
4e-2 4.30e-3 2.26e-2 3.99e-1
2e-2 2.30e-3 0.90 1.42e-2 0.67 3.38e-1 0.24
le-2 1.22e-3 0.91 8.79e-3 0.69 2.86e-1 0.24
5e-7 2.25e-4 9.09e-4 1.07e-1
(A) uf. (B) A (u—uf).

Fic. 4.2: Computed solution and corresponding error for Test 2 using the vanishing moment
method.

to converge (due to the failed convergence of the simply supported boundary condi-
tion) as the approximate polygonal domains {€},} converge in measure to the curved
boundary domain 2. However, we observe from this numerical test that the appli-
cation of the VMM with an artificial simply supported boundary condition does not
suffer the Babuska’s paradox, as seen from the error u —uj; this is largely because we
are driving ¢ — 0 in tandem with h. Also, the flexibility of the VMM allows alternate
choices for the auxiliary boundary condition such as a clamped BC to be used because
its convergence does not depend on the choice of the artificial (higher order) boundary
condition. As such, the VMM provides a built-in mechanism to completely avoid the
difficulties associated with the Babuska’s paradox.

TABLE 4.3: Rates of convergence for Test 3 using the vanishing moment method.

€ [luf, — u||L2(m Order | ||V (uf, — u)HLQ(Q) Order | [|A (uf, — U’)HL2(S)) Order
5e-3 1.98e-2 1.22e-1 4.27
2.5e-3 1.01e-2 0.98 7.32e-2 0.73 3.59 0.25
1.25e-3 5.08e-3 0.98 4.40e-2 0.73 3.03 0.24
0 5.40e3 1.83e6 4.99e8
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Fic. 4.3: Computed solution for Test 8 using the vanishing moment method.

Test 4. Consider (P) with Q = (—2,2) x (—2,2),

16 22/3 _xl/Syl/S
Ax,y) = 9 —x1/3y1/3 y2/3 )

and solution u(z,y) = 2*/3 — y*/3 ¢ H'(Q), where f and g chosen accordingly. For
the above example, we have u ¢ H?(Q)) and A is not uniformly elliptic. Thus, u is
only a viscosity solution, not a strong solution. We see in Table 4.4 that the vanishing
moment method appears to be working, although with unknown deteriorated rates
of convergence. From Figure 4.4, we see that the finite element method with Argyris
finite element space does not work for the given example. Thus, we can see that
the vanishing moment method has strong potential for approximating more general
second order problems that are understood in the viscosity solution framework.

TABLE 4.4: Rates of convergence for Test j using the vanishing moment method.

€ lus, — uHLQ(Q) Order | ||V (u5, — u)HLQ(m Order
2e-4 6.89e-2 3.94e-1
le-4 6.10e-2 0.18 3.53e-1 0.16
5e-5 5.46e-2 0.16 3.15e-1 0.17
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