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ON VON KARMAN MODELING FOR TURBULENT FLOW
NEAR A WALL∗

JACQUES RAPPAZ† AND JONATHAN ROCHAT†

Abstract. Mixing-length models are often used by engineers in order to take into account
turbulence phenomena in a flow. This kind of model is obtained by adding a turbulent viscosity
to the laminar one in Navier-Stokes equations. When the flow is confined between two close walls,
von Karman’s model consists of adding a viscosity which depends on the rate of strain multiplied by
the square of distance to the wall. In this short paper, we present a mathematical analysis of such
modeling. In particular, we explain why von Karman’s model is numerically ill-conditioned when
using a finite element method with a small laminar viscosity. Details of analysis can be found in [1],
[2].
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1. Introduction. Let Ω ⊂ R
3 be an open bounded domain with a Lipschitz

boundary ∂Ω. We assume that Ω is occupied by a fluid with velocity u and pressure
p, satisfying the incompressible Navier-Stokes equations:

∂u

∂t
+ (u ·∇)u− div(2νε(u)) +∇p = F , (1)

div(u) = 0, (2)

where ν is the kinematic viscosity, F is the external force and ε(u) is the strain tensor
defined by

ε(u)i,j =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, 1 ≤ i, j ≤ 3. (3)

The boundary conditions can be of several types such as the adherent condition u = 0
on a part of ∂Ω, and slip conditions u · n = 0 with (ε(u) · n) · tj = 0, j = 1, 2 on
another part of ∂Ω. Here n is the outward normal to ∂Ω and tj , j = 1, 2 are two
corresponding unit tangent vectors.

When the domain is very flat, for instance Ω = (0, 1) × (0, 1) × (0, ε) with 0 <
ε � 1, the viscosity of von Karman turbulent model depends on the square of the
distance to the wall multiplied by |ε(u)| . More precisely

ν = ν(x,u) = ν0 + βt |ε(u)| d2(x, ∂Ω). (4)

Here, βt is a positive parameter, d(x, ∂Ω) is the distance from x ∈ Ω to ∂Ω, i.e.
d(x, ∂Ω) = infy∈∂Ω |x− y|, ν0 > 0 is the constant kinematic laminar viscosity of the
fluid and

|ε(u)| =
⎛
⎝ ∑

1≤i,j≤3

ε(u)2i,j

⎞
⎠

1
2

. (5)
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We generalize this viscosity with ν to be

ν = ν0 + βt |ε(u)| l2−αdα(x, ∂Ω), (6)

where l is a characteristic length of the domain Ω and α is a constant parameter such
that 0 ≤ α ≤ 2 (α = 2 corresponds to von Karman modeling).
Our first consideration concerns the stationary Stokes problem related to (1)-(2) with
a viscosity defined by (6) .

2. Analysis of a stationary Stokes problem. Let us consider the equations

− div(2νε(u)) +∇p = F , in Ω, (7)

div(u) = 0, in Ω, (8)

with the following boundary condition

u = 0 on ∂Ω. (9)

The details of analysis of problem defined by (7)-(9) can be found in [1] and [2]. In
the following, we present results leading to our main theorem.

First we start by multiplying Equation (7) by a vectorial test function w vanishing
on the boundary ∂Ω, and we proceed with an integration by part. We also multiply
(8) by a test function q and we formally obtain the two following relations:

∫
Ω

2νε(u) ∗ ε(w)dx−
∫
Ω

p div(w)dx =

∫
Ω

F ·wdx, (10)

∫
Ω

div(u)qdx = 0, (11)

where ∗ denotes the tensorial product: ε(u) ∗ ε(w) =
∑

1≤i,j≤3 ε(u)i,j · ε(w)i,j .
Let us remark that if ν is given by (6) , then we have two kinds of integrals in

(10) :
∫
Ω
ε(u)∗ε(w)dx and

∫
Ω
dα(x, ∂Ω)) |ε(u)| ε(u)∗ε(w)dx. In order to give meaning

to these two integrals, it is sufficient to take u and w in the Sobolev spaces H1
0 (Ω)

3

for the first integral and (W 1,3
dα (Ω))3 for the second one, where W 1,3

dα (Ω) denotes the
weighted Sobolev space given by

W 1,3
dα (Ω) = {w ∈ L3

dα(Ω) and ∇w ∈ (L3
dα(Ω))3}, (12)

with L3
dα(Ω) =

{
w :

∫
|w(x)|3 dα(x, ∂Ω)dx <∞

}
. (13)

Note that for α = 0, W 1,3
d0 (Ω) = W 1,3(Ω) ⊂ H1(Ω) and equation (10) can be posed

in W 1,3
0 (Ω)3. More precisely, when α = 0 and for F ∈ L3/2(Ω)3, we can look for

u ∈ W 1,3
0 (Ω)3 and p ∈ L3/2(Ω) satisfying (10) and (11) for every w ∈ W 1,3

0 (Ω)3 and
q ∈ L3/2(Ω). In [3] and [4] one can find a proof of existence and uniqueness of solution
to this problem, with p defined up to a constant.

For α < 2 and close to 2, the situation is not so obvious. The space W 1,3
dα (Ω)

is not embedded in H1(Ω) (see [5]), and we have to take a Banach space of type
H1

0 (Ω)
3 ∩ (W 1,3

dα (Ω))3 in order to analyse equation (10) .
Before considering problem (10) − (11) , let us recall some results on weighted

Sobolev spaces found in [5] and used in [1], [2]. For a 3 × 3 tensor κ depending on
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x ∈ Ω, we adopt the notations:

‖κ‖(L2(Ω))3×3 =
∑

1≤i,j≤3

(∫
Ω

|κi,j(x)|2 dx
)1/2

,

‖κ‖(L3
dα

(Ω))3×3 =
∑

1≤i,j≤3

(∫
Ω

|κi,j(x)|3 dα(x, ∂Ω)dx
)1/3

.

• There exists α0 ∈]0, 2[ such that for α ∈ [0, α0[, W
1,3
dα (Ω) ⊂ H1(Ω), but for

α > α0, W
1,3
dα (Ω) ∩H1(Ω) 
= W 1,3

dα (Ω).

• For 0 ≤ α < 2, there is a trace operator Γ : W 1,3
dα (Ω) → L3(∂Ω) and

W 1,3
dα,0(Ω) = {w ∈W 1,3

dα (Ω) : Γ(w) = 0}.
• For 0 ≤ α < 2, we have a Korn inequality in W 1,3

dα,0(Ω): there exists a positive
constant β such that β ‖∇w‖(L3

dα
(Ω))3×3 ≤ ‖ε(w)‖(L3

dα
(Ω))3×3 for every w ∈

W 1,3
dα,0(Ω)

3 (see [6]).

• For α � 2, a vanished trace of a function of W 1,3
dα (Ω) has no meaning and the

problem of existence of a Korn inequality is open!
Starting from these considerations, we now consider only the case when α ∈ [0, 2[. Let
us define the Banach spaces

V = H1
0 (Ω)

3 ∩W 1,3
dα,0(Ω)

3, (14)

V div = {w ∈ V : div(w) = 0}, (15)

provided with the norm ‖w‖V = ‖∇w‖(L2(Ω))3×3 + ‖∇w‖(L3
dα

(Ω))3×3 .

By taking w ∈ V div in (10), we have to look for u ∈ V div satisfying

∫
Ω

2νε(u) ∗ ε(w)dx =

∫
Ω

F ·wdx ∀w ∈ V div. (16)

In order to give a meaning to the right side of equalities (10) or (16), we assume

F ∈ L2(Ω)3 ⊕ L
3/2

d−α/2(Ω)
3.

Now we define the functional J on V div by

J(v) =

∫
Ω

[2A(x, |ε(v)|)− F · v]dx, (17)

where

A(x, s) = ν0
s2

2
+ βt

s3

3
l2−αdα(x, ∂Ω). (18)

It is easy to show that J is Gâteau-differentiable on V div, and its derivative at u in
direction w is given by

DJ(u)(w) =

∫
Ω

2νε(u) ∗ ε(w)dx−
∫
Ω

F ·wdx, (19)

with ν depending on u via (6). It follows that if u ∈ V div is solution of (16), then
DJ(u)(w) = 0 for every w ∈ V div. In [2], it is proven that the functional J is
continuous, coercive and strictly convex on V div. Then, there exists a unique u which
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minimizes J on V div and DJ(u) = 0. Moreover, u is the unique solution of Problem
(16). The main result of this analysis is

Proposition 1. When 0 ≤ α < 2, and ν is defined by (6) , there exists a unique
solution of Problem (16) (see [2]).

Concerning the pressure p which appears in Problem (10)− (11), it is well known
that an inf − sup condition allows to obtain its existence and uniqueness by knowing
the velocity u ∈ V div. In [2], it is shown that the dual space of L3

dα(Ω) can be

identified to L
3/2

d−α/2(Ω) by means of an integral on Ω. Since div(w) ∈ L2(Ω)∩L3
dα(Ω),

the pressure p will be considered in the space

Q = L2
0(Ω)⊕ L

3/2

d−α/2,0
(Ω),

in order to give meaning to the second integral of (10) . The index 0 in L2
0(Ω) and

L
3/2

d−α/2,0
(Ω) signifies that the mean values of functions in these spaces are zero.

When α is close to 2 (recall that α = 2 in von Karman modeling), the space

L2(Ω) ∩L
3/2

d−α/2(Ω) is not reduced to the null space, and we are not able to verify the

inequality infq∈Q supw∈V

∫
Ω
q div(w)dx

‖q‖Q‖w‖V
> 0. As a consequence, even if we are looking

for a pressure p defined up to a constant in Problem (10) − (11), we are not able to
directly verify its existence and uniqueness.

However, the existence of a pressure satisfying (10) − (11) with the velocity u
given above, can be deducted from two inf − sup conditions. The first inf − sup is

the pairing H1
0 (Ω)

3 − L2
0(Ω) and the other one is W 1,3

dα,0(Ω)
3 − L

3/2

d−α/2,0
(Ω), (see [2]).

Due to these two inf-sup conditions, we can prove the existence and uniqueness of

p1 ∈ L2
0 (Ω) and p2 ∈ L

3/2

d−α/2,0
(Ω) satisfying:

∫
Ω

p1 div (w) dx =

∫
Ω

2ν0ε(u) ∗ ε(w)dx−
∫
Ω

F ·wdx, ∀w ∈ H1
0 (Ω)

3
,

∫
Ω

p2 div (w) dx =

∫
Ω

2βtl
2−αdα(x, ∂Ω) |ε(u)| ε(u) ∗ ε(w)dx, ∀w ∈W 1,3

dα,0 (Ω)
3
.

By setting p = p1 + p2, then (u, p) ∈ V × Q satisfies relations (10)-(11) for every
(w, q) ∈ V ×Q.

These considerations lead to:

Proposition 2 (see [2]). When 0 ≤ α < 2, and ν is defined by (6), there exists
a solution (u, p) ∈ V ×Q satisfying (10)− (11) for every (w, q) ∈ V ×Q. Moreover,
if (u1, p1) and (u2, p2) are two solutions, then u1 = u2. When α ∈ [0, α0[, i.e when
W 1,3

dα (Ω) ⊂ H1(Ω), then p1 = p2.

3. Conclusions and remarks.
• When ν0 = 0 in (6) , then H1

0 (Ω)
3 can be dropped in the definition of V in

order to set Problem (10)− (11) . It follows that for 0 ≤ α < 2, the functional
J can be minimized on Xdiv = {v ∈ W 1,3

dα,0(Ω)
3 : div(v) = 0}. In the case

ν0 = 0, for every α ∈ [0, 2[, Problem (10) − (11) possesses a unique solution

(u, p) ∈W 1,3
dα,0(Ω)

3 × L
3/2

d−α/2,0
(Ω).
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• For α = 2, there is no trace of u on ∂Ω when u ∈ W 1,3
d2 (Ω)3. In this case it

is not possible to take ν0 = 0 when u = 0 is imposed on the boundary ∂Ω.
Moreover Korn’s inequality is probably wrong in W 1,3

d2 (Ω)3 (Kalamajska’s
conjecture [6]). The analysis of von Karman model (α = 2) remains open.

• A direct consequence of previous remarks is: when using a finite element
approximation on von Karman model (α = 2) and when the laminar viscosity
ν0 is ”small” with respect to the numerical viscosity of the method, the
obtained results can strongly depend on the mesh! In this case, it is
necessary to take a very thin meshing close to the walls in order to remedy
to this situation. Numerical examples are given in [1] and [2].
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