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A DOUGLAS-RACHFORD METHOD FOR SPARSE EXTREME
LEARNING MACHINE*
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Abstract. Operator-splitting methods have gained popularity in various areas of computational
sciences, including machine learning. In this article, we present a novel nonsmooth and nonconvex
formulation and its efficient associated solution algorithm to derive a sparse predictive machine learn-
ing model. The model structure is based on the so-called extreme learning machine with randomly
generated basis. Our computational experiments confirm the efficiency of the proposed method,
when a bold selection of the timestep is made. Comparative tests also indicate interesting results
concerning the use of the lp seminorm for ultimate sparsity.

Key words. Operator-splitting, Douglas-Rachford, extreme learning machine, sparse regular-
ization.
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1. Introduction. Operator-splitting methods have a long and versatile history
in the field of computing [29]. Their origin lies in the solution of boundary value
problems [28, 25, 22, 32], but more recently their role as general algorithmic frame-
works for nonsmooth optimization problems resulting, e.g., from image processing
[53, 46, 15, 59, 45] has increased. Along this line of enlarging interest in these meth-
ods is also Boyd et al. [8], who advanced the adoption of operator-splitting methods in
machine learning, for finite dimensional problems. However, nonconvex problems were
not particularly addressed in this survey. Interestingly, alternation of two basic steps
to solve a nonsmooth optimization problem is also present in clustering algorithms
[33].

Peaceman-Rachford [47] and Douglas-Rachford (DR) [19] methods are among
classical operator-splitting approaches (see [31], Sections 2.4-2.5). Their convergence
and rate or convergence for a special case of the sum of two discrete operators A(u)+ B,
a monotone and a coercive one, was analyzed in [27]. The convergence analysis
concluded the dependence of the best timestep At on the eigenvalues of the coercive
operator B, but the numerical experiments were concluded as follows: “DR performed
much better, similarly as IE [Implicit Euler], in the examples where the operator A was
defined in lower order spaces (by means of regularity, i.e., differentiability) than B”.
The work in this article builds on these preliminaries, and suggests to use Douglas-
Rachford operator-splitting method for an optimization problem in machine learning
having some similarity with the operators just discussed. To use DR follows also the
suggestion as given in Remark 13 in [31].

The Douglas-Rachford method has been analyzed and used in the context of
various problems. General convergence results for the sum of two monotone operators
were provided in [41], [20], and [51]. The inverse problem related to signal recovery,
modeled as the minimization of the sum of two lower semicontinuous convex functions,
was addressed in [16]. DR for image denoising with multiplicative Gamma noise and
bounded variation regularization, with a proof of convergence, was considered in [50].
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In [49], interpretation of the alternating split Bregman method for image processing
as a DR splitting algorithm was provided. More recently, He and Yuan [34] proved a
worst-case convergence rate of DR, measured by the iteration complexity, for the sum
of two maximal monotone set-valued operators. Mathematical study on the effects of
the order of the two operators in DR was given in [3].

Sparsity of models is a useful target in many applications, in an attempt to use
as simple model, with sufficient prediction accuracy, as possible ("occam’s razor”, see
[7]). Often this has meant the use of l1-norm, whose purpose is to prefer a small set of
active, nonzero model parameters. A thorough treatments of the basis pursuit (BP)
techniques, i.e., sparse recovery of the most important coefficients in an overcomplete
collection of parameterized waveforms using the minimal [; norm, was given in [14].
Soft-thresholding based projection algorithms for image restoration with the /1-norm
were suggested in [5]. The fast iterative shrinkage-thresholding algorithm (FISTA) for
solving sparse linear inverse problems efficiently, by using shrinkage of the gradient-
descent step, was then suggested in [4]. Note that if the Lipschitz constant of the
smooth, linear operator is not known, the algorihm needs to be safeguarded with
backtracking to ensure descend and global convergence. Zhang et al. [56] provided
convergence analysis of two general primal-dual algorithm variants with Bregman
iteration for a class of problems including the Iy regularization term. Fadili and
Starck [21] suggested a Douglas-Rachford/OS method for a linear inverse problem
with nonsmooth l;-regularization. In [55], the [;-norm was used, together with an
alternating direction method with two shrinkage operators, for signal reconstruction.
Repeated simpler substeps for the [1-regularization of a linear problem were also used
in [54].

Direct measurement of nonzero components, in order to prefer minimal number
of them, would mean the use of the l[y-seminorm. Towards this direction, Chartrand
[10] suggested to use a nonconvex regularization of the form [ |Vul?, 0 < p < 1, in
image reconstruction. In connection with the soft-thresholding techniques for the [;-
norm, iterative hard-thresholding based on the /y seminorm was suggested in [6]. The
development of such techniques (see, e.g., [58, 17, 2]) and a proximal hard-thresholding
method are given in [57]. Central to our work was [11], where a maximally sparse low
rank matrix approximation was obtained with [y regularization. For an alternating
direction method, the corresponding shrinkage operator was given analytically in [11],
and then generalized in [52, 13, 12]. A general summary of alternating direction
methods and sparse models in given in [30], Chapters 1, 7-9, and 13. To this end,
the necessity or superiority of Iy compared to I was questioned by Donoho [18], who
showed that in a special linear setting of underdetermined problems, the sparsest
solution can be readily obtained with the /1-norm regularization.

The remainder of this paper, after this general introduction to the field, is as
follows: Section 2 introduces the basic machine learning method, the extreme learning
machine, used in the work. There, also the actual alternating direction method to
obtain a sparse model is presented. The results of computational experiments with
real world data sets are given in Section 3. Conclusions and final remarks are then
presented in Section 4.

2. Methods. In this section, we introduce compactly the basic machine learning
technique and the basic variants of the Douglas-Rachford methods.

2.1. Extreme Learning Machine. Extreme Learning Machine (ELM) is a
scalable machine learning technique with randomly generated nonlinear basis. The
form of basis, or kernel, has a central role in machine learning and in predictive mod-
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els. Introduction of the Radial Basis Function networks (e.g., [48]) showed that the
universal approximation property of neural network, i.e. capability to approximate
unknown nonlinear functions similarly to the classical result of the density of poly-
nomials, does not need a fully adaptable basis. This was the main ingredient of the
Multilayered Perceptrons (see, e.g. [37, 39]), which more recently have evolved into
a large pool of transformation layers of different type in deep learning (see [1] and
articles therein).

ELM, with the basic methodology as described in [36, 35], is currently one of the
key randomized neural network frameworks without kernel adaptation [26]. Universal
approximation properties in a probabilistic sense for ELM were presented in [42, 40].
There, the need of the repeated sampling of the random kernel and the advantage
of the Tikhonov regularization (weight decay in neural network lingo) were shown.
The appeal of the basic ELM lies in the fact that, similarly to many other basically
linear techniques [24], a regularized least-squares problem can be solved to recover
the matrix of weights representing the combination of the generated, random kernel.

A predictive model is based on a given set of input-output samples representing
the behavior of the unknown function. Hence, let {x;, yi}f\il, x; € R™ and y; € R",
be this data referred as the training data. To normalize the range of the initial
transformation, we min-max scale {x;} into the range [0, 1]. In ELM, we associate for
each bias-enlarged input (to shift the random kernel from the origin) %; = [1 x]T €
R™*! the sigmoidal basis function h; = m, where G € R7™*(n0+1) with
(G)i; € U([-1,1]) (uniform distribution on [—1,1]). Here m denotes the number of
basis functions.

To determine the linear combination of the nonlinear generated kernel for function
approximation, let us consider the discrete optimization problem

min J(V),

VGR“ Xm

N n m
TOV) = FOV) (V) = 50 3 VB =il - 33 (SIVal + A1Val) . (1)

i=1 j=1

Notable point in the formulation above, compared to the usual discrete optimization
problems, is to have the unknown in the form of a matrix and not as a vector. From
the application point of view, to determine weights of the linear combination of a
nonlinear basis functions, this is a natural starting point. As will be seen, this choice
carries over the whole set of necessary formulations. Actually matrix would also be
the natural data structure, e.g., in image processing [59, 45].
With the Frobenius product : the variational form of (1) reads as
1 & 1
DJ(W):V=—> (Wh; —y,) - Vh; + —(aW: V + B0|Wi5| : V) =0 (or 3 0).

N ¢4
i=1

Hence, the optimality condition for the solution W € R™*™ of (1) reads as
i(WH—Y)HT+gW+Ei§:8|W~|—O 2)
N m m e RN

where H = {h;}}¥, e R™*¥ and Y = {y;}}¥, € RV (h;’s and y;’s as columns).
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2.2. Douglas-Rachford methods. In relation to (2), let us define

BZZ@\W”| and Ax(W) = (WH Y)HT+ W

=1 j=1
Consider then the following discrete time-dependent problem for At > 0:

Wk+1 _ Wk

AL + A (WHFED) 4 Ay (WEHL) = 0. (3)

Apparently, if W+l — W* as k — oo, we recover a solution satisfying (2).
For W? € R"*™ given, the Douglas-Rachford operator-splitting scheme reads as
follows
1) Solve Wkt1 € R™ ™ from

Wk+1 _ Wk R
— A (W) Ay(WF) =
At
Using the well-known explicit formula for the shrlnkage operator this reduces,
when defining I* = W* — AtA,(W*) and 5 = 88L 1o
WHH! — sgn(I™*) max(0, \Fk\ - A), (4)
where sgn and max are applied componentwise.
2) Define A;(WHH1) = (M + Ag(Wk)) and solve Wkt ¢ Rnxm
from
Wk+1 o Wk

N + A (WFHY 4 Ay (WHHD) = 0.

Hence, “right inverse” the following identity for W++1:
k+1 oAt T wn Ark+1 T
W (1+ —) Ly + AtHHY /N | = W™ — AtA; (WFTY) + YHT/N.

We assume that the size of the problem or the number of basis functions m is such that
the system above can be solved with standard techniques. This basically restrictive
assumption still allows one to address many applications of practical size, for example,
in classification (see Section 3.1 and Table ?7).

To this end, let us consider replacing the nonsmooth regularization [V;;| with the
function 1[V;;|* for 1 > s — 0. As illustrated in Figure 1, this nonconvex function
approaches in the limit case s = 0 the seminorm [y measuring the cardinality of the
kernel, i.e., the number of nonzero (active) basis functions used by ELM. For this
purpose, we modify the regularization part of the cost function (1) as follows:

1 n m a ) /8 A
= EZZ <2|Vz‘j| + 5 1Vil > :
=1 j=1

To cast the Douglas-Rachford method for the non-convex case, we can simply modify
the Step 1. above by using the componentwise s-shrinkage operation [11, 13, 12]

Wht! — sgn(l—‘k) maX(O, |1—‘k‘ - B‘Fk‘s_l)' (5)

Clearly, for s = 1, (5) coincides with (4).
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Fig. 1: INlustrations of the ls-norms for different values of s in 1D (left) and 2D (right).

3. Computational experiments.

3.1. Settings. Reference versions of the techniques from the previous section
were implemented with Matlab (R2015b). The computational experiments were per-
formed with an ordinary laptop computer (64-bit operating system, 2.9 GHz proces-
sor, and 32 GB RAM). Datasets for the tests mostly originate from the UCI machine
learning repository [23], for more thorough depiction see!. We used many of the
datasets from [43, 44] because of their direct availability in a suitable format. All of
the experimental datasets are described in Table ??7. There, N denotes the number
of training and NT the test observations, ng is the size of input vectors and n defines
the number of classes. The output vectors y; were formed with the 1-of-n encoding,
i.e., using the standard basis in R™ of the n classes [38]. As preprocessing, we re-
moved the constant variables (affected variables of MNIST dataset) and, as already
stated, min-max scaled all features into [0,1]. The basic setting for the parameters
was s = 1075, « = 1073, and B = 1076. These were applied for all other cases except
for the two-dimensional input with Border where v = 10~° was used.

Characteristically with the alternating direction methods, key to an efficient per-
formance of the Douglas-Rachford algorithms from the previous section lies in the
selection of the timestep At. Typically the larger is the timestep the faster is the
convergence of a splitting method, although a too large value might lead to a prema-
ture stop in a wrong solution. Here the key observation after preliminary tests was
that in (3) we need to bring the additionally introduced time-dependent term and the
reciprocal of At on the same “computational level”, scale, than the penalization part
of (1). Hence, a proper choice seems to have the form At = f(m, é, %), which, in
particular, emphasizes proper action of the first substep of the DR scheme.

When dealing with boundary value and/or initial value problems, the discretiza-
tion accuracy and stability of the time-integration scheme play a central role in re-
stricting the value of At¢. However, even in such a context, Carthel [9] observed and
experimented cases where very large value of At gave the best rate of convergence.
Hence, our suggestion for the timestep, which was elaborated and experimented heav-
ily before the actual tests reported here, is the following: At = 5-10%-,/m. The
Douglas-Rachford algorithm was iterated as long as the relative error J(W*)/7(W?)

'https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
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Table 1: Description of test datasets.

Dataname N NT no n Depiction
_Yale32 165 - 1024 15 32x32 grayscale face images
_Border 4000 1000 2 _3_ _____ see [43,44]
Outdoor 2400 1600 21 40 see [43, 44]

32 spectral band coefficients
from satellite images

Handwritten digits (10)
from scanned 16x16 images

Spoken letters (26)
with acoustic features

MNIST 60000 10000 666 10  endwritten digits (10)
on 28x28 grayscale images

was decreasing. Maximum number of iterations was restricted to 1000.

In the tests, we incremented the number of basis functions m with the increment
Mine = | N/100] up to the largest size M0 = [2N/3]. WY was generated similarly
to G from the uniform distribution and, for fixed m, the random basis {h;} was
regenerated 10 times as suggested by the reviewed results in [42, 40] - as the final
result reported we chose the smallest error over these ten attempts. The error was
computed as misclassifications-in-percentages, MPC, over the test datasets given in
Table 7?7 (except for Yale32 where we compute and illustrate the training error). As
a reference method, referred as ”BasicELM”, we used the basic Tikhonov regularized
form of the extreme learning machine in (1) with § = 0. This least-squared problem
can be solved directly from (2), similarly to the second step of the DR method in
Section 2.2.

3.2. Results. Illustrative dashboards of the results are given in Appendix A.
For each dataset, we provide the following six figures

1) MPC-error over different values of m for BasicELM (red) and [, (blue) regu-
larization (figures a)

2) Number of DR iterations for /5 regularization over different values of m and
ten reattempts: median number (blue) and 10% and 90% quantiles (dashed
blue) (figures b)

3) Relative componentwise difference |[W1— Wl /||[Ws|lr between the results
with Iy and [, regularization (figures c)

4) Frobenius norms ||[W/||p versus MPC-errors: BasicELM (red) and 5 (blue)
regularization (figures d)

5) Weight distribution in logarithmic scale for I; regularization with the best
value of m in Table ?? (figures e)

6) Weight distribution in logarithmic scale for BasicELM with the best value of
m in Table 7?7 (figures f)

From the numbers of iterations of the Douglas-Rachford method for solving the
nonconvex problem with the [ regularization we conclude good efficiency of the pro-
posed algorithm. In all cases except the Border with o = 1073, very low number
of iterations was sufficient for larger problems. For the largest problem MNIST, we
needed larger number of DR iterations longer, for larger relative sizes of m, compared
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Table 2: Results for the test datasets.

BasicELM ls regularization

Dataname m MPC  F-norm m MPC  F-norm
Yale32 88 0.0 448.1 88 0.0 20.8
Border 770 7.9 4876.7 | 2490 7.8 2776.0
Outdoor 370 40.6 18749 538 36.8 148.7
Landsat 820 11.3 384.9 1405  10.7 127.3
USPS 2784 4.5 9.3 1762 4.3 6.9
Isolet 1585 6.0 775.1 2278 5.3 54.1
MNIST 18010 1.8 2.6 27010 1.8 3.1

to the other datasets. We verified with a reference solver that also the nonconvex
problem was successfully solved in the experiments.

Sizes of the best networks, their accuracies, and Frobenius-norms of the best
weight matrices are summarized in Table ?? for the BasicELM and for [ regularized
problem. From these results and from the corresponding figures in Appendix A we
conclude the following: for most cases (especially Yale32, Outdoor, Landsat, Isolet)
the nonconvex, sparsity favoring regularization yielded to strictly and significantly
smaller set of active nonzero components compared to the BasicELM. In these cases,
the MPC-error was also smaller for the s regularization. However (see figures c), when
comparing the s and [; regularization formulations, the relative difference between
the weights of the corresponding networks remained always very small, of the order
1073 — 10

Except for USPS and MNIST (see figures d in in Appendix A), complexity of the
most accurate ELM in the Frobenius-norm was much smaller for the I, compared to
the BasicELM. The original inputs (before min-max scaling) for USPS and MNIST
are composed of discrete greyscale values of input images, and as shown in Table
?? and in subfigures (e) and (f) of Figures 6 and 8, these datasets do not need large
weights to combine the random kernel. Moreover, for the three datasets (USPS, Isolet,
and MNIST) with the larger input dimension, the training error of the I, regularized
ELM converged to zero during training. Also except for USPS, the best network with
the 5 regularization used larger number of basis functions with smaller complexity
compared to BasicELM. Altogether, the sparse regularization turned out useful to
obtain simpler classifiers and even more accurate classifiers in cases when there are
some errors in the training data. If the classifier is just interpolating the training data
to obtain small error in the test data, like in USPS and MNIST, then restricting the
flexibility of the model using nonsmooth regularization does not pay off.

4. Conclusions. We proposed a novel alternating direction method for a non-
smooth and nonconvex discrete optimization problem in machine learning, for a su-
pervised technique referred as extreme learning machine, to identify weights of a
linear combination of randomly generated sigmoidal kernel. The method was based
on Douglas-Rachford approach with the general shrinkage operator, which yielded to
a unified algorithm for 0 < s < 1.

Our computational experiments confirmed that a bold selection of exceptionally
large value of the timestep At, similarly to [9], yielded to efficient convergence prop-
erties of the algorithm. Concerning the role of the nonconvex regularization to assure
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the most sparse network, our results were mixed. On one hand, we obtained simpler
models with good accuracy compared to the classical, basic ELM with most of the
datasets. On the other hand, the relative difference between the weights obtained
with the [; and [, regularization remained small. Hence, our results seem to support
the results given by Donoho [18], although more experiments to thoroughly compare
these two formulations should be performed in the future.
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Appendix A. Result figures.
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