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Abstract. A simple fluid-structure problem is considered as a test to assess the feasibility of
deep-learning algorithms for parameter identification. Tensorflow by Google is used and as it is a
stochastic algorithm, provision must be made for the robustness of the large displacement fluid-
structure simulator with respect to a wide range of values for the Lamé coefficients and the density
of the solid. Hence an Eulerian monolithic solver is introduced. The numerical tests validate the
deep-learning approach.
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1. Introduction. Tensorflow is an open-source software by Google. It is the
result of ten years experience of deep-learning algorithms initially motivated by recog-
nition and classification of images. Two well-known tests are used to rank the various
neural networks and formulations: MINIST and CIFAR10 (see for example [9]).

Identification of parameters from the images produced by numerical simulation
is an interesting idea worth testing, different from earlier approaches using neural
networks like [6].

This means then dealing with a large collection of images generated by computer
simulations with a wide range of values for the parameters of the model.

Here we consider a simple fluid-structure problem: a cavity filled with a Newto-
nian fluid with a lid made of a thick deformable structure. The bottom boundary of
the fluid box slides as in the driven cavity problem, thus generating a large eddy which
induces a deformation of the lid. Can we recover the parameters of the structure (the
lid) by observing its deformation?

The main parameters are the two Lamé coefficients and the density of the ma-
terial. If all 3 coefficients are sought then a standard least square approach gives
rise to an optimal control problem which can be solved by any optimization method,
differentiable or stochastic. But Deep-Learning offers an interesting alternative: it
allows the recovery of only one of the 3 coefficients without prior knowledge of the
two others.

Stochastic optimization algorithms require a robust numerical solver of the PDE
system because the parameters are given wild values by the software and the solver
should not crash. It turns out that Euler formulations for fluid-structure interaction
(FSI) are very robust and it is for this reason that we have coupled it in this study
with CMAES and Tensorflow.
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Hence the paper has two parts. In the first part we recall our work on the Eulerian
formulation of FSI (see also [2]) and in the second part we apply Deep-Learning for
the recovery of the parameters.

2. Eulerian Fluid-Structure Systems. In a Lagrangian framework the laws
of elasticity are written for the motion X(x0, t) of a point x0 in the initial domain Ωs

0

versus time t. Hence the position of the structure at time t is Ωs
t = X(Ω0, t). The

displacement of the structure is d0(x0, t) = X(x0, t)− x0.

In an Eulerian framework the partial differential equations of elasticity are written
in Ωs

t and d is now a function of x ∈ Ωs
t and t. Since x0 = X−1(x, t), we have that

the Eulerian displacement is d(x, t) = d0(X
−1(x, t), t).

The main advantage is that we can write a single variational equation for the fluid
and the solid, a so-called monolithic formulation. For incompressible neo-Hookean
Mooney-Rivlin material it is:

Find u, p,Ωt (velocity, pressure and domain), such that for all û, p̂

∫
Ωt

[ρDtu · û− p∇ · û− p̂∇ · u]dx+

∫
Ωf

t

μf

2
Du : Dûdx

+

∫
Ωs

t

c1(Dd−∇d∇Td) : Dûdx =

∫
Ωt

f ûdx

where the displacement of the solid d is related to its velocity by

Dtd := ∂td+ u · ∇d = u

The notations are

• Du = ∇u+∇Tu,
• ρ is the density, given by ρ = ρs1Ωs

t
+ ρf1Ωf

t
and ρs, ρf are the densities –

assumed constant initially in the solid Ωs
0 and in the fluid Ωf

0 .
• μf is the viscosity of the fluid
• c1 is the Mooney-Rivlin Neo-Hookean coefficient
• f is the field of volumic external forces

This formulation is valid only in 2D for incompressible materials. For 3D problems
there is an additional nonlinear term (see [1]). Compressible materials are discussed
below.

2.1. Discretization by the Characteristic-Galerkin Method. Given a time
step δt, denoting by un the value of u at t = nδt and assuming smoothness, a Taylor
expansion easily shows that

(∂tu+ a · ∇u)|x,(n+1)δt =
un+1 − unoY

δt
|x +O(δt)

where Y(x) approximates Xan(nδt), the solution at τ = nδt of
dX
dτ

(τ) =

an(X (τ)), X ((n+ 1)δt) = x.

A first order approximation is Y(x) = x−an(x)δt. (see [7] for details). This leads
to
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Fig. 1. Sketch to understand that Xn = Y
n+1 ◦ Xn+1; with P 1 elements for all triangles

T k
n = Y

n+1(Tk
n+1).

Problem. Find un+1 ∈ H1
0(Ωn+1), p

n+1 ∈ L2
0(Ωn+1), Ω

r
n+1 ⊂ R2, r = s, f , such

that Ωn+1 = Ωf
n+1 ∪ Ωs

n+1, ∀û ∈ H1
0(Ωn+1), ∀p̂ ∈ L2

0(Ωn+1) = L2(Ωn+1)/R,

∫
Ωn+1

[
ρn+1

un+1 − un ◦ Yn+1

δt
· û− pn+1∇ · û− p̂∇ · un+1 +

∫
Ωf

n+1

μf

2
Dun+1 : Dû

+ c1

∫
Ωs

n+1

(Ddn+1 −∇dn+1(∇dn+1)T ) : Dû
]
=

∫
Ωn+1

f · û,

dn+1 = dn◦Yn+1 + δtun+1,

Ωn+1 = (Yn+1)−1(Ωn) = {x : Y
n+1(x) := x− un+1(x)δt ∈ Ωn}.

Notice that dn+1 disappears from the formulation and the unknowns are
un+1, pn+1, Ωn+1 at each time step.

Discretization in space by the finite element method is done as usual, by choos-
ing compatible approximations for velocities and pressures. Because of the relation
between d and u it is natural to take for dn the same spatial approximation as that
of un.

Consequently, a large non-linear system is to be solved at each time step. It can
be solve by a fixed point algorithm on un+1, pn+1 with the rest given and updated
after each fixed point iteration by their new values. Because of the energy estimates
below it can be argued that the fixed-point method converges; our experience shows
that 2 iterations are enough. For more details and numerical tests see [4]. We re-
call the energy inequality obtained in [4] in terms of the Kirchhoff potential of the
incompressible material, Ψ = c1∇X : ∇X := c1tr(∇X∇(X)T ) = c1

∑
ij(∂iXj)

2

Theorem 1.

∫
Ωn

ρn

2
|un|2 + δt

n∑
k=1

∫
Ωf

k

μf

2
|Duk|2 +

∫
Ωs

0

Ψn ≤
∫
Ω0

ρ0

2
|u0|2 +

∫
Ωs

0

Ψ0

The proof uses the important property of the algorithm – Xn = Xn+1 ◦ Yn+1

– which allows by a change of variables to relate the integral of Ψn on Ωs
n with the

integral of Ψn+1 ◦ Yn+1 on Ωs
n. This property is preserved by a P 1 − P 1-stabilized

finite element discretization because triangles are transformed into triangles by the
map Y

n (see Figure 1).
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2.2. Saint Venant-Kirchhoff Material. Everything said so far extends
to compressible materials with a convex Kirchhoff potential. For hyper-elastic

Saint-Venant-Kirchhoff materials, the Kirchhoff potential is : Ψ =
λs

2
(trE)2 +

μstrE2 with E =
1

2
(∇FT∇F− I). The Eulerian formulation is (see [8]): find u, p,Ωt

such that ∀û, p̂,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωf

t

[
ρDtu · û− p∇ · û− p̂∇ · u+

μf

2
Du : Dû

]

+

∫
Ωs

t

ρδt
[
b(Du−∇d̄∇Tu−∇u∇T d̄) : Dû+ λs∇ · u ∇ · û

]

+

∫
Ωs

t

ρ
[
Dtu · û+ b(Dd̄−∇d̄∇T d̄) : Dû+ (c+ λs∇ · d̄)∇ · û

]
=

∫
Ωt

f · û
Dtd = u, d̄ = d− δtu, ρ = ρs0detI−∇d1Ωs

t
+ ρf1Ωf

t
,

(1)

with

γ = (2− 2∇ · d+ |∇d|2)J2, γ̃ = γJ−2

c = λs(
1

2
γ − 1)(γ̃ − 1) + μs(γ − J2 − 1)γ̃ − λs∇ · d,

b =
1

2
(
λs

2
+ μs)(γ − 1)− λs

4

Here linear elasticity is visible because b = μs

2 +O(u) and c = O(u) .

2.3. FSI with Linear Elasticity on a Fixed Domain. We shall study a
bidimensional fluid-structure problem where the fluid is initially in a square container
(0, 10) × (0, 10) with no-slip conditions on the walls and the solid is an elongated
rectangle (0, 10) × (10, 11) above the fluid like a lid (Figure 2). The computational
domain Ω is the union of the solid and fluid domains. The fluid-solid interface is
the upper boundary of the square. The lower boundary of the liquid container slides
horizontally as for the driven cavity problem; it generates an eddy inside the square
cavity which deforms the lid due to viscous and pressure effects on the fluid-solid
interface. If we neglect the time dependency of Ω and if we keep only the first order
terms in u, we find that u and p are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωf

[
ρDtu · û− p∇ · û− p̂∇ · u+

μf

2
Du : Dû

]

+

∫
Ωs

ρδt
[μs

2
Du : Dû+ λs∇ · u ∇ · û

]

= −
∫
Ωs

ρ
[
Dtu · û+

μs

2
Dd : Dû+ λs∇ · d̄∇ · û

]
+

∫
Ω

f · û
Dtd = u, ρ = ρ0.

(2)

In the sections bellow, when we refer to “linear elasticity” we solve the above linear
elastic formulation on a fixed rectangular domain. Yet even though Ω is fixed, an
illusion of its motion is created by moving it with the velocity u. This is what is done
below; It is fast because it involves only the solution of a linear system at each step;
but it is valid only for small displacements.
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t=2, t=4, t=6

Fig. 2. A test case showing oscillations of the top boundary of the lid driven by the large
eddy, itself created by the sliding bottom boundary. The velocity vectors are shown, colored by their
modulus

3. Inverse Problems. We observe x, t ∈ ∂Ω × [0, T ] 	→ d(x, t); can we recover
λs, μs, ρs ? Recall that λs and μs are related to the Young modulus E and the Poisson
ration σ by

μs =
E

2(1 + σ)
, λs =

Eσ

(1 + σ)(1− 2σ)
;

All simulations below are done with FreeFem++ [3] and ρf = 1, μf = 0.25. Initially
the system is at rest and it is simulated up to time T=20 with 50 time steps. The
square is discretized uniformly with 400 vertices. The lid is discretized with 100
vertices. The lower boundary of the liquid box slides horizontally with velocity 0.5.
The gravity is chosen to be -0.01. All these numbers have been chosen somewhat
arbitrary to obtain reasonably moderate yet visible oscillations.

3.1. Stochastic Optimization with CMAES. CMAES is a stochastic global
optimizer written by N. Hansen [5]; it is fairly easy to use as it requires only a function
which returns the criteria to be minimized, given the parameters.

3.1.1. Linear Elasticity. First it is done with linear elasticity (2). To un-
derstand the method let us first comment the results of a simple simulation with
parameters E = 210, σ = 0.049, ρs = 0.1. The results are shown on Figure 2 at time
2, 4, and 6. A quasi periodic regime is established up to time T=20.

So by observing the upper boundary of the lid ∂Ωtop for all x and t can we recover
the parameters of the problem?

From a mathematical stand-point the answer is of course yes, because the param-
eter space is R3.

Let us begin with CMAES. We chose E = 250, σ = 0.0245, ρs = 0.1 and ran
a simulation with FreeFem++ to generate a surface: x, t ∈ ∂Ωtop × [0, T ] 	→ d(x, t)-
exact. Then the parameters are initialized (randomly) at E = 4.9505, σ = 0.0485149,
ρs = 0.04 and FreeFem++ generates another surface x, t ∈ ∂Ωtop × [0, T ] 	→ d(x, t).
CMAES is called to minimized the L2 time and space distance between d and d-exact.
Hence at each iteration of CMAES whenever the parameters E, σ, ρs are changed
FreeFem++ is called to generate a new d(x, t). This is implemented by writing a
function E, σ, ρs 	→ {x, t ∈ ∂Ωtop × [0, T ] 	→ d(x, t)}.

An instruction in Freefem++ like
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real minimum = cmaes(J,vv,stopTolFun=0.1e-2,stopMaxFunEval=100000,stopMaxIter=50);

generates the following output:
Exact solution E=250 sigma= 0.0245 rhos= 0.1

===============================================

Initial start E=4.9505 sigma= 0.0485149 rhos= 0.04

CMA@-ES(mu_eff=2.3), Ver="3.11", dimension=3, diagonalIter=0, randomSeed=417174088

Intermediate cost= 4.56954

...

Intermediate cost= 0.000340451

...

Intermediate cost= 1.70237e-07

Intermediate cost= 0.000896846

Stop : TolFun: function value differences 8.22e-03 < stopTolFun=1.00e-02

Number of fitness evalution(s) : 42 minimum= 1.70237e-07

E=249.154 sigma= 0.0485479 rhos= 0.0750725

===========================================================

The initial values of the parameters were taken at random, far from the optimum
values.

The results are barely acceptable unless a large number of iterations are made;
other tests where one or two parameters are fixed at their desired values and two
or one determined by CMAES give better results but convergence is slow for the
identification of all 3 parameters at once. A possible explanation is that the Poisson
coefficient σ does not influence much d in 2 dimensions, so the problem is stiff.

3.1.2. Large displacement elasticity. A similar exercise has been done with
system (1) with a moving geometry. The results are as follows:
Exact solution E=508 sigma= 0.02 rhos= 2.5

=========================================

initial start E=800 sigma= 0.02 rhos= 4.80769

===========================================

Intermediate cost= 4.62204

(3,7)-CMA-ES(~=2.3), ~= 11 3.11.00.beta 11 , dimension=3,

diagonalIterations=0, randomSeed=491032307 (Oct14 09:22:00 2017)

Intermediate cost= 4.49854

Intermediate cost= 4.44218

....

Intermediate cost= 4.46141

Intermediate cost= 4.34254

Stop : MaxFunEvals: conducted function evaluations 21 >= 20

Number of fitness evaluation(s): 21

minimum= 3.92605

Solution found E=691.599 sigma= 0.0106398 rhos= 4.82827

====================================================

As before the precision is not very good, indicating that the problem is stiff.

3.2. Inverse Problem with Tensorflow. To simplify the problem, we cast
it into the framework of MINST. MINST is a character recognition test were 50000
images each containing a single hand written digit, 0..,9, are used to train a convolu-
tional deep neural network. The images are black&white with a low resolution 28x28
and labeled by their content, namely an index j ∈ (0, .., 9). Once trained the neural
network is tested against 10000 new images. The algorithm guesses the content which
is compared with the index of the image. The percentage of right answers measures
the quality of the algorithm.

To use this technology, we need to pass from the drawn surface x, t ∈ [0, 10] ×
(0, 20) 	→ d(x, t) to a 28x28 B&W image. This is done by generating a color jpeg
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image of the above surface with the gnuplot keywords
splot matrix with image.

Then this color picture is downgraded into a 28x28 B&W .png image by the
following python script:
import os

from PIL import Image

for i in range(10):

path=’../tensorflow/ffdata/’+str(i)+’/’

os.chdir(path)

for filename in os.listdir(path):

if filename.endswith(".jpg"):

Im = Image.open(filename).convert(’LA’)

size = 28,28

Im_resized = Im.resize(size, Image.ANTIALIAS)

thefilename, thefile_extension

= os.path.splitext(filename)

thefilename += ’.png’

Im_resized.save(thefilename)

To give a label to each image we have divided the range of the parameter to be
identified into 10 subintervals, labeled, 0,..9. In Figure 3, 3 examples are given.

Thus 990 simulations were performed indexed by 2 integers j ∈ (0, 1, ..., 9), k ∈
(1, .., 99); k is used to generate random values for σ and ρs. The parameters of the
simulations are functions of j and k as follows:

H(x) =
x2

1 + x2
, E = 2100H(0.1(j + 1)), σ = 0.49H(0.1k2), ρs = H(0.1k2)

Integer j is used to index the images. 990 minus m images were used to train the
network and m images to assess the performance of the algorithm. We chose m
randomly around 70. Note that in MNIST the images are stored in compact form
and the MINST test programs assumes that the images are compacted in two files,
one for the training and one for the evaluation. We complied with this obligation.
Furthermore, we used the keras environment within Anaconda to call the convolution
neural network function cnn of tensorflow (see Figure 4).

The deep neural network is the one given as an example with Keras, unmodified.
It has an input layer, 2 convolutions layers separated by two maxpool layers followed
by a flatten layer, a dense layer, a drop-out layer and finally a last dense output layer.
The total number of parameters is 843658. The configurations of the layers are visible
on fig 4. Most of the time 50 iterations (epochs) were used.

This structure is certainly unecessarily rich but the purpose of this exercise was
not to optimize the network but rather to play with a network that works in a rea-
sonable amount of CPU time; this is the case, no run took more than a minute.

3.2.1. Identification of the Young Modulus using (2). First let us apply
this strategy to the identification of the Young modulus E. Here m = 73. The results
are shown on Figure 5. They show that the label that gives E is recovered with 96.6%
probability. This means that E is recovered with 10% precision with this probability
without knowing anything about the Poisson modulus σ and the density ρs.

The cause of this strikingly good result is evident on Figure 3: it is E which
influences the period of the oscillations and at the level of the reduced B&W images
this is still clear and seemingly only mildly dependent of σ and ρs.
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x-t splot same using “splot matrix” downgraded BW-28x28

j=1, k=4

j=4, k=7

j=9, k=20

Fig. 3. From surfaces x, t �→ d(x, t) to 28x28 black&white images

Fig. 4. Using tensorflow from with keras within Anaconda+spyder

3.2.2. Identification of the density. Using (2), let the images generated with
the following parameters

E = 2100H(0.1k), σ = 0.49H(0.1k2), ρs = H(0.1(j + 1)2)

The results are just a little better than uniform randomness with a probability of
success of 15%(see Figure 7); evidently varying the density does not create striking
differences in the images.

Finally we do the same test but using the full large displacement formulation
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Fig. 5. Identification of the Young modulus using tensorflow and linear elasticity (2)

Fig. 6. Identification of the density of the solid with tensorflow and linear elasticity (2)

using (1). The results, in Figure 6, show that the images generated with this Eulerian
model are much more sensitive to ρs, yielding a 59% probability of identifying the
solid density with 10% precision. The performance of CMAES on this test is shown
also on Figure 7.
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