ON VON KARMAN MODELING FOR TURBULENT FLOW NEAR A WALL*

JACQUES RAPPAZ^{\dagger} AND JONATHAN ROCHAT^{\dagger}

Abstract. Mixing-length models are often used by engineers in order to take into account turbulence phenomena in a flow. This kind of model is obtained by adding a turbulent viscosity to the laminar one in Navier-Stokes equations. When the flow is confined between two close walls, von Karman's model consists of adding a viscosity which depends on the rate of strain multiplied by the square of distance to the wall. In this short paper, we present a mathematical analysis of such modeling. In particular, we explain why von Karman's model is numerically ill-conditioned when using a finite element method with a small laminar viscosity. Details of analysis can be found in [1], [2].

Key words. Stokes Equations, Weighted Sobolev Spaces, Finite Element Method.

Mathematics Subject Classification. 46E35, 76F55, 65N05.

1. Introduction. Let $\Omega \subset \mathbb{R}^3$ be an open bounded domain with a Lipschitz boundary $\partial\Omega$. We assume that Ω is occupied by a fluid with velocity u and pressure p, satisfying the incompressible Navier-Stokes equations:

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} - \operatorname{div}(2\nu\epsilon(\boldsymbol{u})) + \boldsymbol{\nabla}p = \boldsymbol{F}, \tag{1}$$

$$\operatorname{div}(\boldsymbol{u}) = 0, \tag{2}$$

where ν is the kinematic viscosity, F is the external force and $\epsilon(u)$ is the strain tensor defined by

$$\epsilon(\boldsymbol{u})_{i,j} = \frac{1}{2} \left(\frac{\partial \boldsymbol{u}_i}{\partial x_j} + \frac{\partial \boldsymbol{u}_j}{\partial x_i} \right), \quad 1 \le i, j \le 3.$$
(3)

The boundary conditions can be of several types such as the adherent condition $\boldsymbol{u} = 0$ on a part of $\partial\Omega$, and slip conditions $\boldsymbol{u} \cdot \boldsymbol{n} = 0$ with $(\epsilon(\boldsymbol{u}) \cdot \boldsymbol{n}) \cdot \boldsymbol{t}_j = 0, j = 1, 2$ on another part of $\partial\Omega$. Here \boldsymbol{n} is the outward normal to $\partial\Omega$ and \boldsymbol{t}_j , j = 1, 2 are two corresponding unit tangent vectors.

When the domain is very flat, for instance $\Omega = (0,1) \times (0,1) \times (0,\varepsilon)$ with $0 < \varepsilon \ll 1$, the viscosity of von Karman turbulent model depends on the square of the distance to the wall multiplied by $|\epsilon(\mathbf{u})|$. More precisely

$$\nu = \nu(\boldsymbol{x}, \boldsymbol{u}) = \nu_0 + \beta_t |\epsilon(\boldsymbol{u})| d^2(\boldsymbol{x}, \partial\Omega).$$
(4)

Here, β_t is a positive parameter, $d(\boldsymbol{x}, \partial \Omega)$ is the distance from $\boldsymbol{x} \in \Omega$ to $\partial \Omega$, i.e. $d(\boldsymbol{x}, \partial \Omega) = \inf_{\boldsymbol{y} \in \partial \Omega} |\boldsymbol{x} - \boldsymbol{y}|, \nu_0 > 0$ is the constant kinematic laminar viscosity of the fluid and

$$|\epsilon(\boldsymbol{u})| = \left(\sum_{1 \le i, j \le 3} \epsilon(\boldsymbol{u})_{i, j}^{2}\right)^{\frac{1}{2}}.$$
(5)

^{*}Received December 18, 2017; accepted for publication April 12, 2019.

[†]Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland (jacques.rappaz@epfl.ch; jonathan.rochat@alumni.epfl.ch).

We generalize this viscosity with ν to be

$$\nu = \nu_0 + \beta_t \left| \epsilon(\boldsymbol{u}) \right| l^{2-\alpha} d^{\alpha}(\boldsymbol{x}, \partial \Omega), \tag{6}$$

where l is a characteristic length of the domain Ω and α is a constant parameter such that $0 \le \alpha \le 2$ ($\alpha = 2$ corresponds to von Karman modeling).

Our first consideration concerns the stationary Stokes problem related to (1)-(2) with a viscosity defined by (6).

2. Analysis of a stationary Stokes problem. Let us consider the equations

$$-\operatorname{div}(2\nu\epsilon(\boldsymbol{u})) + \boldsymbol{\nabla}p = \boldsymbol{F}, \text{ in } \Omega, \tag{7}$$

$$\operatorname{div}(\boldsymbol{u}) = 0, \text{ in } \Omega, \tag{8}$$

with the following boundary condition

$$\boldsymbol{u} = 0 \text{ on } \partial\Omega. \tag{9}$$

The details of analysis of problem defined by (7)-(9) can be found in [1] and [2]. In the following, we present results leading to our main theorem.

First we start by multiplying Equation (7) by a vectorial test function w vanishing on the boundary $\partial\Omega$, and we proceed with an integration by part. We also multiply (8) by a test function q and we formally obtain the two following relations:

$$\int_{\Omega} 2\nu \epsilon(\boldsymbol{u}) \ast \epsilon(\boldsymbol{w}) d\boldsymbol{x} - \int_{\Omega} p \operatorname{div}(\boldsymbol{w}) d\boldsymbol{x} = \int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{w} d\boldsymbol{x},$$
(10)

$$\int_{\Omega} \operatorname{div}(\boldsymbol{u}) q d\boldsymbol{x} = 0, \tag{11}$$

where * denotes the tensorial product: $\epsilon(\boldsymbol{u}) * \epsilon(\boldsymbol{w}) = \sum_{1 \leq i,j \leq 3} \epsilon(\boldsymbol{u})_{i,j} \cdot \epsilon(\boldsymbol{w})_{i,j}$.

Let us remark that if ν is given by (6), then we have two kinds of integrals in $(10) : \int_{\Omega} \epsilon(\boldsymbol{u}) * \epsilon(\boldsymbol{w}) dx$ and $\int_{\Omega} d^{\alpha}(\boldsymbol{x}, \partial \Omega)) |\epsilon(\boldsymbol{u})| \epsilon(\boldsymbol{u}) * \epsilon(\boldsymbol{w}) dx$. In order to give meaning to these two integrals, it is sufficient to take \boldsymbol{u} and \boldsymbol{w} in the Sobolev spaces $H_0^1(\Omega)^3$ for the first integral and $(W_{d^{\alpha}}^{1,3}(\Omega))^3$ for the second one, where $W_{d^{\alpha}}^{1,3}(\Omega)$ denotes the weighted Sobolev space given by

$$W^{1,3}_{d^{\alpha}}(\Omega) = \{ w \in L^3_{d^{\alpha}}(\Omega) \text{ and } \nabla w \in (L^3_{d^{\alpha}}(\Omega))^3 \},$$
(12)

with
$$L^3_{d^{\alpha}}(\Omega) = \left\{ w : \int |w(\boldsymbol{x})|^3 d^{\alpha}(\boldsymbol{x}, \partial \Omega) d\boldsymbol{x} < \infty \right\}.$$
 (13)

Note that for $\alpha = 0$, $W_{d^0}^{1,3}(\Omega) = W^{1,3}(\Omega) \subset H^1(\Omega)$ and equation (10) can be posed in $W_0^{1,3}(\Omega)^3$. More precisely, when $\alpha = 0$ and for $\mathbf{F} \in L^{3/2}(\Omega)^3$, we can look for $\mathbf{u} \in W_0^{1,3}(\Omega)^3$ and $p \in L^{3/2}(\Omega)$ satisfying (10) and (11) for every $\mathbf{w} \in W_0^{1,3}(\Omega)^3$ and $q \in L^{3/2}(\Omega)$. In [3] and [4] one can find a proof of existence and uniqueness of solution to this problem, with p defined up to a constant.

For $\alpha < 2$ and close to 2, the situation is not so obvious. The space $W_{d\alpha}^{1,3}(\Omega)$ is not embedded in $H^1(\Omega)$ (see [5]), and we have to take a Banach space of type $H_0^1(\Omega)^3 \cap (W_{d\alpha}^{1,3}(\Omega))^3$ in order to analyse equation (10).

Before considering problem (10) - (11), let us recall some results on weighted Sobolev spaces found in [5] and used in [1], [2]. For a 3×3 tensor κ depending on

292

 $\boldsymbol{x} \in \Omega$, we adopt the notations:

$$\begin{split} \|\boldsymbol{\kappa}\|_{(L^{2}(\Omega))^{3\times3}} &= \sum_{1\leq i,j\leq 3} \left(\int_{\Omega} |\boldsymbol{\kappa}_{i,j}(\boldsymbol{x})|^{2} \, d\boldsymbol{x} \right)^{1/2}, \\ \|\boldsymbol{\kappa}\|_{(L^{3}_{d^{\alpha}}(\Omega))^{3\times3}} &= \sum_{1\leq i,j\leq 3} \left(\int_{\Omega} |\boldsymbol{\kappa}_{i,j}(\boldsymbol{x})|^{3} \, d^{\alpha}(\boldsymbol{x},\partial\Omega) d\boldsymbol{x} \right)^{1/3}. \end{split}$$

- There exists $\alpha_0 \in]0,2[$ such that for $\alpha \in [0,\alpha_0[, W^{1,3}_{d^{\alpha}}(\Omega) \subset H^1(\Omega))$, but for $\alpha > \alpha_0, \ W^{1,3}_{d^{\alpha}}(\Omega) \cap H^1(\Omega) \neq W^{1,3}_{d^{\alpha}}(\Omega).$
- For $0 \leq \alpha < 2$, there is a trace operator $\Gamma : W^{1,3}_{d\alpha}(\Omega) \to L^3(\partial\Omega)$ and $W^{1,3}_{d^{\alpha},0}(\Omega) = \{ w \in W^{1,3}_{d^{\alpha}}(\Omega) : \Gamma(w) = 0 \}.$
- For $0 \le \alpha < 2$, we have a Korn inequality in $W^{1,3}_{d^{\alpha},0}(\Omega)$: there exists a positive constant β such that $\beta \| \nabla \boldsymbol{w} \|_{(L^3_{d^{\alpha}}(\Omega))^{3 \times 3}} \leq \| \tilde{\boldsymbol{\epsilon}(\boldsymbol{w})} \|_{(L^3_{d^{\alpha}}(\Omega))^{3 \times 3}}$ for every $\boldsymbol{w} \in$ $W^{1,3}_{d^{\alpha},0}(\Omega)^3$ (see [6]).
- For $\alpha \geq 2$, a vanished trace of a function of $W^{1,3}_{d^{\alpha}}(\Omega)$ has no meaning and the problem of existence of a Korn inequality is open!

Starting from these considerations, we now consider only the case when $\alpha \in [0, 2]$. Let us define the Banach spaces

$$\boldsymbol{V} = H_0^1(\Omega)^3 \cap W_{d^{\alpha},0}^{1,3}(\Omega)^3, \tag{14}$$

$$\boldsymbol{V}_{\text{div}} = \{ \boldsymbol{w} \in \boldsymbol{V} : \text{div}(\boldsymbol{w}) = 0 \},$$
(15)

provided with the norm $\|\boldsymbol{w}\|_{\boldsymbol{V}} = \|\boldsymbol{\nabla}\boldsymbol{w}\|_{(L^2(\Omega))^{3\times 3}} + \|\boldsymbol{\nabla}\boldsymbol{w}\|_{(L^3_{1\alpha}(\Omega))^{3\times 3}}$.

By taking $\boldsymbol{w} \in \boldsymbol{V}_{\text{div}}$ in (10), we have to look for $\boldsymbol{u} \in \boldsymbol{V}_{\text{div}}$ satisfying

$$\int_{\Omega} 2\nu \epsilon(\boldsymbol{u}) \ast \epsilon(\boldsymbol{w}) d\boldsymbol{x} = \int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{w} d\boldsymbol{x} \quad \forall \boldsymbol{w} \in \boldsymbol{V}_{\text{div}}.$$
(16)

In order to give a meaning to the right side of equalities (10) or (16), we assume $F \in L^2(\Omega)^3 \oplus L^{3/2}_{d^{-\alpha/2}}(\Omega)^3.$ Now we define the functional J on V_{div} by

$$\boldsymbol{J}(\boldsymbol{v}) = \int_{\Omega} [2A(\boldsymbol{x}, |\boldsymbol{\epsilon}(\boldsymbol{v})|) - \boldsymbol{F} \cdot \boldsymbol{v}] d\boldsymbol{x}, \qquad (17)$$

where

$$A(\boldsymbol{x},s) = \nu_0 \frac{s^2}{2} + \beta_t \frac{s^3}{3} l^{2-\alpha} d^{\alpha}(\boldsymbol{x},\partial\Omega).$$
(18)

It is easy to show that J is Gâteau-differentiable on V_{div} , and its derivative at u in direction \boldsymbol{w} is given by

$$D\boldsymbol{J}(\boldsymbol{u})(\boldsymbol{w}) = \int_{\Omega} 2\nu\epsilon(\boldsymbol{u}) \ast \epsilon(\boldsymbol{w})d\boldsymbol{x} - \int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{w}d\boldsymbol{x},$$
(19)

with ν depending on \boldsymbol{u} via (6). It follows that if $\boldsymbol{u} \in \boldsymbol{V}_{\text{div}}$ is solution of (16), then DJ(u)(w) = 0 for every $w \in V_{\text{div}}$. In [2], it is proven that the functional J is continuous, coercive and strictly convex on V_{div} . Then, there exists a unique u which minimizes \boldsymbol{J} on $\boldsymbol{V}_{\text{div}}$ and $D\boldsymbol{J}(\boldsymbol{u}) = 0$. Moreover, \boldsymbol{u} is the unique solution of Problem (16). The main result of this analysis is

PROPOSITION 1. When $0 \le \alpha < 2$, and ν is defined by (6), there exists a unique solution of Problem (16) (see [2]).

Concerning the pressure p which appears in Problem (10) - (11), it is well known that an inf – sup condition allows to obtain its existence and uniqueness by knowing the velocity $\boldsymbol{u} \in \boldsymbol{V}_{\text{div}}$. In [2], it is shown that the dual space of $L^3_{d^{\alpha}}(\Omega)$ can be identified to $L^{3/2}_{d^{-\alpha/2}}(\Omega)$ by means of an integral on Ω . Since $\operatorname{div}(\boldsymbol{w}) \in L^2(\Omega) \cap L^3_{d^{\alpha}}(\Omega)$, the pressure p will be considered in the space

$$Q = L_0^2(\Omega) \oplus L_{d^{-\alpha/2},0}^{3/2}(\Omega),$$

in order to give meaning to the second integral of (10). The index 0 in $L^2_0(\Omega)$ and $L^{3/2}_{d^{-\alpha/2},0}(\Omega)$ signifies that the mean values of functions in these spaces are zero.

When α is close to 2 (recall that $\alpha = 2$ in von Karman modeling), the space $L^2(\Omega) \cap L^{3/2}_{d^{-\alpha/2}}(\Omega)$ is not reduced to the null space, and we are not able to verify the inequality $\inf_{q \in Q} \sup_{\boldsymbol{w} \in \boldsymbol{V}} \frac{\int_{\Omega} q \operatorname{div}(\boldsymbol{w}) dx}{\|q\|_Q \|\boldsymbol{w}\|_{\boldsymbol{V}}} > 0$. As a consequence, even if we are looking for a pressure p defined up to a constant in Problem (10) – (11), we are not able to directly verify its existence and uniqueness.

However, the existence of a pressure satisfying (10) - (11) with the velocity \boldsymbol{u} given above, can be deducted from two inf – sup conditions. The first inf – sup is the pairing $H_0^1(\Omega)^3 - L_0^2(\Omega)$ and the other one is $W_{d^{\alpha},0}^{1,3}(\Omega)^3 - L_{d^{-\alpha/2},0}^{3/2}(\Omega)$, (see [2]). Due to these two inf-sup conditions, we can prove the existence and uniqueness of $\bar{p}_1 \in L_0^2(\Omega)$ and $\bar{p}_2 \in L_{d^{-\alpha/2},0}^{3/2}(\Omega)$ satisfying:

$$\int_{\Omega} \overline{p}_1 \operatorname{div}(\boldsymbol{w}) \, dx = \int_{\Omega} 2\nu_0 \boldsymbol{\epsilon}(\boldsymbol{u}) \ast \boldsymbol{\epsilon}(\boldsymbol{w}) dx - \int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{w} dx, \quad \forall \boldsymbol{w} \in H_0^1(\Omega)^3,$$

$$\int_{\Omega} \overline{p}_2 \operatorname{div}\left(\boldsymbol{w}\right) dx = \int_{\Omega} 2\beta_t l^{2-\alpha} d^{\alpha}(x, \partial\Omega) \left|\boldsymbol{\epsilon}(\boldsymbol{u})\right| \boldsymbol{\epsilon}(\boldsymbol{u}) \ast \boldsymbol{\epsilon}(\boldsymbol{w}) dx, \ \forall \boldsymbol{w} \in W^{1,3}_{d^{\alpha},0}\left(\Omega\right)^3.$$

By setting $p = \overline{p}_1 + \overline{p}_2$, then $(\boldsymbol{u}, p) \in \boldsymbol{V} \times Q$ satisfies relations (10)-(11) for every $(\boldsymbol{w}, q) \in \boldsymbol{V} \times Q$.

These considerations lead to:

PROPOSITION 2 (see [2]). When $0 \le \alpha < 2$, and ν is defined by (6), there exists a solution $(\boldsymbol{u}, p) \in \boldsymbol{V} \times Q$ satisfying (10) – (11) for every $(\boldsymbol{w}, q) \in \boldsymbol{V} \times Q$. Moreover, if (\boldsymbol{u}_1, p_1) and (\boldsymbol{u}_2, p_2) are two solutions, then $\boldsymbol{u}_1 = \boldsymbol{u}_2$. When $\alpha \in [0, \alpha_0[$, i.e when $W_{d\alpha}^{1,3}(\Omega) \subset H^1(\Omega)$, then $p_1 = p_2$.

3. Conclusions and remarks.

• When $\nu_0 = 0$ in (6), then $H_0^1(\Omega)^3$ can be dropped in the definition of V in order to set Problem (10) – (11). It follows that for $0 \le \alpha < 2$, the functional J can be minimized on $X_{\text{div}} = \{ \boldsymbol{v} \in W_{d^{\alpha},0}^{1,3}(\Omega)^3 : \text{div}(\boldsymbol{v}) = 0 \}$. In the case $\nu_0 = 0$, for every $\alpha \in [0, 2[$, Problem (10) – (11) possesses a unique solution $(\boldsymbol{u}, p) \in W_{d^{\alpha},0}^{1,3}(\Omega)^3 \times L_{d^{-\alpha}/2,0}^{3/2}(\Omega)$.

- For $\alpha = 2$, there is no trace of \boldsymbol{u} on $\partial\Omega$ when $\boldsymbol{u} \in W^{1,3}_{d^2}(\Omega)^3$. In this case it is not possible to take $\nu_0 = 0$ when $\boldsymbol{u} = 0$ is imposed on the boundary $\partial\Omega$. Moreover Korn's inequality is probably wrong in $W^{1,3}_{d^2}(\Omega)^3$ (Kalamajska's conjecture [6]). The analysis of von Karman model ($\alpha = 2$) remains open.
- A direct consequence of previous remarks is: when using a finite element approximation on von Karman model ($\alpha = 2$) and when the laminar viscosity ν_0 is "small" with respect to the numerical viscosity of the method, the obtained results can strongly depend on the mesh! In this case, it is necessary to take a very thin meshing close to the walls in order to remedy to this situation. Numerical examples are given in [1] and [2].

Acknowledgement. The authors would like to thank Rio-Tinto Alcan Company for their financial support on this project.

REFERENCES

- J. RAPPAZ, J. ROCHAT, On non-linear Stokes problems with viscosity depending on the distance to the wall, C.R. Acad. Sci. Paris, Ser.I 354 (2016), pp. 499–502.
- [2] J. RAPPAZ, J. ROCHAT, On some weighted Stokes problems. Application on Smagorinsky models, Contributions to Partial Differential Equations and Applications, Computational Methods in Applied Sciences, vol. 47, pp. 395–410, Springer (2018).
- [3] J. BARANGER AND K. NAJIB, Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi de puissance ou la loi de carreau, Numer. Math., 58 (1990), pp. 35– 49.
- [4] D. SANDRI, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi de puissance ou la loi de Carreau, Modélisation mathématique et analyse numérique, tome 27:2 (1993), pp. 131–155.
- [5] F. KUFNER, Weighted Sobolev Spaces, Elsevier, Paris, 1983.
- [6] A. KALAMAJSKA, Coercive inequalities on weighted Sobolev spaces, Colloquium Mathematicum, Vol. LXVI, 1993, FASC.