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Abstract. This paper is concerned with continuous and discrete approximations of W 2,p strong
solutions of second-order linear elliptic partial differential equations (PDEs) in non-divergence form.
The continuous approximation of these equations is achieved through the Vanishing Moment Method
(VMM) which adds a small biharmonic term to the PDE. The structure of the new fourth-order PDE
is a natural fit for Galerkin-type methods unlike the original second order equation since the highest
order term is in divergence form. The well-posedness of the weak form of the perturbed fourth order
equation is shown as well as error estimates for approximating the strong solution of the original
second-order PDE. A C1 finite element method is then proposed for the fourth order equation, and
its existence and uniqueness of solutions as well as optimal error estimates in the H2 norm are shown.
Lastly, numerical tests are given to show the validity of the method.
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1. Introduction. In this paper, we propose C1 finite element approximations
of the following second-order linear elliptic PDE in non-divergence form:

Lu := −A : D2u+ b · ∇u+ cu = f in Ω,

u = 0 on ∂Ω,
(P )

where Ω is an open and bounded domain in R
n and ∂Ω denotes its boundary. These

non-divergence form PDEs have several applications including game theory, stochastic
optimal control, and mathematical finance [12]. Moreover, non-divergence PDEs ex-
plicitly appear in several second-order fully nonlinear PDEs such as Hamilton-Jacobi-
Bellman and Issac’s equations as well as in the linearization of the Monge-Ampère
equation [5, 4].

When the coefficient matrix A is not smooth, (P ) cannot be written in divergence
form. Thus, any standard notion of weak solutions to (P ) must be abandoned, and,
indeed, the PDE theory respects this observation and seeks well-posedness of these
equations in a stronger sense. There have been three main theories for the existence
and uniqueness of these equations. First, Schauder (or classical) theory seeks solutions
in C2,α(Ω) where aij , bi, c, f ∈ Cα(Ω) and ∂Ω ∈ C2,α. Second, strong solution theory

seeks solutions in W 2,p(Ω)∩W 1,p
0 (Ω) that satisfy the PDE almost everywhere. There

have been two frameworks that guarantee unique strong solutions. The first requires
aij ∈ C(Ω), bi ∈ L∞(Ω), c ∈ L∞(Ω), and f ∈ Lp(Ω), with 1 < p <∞ and ∂Ω ∈ C1,1
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while the second requires p = 2, f ∈ L2(Ω), ∂Ω convex, and aij ∈ L∞(Ω) where
the matrix A satisfies the Córdes condition [13, 16]. The last theory, called viscosity
solution theory, seeks solutions in C0(Ω) given aij , bi, c ∈ L∞(Ω) and f ∈ C(Ω), where
the underlying viscosity solutions satisfy the PDE in a much weaker sense [5].

Due to the lack of a divergence structure, constructing convergent numerical meth-
ods for (P ), especially finite element methods, is not obvious. Only a handful of
Galerkin-type methods have been developed, and these methods did not appear in
the literature until quite recently [11, 17, 8, 16, 14]. All of these methods, however
diverse they are in their construction, share a common thread: a (nonstandard) direct
discretization of (P ). The method we propose, however, is based upon the Vanishing
Moment Method (VMM) - a method developed by Feng and Neilan in [10] for second-
order fully nonlinear PDEs such as the Hamilton-Jacobi-Bellman and Monge-Ampère
equations. The main solution concept for these equations is that of the viscosity solu-
tion which requires passing the derivatives of the solutions to functions that locally lie
above or below the graph of the solution [5]. This notion of a solution is not natural
in the Galerkin framework since it is not based on integration by parts. The VMM
seeks to approximate (P ) by a fourth order, quasi-linear PDE where the fourth order
term is a “nice” operator, such as the biharmonic operator. Since this new PDE is
in divergence form if the biharmonic operator is chosen, it can be readily adapted
to a weak solution concept and, more importantly, allow the natural formulation of
Galerkin-type methods. In our case of non-divergence form PDEs, the VMM is given
by

εΔ2uε −A : D2uε + b · ∇uε + cuε = f in Ω,

uε = 0 on ∂Ω,

Δuε = 0 on ∂Ω.

(Pε)

While strong solution theory for (P ) is not as weak as viscosity solution theory for
fully nonlinear PDEs, by first applying the VMM to (P ), the resulting approximate
equation (Pε), whose highest order derivative is in divergence form, can be discretized
using a variety of conforming and nonconforming finite element methods. These nu-
merical solutions will converge to the solution of (P ) as ε→ 0. Thus, from a numerical
standpoint, the application of the VMM is just as applicable to non-divergence PDEs
as they are to fully nonlinear PDEs.

Several papers have be written on ways to formally construct solutions to fully
nonlinear PDEs using the Vanishing Moment Method [10, 9]. This paper is the first to
offer a detailed analysis of the VMM for a particular class of PDEs. Moreover, since
non-divergence PDEs have close ties to many popular second-order fully nonlinear
PDEs, they serve as a natural starting point for the complete analysis of the Vanishing
Moment Method.

The goals of this paper are to provide a detailed PDE analysis of the Vanishing
Moment Method when it is applied to second order elliptic linear PDEs in non-
divergence form and to study its finite element approximations. This analysis requires
showing that the solution uε of (Pε) exists and is unique; proving uε → u as ε →
0, where u ∈ H2(Ω) ∩ H1

0 (Ω) is the strong solution to (P ); and formulating error
estimates for ‖uε − u‖ in powers of ε. We also formulate a C1 conforming finite
element method for approximating the weak solution to (Pε) and derive its error
estimate in the energy-norm as well as provide some numerical experiments that test
the method and theory. We note that the PDE results given for the VMM will be
crucial for the analysis of any Galerkin-type scheme developed for (Pε), including our
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C1 scheme.
The rest of our paper is organized as follows. In Section 2, we set the notation

and provide the preliminary information about the well-posedness and stability of
(P ). In Section 3, we formally introduce and analyze the VMM applied to (P ). In
Section 4, we propose a simple C1 conforming finite element method for our fourth
order equation as well as give some tests showing the convergence of the method.

2. Notation and Preliminaries. Let Ω ⊂ R
n be an open and bounded domain.

Consider a subdomain D ⊂ Ω. Let L2(D) and Hk(D) be the standard Lebesgue and
Sobolev spaces with their respective norms. We define (·, ·)D to be the L2-inner
product for all scalar and vector valued functions with (·, ·) := (·, ·)Ω. In addition, we
let Hk

0 (Ω) be the completion of all compactly supported smooth functions in Hk(D)
and H−1(D) be the dual space of H1

0 (D). Lastly, define the space H by

H := {v ∈ H2(Ω) ∩H1
0 (Ω) with Δv ∈ H1

0 (Ω)}.

As mentioned in the introduction, there are three main well-posedness theories
for (P ). We are choosing to focus on approximating W 2,p strong solutions for linear

elliptic PDEs. To this end, we assume that A ∈
[
C(Ω)

]n×n
is uniformly elliptic; that

is, there exist constants 0 < λ ≤ λ such that

λ|ξ|2 ≤ A(x)ξ · ξ ≤ λ|ξ|2 ∀ξ ∈ R
n, x ∈ Ω (2.1)

and c ≥ 0 a.e. in Ω. Let f ∈ Lp(Ω). From [13] we have that (P ) exhibits a unique
strong solution u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) for 1 < p <∞ that satisfies the PDE almost
everywhere. Moreover, we have the stability result

‖u‖W 2,p(Ω) � ‖Lu‖Lp(Ω). (2.2)

Here and in the rest of the paper we use a � b to denote a ≤ Cb for some constant C >
0 independent of relevant parameters. Estimate (2.2) is called the Colderón-Zygmond
estimate for L. For simplicity of presentation, we will assume for the remainder of
the paper that b, c ≡ 0.

For the finite element method developed in Section 4, given an h > 0, we let Th
be a quasi-uniform and shape-regular mesh of Ω. We set Vh ⊂ H2(Ω) ∩H1

0 (Ω) to be
a C1 conforming finite element space over Th satisfying

Vh =
{
vh ∈ C1(Ω) ∩H1

0 (Ω) : vh
∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
,

where Pk(T ) is the set of all polynomials of total degree less than or equal to k.
Examples of such spaces include those defined using the cubic Hermite element in 1-
D where, k ≥ 3, or the Argyris element in 2-D, where k ≥ 5 [3]. Given a sub-domain
D ⊂ Ω, we define

Vh = {vh ∈ Vh : vh = 0 on Ω \D}

and remark that Vh(D) is non-trivial provided h ≤ 1
3diam(D).

Define the discrete L2 norm by

‖v‖L2
h(D) := sup

wh∈Vh(D)\{0}

(v, wh)D
‖wh‖L2(D)

. (2.3)
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Clearly we have

‖vh‖L2(D) ≤ ‖vh‖L2
h(D) ∀vh ∈ Vh.

There also holds

‖v‖L2
h(D) � ‖v‖L2(D) ∀v ∈ L2(D).

Lastly, define the discrete H−2 norm by

‖v‖H−2
h (D) = sup

wh∈Vh(D)\{0}

(v, wh)

‖wh‖H2(D)
. (2.4)

For notational convenience, we will often write wh ∈ Vh(D) instead of wh ∈ Vh(D)\{0}
in (2.3) and (2.4).

3. The Vanishing Moment Method and its Analysis.

3.1. Construction of the Vanishing Moment Method. The Vanishing Mo-
ment Method is an approximation technique originally developed for second-order
fully nonlinear PDEs [10]. The approximation corresponds to converting the original
second-order equation into a quasi-linear fourth order equation. Let ε > 0. In the
context of our problem, the solution u to (P ) will be approximated by the solution
uε, where uε satisfies the fourth order problem:

Lεuε := εΔ2uε −A : D2uε = f in Ω,

uε = 0 on ∂Ω,

Δuε = 0 on ∂Ω.

(Pε)

Since (Pε) is a fourth order equation, an additional boundary condition must
be added in order to guarantee a unique solution. We add the simply supported
boundary condition Δuε = 0 for this particular method, due to being a natural
boundary condition for the biharmonic equation; moreover, it allows us to achieve H2

estimates near ∂Ω. We refer to [10] for other boundary conditions that may be used.
Using the fact that the highest order derivative of (Pε) is in divergence form, we

can easily define a weak solution concept for (Pε) as follows.

Definition 3.1. A function uε ∈ H2(Ω) ∩ H1
0 (Ω) is called a weak solution to

(Pε) if it satisfies

ε
(
Δuε,Δv

)
−
(
A : D2uε, v

)
= (f, v) ∀v ∈ H2(Ω) ∩H1

0 (Ω). (3.2)

Note that the simply supported boundary condition is naturally absorbed into
the weak formulation.

3.2. Stability Estimates for Lε . We now give the analysis required to show
an estimate similar to the Calderon-Zygmund estimate (2.2) but for the operator Lε

by using a freezing coefficient technique. This technique, used in [13, Chapter 9]
by Gilbarg-Trudinger to show (2.2), relies on that fact that since A is continuous,
it is approximately constant over small balls. For A constant, the non-divergence
operator −A : D2u is merely a change of basis and dilation away from the Laplacian
−Δu. Since (2.2) is true for L = −Δ, one can argue the estimate holds for all
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A constant and holds locally for all A continuous over a small ball. Then, using
a partition of unity argument and cut-off functions, the estimate can be shown to
hold over all of Ω. Section 3.2.1 shows the global Calderon-Zygmund estimates for
Lε for constant coefficient A while Section 3.2.2 shows the analogous estimates for
continuous coefficient A.

3.2.1. Estimates for Constant Coefficient Operators. First we consider
the case A = A0 for A0 a constant matrix satisfying (2.1). This gives us the following
two problems:

L0u := −A0 : D2u = f in Ω,

u = 0 on ∂Ω
(P ′)

and

Lε
0u

ε := εΔ2uε −A0 : D2uε = f in Ω,

uε = 0 on ∂Ω,

Δuε = 0 on ∂Ω.

(P ′
ε)

It should be noted that since A0 : D2u = div(A0∇u), we immediately recover
weak solutions u ∈ H1

0 (Ω) and uε ∈ H2(Ω) ∩ H1
0 (Ω) to (P ′) and (P ′

ε), respectively.
We seek to derive H1 estimates for uε.

Lemma 3.1. For ε > 0, let uε ∈ H2(Ω) ∩ H1
0 (Ω) be the weak solution of (P ′

ε).
Then there holds the following estimate:

√
ε‖Δuε‖L2(Ω) +

√
λ‖∇uε‖L2(Ω) � ‖f‖H−1(Ω). (3.5)

Moreover, uε ⇀ u weakly in H1(Ω), where u is the weak solution to (P ′).

Proof. Testing (P ′
ε) by uε, using the ellipticity condition (2.1), and applying

integration by parts, we have

ε‖Δuε‖2L2(Ω) + λ‖∇uε‖2L2(Ω) ≤ ε(Δuε,Δuε) + (A0∇uε,∇uε)

= (f, uε)

≤ ‖f‖H−1(Ω)‖uε‖H1(Ω)

� ‖f‖H−1(Ω)‖∇uε‖L2(Ω)

≤ 1

2δ
‖f‖2H−1(Ω) +

δ

2
‖∇uε‖2L2(Ω)

for any δ > 0. Choosing δ, independent of ε, sufficiently small allows us to move
‖∇uε‖L2(Ω) on the right side to the left and obtain (3.5). This estimate immediately
gives us the boundedness of {uε} in H1

0 (Ω). Thus, by the weak compactness of H1
0 (Ω),

there exists a subsequence {uε} (not relabeled) and u∗ ∈ H1
0 (Ω) such that uε ⇀ u∗

weakly in H1(Ω) as ε → 0. Since uε is a weak solution of (P ′
ε), we have for every

ϕ ∈ C∞
0 (Ω)

ε(Δuε,Δϕ) + (A0∇uε,∇ϕ) = (f, ϕ). (3.6)

Using the weak convergence of uε ⇀ u∗, the uniform boundedness of ε‖Δuε‖2L2(Ω),

and passing ε→ 0 in (3.6), we obtain

(A0∇u∗,∇ϕ) = (f, ϕ).
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Thus, u∗ is a weak solution of (P ′). By uniqueness we have u∗ = u, and the whole
sequence uε ⇀ u weakly in H1(Ω). The proof is complete.

We now wish to derive local H2 stability estimates for Lε.

Lemma 3.2. Let B ⊂⊂ Ω and v ∈ H with supp(v) ⊂ B. The following estimate
holds:

√
ε‖∇Δv‖L2(B) +

√
λ‖D2v‖L2(B) � ‖Lε

0v‖L2(B). (3.7)

Proof. By testing Lε
0v by −Δv and integrating by parts, we get

(Lε
0v,−Δv) = (εΔ2v −A0 : D2v,−Δv) = ε‖∇Δv‖2L2(B) + (A0 : D2v,Δv). (3.8)

Since A0 is symmetric and positive definite, there exists an orthogonal matrix Q ∈
R

n×n such that QTA0Q = diag(λ1, λ2, . . . , λn) =: Λ, where λ ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.
Let y = QTx and v̂(y) = v(Qy) = v(x). Since the Laplacian is preserved under an
orthogonal change of basis, we have the following:

Δxv(x) = Δy v̂(y), Δ2
xv(x) = Δ2

y v̂(y),

A0 : D2
xv(x) = Λ : D2

y v̂(y) =

n∑
j=1

λj v̂yjyj (y).

Without a loss of generality, we may assume that A0 = Λ in (3.8). Hence,

(A0 : D2v,Δv) = (div(A0∇v),Δv)

= −(A0∇v,∇Δv)

= −(A0∇v, div(D2v))

= (∇(A0∇v), D2v)

=
n∑

j=1

λj‖∇vxj
‖2L2(B) ≥ λ‖D2v‖2L2(B).

(3.9)

Combining (3.8) and (3.9) gives us

ε‖∇Δv‖2L2(B) + λ‖D2v‖2L2(B) ≤ ‖Lε
0v‖L2(B)‖Δv‖L2(B)

≤ δ

2
‖Δv‖2L2(B) +

1

2δ
‖Lε

0v‖2L2(B)

≤ δ

2
‖D2v‖2L2(B) +

1

2δ
‖Lε

0v‖2L2(B).

Choosing δ sufficiently small to move ‖D2v‖2L2(B) to the left hand side gives the desired
result. The proof is complete.

Next, we derive a similar boundary estimate. Let R
n
+ := {x = (x′, xn) ∈ R

n :
xn > 0}, B+ = B ∩R

n
+, and (∂B+)+ = ∂(B+)∩R

d
+, where B is a small ball with its

center on the xn-axis.

Lemma 3.3. Let v ∈ H2(B) ∩H1
0 (B) with Δv ∈ H1

0 (B) and v,∇v,Δv = 0 near
∂B+. Then we have the following estimate:

√
ε‖∇Δv‖L2(B+) + λ‖D2v‖L2(B+) � ‖Lε

0v‖L2(B+). (3.10)
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Proof. We will extend v from B+ to B by an odd reflection, that is v(x′, xn) =
−v(x′,−xn) for all x ∈ B \ B+. Since supp(v) ⊂ B after the reflection, we may test
the PDE by Δv and use a similar argument as to the one in Lemma 3.2 to obtain

√
ε‖∇Δv‖L2(B) +

√
λ‖D2v‖L2(B) � ‖Lε

0v‖L2(B). (3.11)

Since the odd reflection is a bounded linear operator, we have
√
ε‖∇Δv‖L2(B+) +

√
λ‖D2v‖L2(B+) ≤

√
ε‖∇Δv‖L2(B) +

√
λ‖D2v‖L2(B)

� ‖Lε
0v‖L2(B)

� ‖Lε
0v‖L2(B+).

The proof is complete.

3.2.2. Estimates for Continuous Coefficient Operators. Suppose that A ∈[
C(Ω)

]n×n
is uniformly positive definite. In this section, we seek uniform H1 and H2

stability estimates for Lε. Following the freezing coefficients technique, we first need
to derive local H1 and H2 stability estimates, which in turn require the following
lemma controlling the bound of the H−1 norm of the Hessian.

Lemma 3.4. Let B be an open ball and v ∈ H2(B) and | · |1 denote the vector
1-norm. There holds

‖D2v‖H−1(B) ≤ n
1
2 ‖∇v‖L2(B), (3.12)

‖|D2v|1‖H−1(B) ≤ n‖∇v‖L2(B), (3.13)

where n is the dimension of the domain Ω and

‖D2v‖H−1(B) =

⎛
⎝ n∑

i,j=1

‖vxixj
‖2H−1(B)

⎞
⎠

1
2

,

‖|D2v|1‖H−1(B) =

n∑
i,j=1

∥∥|vxixj |
∥∥
H−1(B)

.

Proof. Let i, j = 1, . . . , n and w ∈ H1
0 (B) with w �≡ 0. Integration by parts yields

(vxixj , w) = −(vxi , wxj ) ≤ ‖vxi‖L2(B)‖∇w‖L2(B).

Thus, by the definition of ‖v‖H−1(B), we have

‖vxixj
‖H−1(B) = sup

w∈H1
0 (B)

w �≡0

(vxixj
, w)B

‖∇w‖L2(B)
≤ ‖vxi

‖L2(B).

Summing over i and j gives us (3.12).
The proof of (3.13) follows the same lines with an additional help of some facts

from [13, Chapter 7]. Let |vxi,xj
| = v+xixj

+ v−xixj
, where v± denotes perspectively the

positive and negative parts of v. Then

(v+xixj
, w) =

∫
{vxi,xj

>0}
vxixj

(x)w(x) dx = −
∫
{vxi,xj

>0}
vxi

(x)wxj
(x) dx

≤ ‖vxi
‖L2(B)‖∇w‖L2(B).
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A similar result holds for v−xixj
. The proof is complete.

We are now ready to prove the local H1 and H2 stability of Lε.

Lemma 3.5. Let x0 ∈ Ω and BR(x0) ⊂ Ω be the ball of radius R centered at x0.
There exists Rδ > 0, independent of ε, such that, for all v ∈ H with supp(v) ⊂ B :=
BRδ

(x0), the following estimates hold:

√
ε‖∇Δv‖L2(B) +

√
λ‖D2v‖L2(B) � ‖Lεv‖L2(B), (3.14)

√
ε‖Δv‖L2(B) +

√
λ‖∇v‖L2(B) � ‖Lεv‖H−1(B). (3.15)

Proof. Let δ > 0, and define A0 := A(x0). Since A is continuous, there exists
Rδ > 0 such that

‖A−A0‖L∞(BRδ
(x0)) ≤ δ.

By Lemma 3.2, we have

√
ε‖∇Δv‖L2(B) +

√
λ‖D2v‖L2(B) � ‖Lε

0v‖L2(B)

� ‖Lεv‖L2(B) + ‖(Lε
0 − Lε)v‖L2(B)

= ‖Lεv‖L2(B) + ‖(A−A0) : D
2v‖L2(B)

� ‖Lεv‖L2(B) + ‖A−A0‖L∞(B)‖D2v‖L2(B)

≤ ‖Lεv‖L2(B) + δ‖D2v‖L2(B),

and (3.14) follows for δ sufficiently small (independent of ε and B).
To show (3.15), we follow a similar technique. Using Lemma 3.1 and Lemma 3.4,

we have
√
ε‖Δv‖L2(B) +

√
λ‖∇v‖L2(B) � ‖Lε

0v‖H−1(B)

� ‖Lεv‖H−1(B) + ‖(Lε
0 − Lε)v‖H−1(B)

= ‖Lεv‖H−1(B) + ‖(A−A0) : D
2v‖H−1(B)

� ‖Lεv‖H−1(B) + ‖A−A0‖L∞(B)‖|D2v|1‖H−1(B)

� ‖Lεv‖H−1(B) + δn2‖∇v‖L2(B),

and (3.15) follows for δ sufficiently small (independent of ε and B). The proof is
complete.

Finally, using a partition of unity argument, we can get an interior G̊arding
inequality.

Lemma 3.6. Let v ∈ H. For any Ω′ ⊂⊂ Ω the following estimates hold:

√
ε‖∇Δv‖L2(Ω′) +

√
λ‖D2v‖L2(Ω′)

�‖Lεv‖L2(Ω) + ‖v‖L2(Ω) + ε(‖∇v‖L2(Ω) + ‖Δv‖L2(Ω) + ‖∇Δv‖L2(Ω)), (3.16)
√
ε‖Δv‖L2(Ω′) +

√
λ‖∇v‖L2(Ω′)

�‖Lεv‖H−1(Ω) + ‖v‖L2(Ω) + ε(‖∇v‖L2(Ω) + ‖Δv‖L2(Ω)). (3.17)

Proof. For a ball BR with radius R, let σ = 1/2 and consider the cutoff function
η ∈ C∞

0 (BR) with 0 ≤ η ≤ 1, η ≡ 1 in BσR, and η ≡ 0 on BR \Bσ′R, where σ
′ = 3/4.
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Moreover, ‖Dkη‖L∞(BR) � (1 − σ)−kR−k for k = 0, 1, 2, 3, 4. Applying (3.14) to the
function ηv on the ball BσR gives us

√
ε‖∇Δv‖L2(BσR) +

√
λ‖D2v‖L2(BσR)

=
√
ε‖∇Δ(ηv)‖L2(BσR) +

√
λ‖D2(ηv)‖L2(BσR)

≤
√
ε‖∇Δ(ηv)‖L2(Bσ′R) +

√
λ‖D2(ηv)‖L2(Bσ′R)

� ‖Lε(ηv)‖L2(Bσ′R) = ‖εΔ2(ηv)−A : D2(ηv)‖L2(Bσ′R).

(3.18)

Expanding Δ2(ηv) and A : D2(ηv) gives us

Δ2(ηv) = ηΔ2v + 4∇Δv · ∇η + 6ΔvΔη + 4∇v · ∇Δη + vΔ2η, (3.19)

A : D2(ηv) = ηA : D2v + 2A∇v · ∇η + vA : D2η. (3.20)

Using (3.19) and (3.20) gives us, with the L2 norm taken over Bσ′R,

‖εΔ2(ηv)−A : D2(ηv)‖L2 � ‖Lεv‖L2 +
1

(1− σ)R
‖∇v‖L2 +

1

(1− σ)2R2
‖v‖L2

+
ε

(1− σ)4R4
‖v‖L2 +

ε

(1− σ)3R3
‖∇v‖L2 (3.21)

+
ε

(1− σ)2R2
‖Δv‖L2 +

ε

(1− σ)R
‖∇Δv‖L2 .

The treatment of the first three terms on the right follows from the interpolation
technique in [13, p.236]. Keeping the rest of the terms on the right and using a
covering argument we arrive at (3.16). Since Ω′ is compact it will only take a finite
number of balls to cover Ω′. Thus, the estimate does not depend on R.

To show (3.17), using the same η as prescribed above we first recover a similar
estimate to (3.18) for (3.17):

√
ε‖Δv‖L2(BσR)+

√
λ‖∇v‖L2(BσR)

� ‖Lε(ηv)‖H−1(Bσ′R)

= ‖εΔ2(ηv)−A : D2(ηv)‖H−1(Bσ′R)

= sup
w∈H1

0 (Bσ′R)
w �≡0

(εΔ2(ηv)−A : D2(ηv), w)

‖∇w‖L2(Bσ′R)
.

(3.22)

Let w ∈ H1
0 (Bσ′R)). By integration by parts we have

(εΔ2(ηv)−A : D2(ηv), w) = −ε(∇Δ(ηv),∇w)− (A : D2(ηv), w)

:= εI1 + I2.
(3.23)

We first focus on I2. Expanding ∇Δ(ηv) similar to (3.19) and integrating by parts



176 X. FENG, T. LEWIS, AND S. SCHNAKE

gives us

I1 = −(∇Δ(ηv),∇w) (3.24)

= −(η∇Δv,∇w)− (3Δv∇η + 3Δη∇v + uε∇Δη,∇w)

= (div(η∇Δv), w)− (3Δv∇η + 3Δη∇v + uε∇Δη,∇w)

= (Δ2v, ηw) + (∇Δv,∇ηw)− (3Δv∇η + 3Δη∇v + uε∇Δη,∇w)

= (Δ2v, ηw)− (Δv, div(∇ηw))− (3Δv∇η + 3Δη∇v + uε∇Δη,∇w)

= (Δ2v, ηw)− (Δv, wΔη +∇η · ∇w)− (3Δv∇η + 3Δη∇v + v∇Δη,∇w)

� (Δ2v, ηw) +

(
1

(1− σ)2R2
‖Δv‖L2 +

1

(1− σ)2R2
‖∇v‖L2

+
1

(1− σ)3R3
‖v‖L2

)
‖∇w‖L2 .

Using (3.20) on I2, we get

I2 = −(A : D2(ηv), w) (3.25)

= −(ηA : D2v + 2A∇v · ∇η + vA : D2η, w)

� −(A : D2v, ηw) +

(
1

(1− σ)R
‖∇v‖L2 +

1

(1− σ)2R2
‖v‖L2

)
‖∇w‖L2 .

Combining (3.24) and (3.25) with (3.23) gives us

√
ε‖Δv‖L2(BσR)+

√
λ‖∇v‖L2(BσR)

� ‖Lεv‖H−1(Ω) +
1

(1− σ)R
‖∇v‖L2 +

1

(1− σ)2R2
‖v‖L2

+
ε

(1− σ)3R3
‖v‖L2 +

ε

(1− σ)2R2
‖∇v‖L2

+
ε

(1− σ)2R2
‖Δv‖L2 .

(3.26)

Following a similar treatment as (3.21), we arrive at (3.17). The proof is complete.

We now desire a global estimate instead of an interior estimate.

Lemma 3.7. Let ∂Ω ∈ C2,1 and v ∈ H. The following estimates hold:
√
ε‖∇Δv‖L2(Ω) +

√
λ‖D2v‖L2(Ω) � ‖Lεv‖L2(Ω) + ‖v‖L2(Ω) + ε

(
‖∇v‖L2(Ω) (3.27)

+ ‖Δv‖L2(Ω) + ‖∇Δv‖L2(Ω)

)
,

√
ε‖Δv‖L2(Ω) +

√
λ‖∇v‖L2(Ω) � ‖Lεv‖H−1(Ω) + ‖v‖L2(Ω) (3.28)

+ ε(‖∇v‖L2(Ω) + ‖Δv‖L2(Ω)).

Proof. Since ∂Ω ∈ C2,1, for any x0 ∈ ∂Ω, we may flatten ∂Ω near x0 and
use Lemma 3.3 and the proof in Lemma 3.5 to create a local boundary estimate
mimicking (3.14) and (3.15). Following the same argument as in Lemma 3.6 we can
obtain estimates (3.16) and (3.17) near the boundary. These estimates combined with
(3.16) and (3.17) give us (3.27) and (3.28). The proof is complete.

Now we must deal with the terms involving ε on the right hand side of (3.27) and
(3.29). Noting that ε/

√
ε → 0 as ε → 0, we may hide these terms for ε sufficiently

small.
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Lemma 3.8. Let ∂Ω ∈ C2,1 and v ∈ H. There exits ε0 > 0 such that for any
ε < ε0 the following estimates hold:

√
ε‖∇Δv‖L2(Ω) +

√
λ‖D2v‖L2(Ω) +

√
λ‖∇v‖L2(Ω) � ‖Lεv‖L2(Ω) + ‖v‖L2(Ω), (3.29)

√
ε‖Δv‖L2(Ω) +

√
λ‖∇v‖L2(Ω) � ‖Lεv‖H−1(Ω) + ‖v‖L2(Ω). (3.30)

Proof. Adding (3.27) and (3.28) and noting that ‖Lεv‖H−1(Ω) ≤ ‖Lεv‖L2(Ω) yields

√
ε‖∇Δv‖L2(Ω) +

√
ε‖Δv‖L2(Ω) +

√
λ‖D2v‖L2(Ω) +

√
λ‖∇v‖L2(Ω) (3.31)

≤ C
(
‖Lεv‖L2(Ω) + ‖v‖L2(Ω) + ε(‖∇v‖L2(Ω) + ‖Δv‖L2(Ω) + ‖∇Δv‖L2(Ω))

)
,

where C is independent of ε. Choosing ε0 = min{4/C2,
√
λ/(2C)} gives us Cε <

√
ε/2

and Cε <
√
λ/2 for all ε < ε0. Letting ε < ε0, we can move the terms with coefficient

ε on the right hand side of (3.31) and obtain

√
ε‖∇Δv‖L2(Ω) +

√
ε‖Δv‖L2(Ω)+

√
λ‖D2v‖L2(Ω) +

√
λ‖∇v‖L2(Ω)

≤ C
(
‖Lεv‖L2(Ω) + ‖v‖L2(Ω)

)
.

(3.32)

Dropping
√
ε‖Δv‖L2(Ω) gives us (3.29). (3.30) is an immediate consequence of (3.28).

The proof is complete.

We can derive a full stability estimate from Lemma 3.8 through contradiction and
showing that Lε is 1-1.

Lemma 3.9. Let ∂Ω ∈ C2,1 and v ∈ H. For all ε < ε0, we have the following
stability estimate:

√
ε‖∇Δv‖L2(Ω) +

√
λ‖D2v‖L2(Ω) +

√
λ‖∇v‖L2(Ω) ≤ C‖Lεv‖L2(Ω), (3.33)

√
ε‖Δv‖L2(Ω) +

√
λ‖∇v‖L2(Ω) ≤ C‖Lεv‖H−1(Ω), (3.34)

where C in independent of ε and uε.

Proof. Fix ε < ε0. We first show that the operator Lε is 1-1 using eigenvalue
theory. Define H−2(Ω) = (H2(Ω) ∩H1

0 (Ω))
∗ and K : H2(Ω) ∩H1

0 (Ω)→ H−2(Ω) by

(Kw, v) = (Δw,Δv) ∀v ∈ H2(Ω) ∩H1
0 (Ω).

By the elliptic existence theory for fourth order problems, K is invertible with K−1

bounded. We see that the operator Lε = εK + L satisfies

(Lεw, v) = ε(Δw,Δv)− (A : D2w, v) ∀v ∈ H2(Ω) ∩H1
0 (Ω). (3.35)

Thus, a weak solution uε to (Pε) satisfies Lεuε = f in H−2(Ω).
Suppose Lε is not 1-1. Then there exists w �= 0 such that Lεw = Lw+εKw = 0 in

H−2(Ω). Hence, Lw = −K(εw) in H−2(Ω). Since K is invertible we have, K−1Lw =
−εw in H2(Ω). Thus, −ε is an eigenvalue for K−1L. Since K−1 is a symmetric and
compact operator, its eigenvalues are positive and tend to 0. Moreover, the eigenvalues
of L, while complex, have real parts greater than some positive constant r [7, p.361].
Since K−1 is positive definite, repeating the proof given in [7, p.361], we can show
that the eigenvalues of K−1L must have positive real parts (one may verify easily the
conclusion in the finite-dimensional case). Thus −ε cannot be an eigenvalue, which
is a contradiction. Hence, Lε must be 1-1.
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To show (3.33) we argue by contradiction. Suppose that, for all k ∈ N, there
exists vk ∈ H with ‖vk‖L2(Ω) = 1 and ‖Lεvk‖L2(Ω) → 0 as k → ∞. By Lemma 3.8
we have

√
ε‖∇Δvk‖L2(Ω) + ‖vk‖H2(Ω) is uniformly bounded in k. Thus, we way may

extract a convergent subsequence (not relabeled) and a v∗ ∈ H such that vk ⇀ v∗
weakly in H and

√
ε‖∇Δv∗‖L2(Ω) + ‖v∗‖H2(Ω) > 0. Moreover, since vk ⇀ v∗ and Lε

is linear, we have Lεvk ⇀ Lεv∗ in H−2(Ω) and

0 ≤ ‖Lεv∗‖H−2(Ω) ≤ lim inf
k→∞

‖Lεvk‖H−2(Ω) ≤ lim inf
k→∞

‖Lεvk‖L2(Ω) = 0.

Thus, ‖Lεv∗‖H−2(Ω) = 0 and consequently Lεv∗ = 0 in H−2(Ω). Clearly uε ≡ 0 is a
solution to (Pε) when f ≡ 0. Since Lε is 1-1, then v∗ = 0 in H which is a contradiction
to the fact that

√
ε‖∇Δv∗‖L2(Ω) + ‖v∗‖H2(Ω) > 0. The proof is complete.

We are now ready to show the well-posedness of Lε.

Theorem 3.10. Let ε < ε0 and ∂Ω ∈ C2,1. Then, for every f ∈ L2(Ω), there
exists a unique weak solution uε ∈ H to (Pε). Moreover, the weak solution satisfies

√
ε‖∇Δuε‖L2(Ω) +

√
λ‖D2uε‖L2(Ω) +

√
λ‖∇uε‖L2(Ω) ≤ C‖f‖L2(Ω), (3.36)

√
ε‖Δuε‖L2(Ω) +

√
λ‖∇uε‖L2(Ω) ≤ C‖f‖H−1(Ω). (3.37)

Proof. We approximate A by Ak ∈ [C1(Ω)]n×n, where Ak → A uniformly in Ω.
Since Ak is differentiable,

−Ak : D2v = − div(Ak∇v) + div(Ak) · ∇v,

which converts the non-divergence operator into a sum of a diffusion operator and an
advection operator. Consider weak solutions to the problem

εΔ2v − div(Ak∇v) + div(Ak) · ∇v = f in Ω,

v = 0 on ∂Ω,

Δv = 0 on ∂Ω.

(3.38)

By the fourth-order elliptic PDE theory [1, Chapter 8], there is a weak solution
uε
k ∈ H2(Ω)∩H1

0 (Ω) to (3.38). Moreover, uε
k ∈ H since ∂Ω ∈ C2,1 and, by Lemma 3.9,

uε
k satisfies

√
ε‖∇Δuε

k‖L2(Ω) +
√
λ‖D2uε

k‖L2(Ω) +
√
λ‖∇uε

k‖L2(Ω) � ‖f‖L2(Ω), (3.40)
√
ε‖Δuε

k‖L2(Ω) +
√
λ‖∇uε

k‖L2(Ω) � ‖f‖H−1(Ω). (3.41)

Thus, {uε
k}k is bounded in H, and it follows that uε

k weakly converges to some uε ∈ H.
By the linearity of the PDE, uε is a weak solution of (Pε). Since Lε is 1-1, the solution
uε is unique. Taking the lim inf as k → ∞ of (3.40) and (3.41) we arrive at (3.36)
and (3.37). The proof is complete.

Remark 3.1. In the above three lemmas we require that ∂Ω ∈ C2,1. This is
imposed in order to achieve the global estimates using a boundary flattening tech-
nique. More precisely, we use the assumption to preserve ‖∇Δv‖L2 when flattening
the boundary, ∂Ω. Thus, to guarantee uε ∈ H, we need ∂Ω ∈ C2,1. We note that if
∂Ω ∈ C1,1, the argument still works, but all ‖∇Δv‖L2 terms must be dropped imply-
ing uε is only in H2. This does not affect convergence but does affect the H1 error
estimate in Theorem 3.13 below.
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We now prove the convergence of the solutions uε → u, where u is a strong
solution to (P ). We also give an H1 stability result which will be useful for the
numerical discretization of (P ) and has not yet been obtained in the literature.

Theorem 3.11. Let ε < ε0 and uε be the solution to (Pε). Then uε converges
to u ∈ H2(Ω) ∩ H1

0 (Ω) weakly in H2(Ω), where u is the strong solution to (P ) with
b, c ≡ 0. Moreover, we have the following H1 stability result for L:

‖∇u‖L2(Ω) � ‖Lu‖H−1(Ω). (3.42)

Proof. Since Lεuε = f in Ω and uε = 0 on ∂Ω, we have the boundedness of
‖uε‖H2(Ω) from the Poincaré inequality and Lemma 3.9. By compactness we can
extract a subsequence {uε} (not relabeled) and u∗ ∈ H2(Ω)∩H1

0 (Ω) such that uε ⇀ u∗

weakly in H2(Ω). Moreover, since Lεuε = f , we have for any ϕ ∈ C∞
0 (Ω)

ε(Δuε,Δϕ)− (A : D2uε, ϕ) = (f, ϕ). (3.43)

Since ε(Δuε,Δϕ) ≤ ε‖Δuε‖L2(Ω)‖Δϕ‖L2(Ω) → 0 as ε→ 0, letting ε→ 0 in (3.43) we
obtain

−(A : D2u∗, ϕ) = (f, ϕ) ∀ϕ ∈ C∞
0 (Ω). (3.44)

Thus, u∗ is a strong solution to (P ). Since L is 1-1, we have u∗ = u, and the whole
sequence uε ⇀ u as ε→ 0.

We now derive (3.42). Since ‖Lεuε‖H−1(Ω) = ‖f‖H−1(Ω) is constant with respect
to ε, we take the lim inf of (3.34) and use uε ⇀ u to obtain

‖Lu‖H−1(Ω) = lim inf
ε→0

‖Lεuε‖H−1(Ω)

� lim inf
ε→0

(√
ε‖Δuε‖L2(Ω) +

√
λ‖∇uε‖L2(Ω)

)
� lim inf

ε→0

√
ε‖Δuε‖L2(Ω) + lim inf

ε→0

√
λ‖∇uε‖L2(Ω)

� ‖∇u‖L2(Ω).

The proof is complete.

Now that we have the existence and convergence of uε to the strong solution u of
(P ), in H2(Ω), we note that indeed the regularity of uε can be higher than u – up to
H4 dependent on the smoothness of ∂Ω – and is shown in the theorem below.

Theorem 3.12. Let ε < ε0, ∂Ω ∈ C3, and uε ∈ H be the weak solution to (Pε).
Then uε ∈ H3(Ω) with

ε‖uε‖H3(Ω) � ‖f‖L2(Ω). (3.45)

Moreover, if ∂Ω ∈ C4, then uε ∈ H4(Ω) with the estimate

ε‖uε‖H4(Ω) � ‖f‖L2(Ω). (3.46)

Proof. Since uε ∈ H2(Ω)∩H1
0 (Ω) and A ∈ [L∞(Ω)]d×d, then A : D2uε+f ∈ L2(Ω)

with ‖A : D2uε + f‖L2(Ω) � ‖f‖L2(Ω). Moreover, since uε ∈ H is weak solution to
(Pε), we have

ε(Δuε,Δv) = (A : D2uε + f, v)
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Thus uε is the weak solution to the biharmonic equation

εΔ2uε = A0 : D2uε + f in Ω,

uε = Δuε = 0 on ∂Ω,

and the smoothness of uε is entirely dependent on the smoothness of ∂Ω, and the
desired estimates (3.45)-(3.46) follow from the elliptic theory for the biharmonic equa-
tion. The proof is complete.

We conclude this section with some error estimates of uε − u in various norms.

Theorem 3.13. Let ε < ε0, u ∈ H2(Ω)∩H1
0 (Ω), and uε ∈ H be the solutions to

(P ) and (Pε), respectively. Then we have the following error estimates:

‖∇(uε − u)‖L2(Ω) �
√
ε‖f‖L2(Ω), (3.47)

‖uε − u‖L2(Ω) �
√
ε‖f‖L2(Ω). (3.48)

Proof. Let eε = uε − u. By the linearity of L we get Leε = εΔ2uε ∈ H−1(Ω)
since uε ∈ H. Using (3.42) and (3.36), we have

‖∇eε‖L2(Ω) � ε‖Δ2uε‖H−1(Ω)

= sup
v∈H1

0 (Ω)

−ε(∇Δuε,∇v)

‖∇v‖L2(Ω)

≤ ε‖∇Δuε‖L2(Ω)

�
√
ε‖f‖L2(Ω),

which infers (3.47). Poincaré’s inequality yields (3.48). The proof is complete.

We note that the rates in Theorem 3.13 may be suboptimal based on the numerical
experiments provided below.

4. C1 Finite Element Methods for Second Order Elliptic Linear PDEs
in Non-Divergence Form. Since the highest order derivative of (Pε) is in diver-
gence form, we can easily and naturally discretize it using C1 conforming finite element
methods.

Definition 4.1. We define our C1 finite element method for (Pε) as seeking
uε
h ∈ Vh such that

Aε(uε
h, vh) = (f, vh) ∀vh ∈ Vh, (4.1)

where

Aε(wh, vh) := ε
(
Δwh,Δvh

)
−
(
A : D2wh, vh

)
.

4.1. Well-posedness of Lε
h. In this subsection, we show the well-posedness of

Problem (4.1). We define the operator Lε
h : Vh → Vh by

(Lε
hvh, wh) = Aε(vh, wh) ∀wh ∈ Vh.

We can also naturally extend the domain of Lε
h to H2(Ω) ∩H1

0 (Ω).



THE VMM FOR NON-DIVESRGENCE FORM ELLIPTIC PDES 181

We assume that there is a unique weak solution uε ∈ H2(Ω)∩H1
0 (Ω) of (Pε) and

that the operator Lε satisfies the Calderon-Zygmond estimate

‖v‖H2(Ω) � ‖Lεv‖L2(Ω). (4.2)

We note that Theorem 3.10 implies this result provided ∂Ω ∈ C2,1 and ε is sufficiently
small.

Our goal is to derive a similar estimate to (4.2) for Lε
h, that is,

‖vh‖H2(Ω) � ‖Lε
hvh‖L2

h(Ω) ∀vh ∈ Vh. (4.3)

To this end, we will adapt the freezing coefficient technique as in Section 3.2 but at
the discrete level. Section 4.1.1 shows (4.3) for constant coefficient A which will be
used in Section 4.1.2 to give us (4.3).

4.1.1. Stability Analysis of Lε
h for Constant Coefficient A. Suppose that

A = A0 ≡ A(x0) for an x0 ∈ Ω. Since A is constant, we have A : D2vh = div(A∇vh)
for all vh ∈ Vh. Thus, we can define Lε

0,h : Vh → Vh by(
Lε
0,hvh, wh

)
= Aε

0(vh, wh) ∀wh ∈ Vh,

where

Aε
0(vh, wh) := ε

(
Δvh,Δwh

)
+
(
A∇vh,∇wh

)
.

Since Aε
0(vh, wh) is clearly continuous and coercive on Vh with the norm

‖wh‖2E := ε‖Δwh‖2L2(Ω) + ‖∇wh‖2L2(Ω),

we have the existence and uniqueness of a solution uε
h satisfying(

Lε
0,hu

ε
h, wh

)
= (f, wh) ∀wh ∈ Vh (4.4)

and the estimate

‖uε
h − uε‖E � hr−2(

√
ε+ h)‖uε‖Hs(Ω), (4.5)

where r = min{s, k + 1} and uε ∈ Hs(Ω) is the solution to

Aε
0(u

ε, v) = (f, w) ∀w ∈ H2(Ω) ∩H1
0 (Ω). (4.6)

With all of the above in place, we can now show (4.3) for Lε
0,h.

Theorem 4.1. Suppose ε = O(hβ) with β ≥ 2. Then there holds

‖wh‖H2(Ω) � ‖Lε
0,hwh‖L2(Ω) ∀wh ∈ Vh. (4.7)

Proof. We first note that (4.7) is equivalent to

‖(Lε
0,h)

−1ϕh‖H2(Ω) � ‖ϕh‖L2(Ω) ∀ϕh ∈ Vh. (4.8)

Fix ϕh ∈ Vh, and let wε be the weak solution to (4.6) with f = ϕh and wh =
(Lε

0,h)
−1ϕh ∈ Vh. Since wε is a weak solution of (4.6), we have wε ∈ H2(Ω) ∩H1

0 (Ω)
with

‖wε‖H2(Ω) � ‖ϕh‖L2(Ω) (4.9)
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by (4.2). Since wε
h satisfies

Aε
0(w

ε
h, vh) = (ϕh, vh) ∀vh ∈ Vh,

we can apply (4.5) to get

‖∇(wε − wε
h)‖L2(Ω) ≤ ‖wε − wε

h‖E � (
√
ε+ h)‖wε‖H2(Ω) � h‖ϕh‖L2(Ω). (4.10)

Let I1h denote the P1 continuous finite element interpolation operator on Th. By the
finite element interpolation theory, we have

‖∇(wε − I1hw
ε)‖L2(Ω) � h‖wε‖H2(Ω) � h‖ϕh‖L2(Ω), (4.11)

Let ‖ · ‖H2(Th) denote the piecewise H2-norm on Th. From (4.10), (4.11), the
triangle inequality, and an inverse inequality, we have

‖wε − wε
h‖H2(Ω) � ‖wε − I1hw

ε‖H2(Th) + ‖I1hwε − wε
h‖H2(Th)

� ‖wε‖H2(Ω) +
1

h
‖∇(I1hw

ε − wε
h)‖L2(Ω)

� ‖ϕh‖L2(Ω) +
1

h
‖∇(I1hw

ε − wε)‖L2(Ω) +
1

h
‖∇(wε − wε

h)‖L2(Ω)

� ‖ϕh‖L2(Ω).

Hence,

‖wε
h‖H2(Ω) ≤ ‖wε − wε

h‖H2(Ω) + ‖wε‖H2(Ω) � ‖ϕh‖L2(Ω).

Since wε
h = (Lε

0,h)
−1ϕh, we have (4.5). The proof is complete.

4.1.2. Stability Analysis of Lε
h for Continuous Coefficient A. We need

some estimates before continuing with the freezing coefficient argument. The first is
to show Lε

h is bounded independent of h which is a result of the following lemma.

Lemma 4.2. Let ε = O(hβ) for β ≥ 2 and D ⊆ Ω be a subdomain. Then, for
any v ∈ H2(D) ∩H1

0 (D), there holds

‖Lε
hv‖L2

h(D) � ‖v‖H2(D). (4.12)

Proof. Let wh ∈ Vh(D). By Hölder’s inequality and an inverse inequality we have(
Lε
hv, wh

)
= Aε(v, wh) = ε(Δv,Δwh)− (A : D2v, wh) (4.13)

� hβ‖v‖H2(D)‖wh‖H2(D) + ‖A‖L∞(D)‖v‖H2(D)‖wh‖L2(D)

� hβ−2‖v‖H2(D)‖wh‖L2(D) + ‖v‖H2(D)‖wh‖L2(D)

� ‖v‖H2(D)‖wh‖L2(D).

Diving both sides of (4.13) by ‖wh‖L2(D) yields (4.12). The proof is complete.

Next we need to show that Lε
0,h and Lε

h are locally close to each other.

Lemma 4.3. Let x0 ∈ Ω and let δ > 0. Then there exists Rδ > 0 and hδ > 0
such that

‖(Lε
0,h − Lε

h)vh‖L2
h(BRδ

) � δ‖vh‖H2(BRδ
) ∀vh ∈ Vh(BRδ

), (4.14)
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where BRδ
is the ball of radius Rδ centered at x0 and h < hδ.

Proof. Since A is continuous and Ω is compact, it is uniformly continuous on Ω.
Thus, given δ > 0, there exists Rδ > 0 such that

‖A0 −A‖L∞(BRδ
) ≤ δ. (4.15)

Choose hδ such that Vh(BRδ
) is nontrivial. Let wh ∈ Vh(BRδ

) with wh �= 0. Then(
(Lε

0,h − Lε
h)vh, wh

)
=

(
(A0 −A) : D2vh, wh

)
� ‖A0 −A‖L∞(BRδ

)‖vh‖H2(BRδ
)‖wh‖L2(BRδ

).

Dividing by ‖wh‖L2(B) gives us (4.14). The proof is complete.

Lastly, we state some super approximation results similar to those given in [11].
Since the proof is almost the same by verifying the estimates on each element, we
omit it.

Lemma 4.4. Let Ih be a standard C1 (e.g. Argyris) nodal finite element inter-
polation operator (cf. [3]) and η ∈ C∞(Ω) with ‖η‖W j,∞(Ω) � d−j for 0 ≤ j ≤ k and
some d > 0. Then, for any subdomain D ⊆ Ω, we have

‖ηvh − Ih(ηvh)‖L2(D) �
h

d
‖vh‖L2(D) ∀vh ∈ Vh,

‖ηvh − Ih(ηvh)‖H2(D) �
h

d3
‖vh‖H2(D) ∀vh ∈ Vh.

We also cite the following inverse inequality from [11].

Lemma 4.5. Let vh ∈ Vh(D) where D ⊆ Ω is a subdomain. Then we have

‖vh‖L2(D) � h−1‖vh‖H−1(D).

To follow the freezing coefficient technique from here, we could employ arguments
similar to the likes of Section 3.2.2 to achieve a G̊arding-type estimate similar to (3.33);
namely,

‖vh‖H2(Ω) � ‖Lε
hvh‖L2

h(Ω) + ‖vh‖L2(Ω), (4.16)

which is almost (4.3) aside from the L2 norm of vh on the right hand side. To strip
this term off in the PDE theory, we used the fact that Lε was injective. However,
we do not have the tools available at the discrete level to say the same for Lε

h. To
overcome this difficulty, our idea is to utilize a duality argument in order to achieve
(4.3). Unfortunately, a standard duality argument would require an a-priori stability
estimate of (Lε)∗, the adjoint of Lε, which is unknown at this time. Instead, we apply
the freezing coefficient technique to (Lε

h)
∗, the adjoint of Lε

h, for two reasons. First,
since Lε

h lives on a finite dimensional vector space, the invertibility of Lε
h is equivalent

to the invertibility of (Lε
h)

∗. Second, a duality argument applied to (Lε
h)

∗ uses the
stability of Lε, which we have already proved in Theorem 3.10.

Define (Lε
h)

∗ : Vh → Vh by(
(Lε

h)
∗wh, vh

)
= (Lε

hvh, wh) ∀vh ∈ Vh.



184 X. FENG, T. LEWIS, AND S. SCHNAKE

The entirety of the non-standard duality argument is given in the lemma below.

Lemma 4.6. There exists h0 > 0 such that for all h < h0 and ε = O(hβ) for
some β ≥ 2,

‖vh‖L2(Ω) � ‖(Lε
h)

∗vh‖H−2
h (Ω) ∀vh ∈ Vh. (4.17)

Proof. Since the proof is long, we divide it into three steps.
Step 1: Local Estimates for (Lε

h)
∗. Let x0 ∈ Ω. Given δ > 0, define hδ and

Rδ as in Lemma 4.3. Let h < hδ, R1 = (1/3)Rδ, and B1 be the ball centered at
x0 with radius R1. Let vh ∈ Vh(BR1

). From the assumption on Lε, there exists
ϕε ∈ H2(Ω) ∩H1

0 (Ω) with

Aε
0(ϕ

ε, w) = (vεh, w) ∀w ∈ H2(Ω) ∩H1
0 (Ω)

and

‖ϕε‖H2(Ω) � ‖vh‖L2(Ω) = ‖vh‖L2(B1). (4.18)

We also note that(
Lε
hψ,wh

)
= Aε(ψ,wh) =

(
Lεψ,wh

)
∀ψ ∈ H2(Ω) ∩H1

0 (Ω), wh ∈ Vh. (4.19)

Let ϕε
h = (Lε

0,h)
−1vh ∈ Vh. By (4.19), we have

‖vh‖2L2(B1)
= ‖vh‖L2(Ω) = (vh, vh) = (Lεϕε, vh) = (Lε

hϕ
ε, vh) (4.20)

=
(
Lε
hϕ

ε
h, vh

)
+
(
Lε
h(ϕ

ε − ϕε
h), vh

)
=

(
(Lε

h)
∗vh, ϕ

ε
h

)
+
(
Lε
0,h(ϕ

ε − ϕε
h), vh

)
+
(
(Lε

h − Lε
0,h)(ϕ

ε − ϕε
h), vh

)
.

Since ϕε
h = (Lε

0,h)
−1vh, we obtain the standard Galerkin orthogonality, namely

(Lε
0,h(ϕ

ε − ϕε
h), vh) = Aε

0(ϕ
ε − ϕε

h, vh) = Aε
0(ϕ

ε, vh)−Aε
0(ϕ

ε
h, vh) (4.21)

= (vh, vh)− (vh, vh) = 0.

Moreover, by Theorem 4.1, (4.21), and (4.18), we have

‖ϕε
h‖H2(Ω) � ‖Lε

0,hϕ
ε
h‖L2

h(Ω) ≤ ‖Lε
0,hϕ

ε‖L2
h(Ω) = ‖Lε

0,hϕ
ε‖L2(Ω) (4.22)

� ‖ϕε‖H2(Ω) � ‖vh‖L2(B1).

Employing Lemma 4.3, (4.18), (4.20), and (4.22), we obtain

‖vh‖2L2(B1)
= ((Lε

h)
∗vh, ϕ

ε
h) + ((Lε

h − Lε
0,h)(ϕ

ε − ϕε
h), vh)

≤ ‖(Lε
h)

∗vh‖H−2
h (Ω)‖ϕε

h‖H2(Ω) + ‖(Lε
h − Lε

0,h)(ϕ
ε − ϕε

h)‖L2
h(Ω)‖vh‖L2(Ω)

� ‖(Lε
h)

∗vh‖H−2
h (B1)

‖vh‖L2(B1) + δ‖(ϕε − ϕε
h)‖H2(Ω)‖vh‖L2(B1)

� ‖(Lε
h)

∗vh‖H−2
h (B1)

‖vh‖L2(B1) + δ(‖ϕε‖H2(Ω) + ‖ϕε
h‖H2(Ω))‖vh‖L2(B1)

� ‖(Lε
h)

∗vh‖H−2
h (B1)

‖vh‖L2(B1) + δ‖vh‖2L2(B1)
.
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Taking δ sufficiently small and then dividing both sides by ‖vh‖L2(B1) gives us a local
version of (4.17), that is,

‖vh‖L2(B1) � ‖(Lε
h)

∗vh‖H−2
h (B1)

. (4.23)

Step 2: A G̊arding-type inequality. Let R3 = 3R1, and η ∈ C∞(Ω) be a cutoff
function with the following properties:

0 ≤ η ≤ 1, η
∣∣
B1
≡ 1, η

∣∣
Ω\B2

≡ 0, |η|Wm,∞(Ω) = O(R−m
1 ). (4.24)

Let vh ∈ Vh. By (4.23) we have

‖vh‖L2(B1) = ‖ηvh‖L2(B1) ≤ ‖ηvh − Ih(ηvh)‖L2(B1) + ‖Ih(ηvh)‖L2(B1) (4.25)

� ‖ηvh − Ih(ηvh)‖L2(B1) + ‖(Lε
h)

∗Ih(ηvh)‖H−2
h (B1)

� ‖ηvh − Ih(ηvh)‖L2(B1) + ‖(Lε
h)

∗(Ih(ηvh)− ηvh)‖H−2
h (B1)

+ ‖(Lε
h)

∗ηvh‖H−2
h (B1)

.

Using Lemma 4.2, we have

‖(Lε
h)

∗(Ih(ηvh)− ηvh)‖H−2
h (B1)

= sup
wh∈Vh(B1)

((Lε
h)

∗(Ih(ηvh)− ηvh), wh)

‖wh‖H2(B1)

� sup
wh∈Vh(B1)

(Lε
hwh, (Ih(ηvh)− ηvh))

‖wh‖H2(B1)

� sup
wh∈Vh(B1)

‖Lε
hwh‖L2(B1)‖Ih(ηvh)− ηvh‖L2(B1)

‖wh‖H2(B1)

� sup
wh∈Vh(B1)

‖wh‖H2(B1)‖Ih(ηvh)− ηvh‖L2(B1)

‖wh‖H2(B1)

= ‖Ih(ηvh)− ηvh‖L2(B1).

Thus, (4.25) becomes

‖vh‖L2(B1) � ‖ηvh − Ih(ηvh)‖L2(B1) + ‖(Lε
h)

∗ηvh‖H−2
h (B1)

. (4.26)

Using Lemmas 4.4 and 4.5, we have

‖vh‖L2(B1) �
h

R1
‖vh‖L2(B3) + ‖(Lε

h)
∗ηvh‖H−2

h (B3)
(4.27)

� 1

R1
‖vh‖H−1(B3) + ‖(Lε

h)
∗ηvh‖H−2

h (B3)
.

We now wish to remove η from ‖(Lε
h)

∗ηvh‖H−2
h (B3)

in (4.27). Let wh ∈ Vh(B3) and

decompose (Lε
h)

∗ηvh as follows:(
(Lε

h)
∗(ηvh), wh

)
=

(
Lε
hwh, ηvh

)
(4.28)

=
(
Lε
hwhη, vh

)
+
[(
Lε
hwh, ηvh

)
−
(
Lε
hwhη, v

)]
=

(
Lε
h(Ih(whη)), vh

)
+
(
Lε
h(whη − Ih(whη)), vh

)
+
[
(Lε

hwh, ηvh)− (Lε
hwhη, vh)

]
=: I1 + I2 + I3.
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We now bound each Ii in order. For I1, the stability of Ih and (4.24) give us

I1 =
(
(Lε

h)
∗vh, Ih(ηwh)

)
� ‖(Lε

h)
∗vh‖H−2

h (B3)
‖Ih(ηwh)‖H2(B3) (4.29)

� ‖(Lε
h)

∗vh‖H−2
h (B3)

‖ηwh‖H2(B3)

� 1

R2
1

‖(Lε
h)

∗vh‖H−2
h (B3)

‖wh‖H2(B3).

To bound I2, we use Lemmas 4.4, 4.5, and 4.2 to obtain

I2 � ‖ηwh − Ih(ηwh)‖H2(B3)‖vh‖L2(B3) �
h

R3
1

‖wh‖H2(B3)‖vh‖L2(B3) (4.30)

� 1

R3
1

‖wh‖H2(B3)‖vh‖H−1(B3).

In order to bound I3, we reintroduce the operator Lε
0,h and define Ã = A − A0. We

then write

I3 =
(
Lε
hwh, ηvh

)
−
(
Lε
hwhη, vh

)
(4.31)

=
(
Lε
0,hwh, ηvh

)
−
(
Lε
0,hηwh, vh

)
+
[(
Lε
hwh, ηvh

)
−
(
Lε
hηwh, vh

)
−
(
Lε
0,hwh, ηvh

)
+
(
Lε
0,hηwh, vh

)]
= ε

∫
B3

vhΔwhΔη + 2Δwh(∇η · ∇vh)− whΔηΔvh − 2Δwh(∇η · ∇wh) dx

−
∫
B3

(
whA0 : D2η + (A0 +AT

0 )∇η · ∇wh

)
vh dx

−
∫
B3

(
whÃ : D2η + (Ã+ ÃT )∇η · ∇wh

)
vh dx =: K1 +K2 +K3.

We now must bound each Ki. Since ε < Ch2 for some pure constant C > 0, we bound
K1 using Lemma 4.5, standard inverse inequalities, and (4.24) as follows:

K1 � h2

R2
1

‖vh‖L2(B3)‖wh‖H2(B3) +
h2

R1
‖vh‖H1(B3)‖wh‖H2(B3) (4.32)

+ h2‖Δvh‖H−1(B3)‖whΔη‖H1(B3) + h2‖Δvh‖H−1(B3)‖∇wh · ∇η‖H1(B3)

� h

R2
1

‖vh‖H−1(B3)‖wh‖H2(B3) +
1

R1
‖vh‖H−1(B3)‖wh‖H2(B3)

+
h2

R3
1

‖∇vh‖L2(B3)‖wh‖H2(B3) +
h2

R2
1

‖∇vh‖L2(B3)‖wh‖H2(B3)

� h

R2
1

‖vh‖H−1(B3)‖wh‖H2(B3) +
1

R1
‖vh‖H−1(B3)‖wh‖H2(B3)

+
1

R3
1

‖vh‖H−1(B3)‖wh‖H2(B3) +
1

R2
1

‖vh‖H−1(B3)‖wh‖H2(B3)

� 1

R3
1

‖wh‖H2(B3)‖vh‖H−1(B3).

To bound K2, we have

K2 �
(
‖whA0 : D2η‖H1(B3) + ‖(A0 +AT

0 )∇η · ∇wh H1(B3)
)
‖vh‖H−1(B3) (4.33)

� 1

R3
1

‖wh‖H2(B3)‖vh‖H−1(B3).
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Bounding K3 requires Hölder’s inequality and ‖Ã‖L∞(B3) ≤ δ which gives us

K3 �
(
‖whÃ : D2η‖L2(B3) + ‖(Ã+ ÃT )∇η · ∇wh‖L2(B3)

)
‖vh‖L2(B3) (4.34)

� δ

(
1

R2
1

‖wh‖L2(B3) +
1

R1
‖wh‖H1(B3)

)
‖vh‖L2(B3).

From Lemma C.1 of [8] we have

‖wh‖Hl(B3) � R2−l
1 ‖wh‖H2(B3), l = 0, 1. (4.35)

Combining (4.34) and (4.35) yields

K3 � δ‖wh‖H2(B3)‖vh‖L2(B3). (4.36)

From (4.32), (4.33), and (4.36) we get

I3 � 1

R3
1

‖wh‖H2(B3)‖vh‖H−1(B3) + δ‖wh‖H2(B3)‖vh‖L2(B3), (4.37)

and from (4.29), (4.30), and (4.37), we have

(
(Lε

h)
∗(ηvh), wh

)
� 1

R3
1

(
‖(Lε

h)
∗vh‖H−2

h (B3)
+ ‖vh‖H−1(B3)

)
‖wh‖H2(B3)

+ δ‖wh‖H2(B3)‖vh‖L2(B3).

Thus,

‖(Lε
h)

∗(ηvh)‖H−2
h (B3)

� 1

R3
1

(
‖(Lε

h)
∗vh‖H−2

h (B3)
+ ‖vh‖H−1(B3)

)
(4.38)

+ δ‖vh‖H−1(B3).

From (4.27) and (4.38) we obtain

‖vh‖L2(B1) �
1

R3
1

(
‖(Lε

h)
∗vh‖H−2

h (B3)
+ ‖vh‖H−1(B3)

)
+ δ‖vh‖H−1(B3).

Since Ω is compact and δ is independent of R1, by employing a covering argument we
can show that

‖vh‖L2(Ω) �
1

R3
1

(
‖(Lε

h)
∗vh‖H−2

h (Ω) + ‖vh‖H−1(Ω)

)
+ δ‖vh‖H−1(Ω). (4.39)

Choosing δ sufficiently small in (4.39) produces a G̊arding type estimate, namely

‖vh‖L2(Ω) � ‖(Lε
h)

∗vh‖H−2
h (Ω) + ‖vh‖H−1(Ω). (4.40)

Step 3: A nonstandard duality argument. We now wish to remove ‖vh‖H−1(Ω) in
(4.40). To control this term we use a nonstandard duality argument on the operator
(Lε

h)
∗. Let

X =
{
g ∈ H1

0 (Ω) : ‖∇g‖L2(Ω) = 1
}
.
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By the Poincaré inequality, there exists a constant C = C(Ω) such that

‖g‖L2(Ω) ≤ C‖∇g‖L2(Ω) <∞.

Thus, X is precompact in H1(Ω) by Sobolev embedding. Now we define

W =
{
(Lε)−1g : g ∈ X

}
.

Let ϕ ∈W with Lεϕ = g. Then by (4.2) we have

‖ϕ‖H2(Ω) � ‖g‖L2(Ω) <∞. (4.41)

Thus, W is a bounded set in H2(Ω) ∩H1
0 (Ω). Let τ > 0. Then from [15, Lemma 5]

there exists h∗ > 0 only dependent upon τ and the closure of W such that for every
ϕ ∈W and 0 < h ≤ h∗, there exists a ϕh ∈ Vh such that

‖ϕ− ϕh‖H2(Ω) ≤ τ. (4.42)

Note by the triangle inequality, (4.41), and (4.42), we have

‖ϕh‖H2(Ω) ≤ ‖ϕ‖H2(Ω) + ‖ϕh − ϕ‖H2(Ω) � C + τ.

Thus, the set {
ϕh ∈ Vh : ‖ϕh − ϕ‖H2(Ω) ≤ τ

}
is uniformly bounded in ϕ and h. Let g ∈ X and choose ϕg ∈W with Lεϕg = g. For
vh ∈ Vh and ϕh ∈ Vh satisfying (4.42), we have

(vh, g) = (g, vh) (4.43)

= (Lεϕg, vh) = (Lε
hϕg, vh) = (Lε

hϕh, vh) + (Lε
h(ϕg − ϕh), vh)

= ((Lε
h)

∗vh, ϕh) + (Lε
h(ϕg − ϕh), vh)

� ‖(Lε
h)

∗vh‖H−2
h (Ω)‖ϕh‖H2(Ω) + ‖ϕg − ϕh‖H2(Ω)‖vh‖L2(Ω)

� ‖(Lε
h)

∗vh‖H−2
h (Ω) + τ‖vh‖L2(Ω).

Taking the supremum of both sides of (4.43) over g ∈ X gives us

‖vh‖H−1(Ω) � ‖(Lε
h)

∗vh‖H−2
h (Ω) + τ‖vh‖L2(Ω). (4.44)

Combining (4.40) and (4.44) and choosing τ sufficiently small gives us (4.17) upon
taking h0 = min{hδ, h∗}.

Lemma 4.6 allows us to prove the discrete Calderon-Zygmund estimate (4.3).
This is shown in the Lemma below.

Lemma 4.7. Let h0 be from Lemma 4.6 and ε = O(hβ) for some β ≥ 2. Then

‖vh‖H2(Ω) � ‖Lε
hvh‖L2

h(Ω) ∀vh ∈ Vh. (4.45)

Proof. We first show (Lε
h)

∗ is 1-1. Suppose there is a wh ∈ Vh with (Lε
h)

∗wh = 0.
By Lemma 4.6, we have

‖wh‖L2(Ω) � ‖(Lε
h)

∗wh‖H−2
h (Ω) = 0. (4.46)
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Thus wh = 0, and it follows that (Lε
h)

∗ is 1-1. Since (Lε
h)

∗ : Vh → Vh, it is invertible
on Vh. Let vh ∈ Vh. Consider the problem of finding qh ∈ Vh such that(

wh, (Lε
h)

∗qh
)
=

(
D2vh, D

2wh

)
+ (∇vh,∇wh) + (vh, wh). (4.47)

Since (Lε
h)

∗ is invertible, such a qh exits. By (4.17) we have

‖qh‖L2(Ω) � ‖(Lε
h)

∗qh‖H−2
h (Ω) = sup

wh∈Vh

(wh, (Lε
h)

∗qh)

‖wh‖H2(Ω)
(4.48)

� sup
wh∈Vh

(‖D2vh‖L2(Ω)‖D2wh‖L2(Ω) + ‖∇vh‖L2(Ω)‖∇wh‖L2(Ω)

‖wh‖H2(Ω)

+
‖vh‖L2(Ω)‖wh‖L2(Ω)

‖wh‖H2(Ω)

)
� ‖vh‖H2(Ω).

From (4.48) we obtain

‖vh‖2H2(Ω) =
(
D2vh, D

2vh
)
+ (∇vh,∇vh) + (vh, vh) =

(
vh, (Lε

h)
∗qh

)
=

(
Lε
hvh, qh

)
≤ ‖Lε

hvh‖L2
h(Ω)‖qh‖L2(Ω) � ‖Lε

hvh‖L2
h(Ω)‖vh‖H2(Ω). (4.49)

Dividing both sides of (4.49) by ‖vh‖H2(Ω) gives us (4.45). The proof is complete.

We now present the well-posedness of our C1 finite element scheme.

Theorem 4.8. Let h0 be from Lemma 4.6 and ε = O(hβ) for some β ≥ 2. Then
there is a unique uε

h satisfying (4.1) and

‖uε
h‖H2(Ω) � ‖f‖L2(Ω). (4.50)

Proof. From a similar argument to (4.46), we assert that Lε
h is 1-1. Since Lε

h :
Vh → Vh, it is invertible. Thus, given f ∈ L2(Ω), there is a unique uε

h ∈ Vh satisfying
(4.1). By (4.45) we have

‖uε
h‖H2(Ω) � ‖Lε

huh‖L2
h(Ω) = sup

vh∈Vh

(Lε
huh, vh)

‖vh‖L2(Ω)
= sup

vh∈Vh

(f, vh)

‖vh‖L2(Ω)
≤ ‖f‖L2(Ω),

yielding (4.50). The proof is complete.

Since Lε
h is consistent, we have a Céa type estimate which asserts an optimal

convergence in the H2(Ω)-norm:

Theorem 4.9. Suppose ε = O(hβ) for some β ≥ 2. Let uε ∈ H2(Ω) ∩ H1
0 (Ω)

and uε
h ∈ Vh satisfy (4.1) and (3.2), respectively. Then

‖uε − uε
h‖H2(Ω) � inf

vh∈Vh

‖uε − vh‖H2(Ω). (4.51)

Moreover, if uε ∈ Hs(Ω) for s ≥ 2, we have

‖uε − uε
h‖H2(Ω) � hr−2‖uε‖Hr(Ω), (4.52)

where r = min{k + 1, s}.
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Proof. By the consistency of Lε
h, we have the usual Galerkin orthogonality:(

Lε
h(u

ε − uε
h), vh

)
= Aε(uε − uε

h, vh) (4.53)

= (f, vh)− (f, vh) = 0 ∀vh ∈ Vh.

Let vh ∈ Vh. By Theorem 4.8, Lemma 4.2, and (4.53), we have

‖uε
h − vh‖H2(Ω) � ‖Lε

h(u
ε
h − vh)‖L2

h(Ω) = sup
wh∈Vh

(
Lε
h(u

ε
h − vh), wh

)
‖wh‖L2(Ω

(4.54)

� sup
wh∈Vh

(
Lε
h(u

ε − vh), wh

)
‖wh‖L2(Ω)

� ‖Lε
h(u

ε − vh)‖L2
h(Ω)

� ‖uε − vh‖H2(Ω).

Hence, by the triangle inequality and (4.54), we obtain

‖uε − uε
h‖H2(Ω) � ‖uε − vh‖H2(Ω) + ‖uε

h − vh‖H2(Ω) � ‖uε − vh‖H2(Ω). (4.55)

Taking the infimum of (4.55) over all vh ∈ Vh yields (4.51). Estimate (4.52) follows
from taking vh = Ihu and using the standard interpolation estimates. The proof is
complete.

4.2. Numerical Experiments. In this section, we present a series of 2-D nu-
merical tests using the C1-conforming (fifth order) Argyris finite element space. All
of the tests are performed using the COMSOL software package. The first three tests
correspond to choosing the continuous, positive definite matrix

A(x, y) =

[
(2x− y)

1/3
+ 4e2−x 1

2 sin (10xy)− 1
2 (x+ 2)

1/2

1
2 sin (10xy)− 1

2 (x+ 2)
1/2 |y − 2x|1/4 + 3

]
(4.56)

and b, c = 0 in (P ). The fourth test will correspond to choosing a degenerate elliptic
matrix A in (4.1) to gauge the impact of the method for approximating “harder”
problems with viscosity solutions instead of strong solutions. We use a very fine
mesh in all of the tests so that the error is dominated by the vanishing moment
approximation to the PDE problem. We will observe that the error is maximized
along sets where the solution is not as regular and along the boundary due to the
auxiliary boundary condition Δuε = 0. The measured error does not appear to
correspond to sets where the coefficient matrix A is not as well-behaved. We also
observe better rates of convergence with respect to ε than the rates guaranteed by
Theorem 3.13. Numerically we observe linear convergence in the L2-norm.

Test 1. Consider (P ) with A defined by (4.56), Ω = (−2, 2) × (−2, 2), and

solution u(x, y) = 1
6

∣∣x∣∣3 cos(y), where f and g are chosen accordingly. The given test
problem has a solution in H3(Ω), where the third-order partial derivative with respect
to x is discontinuous along the line x = 0. The results for varying ε can be found
in Table 4.1. We can also see from Figure 4.1 that the error is largest along the line
x = 0, as expected.

Test 2. Consider (P ) with A defined by (4.56), Ω = (−2, 2) × (−2, 2), and
solution u(x, y) = 1

2x
∣∣x∣∣ cos(y), where f and g are chosen accordingly. The given test

problem has a solution in H2(Ω), where the second-order derivative is discontinuous
along the line x = 0. The results for varying ε can be found in Table 4.2. Figure 4.2
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Table 4.1: Rates of convergence for Test 1 using the vanishing moment method.

ε ‖uε
h − u‖L2(Ω) Order ‖∇ (uε

h − u)‖L2(Ω) Order ‖Δ(uε
h − u)‖L2(Ω) Order

4e-2 9.44e-3 2.25e-2 2.55e-1
2e-2 4.89e-3 0.95 1.32e-2 0.76 2.15e-1 0.24
1e-2 2.50e-3 0.96 7.84e-3 0.76 1.82e-1 0.24
5e-3 1.27e-3 0.98 4.64e-3 0.76 1.54e-1 0.25
2.5e-7 1.65e-7 2.09e-5 3.80e-3

(a) uε
h. (b) Δ

(
u− uε

h

)
.

Fig. 4.1: Computed solution and corresponding error for Test 1 using the vanishing moment
method.

shows that the error is once again largest along the line x = 0. The figure also shows
the boundary layer due to the high-order auxiliary boundary condition.

Test 3. Consider (P ) with A defined by (4.56), Ω = B2(0) (the ball of radius 2
centered at the origin), and solution u(x, y) = (x − y)8/3, where f and g are chosen
accordingly. Observe that the solution is once again in H2(Ω), where the second order
derivatives have a cusp along the line x = y. The results for varying ε can be found
in Table 4.3. We can also see the finite element method does not converge to u when
using ε = 0, which verifies the fact that trivial H2 conforming finite element methods
do not work in general for second order linear problems of non-divergence form even
when approximating an H2 solution. The plot of an approximation can be found in
Figure 4.3.

It should be noted that for many biharmonic problems with the simply supported
boundary condition, approximating the circular domain Ω by a sequence of inscribed
polygonal domains {Ωh}, as we have done in this numerical test, can lead to the so-
called Babuška’s paradox [2, 6] in the sense that the limiting solution may not satisfy
the simply supported boundary condition on the circular boundary but, instead, sat-
isfies the clamped boundary condition. As a result, problems with this paradox fail
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Table 4.2: Rates of convergence for Test 2 using the vanishing moment method.

ε ‖uε
h − u‖L2(Ω) Order ‖∇ (uε

h − u)‖L2(Ω) Order ‖Δ(uε
h − u)‖L2(Ω) Order

4e-2 4.30e-3 2.26e-2 3.99e-1
2e-2 2.30e-3 0.90 1.42e-2 0.67 3.38e-1 0.24
1e-2 1.22e-3 0.91 8.79e-3 0.69 2.86e-1 0.24
5e-7 2.25e-4 9.09e-4 1.07e-1

(a) uε
h. (b) Δ

(
u− uε

h

)
.

Fig. 4.2: Computed solution and corresponding error for Test 2 using the vanishing moment
method.

to converge (due to the failed convergence of the simply supported boundary condi-
tion) as the approximate polygonal domains {Ωh} converge in measure to the curved
boundary domain Ω. However, we observe from this numerical test that the appli-
cation of the VMM with an artificial simply supported boundary condition does not
suffer the Babuška’s paradox, as seen from the error u−uε

h; this is largely because we
are driving ε→ 0 in tandem with h. Also, the flexibility of the VMM allows alternate
choices for the auxiliary boundary condition such as a clamped BC to be used because
its convergence does not depend on the choice of the artificial (higher order) boundary
condition. As such, the VMM provides a built-in mechanism to completely avoid the
difficulties associated with the Babuška’s paradox.

Table 4.3: Rates of convergence for Test 3 using the vanishing moment method.

ε ‖uε
h − u‖L2(Ω) Order ‖∇ (uε

h − u)‖L2(Ω) Order ‖Δ(uε
h − u)‖L2(Ω) Order

5e-3 1.98e-2 1.22e-1 4.27
2.5e-3 1.01e-2 0.98 7.32e-2 0.73 3.59 0.25
1.25e-3 5.08e-3 0.98 4.40e-2 0.73 3.03 0.24

0 5.40e3 1.83e6 4.99e8
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Fig. 4.3: Computed solution for Test 3 using the vanishing moment method.

Test 4. Consider (P ) with Ω = (−2, 2)× (−2, 2),

A(x, y) =
16

9

[
x2/3 −x1/3y1/3

−x1/3y1/3 y2/3

]
,

and solution u(x, y) = x4/3 − y4/3 ∈ H1(Ω), where f and g chosen accordingly. For
the above example, we have u /∈ H2(Ω) and A is not uniformly elliptic. Thus, u is
only a viscosity solution, not a strong solution. We see in Table 4.4 that the vanishing
moment method appears to be working, although with unknown deteriorated rates
of convergence. From Figure 4.4, we see that the finite element method with Argyris
finite element space does not work for the given example. Thus, we can see that
the vanishing moment method has strong potential for approximating more general
second order problems that are understood in the viscosity solution framework.

Table 4.4: Rates of convergence for Test 4 using the vanishing moment method.

ε ‖uε
h − u‖L2(Ω) Order ‖∇ (uε

h − u)‖L2(Ω) Order

2e-4 6.89e-2 3.94e-1
1e-4 6.10e-2 0.18 3.53e-1 0.16
5e-5 5.46e-2 0.16 3.15e-1 0.17

REFERENCES

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, American Mathematical Society,
2010.
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