
METHODS AND APPLICATIONS OF ANALYSIS. c© 2019 International Press
Vol. 26, No. 3, pp. 235–248, September 2019 002

WEIGHTED NONLOCAL TOTAL VARIATION IN IMAGE
PROCESSING∗

HAOHAN LI† , ZUOQIANG SHI‡ , AND XIAO-PING WANG§

Abstract. In this paper, a novel weighted nonlocal total variation (WNTV) method is pro-
posed. Compared to the classical nonlocal total variation methods, our method modifies the energy
functional to introduce a weight to keep balance between the labeled sets and unlabeled sets. With
extensive numerical examples in semi-supervised clustering, image inpaiting and image colorization,
we demonstrate that WNTV provides an effective and efficient method in many image processing
and machine learning problems.
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1. Introduction. Interpolation on point cloud in high dimensional space is a
fundamental problem in many machine learning and image processing applications.
It can be formulated as follows. Let V = {p1, · · · ,pn} be a set of points in R

d and
S = {s1, · · · , sm} be a subset of V . Let u be a function on the point set V and the
value of u on S ⊂ V is given as a function g over S. The goal of the interpolation is
to find the function u on V with the given values on S.

Since the point set V is unstructured in high dimensional space, traditional inter-
polation methods do not apply. In recent years, manifold learning has been demon-
strated to be effective and attract more and more attentions. One basic assumption
in manifold learning is that the point cloud V samples a low dimensional smooth
manifold, M, embedded in R

d. Another assumption is that the interpolation func-
tion u is a smooth function in M. Based on these two assumptions, one popular
approach is to solve u by minimizing the L2 norm of its gradient inM. This gives us
an optimization problem to solve:

min
u
‖∇Mu‖2, subject to: u(x) = g(x), x ∈ S, (1)

with

‖∇Mu‖2 =

(∫
M
|∇Mu(x)|2dx

)1/2

.

This model is closely related to nonlocal methods in image processing [1, 2, 4, 5].
Usually, ∇Mu is approximated by nonlocal gradient

Dyu(x) =
√

w(x,y)(u(y)− u(x)). (2)

Then, the discrete version of (1) is

min
∑

x,y∈V

w(x,y)(u(x)− u(y))2, subject to: u(x) = g(x), x ∈ S, (3)
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from which, we can derive a linear system to solve u on point cloud P , which is given
as follows,

⎧⎨
⎩

∑
y∈V (w(x,y) + w(y,x))(u(x)− u(y)) = 0, x ∈ V \S,

u(x) = g(x), x ∈ S.

This is just the well known nonlocal Laplacian which is widely used in nonlocal meth-
ods of image processing [1, 2, 4, 5]. It is also called graph Laplacian in graph and
machine learning literature [3, 13]. Recently, it was found that, when the sample rate
is low, i.e. |S|/|P | � 1, graph Laplacian method fails to give a smooth interpolation
[12, 11]. Continuous interpolation can be obtained by using point integral method
[12] or weighted nonlocal Laplacian [11].

In many problems, such as data classification or image segmentation, minimizing
the total variation seems to be a better way to compute the interpolation function,
since it prefers piecewise constant solutions. This observation motives another opti-
mization problem:

min ‖u‖TVM , subject to: u(x) = g(x), x ∈ S, (4)

with

‖u‖TVM =

∫
M
|∇Mu(x)|dx.

Total variation model has been studied extensively in image processing since it was
first proposed by Rudin, Osher and Fatemi(ROF) in [10]. It is well known that total
variation has the advantage of preserving edges, which is always preferable because
edges are significant features in the image, and usually indicate boudaries of objects.
Despite its good performance of restoring ”cartoon” part of the image, TV based
methods fail to achieve satisfactory results when texture, or repetative structures, are
present in the image. To address this problem, Buades et al proposed a nonlocal means
method based on patch distances for image denoising [1]. Later, Gilboa and Osher
[4, 5] formalized a systematic framework, include nonlocal total variation model, for
nonlocal image processing.

Using nonlocal gradient to approximate the total variation, we can write down
the discrete version of (4),

min
∑
x∈V

⎛
⎝∑

y∈V

w(x,y)(u(x)− u(y))2

⎞
⎠

1/2

, subject to: u(x) = g(x), x ∈ S. (5)

This problem can be solved efficiently by split Bregman iteration [8, 6]. However, it
was reported in [9], when the sample rate is low, above nonlocal TV model has the
same defect as that in graph Laplacian approach (3). The interpolation obtained by
solving above optimization problem is not continuous on the sample points.

In this paper, inspired by weighted nonlocal Laplacian method proposed in [11],
we propose a weighted nonlocal TV method (WNTV) to fix this discontinuous issue.
The idea is to introduce a weight related to the sample rate to balance the labeled
terms and unlabeled terms. More specifically, we modify model (5) a little bit by
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introducing a weight,

min
u

∑
x∈V \S

(∑
y∈V

ω(x,y)(u(x)− u(y))2
)1/2

+
|V |
|S|

∑
x∈S

(∑
y∈V

ω(x,y)(u(x)− u(y))2
)1/2

,

subject to: u(x) = g(x), x ∈ S.

|V |, |S| are the number of points in sets V and S. This optimization problem also
can be solved by split Bregman iteration. Based on our experience, the convergence
is even faster than the split Bregman iteration in the original nonlocal total variation
model (5). Extensive examples in image inpaiting, semi-supervised learning, image
colorization demonstrate that the weighted nonlocal total variation model has very
good performance. It provides an effective and efficient method for many image
processing and machine learning problem.

The rest of the paper is organized as follows. In section 1, we review the in-
terpolation problem on point cloud, which is typically hard to solve by traditional
interpolation method. Then the weighted nonlocal TV method (WNTV) is intro-
duced in section 2. We apply the split Bregman iteration algorithm to our method,
which is a well-known algorithm to solve a very broad class of L1-regularization prob-
lems. Numerical experiments including semi-supervised clustering, image inpainting
and image colorization are shown in section 3, 4 and 5 respectively. Here we com-
pared our results to those obtained using graph Laplacian, nonlocal TV and weighted
nonlocal Laplacian. Conclusions are made in the section 6.

2. Weighted Nonlocal TV. As introduced at the beginning of the introduc-
tion, we consider an interpolation problem in a high dimentional point cloud. Let
V = {p1, · · · ,pn} be a set of points in R

d and S = {s1, · · · , sm} be a subset of V . u
is a function on V and u(s) = g(s), ∀s ∈ S with given g. We assume that V samples a
smooth manifoldM embedded in R

d and we want to minimize the total variation of u
onM to solve u on the whole point cloud V . Direct nonlocal gradient approximation
gives nonlocal total variation model (5).

When the sample rate is low, the solution of nonlocal total variation model (5) is
not continuous as reported in [9, 11]. As shown in Fig. 1, recovered images by model
(5) are not continuous on sample pixels.

(a) (b)

Fig. 1: Recovered image by Nonlocal TV model (5) from 10% random samples.

To remove the discontinuity, inspired by the weighted nonlocal Laplacian method
proposed by Shi et. al. in [11], we modify the functional in (5) by adding a weight to
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balance the energy between labeled and unlabeled sets:

min
u

∑
x∈V \S

(∑
y∈V

ω(x,y)(u(x)− u(y))2
)1/2

+
|V |
|S|

∑
x∈S

(∑
y∈V

ω(x,y)(u(x)− u(y))2
)1/2

subject to: u(x) = g(x), x ∈ S, (6)

where S is a subset of the vertices set V , and |V |, |S| are the number of points
in sets V and S, respectively. The idea is that when the sample rate is low, the
summation over the unlabeled set overwhelms the summation over the labeled set
such that the continuity on the labeled set is sacrificed. To maintain the continuity of
the interpolation on the labeled points, we introduce a weight to balance the labeled
term and the unlabeled term.

The weighted nonlocal total variation model (WNTV) (6) can be solved by split
Bregman iteration [6]. To simplify the notation, we introduce an operator as follows,

DNGu(x,y) =

⎧⎪⎨
⎪⎩

√
ω(x,y)(u(x)− u(y)), if x ∈ V \S,

|V |
|S|

√
ω(x,y)(u(x)− u(y)), if x ∈ S.

With above operator, WNTV model (6) can be rewritten as

min
u,D

∑
x∈V

⎛
⎝∑

y∈V

|D(x,y)|2
⎞
⎠

1/2

,

subject to: D(x,y) = DNGu(x,y), u(x) = g(x), x ∈ S.

(7)

We then use Bregman iteration to enforce the constraint D(x,y) = DNGu(x,y) to
get a two-step iteration,

(uk+1, Dk+1) = argmin
u,D

∑
x∈V

⎛
⎝∑

y∈V

|D(x,y)|2
⎞
⎠

1/2

+
λ

2

∑
x∈V

∑
y∈V

(
D(x,y)−DNGu(x,y)−Qk(x,y)

)2
,

subject to: u(x) = g(x), x ∈ S. (8)

Qk+1 = Qk + (DNGu
k+1 −Dk+1), (9)

where λ is a positive parameter.
In above iteration, (9) is easy to solve. To solve the minimization problem (8),

we use the idea in the split Bregman iteration to solve u and D alternatively.

uk+1 =argmin
u
||Dk −DNGu−Qk||22, subject to: u(x) = g(x), x ∈ S. (10)

Dk+1 =argmin
D
‖D‖1 + λ

2
||D −DNGu

k+1 −Qk||22. (11)

Qk+1 =Qk + (DNGu
k+1 −Dk+1). (12)

where

‖D‖1 =
∑
x∈V

⎛
⎝∑

y∈V

|D(x,y)|2
⎞
⎠

1/2

.
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The first step is a standard least-squares problem. It is staightforward to see that
uk+1 satisfies a linear system,

∑
y∈V \S

(ω(x,y) + ω(y,x))(u(x)− u(y)) +
∑
y∈S

(
ω(x,y) +

( |V |
|S|
)2

ω(y,x)

)
(u(x)− u(y))

−
∑

y∈V \S

(
(Dk(x,y)−Qk(x,y))

√
ω(x,y)− (Dk(y,x)−Qk(y,x))

√
ω(y,x)

)

−
∑
y∈S

(
(Dk(x,y)−Qk(x,y))

√
ω(x,y)− |V ||S| (D

k(y,x)−Qk(y,x))
√

ω(y,x)

)
= 0,

x ∈ V \S, (13)

u(x) = g(x), x ∈ S. (14)

The linear system (13)-(14) looks like complicated. Its coefficient matrix is sparse,
symmetric and postive definite which can be solved efficiently by conjugate gradient
method.

The minimizer of the optimization problem (11) can be explicitly computed using
shrinkage operators.

Dk+1
x = shrink(DNGxu

k+1 +Qk
x, 1/λ)

where

shrink(z, γ) =
z

||z||2 max(||z||2 − γ, 0).

Summarizing above discussion, we get an iterative algorithm to solve weighted
nonlocal total variation model,

1. Solve (13)-(14) to get uk+1.
2. Compute Dk+1 by

Dk+1(x,y) =
D̄(x,y)⎛

⎝∑
y∈V

|D̄(x,y)|2
⎞
⎠

1/2
max

⎛
⎝√∑

y∈V

|D̄(x,y)|2 − 1

λ
, 0

⎞
⎠

with D̄(x,y) =
√
ω(x,y)(uk+1(x)− uk+1(y)) +Qk(x,y).

3. Update Q by

Qk+1
ij = Qk

ij + ((DNGu
k+1)ij −Dk+1

ij ).

Algorithm 1: Algorithm for WNTV

3. Semi-supervised Clustering. In this section, we test WNTV in a semi-
supervised clustering problem on the famous MNIST data set [7]. The MNIST
database consists of 70,000 grayscale 28×28 pixel images of handwritten digits, see
Fig. 2, which is divided into a training set of 60,000 examples, and a test set of 10,000
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Fig. 2: Some examples in the MNIST handwritten digits dataset

examples. The images include digits from 0 to 9, which can be viewed as 10 classes
segmentation.

From geometrical point of view, 70,000 28×28 images form a point cloud V in
784-dimension Euclidean space. In the tests, we randomly select a small subset S ⊂ V
to label,

S =
l⋃
i

Si,

where Si is a subset of S with label i. Our task here is to label the rest
of unlabeled images. The algorithm we used is summarized in Algorithm 2.

Data: A set of points V with a small subset labeled S =
l⋃
i

Si

Result: labels of the whole points set V
1. Compute the corresponding weight function ω(x,y) for x,y ∈ V ;
for i = 0 : 9 do

2. Compute ui by WNTV using Algorithm 1 with the constraint

ui(x) = 1, x ∈ Si, ui(x) = 0, x ∈ S\Si.

end
3. Label x ∈ V \ S as k when k = arg max

1≤i≤l
ui(x)

Algorithm 2: Semi-Supervised Learning

In our experiment of MNIST dataset, the weight function ω(x,y) is then con-
structed using the Gaussian,

ω(x,y) = exp

(
−‖x− y‖2

σ(x)2

)
,
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Table 1: Rate of correct classification in percentage for MNIST dataset

Methods 700/70000 100/70000 50/70000
WNTV 94.08 89.86 78.35
Nonlcal TV 93.78 32.55 28.00
WNLL 93.25 87.84 73.60
GL 93.15 35.17 20.09

where ‖ · ‖ denotes the Euclidean distance, σ(x) is the distance between x and its
10th nearest neighbor. The weight ω(x,y) is made sparse by setting ω(x,y) equal to
zero if point y is not among the 20th closest points to point x.

From the result of table (1), we can see that with high label rate (700/70000),
all four methods give good classification. Nevertheless, as the label rate is reduced
(100/70000, 50/70000), graph Laplacian and nonlocal TV both fail. The results given
by WNTV and WNLL still have reasonable accuracy. WNTV is slightly better than
WNLL in our tests.

4. Image Inpainting. The problem of fitting the missing pixels of a corrupted
image is always of interest in image processing. This problem can be formulated as an
interpolation problem on point cloud by considering patches of the image. Consider
a discrete image f ∈ R

m×n, around each pixel (i, j), we define a patch pij(f) that is
s1 × s2 collection of pixels of image f . The collection of all patches is defined to be
the patch set P(f) [9],

P(f) = {pij(f) : (i, j) ∈ {1, 2, ...,m} × {1, 2, ..., n}}.

Here P(f) forms a point set V .

Then the image can be viewed as a function u on the point cloud P(f). u is
defined to be the intensity of the central pixel of the patch,

u(pij(f)) = f(i, j),

where f(i, j) is the intensity of pixel (i, j).

Now, given subsample of the image, the problem of image inpainting is to fit
the missing value of u on the patch set P(f). However, this problem is actually
more difficult than the interpolation, since the patches is also unknown. In the image
inpainting, we also need to recover the point cloud in addition to the interpolation
function. We achieve this by a simple iterative scheme. First, we fill in the missing
pixels by random number to get a complete image. For this complete (quality is bad)
image, we construct point cloud by extracting patches. On this point cloud, we run
WNTV to compute an interpolation function. From this interpolation function, we
can construct an image. Then the patch set is updated from this new image. By
repeating this process until convergence, we get the restoration of the image. We
summarize this ideas in algorithm (3).
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Data: A subsampled image
Result: Recovered image u
initialize u0 such that u0

S = fS and D0, Q0 = 0;
while not converge do

1. Construct patch set P(un) from the current recovered image un at step
n;
2. Compute the corresponding weight function ωn(x,y) for x,y ∈ P(un);
3. Compute un+1 by solving system (1),then update image
correspondingly;
4. goto step 1;

end
Algorithm 3: Image Inpainting

4.1. Grayscale image inpainting. We first apply the algorithm to grayscale
images. In this case, we also use Gaussian weight,

ω(x,y) = exp

(
−‖x− y‖2

σ(x)2

)

where ‖x − y‖2 is the Euclidean distance between patches x and y. σ(x) is the
distance between x and its 20th nearest neighbor. The weight ω(x,y) is made sparse
by setting ω(x,y) equal to zero if point y is not among the 50th closest points to
point x. For each pixel, we assign a 11×11 patch around it consisting of intensity
values of pixels in the patch. In order to accelerate the speed of convergence, we use
the semi-local patch by adding the local coordinate to the end of the patches,

pij(I) = [pij , λ1i, λ2j]

where

λ1 =
3||fS ||∞

m
, λ2 =

3||fS ||∞
n

.

An approximate nearest neighbor algorithm (ANN) is used to obtain nearest
neighbors. We use the Peak Signal-to-Noise Ratio (PSNR) to measure the quality of
restored images,

PSNR(u, ugt) = −20 log10(‖u− ugt‖/255)
where u and ugt are the restored image and the original image respectively.

The results are displayed in Fig. 3, 4 and 5. For each image, we fix the number
of iterations to be 10. As we can see, WNTV and WNLL performs much better
than classical nonlocal TV method and graph Laplacian. The results of WNLL are
comparable to proposed WNTV. As expected, WNTV works better for cartoon image
as shown in Fig. 5. Evolutions of PSNR for Barbara image is shown in Fig. 6. As we
can see, WNTV outperforms NTV in PSNR.

4.2. Color Image Inpainting. Now, we apply the algorithm to color images.
The basic settings are similar to the grayscale image examples. In color image, patch
becomes a 3D cube. The size we used is 11× 11× 3. We also use Gaussian weight,

ω(x,y) = exp

(
−‖x− y‖2

σ(x)2

)
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(a) Original Image. (b) 10% Subsample. (c) GL (23.33dB)

(d) NTV (22.85dB). (e) WNLL (25.35dB). (f) WNTV (25.52dB).

Fig. 3: Results of Graph Laplacian (GL), nonlocal TV (NTV), weighted nonlocal Laplacian
(WNLL) and weighted nonlocal TV (WNTV) in image of Barbara.

(a) Original Image. (b) 10% Subsample. (c) GL (18.03dB).

(d) NTV (17.89dB). (e) WNLL (20.28dB). (f) WNTV (20.46dB).

Fig. 4: Results of Graph Laplacian (GL), nonlocal TV (NTV), weighted nonlocal Laplacian
(WNLL) and weighted nonlocal TV (WNTV) in the butterfly image.
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(a) Original Image. (b) Subsampled Image. (c) GL (20.54dB).

(d) NTV (20.93dB). (e) WNLL (22.80dB). (f) WNTV (23.03dB).

Fig. 5: Results of Graph Laplacian (GL), nonlocal TV (NTV), weighted nonlocal Laplacian
(WNLL) and weighted nonlocal TV (WNTV) in the pepper image.

Fig. 6: Evolutions of PSNR with number of iterations.

where ‖x − y‖2 is the Euclidean distance between patches x and y. σ(x) is the
distance between x and its 20th nearest neighbor. The weight ω(x,y) is made sparse
by setting ω(x,y) equal to zero if point y is not among the 50th closest points to
point x. The color image is recovered in RGB channels separately.

We apply our algorithm to Fig. 7(a) and 8(a). Again, WNTV and WNLL out-
perform NTV and GL. In the image of house, in which cartoon dominates, the result
of WNTV is better than WNLL. While in the image of Barbara, WNTV and WNLL
are comparable since this image is rich in textures.

5. Image Colorization. Colorization is the process of adding color to
monochrome images. It is usually done by person who is color expert but still this
process is time consuming and sometimes could be boring. One way to reduce the



WEIGHTED NONLOCAL TOTAL VARIATION IN IMAGE PROCESSING 245

(a) Original Image. (b) 10% Subsample. (c) GL (24.31dB).

(d) NTV (24.38dB). (e) WNLL (26.61dB). (f) WNTV (26.71dB).

Fig. 7: Results of Graph Laplacian (GL), nonlocal TV (NTV), weighted nonlocal Laplacian
(WNLL) and weighted nonlocal TV (WNTV) in the color image of Barbara.

(a) Given Image. (b) 10% Subsample. (c) GL (24.28dB).

(d) NTV (23.81dB). (e) WNLL (26.61dB). (f) WNTV (27.34dB).

Fig. 8: Results of Graph Laplacian, nonlocal TV, weighted Graph Laplacian and weighted
nonlocal TV applied to color house image.
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working load is just adding color in part of the pixels artificially and applying some
colorization method to extend the color to other pixels.

This problem can be natrually formulated as an interpolation on point cloud. The
point cloud is constructed by taking patches from the gray image. On the patches,
we have three functions, uR, uG and uB corresponding to three channels of the color
image. Then WNTV is used to interpolate uR, uG and uB over the whole patch set.
The weight is computed in the same way as that in image inpainting.

(a) Original Color Image. (b) Gray Style Image. (c) GL (16.46dB).

(d) NTV (16.20dB). (e) WNLL (20.32dB). (f) WNTV (20.55dB).

Fig. 9: Results of Graph Laplacian (GL), nonlocal TV (NTV), weighted nonlocal Laplacian
(WNLL) and weighted nonlocal TV (WNTV) in the baboon image colorization from 1%
samples.

The colorization results from 1% samples are demonstrated in Fig. 9, 10 and 11.
Face of the baboon, snow mountains and wings of butterfly are not properly colored in
GL and NTV. The face of baboon are blured. Part of the wings are colored in yellow
by mistake. Snow mountain and text on F16 are also blured. In WNLL and WNTV,
they are all properly colored. In addition, PSNR value also suggest that WNTV has
the best performance.

6. Conclusion. In this paper, we propose a weighted nonlocal total variation
(WNTV) model for interpolations on high dimensional point cloud. This model can
be solved efficiently by split Bregman iteration. Numerical tests in semi-supervised
learning, image inpainting and image colorization demonstrate that WNTV is an
effective and efficient method in image processing and data analysis.
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(a) Original Color Image. (b) Gray Style Image. (c) GL (28.30dB).

(d) NTV (28.43dB). (e) WNLL (31.98dB). (f) WNTV (32.35dB).

Fig. 11: Results of Graph Laplacian (GL), nonlocal TV (NTV), weighted nonlocal Laplacian
(WNLL) and weighted nonlocal TV (WNTV) in the butterflyflower image colorization from
1% samples.


