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PROPAGATION OF CHAOS FOR THE KELLER-SEGEL EQUATION
WITH A LOGARITHMIC CUT-OFF∗

JIAN-GUO LIU† AND RONG YANG‡

Abstract. We consider a N -particle interacting system with the Newtonian potential aggre-
gation and Brownian motions. Assuming that the initial data are independent and identically dis-
tributed (i.i.d.) with a common probability density function ρ0 ∈ L∞(Rd) ∩ L1(Rd, (1 + |x|)dx).
We rigorously prove the propagation of chaos for this interacting system with a cut-off parameter

ε ∼ (lnN)−
1
d : when N → ∞, the empirical measure of the particle system converges in law to a

probability measure and this measure possesses a density which is a weak solution to the mean-field
Keller-Segel (KS) equation. More precisely, as N → ∞, each particle path is approximated by a
strong solution to a mean-field self-consistent stochastic differential equation (SDE). The global ex-
istence and uniqueness of strong solution to this SDE is proved and consequently we also prove the
uniqueness of weak solution to the KS equation.

For d = 2, if 8πν > 1, the propagation of chaos is valid globally in time. On the other hand,
if 8πν < 1, we show that the expectation of the collision time for the interacting particles system

is bounded by
2πVar{ρ0}

1−8πν
. For d ≥ 3, if ‖ρ0‖

L
d
2 (Rd)

is bounded by a universal constant depending

only on ν and d, then the propagation of chaos is also valid globally in time.

Key words. Newtonian potential aggregation, self-gravitating Brownian particles system, mean-
field limit, L∞ bound, log-Lipschitz continuity, uniqueness of weak solution, stability in Wasserstein
metric.
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1. Introduction. The concept of the propagation of chaos was originated by
Kac [26]. It is important for the kinetic theory that serves to relate the kinetic equa-
tions, such as the Fokker-Planck, Boltzmann and Vlasov equations, to the dynamics of
N -particle systems of many indistinguishable individuals {(Xi,N

t )t≥0}Ni=1 interacting
with each other and following the same physical law. The propagation of chaos, also
known as the molecular chaos, means that under the condition that the initial data
{Xi

0}Ni=1 are i.i.d. random variables with a common distribution function f0(x), this
i.i.d. property is asymptotically preserved in time as N → ∞. Following the frame-
work of Sznitman [43], to prove the propagation of chaos, one needs to prove that the

2-particle marginal distribution f
(2),N
t (x1, x2) narrowly converges to ft(x1) ⊗ ft(x2)

for any t ≥ 0, or equivalently the empirical measure 1
N

N∑
i=1

δXi,N
t

converges in law to

ft, where f satisfies a mean-field partial differential equation (PDE) with the initial
data f0(x) such as the Fokker-Planck equation.

Let
(
Ω,F , (Ft)t≥0,P

)
be a probability space endowed with a filtration (Ft)t≥0 (F

is complete, (Ft)t≥0 is right continuous). We suppose that the space is endowed with
N independent d-dimensional Ft-Brownian motions {(Bi

t)t≥0}Ni=1. In this paper, we
consider the interacting particle system of the following form:

Xi
t = Xi

0 +
1

N − 1

N∑
j �=i

∫ t

0

F (Xi
s −Xj

s )ds+
√
2νBi

t, i = 1, · · · , N (1.1)
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where (X1
t , · · · , XN

t )t≥0 are the trajectories of N particles, Xi
t ∈ R

d for any t ≥ 0, the
initial data {Xi

0}Ni=1 are the i.i.d. random variables with a common probability density
function ρ0(x) and

√
2ν is a constant. The propagation of chaos for (1.1) with the

smooth F has been rigorously proved by McKean in 70’s and the mean-field equation
is a class of nonlinear parabolic equations [32]. Furthermore, he also conjectured that
for d = 1, F (x) = δ(x) (the Dirac distribution), the mean-field equation is the Burgers
equation. This conjecture was proved in [8, 24, 42].

For d = 2, if the interacting force is taken by F (x) = −∇⊥Φ(x) in (1.1), where
the operator ∇⊥ = ( ∂

∂x2
, ∂
∂x1

) and Φ(x) = − 1
2π ln |x|, then the mean-field limit equa-

tion becomes the incompressible Navier-Stokes equation. When
√
2ν = 0, it is the

incompressible Euler equation. In [31], Marchioro and Pulvirenti proved the mean-
field limit for both the incompressible Navier-Stokes equation and Euler equation with
some cut-off parameters ε(N) → 0 as N → ∞. Some of their techniques are adapted
to solve our problem in this paper. The three dimensional Navier-Stokes equation
and pathwise convergence rate with the stochastic vortex method have been studied
in [18]. Osada also studied the propagation of chaos for the Navier-Stokes equation
with the random vortex method in [35] without cut-off parameters. We refer to Chorin
[13], Goodman [23] and Long [29] for the numerical aspect and convergence analysis
for the random vortex method. More instances of the propagation of chaos have been
studied in [5, 6, 19, 36, 37, 38]. Finally we refer readers to the long and informative
article [43], in which Sznitman gives a comprehensive summary. We also refer to the
recent important contribution [33].

Instead of taking curl of the Newtonian potential in the Navier-Stokes equation
above, in this article we take the gradient of the Newton potential as the interacting
attractive force F (x) = −∇Φ(x), ∀ x ∈ R

d\{0}, d ≥ 2 and
√
2ν > 0 in (1.1), where

the Newtonian potential is represented as

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

2π
ln |x| if d = 2,

− Cd

|x|d−2
if d ≥ 3,

(1.2)

where Cd =
1

d(d− 2)αd
, αd =

πd/2

Γ(d/2 + 1)
, i.e. αd is the volume of d-dimensional unit

ball. We rigorously derive the following mean-field KS equation:⎧⎨
⎩

∂tρ = ν
ρ−∇ · [ρ∇c], x ∈ R
d, t > 0,

−
c = ρ(t, x),
ρ(0, x) = ρ0(x),

(1.3)

under the following assumption:

Assumption 1. The initial density ρ0(x) satisfies
1. ρ0(x) ∈ L∞(Rd) ∩ L1(Rd, (1 + |x|)dx), ∫

Rd ρ0(x)dx = 1;
2.

‖ρ0‖
L

d
2 (Rd)

<

⎧⎨
⎩

8πν if d = 2,

8νSd

d
if d ≥ 3,

(1.4)

where Sd = d(d−2)
4 22/dπ1+1/dΓ

(
d+1
2

)−2/d
, which is the best constant in

the Sobolev inequality [28, pp.202].
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In fact, the above assumption is sufficient for the existence of global weak solution
to (1.3), see [1, 3, 4]. In the context of biological aggregation, the KS equation
describes chemotaxis. ρ(t, x) represents the bacteria density and c(t, x) represents the
chemical substance concentration.

Recently, the uniqueness of weak solution to the KS model (1.3) has been con-
cerned by many scholars. Sugiyama [40] gave the uniqueness for 1-D Keller-Segel
model by using the classical PDE theory. The optimal transport method [9] and the
renormalizing argument [16] have been used to prove the uniqueness of weak solution
to the KS model. In this paper, we introduce the following mean-field self-consistent
stochastic process (Xt)t≥0 underlying the KS equation:

Xt = X0 +

∫ t

0

∫
Rd

F (Xs − y)ρ(s, y)dyds+
√
2νBt, (1.5)

where we require (Xt)t≥0 possessing a marginal density (ρt)t≥0 for any t ≥ 0 and the
drift term is self-determined by

∫
Rd F (Xs − y)ρ(s, y)dy. By the Itô formula, we know

that ρ is a weak solution to the KS equation.

We introduce the following notion of strong solution to the self-consistent SDE
(1.5). We require ρ ∈ L∞(

0, T ;L∞(Rd)∩L1(Rd, (1+ |x|)dx)) for any T > 0 to insure
that the self-consistent drift term

V (s, x) :=

∫
Rd

F (x− y)ρ(s, y)dy

is log-Lipschitz continuous, see Lemma 2.2 (ii). Then (1.5) becomes the following
standard SDE:

Xt = X0 +

∫ t

0

V (s,Xs)ds+
√
2νBt, (1.6)

and it is well known (utilizing Lemma 2.4) that the log-Lipschitz continuity of the
drift term is enough for the existence and uniqueness of strong solution to this SDE.
This kind of log-Lipschitz singularity also appeared in the 2D incompressible Euler
equation and the uniqueness of weak solution was proved by Yudovich in [45]. Next,
we give a precise definition of the strong solution to the self-consistent SDE (1.5).

Definition 1. For any fixed T > 0, initial data X0 and given probability space(
Ω,F ,P

)
endowed with a d-dimensional (Ft)t∈[0,T ]-Brownian motion (Bt)t∈[0,T ], if

there is a stochastic process (Xt)t∈[0,T ] adapted to (Ft)t∈[0,T ] and it has a time

marginal density ρ ∈ L∞(
0, T ;L∞(Rd)∩L1(Rd, (1+ |x|)dx)) such that

(
Xt, ρt

)
t∈[0,T ]

satisfies (1.5) almost surely (a.s.) in the probability space
(
Ω,F , (Ft)t≥0,P

)
for all

t ∈ [0, T ], we say that
(
Xt, ρt

)
t≥0

is a global strong solution to (1.5).

We will prove in Subsection 2.3 the following theorem about the uniqueness of
weak solution (see the Definition 2) to (1.3) by utilizing the strong solution of (1.5)
as a characteristic line.

Theorem 1.1. Assume the initial density ρ0(x) satisfies Assumption 1. Then
for any fixed T > 0, we have

(i) for any initial random variable X0 with the density ρ0(x), there exists a unique
global strong solution

(
Xt, ρt

)
t≥0

to (1.5) and ρ is a weak solution to (1.3);
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(ii) there exists a unique weak solution ρ(t, x) in the class of

ρ ∈ L∞(
0, T ;L∞(Rd) ∩ L1(Rd, (1 + |x|)dx)) ∩ L2(0, T ;H1(Rd))

to (1.3) with the initial data ρ0.

Furthermore, with the help of (1.5), we also obtain the following theorem about
the Dobrushin’s type stability for (1.3) with respect to the initial data in the Wasser-
stein distance.

Theorem 1.2. For any fixed T > 0, let ρ1, ρ2 ∈ L∞(
0, T ;L∞(Rd) ∩ L1(Rd, (1 +

|x|)dx)) ∩ L2(0, T ;H1(Rd)) be two weak solutions to (1.3) with the initial conditions
ρ10(x), ρ

2
0(x) respectively and ρ10(x), ρ

2
0(x) satisfy Assumption 1. There exists two con-

stants C (depending only on ‖ρ1‖L∞(0,T ;L∞∩L1(Rd)) and ‖ρ2‖L∞(0,T ;L∞∩L1(Rd))) and
CT (depending only on T ) such that

sup
t∈[0,T ]

W1(ρ
1
t , ρ

2
t ) ≤ CT max

{
W1(ρ

1
0, ρ20), {W1(ρ

1
0, ρ20)}exp(−CT )

}
.

where W1 is the Wasserstein distance, see Subsection 2.1.

Our last result deals with the propagation of chaos. Considering the interacting
system (1.1) with F (x) = −∇Φ(x) = −C∗x

|x|d , ∀ x ∈ R
d\{0}, d ≥ 2, where Φ is given by

(1.2), C∗ = Γ(d/2)
2πd/2 . Then the first term on the right hand in (1.1) represents attractive

force on Xi
t by all other particles. This system is also known as the self-gravitating

Brownian particles [10, 11].
For d = 2, it is well known that if 8πν < 1, the solution to the KS equation

with the initial density ρ0 concentrates before the time 2πVar{ρ0}
1−8πν . In Subsection 3.1,

when 8πν < 1, we show that the expectation of the collision time for (1.1) is also

bounded by 2πVar{ρ0}
1−8πν . Although we only prove the collision happens when 8πν < 1,

the collision for (1.1) is generic. Recently, there is a deep result proved by Fournier

and Jourdain [20, Proposition 4]: for any N ≥ 2 and T > 0, if {(Xi,N
t )t∈[0,T ]}Ni=1 is

the solution to (1.1), then

P(∃s ∈ [0, T ], ∃1 ≤ i < j ≤ N : Xi,N
s = Xj,N

s ) > 0,

i.e. the singularity is visited and the particle system is not clearly well-defined. There-
fore in order to obtain a global strong solution to the interacting particle system, we
regularize the force term by a blob function J(x) ∈ C2(Rd), supp J(x) ⊂ B(0, 1),
J(x) ≥ 0 and

∫
B(0,1)

J(x)dx = 1. Let Jε(x) =
1
εd
J(xε ), Φε(x) = Jε ∗ Φ(x) for x ∈ R

d

and Fε(x) = −∇Φε(x). The regularized system is given by

Xi,ε
t = Xi

0 +
1

N − 1

∫ t

0

N∑
j �=i

Fε(X
i,ε
s −Xj,ε

s )ds+
√
2νBi

t, i = 1, · · · , N. (1.7)

This system has a unique global strong solution {(Xi,ε
t )t≥0}Ni=1 by the standard the-

orem of SDE [34, Theorem 5.2.1 ].
By the coupling method, as N → ∞, we show that the N interacting particles

{(Xi,ε(N)
t )t≥0}Ni=1 respectively can be approximated by the processes {(Xi

t)t≥0}Ni=1,
which are the strong solutions to

Xi
t = Xi

0 +

∫ t

0

∫
Rd

F (Xi
s − y)ρis(y)dyds+

√
2νBi

t, i = 1, · · · , N, (1.8)
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where (ρit)t≥0 is the time marginal density of (Xi
t)t≥0; the initial data {Xi

0}Ni=1 and
Brownian motions {(Bi

t)t≥0}Ni=1 are same as these in the system (1.7). Recall that
the self-consistent SDE (1.5) has a unique strong solution. Since the initial data and
Brownian motions both are i.i.d., then the processes {(Xi

t)t≥0}Ni=1 are N copies of the
strong solutions to (1.5) and ρi(t, x) ≡ ρ(t, x) for i = 1, · · · , N . By Theorem 1.1, ρ is
the unique weak solution to the KS equation with the initial data ρ0. The propagation
of chaos result can be summarized as:

Theorem 1.3. Suppose ρ0 satisfies Assumption 1 and {Xi
0}Ni=1 are i.i.d. random

variables with the common density ρ0. Let {(Xi,ε
t )t≥0}Ni=1 and {(Xi

t)t≥0}Ni=1 be the
unique strong solutions to (1.7) and (1.8) respectively with the same i.i.d. initial data
{Xi

0}Ni=1 and Brownian motions {(Bi
t)t≥0}Ni=1. Then {(Xi,ε

t )t≥0}Ni=1 are exchangeable,

{(Xi
t)t≥0}Ni=1 are i.i.d. and there is a list of cut-off parameters ε(N) ∼ (lnN)−

1
d → 0

as N → ∞ such that for any T > 0 and all 1 ≤ i ≤ N ,

E

[
sup

t∈[0,T ]

∣∣Xi,ε(N)
t −Xi

t

∣∣] → 0 as N → ∞.

Furthermore Corollary 3.1 and Corollary 3.2 show that for any j ≥ 1, the j-

particle marginal distribution f
(j),ε(N)
t (x1, · · · , xj) narrowly converges to f(t, x)⊗j

and f(t, x) possesses a density ρ(t, x) for any t ≥ 0, where ρ is the unique weak
solution to the mean-field KS equation with the initial data ρ0.

We give a short review on results on the propagation of chaos for the KS equation.
Stevens [39] derived the parabolic-parabolic KS equation from a large interacting
particle system with birth and death processes. In [25], Haskovec and Schmeiser
studied many-particle limit in the BBGKY hierarchy by using measure solutions of
the KS system under the molecular chaos assumption. They also obtained some
tightness and weak convergence results. However they pointed out that they could
not prove the propagation of chaos due to lacking of uniqueness result for the limiting
hierarchy. In [22], Godinho and Quininao considered the less singular force kernel, i.e.
F = ∇(

1
α−1 |x|1−α

)
= − x

|x|α+1 , 0 < α < 1, and they proved the propagation of chaos

for the sub-critical KS equation.

This paper is organized as follows. The well-posedness for the KS equation and
the self-consistent SDE are established in Section 2. In Section 3.1, if 8πν < 1, we
first show that the expectation of the collision time for the interacting particle system
(1.1) is bounded by a uniform constant, and then we prove the propagation of chaos
results. Finally, in the Appendix we provide a supplementary proof of Theorem 2.2.

2. Well-posedness for the self-consistent SDE. This section is devoted
to prove the existence and uniqueness of strong solution to the self-consistent
SDE (1.5). Notice that if the density ρ(t, x) ∈ L∞(

0, T ;L∞ ∩ L1(Rd)
)
, then∫

Rd F (Xs − y)ρ(s, y)dy, as the drift term of (1.5), is Lipschitz continuous up to a
logarithmic singularity (see Lemma 2.2), is also known as log-Lipschitz continuous
[12]. Then we will adapt some techniques used in analysis of the incompressible Euler
equation. In Subsection 2.1, we use the Osgood lemma [12, Lemma 5.2.1] to prove a
Gronwall type inequality with a logarithmic singularity in Lemma 2.4. In Subsection
2.2, we regularize the self-consistent SDE (1.5) and give a uniform estimate for the
density of the strong solution to this regularized problem. In Subsection 2.3, we prove
the uniqueness of weak solution to the KS equation.
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2.1. Preliminaries. We begin by introducing the definition of weak solution
to the KS equation which we will deal with through this paper. Indeed, we ask for
more regularities than needed for the definition and these regularities will be proved
in Theorem 2.2.

Definition 2 (weak solution). Let the initial data ρ0(x) ∈ L1
+ ∩ L

d
2 (Rd) and

T > 0. c is the chemical substance concentration associated with ρ and is given by
c(t, x) = −Φ ∗ ρ(t, x). We shall say that ρ(t, x) is a weak solution to (1.3) with the
initial data ρ0(x) if it satisfies:

1. Regularity:

ρ ∈ L∞(
0, T ;L1

+ ∩ L
d
2 (Rd)

)
, ρ

d
4 ∈ L2(0, T ;H1(Rd)),

and ∂tρ ∈ Lq
(
0, T ;W−1,p

loc (Rd)
)

for some q, p ≥ 1.

2. For all ϕ ∈ C∞
0 (Rd) and 0 < t ≤ T , the following holds,

∫
Rd

ρ(t, x)ϕ(x)dx−
∫
Rd

ρ0(x)ϕ(x)dx− ν

∫ t

0

∫
Rd

ρ(s, x)Δϕ(x)dxds

=

∫ t

0

∫
Rd

ρ(s, x)
( ∫

Rd

F (x− y)ρ(s, y)dy
) · ∇ϕ(x)dxds. (2.1)

Remark 2.1. For d ≥ 3, since ρ
d
4 ∈ L2(0, T ;H1(Rd)), by the embedding the-

orems, ρ ∈ L
d
2

(
0, T ;L

d2

2(d−2) (Rd)
)
. By the Hardy-Littlewood-Sobolev inequality, one

also has

∣∣ ∫
Rd

ρ(s, x)
( ∫

Rd

F (x− y)ρ(s, y)dy
) · ∇ϕ(x)dx

∣∣
=

C∗

2

∣∣− ∫
R2d

(∇ϕ(x)−∇ϕ(y)) · (x− y)

|x− y|2
ρ(s, x)ρ(s, y)

|x− y|d−2
dxdy

∣∣
≤ C∗

2

∫
R2d

ρ(s, x)ρ(s, y)

|x− y|d−2
dxdy ≤ C(d)‖ρ‖2

L
2d

d+2 (Rd)
. (2.2)

Notice that d2

2(d−2) > 2d
d+2 , thus the regularity of ρ is enough to make sense of each

term in (2.1).

Now we give a lemma to collect some useful properties of the regularized force.

Lemma 2.1. Suppose J(x) ∈ C2(Rd), supp J(x) ⊂ B(0, 1), J(x) = J(|x|),∫
Rd J(x)dx = 1 and J(x) ≥ 0. Let Jε(x) =

1
εd
J(xε ) and Φε(x) = Jε ∗Φ(x) for x ∈ R

d,

Fε(x) = −∇Φε(x). Then Fε(x) ∈ C1(Rd), ∇ · Fε(x) = −Jε(x) and

(i) Fε(0) = 0 and Fε(x) = F (x)g( |x|ε ) for any x �= 0, where g(r) =

1
C∗

∫ r

0
J(s)sd−1ds, C∗ =

Γ(d/2)

2πd/2
, d ≥ 2 and g(r) = 1 for r ≥ 1;

(ii) |Fε(x)| ≤ min{C|x|
εd

, |F (x)|} and |∇Fε(x)| ≤ C
εd
.

Proof. Denote r = |x| for any x ∈ R
d\{0}. Recall that


Φε(x) = Jε(x) and 
r =
∂r(r

d−1∂r)

rd−1
.
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Then

∂r(r
d−1∂rΦε(r)) = rd−1Jε(r). (2.3)

Integrating (2.3), one has

rd−1∂rΦε(r) =

∫ r

0

Jε(s)s
d−1ds =

∫ r
ε

0

J(s)sd−1ds.

Denote g( rε ) =
1
C∗

∫ r
ε

0
J(s)sd−1ds, then

g(r) = 1 when r ≥ 1; Fε(x) = −x

r
∂rΦε(r) = −C∗x

rd
g(

r

ε
) = F (x)g(

r

ε
),

i.e. (i) holds. By the definitions of J and g, one can easily find a positive constant
C1 such that

0 ≤ g(r) ≤ C1 min{1, rd}.

Then simple computation shows that there exists a constant C > 0 such that

|Fε(x)| ≤ min
{
C|x|1−dg(

|x|
ε
), |F (x)|} ≤ min

{
C
|x|
εd

, |F (x)|}, (2.4)

|∇Fε(x)| ≤ C
(
|x|−d(

|x|
ε
)d + |x|1−d(

|x|
ε
)d−1 1

ε

)
≤ C

εd
, (2.5)

which finishes the proof of (ii).

In this article we take a cut-off function J(x) ≥ 0, J(x) ∈ C3
0 (R

d),

J(x) =

{
C(1 + cosπ|x|)2 if |x| ≤ 1,

0 if |x| > 1,

where C is a constant such that C|Sd−1| ∫ 1

0
(1 + cosπr)2rd−1dr = 1, |Sd−1| = 2πd/2

Γ(d/2) .

Lemma 2.2. For any function ρ(x) ∈ L∞ ∩ L1(Rd), there exists a universal
constant C (depending only on ‖ρ‖L∞∩L1) such that for all ε ≥ ε

′ ≥ 0, one has

(i)
∫
Rd |ρ(y)Fε(x− y)|dy ≤ C.

(ii)
∫
Rd |ρ(y)||Fε(x− y)− Fε(x

′ − y)|dy ≤ C ω
(|x− x′|), where

ω(r) =

{
1 if r ≥ 1,

r(1− ln r) if 0 < r < 1.
(2.6)

(iii)
∫
Rd |ρ(y)||Fε(x− y)− Fε′ (x− y)|dy ≤ C ε.

Proof. For d = 2, (i) and (ii) have been proven by Kato [27, see Lemma 1.4.] or
Marchioro and Pulvirenti [31]. Their proofs are also valid in the high dimensions. We
omit the details here and prove (iii) below.
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Since Fε(x) = F (x) for any |x| ≥ ε and |Fε(x)| ≤ |F (x)| by Lemma 2.1, we have∫
Rd

∣∣Fε

(
x− y

)− Fε′
(
x− y

)∣∣ρ(y)dy ≤ C‖ρ‖L∞

∫
{y:|x−y|≤ε}

dy

|x− y|d−1

≤ C ‖ρ‖L∞ ε.

Lemma 2.3. Let Xi (i = 1, 2) be two random variables with densities ρi(x) ∈
L∞ ∩ L1(Rd) ( X1 and X2 are not necessarily independent). For any ε ≥ ε

′ ≥ 0,
define

I :=

∫
Rd

Fε(X1 − y)ρ1(y)dy −
∫
Rd

Fε′ (X2 − y)ρ2(y)dy.

Then there exists a constant C (depending only on ‖ρ1‖L∞∩L1 and ‖ρ2‖L∞∩L1) such
that

E
[|I|] ≤ C

(
ε+ ω(E[|X1 −X2|])

)
, (2.7)

where ω is given by (2.6).

Proof. A direct computation shows that

|I| ≤
∫
Rd

|Fε(X1 − y)− Fε(X2 − y)|ρ1(y)dy +
∫
Rd

|Fε(X2 − y)− Fε′ (X2 − y)|ρ1(y)dy

+

∫
Rd

|Fε′ (X2 − y)ρ1(y)− Fε′ (X2 − y)ρ2(y)|dy =: I1 + I2 + I3. (2.8)

By Lemma 2.2 (ii) and (iii), there exists a constant C (depending only on ‖ρ1‖L∞∩L1)
such that

I1 ≤ C ω
(|X1 −X2|

)
, (2.9)

I2 ≤ C ε. (2.10)

Suppose (Y1;Y2) is an independent copy of (X1;X2). By Lemma 2.2 (ii), there exists
a constant C (depending only on ‖ρ2‖L∞∩L1) such that

E[I3] = E[

∫
Rd

|Fε′ (X2 − y)ρ1(y)− Fε′ (X2 − y)ρ2(y)|dy]
= ExEy

[|Fε′ (X2 − Y1)− Fε′ (X2 − Y2)|
]

= Ey

[ ∫
Rd

|Fε′ (x− Y1)− Fε′ (x− Y2)|ρ2(x)dx
]

≤ C E[ω(|Y1 − Y2|)] = C E[ω(|X1 −X2|)]. (2.11)

Taking the expectation of (2.8) and combining (2.9), (2.10), (2.11) and the concavity
of ω(r), we obtain that

E[|I|] ≤ C
(
ε+ E[ω(|X1 −X2|)]

)
≤ C

(
ε+ ω

(
E[|X1 −X2|]

))
, (2.12)
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where C is a constant depending only on ‖ρ1‖L∞∩L1 and ‖ρ2‖L∞∩L1 .

The following lemma is a Gronwall type inequality with a logarithmic singularity,
which is an application of the Osgood lemma.

Lemma 2.4. Assume that a sequence of nonnegative continuous functions
{αε(t)}ε>0 satisfy

αε(t) ≤ C

∫ t

0

αε(s)[1− lnαε(s)]ds+ CεT for all t ∈ [0, T ],

where C is a constant. Then there exists two constants CT (depending only on T )
and ε0(T ) > 0 such that if ε < ε0(T ), then

sup
t∈[0,T ]

αε(t) ≤ CT ε
exp(−CT ) < 1. (2.13)

Proof. We divide into the following two cases:
Case (i): If αε(t) < 1 for all t ∈ [0, T ], we claim (2.13) holds. Indeed the proof

follows directly from the Osgood lemma, where we take γ = C, μ(x) = x(1−lnx), x <
1 and a = CεT in the cited reference. Then

−M(αε(t)) +M(a) ≤ Ct, where M(x) =

∫ 1

x

dr

μ(r)
.

Simple computation shows that

αε(t) ≤ exp
(
1− (1− lnCtε) exp(−Ct)

)
= exp(1− exp(−Ct))(CTε)exp(−Ct) ≤ CT ε

exp(−CT ). (2.14)

Case (ii): There exists T1 < T such that αε(t) < 1 when t ∈ [0, T1) and αε(T1) =
1. Choosing ε0(T ) such that CT ε0

exp(−CT ) = 1, if ε < ε0(T ), then we show that the
case (ii) can not happen.

From (2.14), we obtain that for all t ∈ [0, T1) ,

αε(t) ≤ CT ε
exp(−CT ). (2.15)

Using the continuity of αε(t) in (2.15), one has if ε < ε0(T ), then

1 = αε(T1) ≤ CT ε
exp(−CT ) < CT ε0

exp(−CT ) = 1,

which is a contradiction.

Now we introduce a topology of the 1-Wasserstein space which will be used for
proving the well-posedness of weak solution to the KS equation. Consider the following
space

P1(R
d) =

{
f | f is a probability measure on R

d and

∫
Rd

|x|df(x) < +∞}
.

We denote the Kantorovich-Rubinstein distance in P1(R
d) as follows

W1(f, g) = inf
π∈Λ(f, g)

{∫
Rd×Rd

|x− y|dπ(x, y)
}
,



328 J.-G. LIU AND R. YANG

where Λ(f, g) is the set of joint probability measures on R
d × R

d with marginals
f and g. If f, g have densities ρ1, ρ2 respectively, we also denote the distance as
W1(ρ1, ρ2). In [44, Theorem 6.18], it has been proven that P1(R

d) endowed with
this distance is a complete metric space. And by [44, Theorem 6.9], the following
proposition holds.

Proposition 2.1. For a sequence of
{
fk
}∞
k=1

and f in P1(R
d), the convergence

of
{
fk
}∞
k=1

to f in the 1-Wasserstein distance implies the narrow convergence of{
fk
}∞
k=1

, i.e.

W1(fk, f)
k→∞−−−−→ 0 ⇒

∫
ϕdfk(x)

k→∞−−−−→
∫

ϕdf(x) for any ϕ ∈ Cb(R
d),

where Cb(R
d) is the space of continuous and bounded functions.

In this paper we use the following time dependent space L∞(
0, T ;P1(R

d)
)
:

{
f(t, x)| f(t, ·) is a probability measure on R

d

for any time t and sup
t∈[0,T ]

∫
Rd

|x|df(t, x) < +∞}
.

endowed with metric

MT (f
1
t , f

2
t ) = sup

t∈[0,T ]

W1(f
1
t , f

2
t ).

And the following proposition is well known, c.f. [6].

Proposition 2.2. L∞(
0, T ;P1(R

d)
)
is a complete metric space.

At last, we introduce the Kantorovitch-Rubinstein or Wasserstein metric on the
set P1(C) of probability measures on C := C([0, T ],Rd) with bounded first moment,
defined by

DT (m1,m2) = inf
m∈Λ(m1,m2)

{∫
C×C

sup
t∈[0,T ]

|xt − yt|dm(x, y)
}
, (2.16)

where (xt)0≤t≤T and (yt)0≤t≤T are two canonical processes on C. The formula (2.16)
defines a complete metric on the set P1(C) and gives a topology of P1(C), see [43].

2.2. Regularization for the self-consistent SDE and the uniform esti-
mates in L∞(Rd). First, we state a result on the global existence and uniqueness of
strong solution to the following regularized self-consistent SDE:

Xε
t = X0 +

∫ t

0

∫
Rd

Fε(X
ε
s − y)ρε(s, y)dyds+

√
2νBt, (2.17)

where we require (Xε
t )t≥0 possessing a marginal density (ρε(t, x))t≥0 and the initial

density ρ0(x) satisfies
∫
Rd ρ0(x)dx = 1 and ρ0(x) ∈ L∞(Rd)∩L1(Rd, (1+ |x|)dx). The

PDE associated to (2.17) is the following regularized KS equation:⎧⎨
⎩

∂tρε = ν
ρε −∇ · [ρε∇cε], x ∈ R
d, t > 0,

−
cε = Jε ∗ ρε(t, x),
ρε(0, x) = ρ0(x),

(2.18)
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which has a unique global weak solution ρε in the class of L∞(
0, T ;L2(Rd)

) ∩
L2

(
0, T ;H1(Rd)

)
, and

∫
Rd ρε(t, x)dx ≡ 1.

Now we give the results about the existence and uniqueness (in the strong sense)
of (2.17).

Theorem 2.1. Suppose ρ0(x) ∈ L∞(Rd)∩L1(Rd, (1+|x|)dx) and X0 is a random
variable with the density ρ0(x). Then for any fixed T > 0, ε > 0, (2.17) has a unique
strong solution (Xε

t , ρε(t, y))t≥0 with the initial data X0 and ρε(t, y) is the unique
weak solution to (2.18).

Proof. We first solve for ρε from (2.18) directly. Then plugging ρε into (2.17) and
it becomes a linear SDE. Hence we can solve for a solution (Xε

t )t≥0 from this linear
SDE. By the Itô formula, we know that the marginal density of (Xε

t )t≥0 is exactly ρε.
This strategy has been used in [6] and now we give the detailed proof.

Suppose ρε(t, x) is the unique weak solution to (2.18). Let Ṽε(t, x) =
∫
Rd Fε(x−

y)ρε(t, y)dy. Since Ṽε(t, x) is bounded and Lipschitz continuous, the following linear
SDE

Xε
t = X0 +

∫ t

0

Ṽε

(
s,Xε

s

)
ds+

√
2νBt

has a unique strong solution (Xε
t )t≥0 and it admits a time marginal density denoted

by ρ̃ε(t, x) (see [41, Theorem 9.1.9]). For any ϕ(x) ∈ C2
b (R

d), The Itô formula states
that

ϕ(Xε
t ) = ϕ(X0) +

∫ t

0

∇ϕ(Xε
s )Ṽε

(
s,Xε

s

)
ds

+
√
2ν

∫ t

0

∇ϕ(Xε
s )dBs + ν

∫ t

0


ϕ(Xε
s )ds. (2.19)

Taking expectation of (2.19), ρ̃ε is a weak solution to the following linear Fokker-
Planck equation:{

∂tρ̃ε(t, x) = ν
ρ̃ε(t, x)−∇ · [Ṽε(t, x)ρ̃ε(t, x)], x ∈ R
d, t > 0,

ρ̃ε(0, x) = ρ0(x).
(2.20)

Since ρε is also a weak solution to (2.20) and the weak solution in the class of
L∞(

0, T ;L2(Rd)
) ∩ L2

(
0, T ;H1(Rd)

)
to (2.20) is unique, then

ρ̃ε = ρε,

which means that (Xε
t , ρε(t, y))t≥0 is a strong solution to (2.17).

The uniqueness of strong solution to (2.17) comes from the uniqueness of weak
solution to (2.18). In fact, suppose (Xε,1

t )t≥0 and (Xε,2
t )t≥0 are two strong solutions

to (2.17) with the same initial data. Let ρ1ε and ρ2ε be the densities of those two
solutions respectively. By the Itô formula, one knows that ρ1ε and ρ2ε both are weak
solutions to (2.18) with the same initial data ρ0(x). Since the weak solutions to (2.18)
is unique, one has

ρ1ε = ρ2ε. (2.21)

Hence by standard argument, since Fε ∗ ρ1ε = Fε ∗ ρ2ε is smooth, uniqueness holds (in
the strong sense) in (2.17).
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Next we present a uniform estimate on ‖ρε‖L∞(0,T ;L∞(Rd)) and other related es-
timates for ρε, which is crucial for deriving the mean-field equation (see [31]).

Theorem 2.2. Suppose ρε(t, x) is the unique weak solution to (2.18) with the
initial condition ρ0(x) satisfying Assumption 1. Then for any fixed T > 0, there
exists a constant C (depending only on T , ‖ρ0‖L∞(Rd)∩L1(Rd,(1+|x|)dx) and data in
(1.4)) such that
i) ‖ρε‖L∞(0,T ;L1(Rd)) = 1, ‖ρε‖L∞(0,T ;L∞(Rd)) ≤ C and

∫
Rd |x|ρε(t, x)dx ≤ C.

ii)
∫ T

0
‖∇ρε‖2L2(Rd)dt ≤ C and

∫ T

0
‖∂tρε‖2H−1(Rd)dt ≤ C.

The proof will be given in the Appendix.

2.3. Global existence and uniqueness of strong solution to the self-
consistent SDE and weak solution to the KS equation. In this subsection, with
a-priori estimates of weak solution to the regularized KS equation in Theorem 2.2, we
show that the KS equation (1.3) has a unique weak solution and the corresponding
self-consistent SDE (1.5) also has a unique strong solution.

Proof of Theorem 1.1. Let ρε(t, x) be the unique weak solution to the regularized
KS equation (2.18) with the initial condition ρ0(x). Using the uniform estimates and
by the standard argument (see a proof in Appendix), we have

Claim 1: there exists a subsequence ρε (without relabeling) such that
for any ball BR,

ρε → ρ in L2
(
0, T ;L2(BR)

)
as ε → 0, (2.22)

and ρ(t, x) is a weak solution to (1.3) with the following regularities:
i) ρ ∈ L∞(

0, T ;L∞(Rd) ∩ L1(Rd, (1 + |x|)dx)),
ii) ρ ∈ L2

(
0, T ;H1(Rd)

)
and ∂tρ ∈ L2

(
0, T ;H−1(Rd)

)
.

Combining
∫
Rd ρεdx = 1 and

∫
Rd |x|ρεdx ≤ C, we also obtain that∫

Rd

ρ(t, x)dx = 1. (2.23)

We split the proof into the following three steps:
Step 1 We split into three sub-steps to prove the existence of strong solution to

(1.5). Let (Xε
t )t≥0 be the strong solution to (2.17). Step 1.1 proves that {(Xε

t )t≥0}ε>0

is a Cauchy sequence and denotes by (Xt)t≥0 the limit point of {(Xε
t )t≥0}ε>0. Step

1.2 shows that (Xt)t≥0 has a time marginal density ρ(t, x) and it is a weak solution
to (1.3). Step 1.3 shows that (Xt, ρt)t≥0 is a strong solution to (1.5).

Step 1.1 For ε > ε
′
> 0, considering equation (2.17) and denoting by Xε

t , X
ε
′

t

two strong solutions to (2.17) starting from the same initial data X0 and Brownian

motion. Let fε, fε′ be the laws of stochastic processes (Xε
t )t≥0 and (Xε

′

t )t≥0 respec-
tively. We also have dfε = ρε(t, x)dx, dfε′ = ρε′ (t, x)dx and ρε, ρε′ are two weak
solutions to (2.18) with the same initial condition ρ0. We show that there exists a
constant CT and ε0(T ) > 0 such that if ε < ε0(T ),

sup
t∈[0,T ]

W1(fε, fε′ ) ≤ E
[

sup
t∈[0,T ]

|Xε
t −Xε

′

t |] ≤ CT ε
e−CT

. (2.24)

Considering (2.17) and subtracting one equation from the other one, one has

sup
τ∈[0,t]

|Xε
τ −Xε

′

τ | ≤
∫ t

0

∣∣ ∫
Rd

Fε(X
ε
s − y)ρε(s, y)dy −

∫
Rd

Fε′ (X
ε
′

s − y)ρε′ (s, y)dy
∣∣ds.
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By Lemma 2.3, the fact that ω is nondecreasing, and the uniform estimates of ρε in
Theorem 2.2, there exists a constant C such that

E
[

sup
τ∈[0,t]

|Xε
τ −Xε

′

τ |]

≤
∫ t

0

E
[∣∣ ∫

Rd

(
Fε(X

ε
s − y)ρε(s, y)− Fε′ (X

ε
′

s − y)ρε′ (s, y)
)
dy

∣∣]ds
≤ C

∫ t

0

(
ε+ ω

(
E
[|Xε

s −Xε
′

s |]))ds
≤ C

∫ t

0

ω
(
E
[

sup
τ∈[0,s]

|Xε
τ −Xε

′

τ |])ds+ Cεt. (2.25)

By Lemma 2.4, there exists a constant CT and ε0(T ) > 0 such that if ε < ε0(T ),
(2.24) holds. And then there exists a unique C([0, T ],Rd)-valued stochastic process
(Xt)t∈[0,T ] such that

E
[

sup
t∈[0,T ]

|Xε
t −Xt|

] ≤ CT ε
exp(−CT ). (2.26)

Furthermore, since L∞(
0, T ;P1(R

d)
)
is a complete metric space by Proposition 2.2,

and combining (2.24), there exists a unique f(t, x) ∈ L∞(
0, T ;P1(R

d)
)
such that

MT (fε, f) ≤ CT ε
exp(−CT ), (2.27)

and L{Xt} = f .
Step 1.2 we prove that

df(t, x) = ρ(t, x)dx. (2.28)

where ρ is a weak solution to (1.3).
By Proposition 2.1 and (2.27), one has∫

Rd

ϕ(x)dfε(t, x) →
∫
Rd

ϕ(x)df(t, x) as ε → 0, (2.29)

for any ϕ(x) ∈ Cb(R
d).

By (2.22), for all ϕ(x) ∈ C∞
0 (Rd), one has∫

Rd

ϕ(x)ρε(t, x)dx →
∫
Rd

ϕ(x)ρ(t, x)dx as ε → 0, (2.30)

where ρ is a weak solution to (1.3). Recall (2.23), i.e.
∫
Rd ρ(t, x)dx = 1, since

dfε(t, x) = ρε(t, x)dx, combining (2.29) and (2.30) yields (2.28).
Step 1.3 (Xt, ρt)t≥0 is a strong solution to (1.5).
By Lemma 2.3, we have

E
[| ∫

Rd

Fε(X
ε
s − y)ρε(s, y)dy −

∫
Rd

F (Xs − y)ρ(s, y)dy|] ≤ Cω(E[|Xε
s −Xs|]) + Cε.

Then by (2.26), we have

E
[| ∫ t

0

∫
Rd

Fε(X
ε
s − y)ρε(s, y)dyds−

∫ t

0

∫
Rd

F (Xs − y)ρ(s, y)dyds|]
≤ CTω(E[ sup

t∈[0,T ]

|Xε
t −Xt|]) + CεT → 0 as ε → 0.
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Thus there exists a subsequence of
∫ t

0

∫
Rd Fε(X

ε
s − y)ρε(s, y)dyds (without relabeling)

such that∫ t

0

∫
Rd

Fε(X
ε
s − y)ρε(s, y)dyds →

∫ t

0

∫
Rd

F (Xs − y)ρ(s, y)dyds a.s. as ε → 0.

Taking ε → 0 in (2.17), we conclude that for all t ∈ [0, T ],

Xt = X0 +

∫ t

0

∫
Rd

F (Xs − y)ρ(s, y)dyds+
√
2νBt a.s.

i.e. (Xt, ρt)t≥0 is a strong solution to (1.5).

Step 2 Uniqueness of the strong solution to (1.5).

Assume (Xt, ρt)t≥0, (X̄t, ρ̄t)t≥0 are two strong solutions to (1.5) with the same
initial data and Brownian motion. Then

X̄t −Xt =

∫ t

0

( ∫
Rd

F (X̄s − y)ρ̄(s, y)dy −
∫
Rd

F (Xs − y)ρ(s, y)dy
)
ds. (2.31)

Taking expectation of (2.31) and using Lemma 2.3, one has

E[ sup
t∈[0,T ]

|X̄t −Xt|] ≤
∫ T

0

E
[| ∫

Rd

F (X̄s − y)ρ̄(s, y)dy −
∫
Rd

F (Xs − y)ρ(s, y)dy|]ds
≤ C

∫ T

0

ω(E[ sup
s∈[0,t]

|X̄s −Xs|])dt. (2.32)

By E[|X̄0 −X0|] = 0 and the Osgood lemma, we obtain that E[ sup
t∈[0,T ]

|X̄t −Xt|] ≡ 0

and

MT (ρ̄, ρ) ≤ E[ sup
t∈[0,T ]

|X̄t −Xt|] = 0. (2.33)

Therefore ρ̄ = ρ and Xt = X̄t a.s. for all t ≥ 0.

Step 3 Uniqueness of the weak solution to (1.3).

Suppose ρ, ρ̄ are two weak solutions to (1.3) with the same initial data ρ0. For
any fixed random variable X0 with the density ρ0, by the following Proposition 2.3 (i),
there exists two processes (Xt)t≥0 and (X̄t)t≥0 such that (Xt, ρt)t≥0 and (X̄t, ρ̄t)t≥0

both are strong solutions to (1.5) with the same initial data (X0, ρ0). Thus (2.33)
holds, which gives the uniqueness of (1.3).

Proposition 2.3. Assume the initial density ρ0(x) satisfies Assumption 1. The
relationship between the weak solution to (1.3) and the strong solution to (1.5) can be
expressed:

(i) If ρ(t, x) is a weak solution to (1.3) with the initial data ρ0(x), then for any
random variable X0 with the density ρ0, there is a unique process (Xt)t≥0 with
the density ρ such that (Xt, ρt)t≥0 is a strong solution to (1.5) with the initial
data (X0, ρ0).

(ii) If (Xt, ρt)t≥0 is a strong solution to (1.5) with the initial data (X0, ρ0), then ρ
is a weak solution to (1.3) with the initial data ρ0.



PROPAGATION OF CHAOS 333

Proof. To prove (i), we first prove the uniqueness of weak solution in the class of
L∞(

0, T ;L2(Rd)
) ∩ L2

(
0, T ;H1(Rd)

)
to the following linear Fokker-Planck equation:

{
∂tρ = ν
ρ−∇ · [Vg(t, x)ρ], x ∈ R

d, t > 0,
ρ(0, x) = ρ0(x).

(2.34)

where Vg(t, x) =
∫
Rd F (x − y)g(t, y)dy, g(t, x) ∈ L∞(

0, T ;L∞ ∩ L1(Rd)
)
is a given

function.
Suppose ρ1, ρ2 are two weak solutions to (2.34) with the same initial condition,

subtracting one equation from another and taking test function as ρ1−ρ2, since V (t, x)
is bounded (see Lemma 2.2 (i)), one has

d

dt

‖ρ1 − ρ2‖22
2

=

∫
Rd

V (t, x)(ρ1 − ρ2) · ∇(ρ1 − ρ2)dx− ν‖∇(ρ1 − ρ2)‖22

≤ Cν‖ρ1 − ρ2‖22 +
ν

2
‖∇(ρ1 − ρ2)‖22 − ν‖∇(ρ1 − ρ2)‖22 ≤ Cν‖ρ1 − ρ2‖22.

Then combining the zero initial condition, we obtain ‖ρ1 − ρ2‖2 ≡ 0.
Next let Vρ(t, x) =

∫
Rd F (x−y)ρ(t, y)dy, where ρ is a weak solution to (1.3). Since

Vρ is log-Lipschitz continuous, repeating the proof of the existence and uniqueness for
(1.5), one can prove that the following linear SDE

Xt = X0 +

∫ t

0

Vρ

(
s,Xs

)
ds+

√
2νBt, (2.35)

has a unique strong solution (Xt)t≥0 with a marginal density ρ̃ and ρ̃ is a weak solution
to (2.34) associated to Vρ. Notice that ρ is also a weak solution to (2.34) associated
to Vρ. By the uniqueness of weak solution to (2.34), we obtain ρ̃ = ρ, i.e. (Xt, ρt)t≥0

is a strong solution to (1.5).
Combining the uniqueness of strong solution to (1.5), we finish the proof of (i).

The proof of (ii) is directly from the Itô formula and by using the energy estimates
for the regularity of ρ defined in Definition 2.

2.4. Dobrushin’s type stability of the KS equation.

Proof of Theorem 1.2. For any fixed T > 0, let ρ1, ρ2 be two weak solutions to
(1.3) with the initial conditions ρ10(x) and ρ20(x) respectively. Following the idea of
Dobrushin, we take π0(x, y) ∈ Λ(ρ10, ρ

2
0) as the optimal joint probability measure with

marginals ρ10dx and ρ20dx, i.e.

W1(ρ
1
0, ρ20) =

∫
R2d

|x− y|π0(dx, dy). (2.36)

Then taking two initial random variables X1
0 and X2

0 with joint distribution π0(x, y),
one has

W1(ρ
1
0, ρ20) = E[|X1

0 −X2
0 |]. (2.37)

By Proposition 2.3, we know that the following two self-consistent SDEs:

Xi
t = Xi

0 +

∫ t

0

∫
Rd

F (Xi
s − y)ρi(s, y)dyds+

√
2νBt, i = 1, 2, (2.38)
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have unique strong solutions (Xi
t , ρ

i
t)t≥0, where (ρit)t≥0 is the marginal density

of (Xi
t)t≥0. From Lemma 2.3, there exists a constant C (depending only on

‖ρ1‖L∞(0,T ;L∞∩L1(Rd)) and ‖ρ2‖L∞(0,T ;L∞∩L1(Rd))) such that

E[|X1
t −X2

t |] ≤ E[|X1
0 −X2

0 |] +
∫ t

0

E
[| ∫

Rd

F (X1
s − y)ρ1dy −

∫
Rd

F (X2
s − y)ρ2dy|]ds

≤ E[|X1
0 −X2

0 |] + C

∫ t

0

ω(E[|X1
s −X2

s |])ds. (2.39)

Notice that ω(r) = r(1− ln r) for 0 < r < 1 by (2.6). Applying Lemma 2.4 to (2.39),
there exists a small enough constant C0(T ) such that if E[|X1

0 −X2
0 |] < C0(T ), then

E[|X1
t −X2

t |] < 1 for any t ∈ [0, T ]. Indeed, one has that

E[|X1
t −X2

t |] ≤ CT {E[|X1
0 −X2

0 |]}exp(−CT ) < 1 for any t ∈ [0, T ]. (2.40)

Combining (2.37), one has

E[|X1
t −X2

t |] ≤ CT {W1(ρ
1
0, ρ20)}exp(−CT ). (2.41)

Otherwise, if E[|X1
0 −X2

0 |] ≥ C0(T ), then there exists two cases:
(i) for any t ∈ [0, T ], E[|X1

t −X2
t |] ≥ C0(T );

(ii) there exists a t0 ∈ (0, T ] such that E[|X1
t − X2

t |] ≥ C0(T ) for t ∈ [0, t0) and
E[|X1

t0 −X2
t0 |] < C0(T ).

For the case (i), by the definition of ω(r), one obtains that there exists a constant
C1 (depending only on C0(T )) such that ω(r) ≤ C1r for r ≥ C0(T ). Thus combining
(2.39), we get

E[|X1
t −X2

t |] ≤ E[|X1
0 −X2

0 |] + C1C

∫ t

0

E[|X1
s −X2

s |]ds. (2.42)

By the Gronwall inequality, for any t ∈ [0, T ], one has

E[|X1
t −X2

t |] ≤ E[|X1
0 −X2

0 |] exp
(
C1CT

)
= W1(ρ

1
0, ρ20) exp

(
C1CT

)
. (2.43)

For the case (ii), the estimate for the interval t ∈ [0, t0) is reduced to the case (i) and
one has

E[|X1
t −X2

t |] ≤ W1(ρ
1
0, ρ20) exp

(
C1CT

)
. (2.44)

For the interval t ∈ [t0, T ], choosing t0 as a new initial time and repeating the proof
of (2.41) gives the following inequality

E[|X1
t −X2

t |] ≤ CT {E[|X1
t0 −X2

t0 |]}exp(−C(t−t0)). (2.45)

By (2.44) and the continuity of E[|X1
t − X2

t |], one has E[|X1
t0 − X2

t0 |] ≤
W1(ρ

1
0, ρ20) exp

(
C1CT

)
. Therefore combining (2.44) and (2.45), we obtain

E[|X1
t −X2

t |]
≤ CT max

{
W1(ρ

1
0, ρ20), {W1(ρ

1
0, ρ20)}exp(−CT )

}
for any t ∈ [0, T ]. (2.46)

Let πt(x, y) be the joint distribution of X1
t and X2

t . Clearly one has πt(x, y) ∈
Λ(ρ1t , ρ

2
t ). Hence sup

t∈[0,T ]

W1(ρ
1
t , ρ

2
t ) ≤ sup

t∈[0,T ]

E[|X1
t − X2

t |]. Combining (2.41), (2.43)

and (2.46) finishes the proof immediately.
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3. Propagation of chaos. This section is divided into three subsections. We
first prove a result on the collision between particles. Then we prove Theorem 1.3.
Finally, we show the propagation of chaos for the KS equation by applying Theorem
1.3 .

3.1. Collision between particles. For d = 2, it is well known that if 8πν < 1,
the solution to the KS equation with the initial density ρ0 concentrates before the
time

T c :=
2πVar{ρ0}
1− 8πν

.

In this subsection, we show that the expectation of the collision time for the interacting
particle system (1.1) is also bounded by this constant.

Theorem 3.1. Assume d = 2. Given N i.i.d. random variables {Xi
0}Ni=1 with

the common density ρ0. Let {(Xi
t)t≥0}Ni=1 be the strong solution to (1.1) with the

initial data {Xi
0}Ni=1. If 8πν < 1, fix T > T c and define a stopping time by

τε = inf{t ≥ 0 : min
i �=j

|xi
t − xj

t | ≤ ε} ∧ T. (3.1)

Let τ = lim
ε→0

τε, we have

E(τ) ≤ T c. (3.2)

Proof. From the definition (3.1), there exists a unique strong solution
{(Xi

t)t≥0}Ni=1 to the interacting particle system (1.1) up to time τ ε
2
with the initial

data {Xi
0}Ni=1. Since Fε(x) = F (x) for any |x| ≥ ε by Lemma 2.1, then {(Xi

t)t≥0}Ni=1

equals to {(Xi,ε
t )t≥0}Ni=1 (the strong solution of (1.7)) for all t ≤ τε, i.e.

Xi
τε = Xi

0 −
1

N − 1

N∑
j �=i

1

2π

∫ τε

0

Xi
s −Xj

s

|Xi
s −Xj

s |2
ds+

√
2νBi

τε , i = 1, · · · , N.

Summing all of the equations, one has

N∑
i=1

Xi
τε =

N∑
i=1

Xi
0 +

N∑
i=1

√
2νBi

τε . (3.3)

Taking expectation of (3.3), by the exchangeability of {(Xi
t)t≥0}Ni=1 and E[Bi

τε ] =
0 [21, pp.28, Theorem 1], we have

E[Xi
τε ] = E[Xi

0] =: X0.

Since the system (1.1) has a unique strong solution until the explosion time τ :=
inf{t > 0 : min

i �=j
|xi

t − xj
t | = 0}, and Fε(x) = F (x) for any |x| ≥ ε by (i) of Lemma

2.1, we know Xi
t ≡ Xi,ε

t for any 1 ≤ i ≤ N and t ≤ τε, where (Xi,ε
t )t≥0 is the unique

global strong solution to (1.7).
Next, we will estimate E[τε] by computing the variance of process (Xi,ε

t )t≥0 at
the stopping time τε. By the Itô formula and (1.7), for i = 1, · · · , N , one has

d[|Xi,ε
t −X0|2]

= 2(Xi,ε
t −X0) ·

( 1

N − 1

N∑
j �=i

Fε(X
i,ε
t −Xj,ε

t )dt+
√
2νdBi

t

)
+ 4νdt. (3.4)
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Since

Fε(−x) = F (−x)g(
|x|
ε
) = −F (x)g(

|x|
ε
) = −Fε(x),

summing all of (3.4) and integrating, one has

N∑
i=1

|Xi,ε
t −X0|2 =

N∑
i=1

|Xi
0 −X0|2 + 2

N − 1

N∑
i,j=1
i �=j

∫ t

0

Xi,ε
s · Fε(X

i,ε
s −Xj,ε

s )ds

+
N∑
i=1

2
√
2ν

∫ t

0

(Xi,ε
s −X0) · dBi

s + 4νNt. (3.5)

Since x · Fε(x) = x · F (x)g( |x|ε ) ≤ 0, we have

N∑
i,j=1
i �=j

Xi,ε
s · Fε(X

i,ε
s −Xj,ε

s ) =
1

2

N∑
i,j=1
i �=j

(Xi,ε
s −Xj,ε

s ) · Fε(X
i,ε
s −Xj,ε

s ) ≤ 0.

Then taking expectation of (3.5), by the exchangeability of {(Xi,ε
t )t≥0}Ni=1, one has

E
[|Xi,ε

t −X0|2
] ≤ E

[|Xi
0 −X0|2

]
+ 4νt+

2
√
2ν

N

(
E[

N∑
i=1

∫ t

0

(Xi,ε
s −X0) · dBi

s]
2
) 1

2

≤ E
[|Xi

0 −X0|2
]
+ 4νt+ 2

√
2ν

( ∫ t

0

E
[|Xi,ε

s −X0|2
]
ds
) 1

2 ,

the last inequality comes from the Itô isometry. Hence∫ T

0

E
[|Xi,ε

t −X0|2
]
dt < +∞. (3.6)

Therefore applying [21, pp.28, Theorem 1] deduces that

E
[ ∫ τε

0

(Xi,ε
t −X0) · dBi

t

]
= 0. (3.7)

Since Fε(x) = F (x) for any |x| ≥ ε, by the definition of τε and the fact that
{(Xi,ε

t )t≥0}Ni=1 is the unique solution to (1.1) on [0, τε], we have (X
i,ε
s −Xj,ε

s )·Fε(X
i,ε
s −

Xj,ε
s ) = − 1

2π for all s ∈ [0, τε]. Then

2

N − 1

N∑
i,j=1
i �=j

Xi,ε
s · Fε(X

i,ε
s −Xj,ε

s ) = −N

2π
for all s ∈ [0, τε]. (3.8)

Taking expectation of (3.5), by the exchangeability of {(Xi,ε
t )t≥0}Ni=1 and choosing t

as τε in (3.5), one has

E[|Xi
τε −X0|2] = E[|Xi

0 −X0|2] + (4ν − 1

2π
)E[τε]

= Var{X1
0}+ (4ν − 1

2π
)E[τε]. (3.9)
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By the positivity of left hand, we obtain

E[τε] ≤ 2πVar{X1
0}

1− 8πν
= T c.

By the monotone convergence theorem, we achieve (3.2).

3.2. Proof of Theorem 1.3. In order to find out the relationship between theN
paths of (1.7) and paths of (1.8), we construct the following regularized self-consistent
SDEs:

X̄i,ε
t = Xi

0 +

∫ t

0

∫
Rd

Fε(X̄
i,ε
s − y)df i,ε

s (y)ds+
√
2νBi

t, i = 1, · · · , N, (3.10)

where (f i,ε
t )t≥0 is the marginal density of {(X̄i,ε

t )t≥0} and the initial data {Xi
0}Ni=1

and Brownian motions {(Bi
t)t≥0}Ni=1 are the same as those of (1.7). In Section 2,

Theorem 2.1 stated the existence and uniqueness of strong solution to (2.17), which
implies that the processes {(X̄i,ε

t )t≥0}Ni=1 are N copies of the strong solutions to (2.17)
since the initial data and Brownian motions both are i.i.d..

The proof of Theorem 1.3 by the coupling method can be realized by two steps:
(i) (2.26) gives the connection between (1.8) and (3.10), (ii) the following proposition
shows the connection between (1.7) and (3.10).

Proposition 3.1. Suppose {(Xi,ε
t )t≥0}Ni=1 and {(X̄i,ε

t )t≥0}Ni=1 are the unique
strong solution to (1.7) and (3.10) respectively, with the same i.i.d. initial data
{Xi

0}Ni=1 and Brownian motions {(Bi
t)t≥0}Ni=1. Then for any ε > 0, 1 ≤ i ≤ N

and T > 0, one has

E
[

sup
t∈[0,T ]

|Xi,ε
t − X̄i,ε

t |] ≤ CT√
N − 1ε(d−1)

exp
(CT

εd
)

(3.11)

where CT is a constant depending only on T and d.

Proof. Following the spirit of [43], since
∣∣∇Fε(x)

∣∣ ≤ C
εd

by Lemma 2.1, one has

∣∣Xi,ε
t − X̄i,ε

t

∣∣ ≤ ∣∣ ∫ t

0

1

N − 1

N∑
j �=i

(
Fε(X

i,ε
s −Xj,ε

s )− Fε(X̄
i,ε
s − X̄j,ε

s ) (3.12)

+Fε(X̄
i,ε
s − X̄j,ε

s )−
∫
Rd

Fε(X̄
i,ε
s − y)df i,ε

s (y)
)
ds
∣∣

≤ 1

N − 1

∫ t

0

N∑
j �=i

(C
εd

|Xi,ε
s − X̄i,ε

s |+ C

εd
|X̄j,ε

s −Xj,ε
s |)+ |

N∑
j �=i

Ai
j(s)|ds

where

Ai
j(s) = Fε(X̄

i,ε
s − X̄j,ε

s )−
∫
Rd

Fε(X̄
i,ε
s − y)df i,ε

s (y). (3.13)
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From (3.12), one has

sup
s∈[0,t]

|Xi,ε
s − X̄i,ε

s |

≤ 1

N − 1

∫ t

0

{ N∑
j �=i

(C
εd

|Xi,ε
s − X̄i,ε

s |+ C

εd
|X̄j,ε

s −Xj,ε
s |)+ |

N∑
j �=i

Ai
j(s)|

}
ds

≤ 1

N − 1

∫ t

0

N∑
j �=i

(C
εd

sup
τ∈[0,s]

|Xi,ε
τ − X̄i,ε

τ |+ C

εd
sup

τ∈[0,s]

|X̄j,ε
τ −Xj,ε

τ |)ds
+

1

N − 1

∫ t

0

|
N∑
j �=i

Ai
j(s)|ds. (3.14)

Denote by mN+1(ω
1, · · · , ωN , y) ∈ P(CN+1) (C = C([0, T ],Rd)) the

joint distribution of
(
X1,ε

t , · · · , XN,ε
t , X̄i,ε

t

)
t≥0

and m3(ω
i, ωj , y) =∫

CN−2 mN+1(dω
1, · · · , ωi, · · · , ωj , · · · , dωN , y) for any 1 ≤ i �= j ≤ N . Since

{(Xi,ε
t )t≥0}Ni=1 are exchangeable stochastic processes and {(X̄i,ε

t )t≥0}Ni=1 are i.i.d.
stochastic processes, then m3(ω

i, ωj , y) = m3(ω
j , ωi, y) for any 1 ≤ i �= j ≤ N and

then we obtain the following exchangeability qualities: for any t ∈ [0, T ],

E[ sup
s∈[0,t]

|Xi,ε
s − X̄i,ε

s |] =
∫
C3

sup
s∈[0,t]

|ωi
s − ys|dm3(ω

i, ωj , y)

=

∫
C3

sup
s∈[0,t]

|ωi
s − ys|dm3(ω

j , ωi, y) =

∫
C3

sup
s∈[0,t]

|ωj
s − ys|dm3(ω

i, ωj , y)

= E[ sup
s∈[0,t]

|Xj,ε
s − X̄j,ε

s |]. (3.15)

Hence taking expectation of (3.14), one has

E
[
sup

s∈[0,t]

|Xi,ε
s − X̄i,ε

s |]

≤
∫ t

0

E
[∣∣ 1

N − 1

N∑
j �=i

Ai
j(s)

∣∣]ds+ 2C

εd

∫ t

0

E
[

sup
τ∈[0,s]

|Xi,ε
τ − X̄i,ε

τ |]ds. (3.16)

Applying the Gronwall’s lemma deduces that

E
[
sup

s∈[0,t]

∣∣Xi,ε
s − X̄i,ε

s

∣∣] ≤ exp
(2Ct

εd
) ∫ t

0

E
[| 1

N − 1

N∑
j �=i

Ai
j(s)|

]
ds

≤ exp
(2CT

εd
) ∫ T

0

{
E
[| 1

N − 1

N∑
j �=i

Ai
j(s)|2

]} 1
2

ds. (3.17)

Because {(X̄i,ε
t )t≥0}Ni=1 are i.i.d. random variables, when j �= k, one has

E
[
Ai

j(s)A
i
k(s)

]
= 0.

Hence

E
[| 1

N − 1

N∑
j �=i

Ai
j(s)|2

]
=

1

(N − 1)2
E
[ N∑

j,k=1
j,k �=i

Ai
j(s)A

i
k(s)

] ≤ E
[
(A1

2(s))
2
]

N − 1
. (3.18)
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For all ε > 0,
∣∣Fε(x)

∣∣ ≤ min{C|x|
εd

, C
|x|d−1 } from Lemma 2.1, we have

E
[
(A1

2(s))
2
]

= E
[(
Fε(X̄

1,ε
s − X̄2,ε

s )−
∫
Rd

Fε(X̄
1,ε
s − y)df1,ε

s (y)
)2]

≤ 2E
[
F 2
ε (X̄

1,ε
s − X̄2,ε

s ) +
( ∫

Rd

Fε(X̄
1,ε
s − y)df1,ε

s (y)
)2] ≤ 4E

[
F 2
ε (X̄

1,ε
s − X̄2,ε

s )
]

≤ C

∫
|x−y|≤ε

|x− y|2
ε2d

df1,ε
s (x)df2,ε

s (y) + C

∫
|x−y|>ε

1

|x− y|2(d−1)
df1,ε

s (x)df2,ε
s (y)

≤ C

ε2(d−1)
. (3.19)

Combining (3.17), (3.18) and (3.19) together yields (3.11).

Proof of Theorem 1.3. Let
{
(Xi

t)t≥0

}N

i=1
and

{
(X̄i,ε

t )t≥0

}N

i=1
be the unique strong

solution to (1.8) and (3.10) respectively, with the same i.i.d. initial data {Xi
0}Ni=1 and

Brownian motions {(Bi
t)t≥0}Ni=1. Similarly with (2.26), one can obtain that there

exists a constant CT and ε0(T ) > 0 such that if ε < ε0(T ), then for any 1 ≤ i ≤ N
and T > 0,

E
[

sup
t∈[0,T ]

|X̄i,ε
t −Xi

t |
] ≤ CT ε

exp(−CT ). (3.20)

Combining (3.11) and (3.20) together, one has

E
[

sup
t∈[0,T ]

|Xi,ε
t −Xi

t |
] ≤ E

[
sup

t∈[0,T ]

|Xi,ε
t − X̄i,ε

t |]+ E
[

sup
t∈[0,T ]

|X̄i,ε
t −Xi

t |
]

≤ CT√
N − 1ε(d−1)

exp
(CT

εd
)
+ CT ε

exp(−CT ). (3.21)

We choose ε = ε(N) = λ(lnN)−
1
d → 0 as N → ∞ in (3.21), where λ is a large enough

positive constant. And then

E
[

sup
t∈[0,T ]

|Xi,ε(N)
t −Xi

t |
] ≤ CTN

CT
λd (lnN)

d−1
d

λd−1
√
N − 1

+ CT ε
exp(−CT )

→ 0 as N → ∞, (3.22)

which ends the proof of Theorem 1.3.

3.3. Propagation of chaos.

Corollary 3.1. Let {(Xi,ε
t )t≥0}Ni=1 and {(Xi

t)t≥0}Ni=1 be two processes de-
fined in Theorem 1.3. Denote by Ft(x1, · · · , xN ) the joint marginal distribution of(
X1,ε

t , · · · , XN,ε
t

)
t≥0

, f
(j),ε
t =

∫
R(N−j)d Ft(·, dxj+1, · · · , dxN ) be the j-th marginal dis-

tribution of Ft(x1, · · · , xN ), and (ft)t≥0 be the common time marginal distribution of{
(Xi

t)t≥0

}N

i=1
. Then there is a list of cut-off parameters ε(N) ∼ (lnN)−

1
d → 0 as

N → ∞ such that for any j ≥ 1,

MT (f
(j),ε(N)
t , f⊗j

t ) → 0 as N → ∞.
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Proof. Denote by F̃t(x1, · · · , xN , x̂1, · · · , x̂j) the joint marginal distribution of(
X1,ε

t , · · · , XN,ε
t , X1

t , · · · , Xj
t

)
t≥0

, then one has the following facts

f⊗j
t =

∫
RNd

F̃t(dx1, · · · , dxN , ·),

f
(j),ε
t =

∫
RNd

F̃t(·, dxj+1, · · · , dxN , dx̂1, · · · , dx̂j),∫
R(N−j)d

F̃t(·, dxj+1, · · · , dxN , ·) ∈ Λ(f
(j),ε
t , f⊗j

t ).

Applying (3.21) and the exchangeability of {(Xi,ε
t )t≥0}Ni=1 and {(Xi

t)t≥0}Ni=1, we ob-
tain

MT (f
(j),ε(N)
t , f⊗j

t )

≤ sup
t∈[0,T ]

∫
R2jd

(|x1 − x̂1|+ · · ·+ |xj − x̂j |
) ∫

R(N−j)d

F̃t(dx1, · · · , dxN , dx̂1, · · · , dx̂j)

= j sup
t∈[0,T ]

∫
R(N+j)d

|x1 − x̂1|F̃t(dx1, · · · , dxN , dx̂1, , · · · , dx̂j)

≤ jEx1,··· ,xN ,x̂1,··· ,x̂j

[
sup

t∈[0,T ]

|X1,ε(N)
t −X1

t |
] → 0 as N → ∞. (3.23)

For another perspective, similar with [43], we have another propagation of chaos
result.

Corollary 3.2. Let {(Xi,ε
t )t≥0}Ni=1 and {(Xi

t)t≥0}Ni=1 be defined in Theorem
1.3, which can be considered as the canonical process on C = C([0, T ],Rd). Denote

mN (ω1, · · · , ωN ) ∈ P(CN ) as the joint probability measure of
(
X1,ε

t , · · · , XN,ε
t

)
t≥0

and m ∈ P(C) as the common probability measure of
{
(Xi

t)t≥0

}N

i=1
. Then there

is a list of cut-off parameters ε(N) ∼ (lnN)−
1
d → 0 as N → ∞ such that for

any j ≥ 1, (X
1,ε(N)
t , · · · , Xj,ε(N)

t )t≥0 converges in law to the j-independent ran-

dom variables (X1
t , · · · , Xj

t )t≥0, which is equivalent to that the empirical measure

μN = 1
N

N∑
i=1

δ
X

i,ε(N)
t

(regarded as a P1(C)-valued random variable) converges in prob-

ability to m as N → ∞.

Proof. The proof is similar to that of Corollary 3.1. Denote by m(j),ε =∫
C(N−j)d mN (ω1, · · · , ωj , dωj+1, · · · , dωN ) the j-th marginal probability measure of
mN , one has

DT (m
(j),ε(N),m⊗j) ≤ E

[ j∑
i=1

sup
t∈[0,T ]

|Xi,ε(N)
t −Xi

t |
]

= jE
[

sup
t∈[0,T ]

|X1,ε(N)
t −X1

t |
] → 0 as N → ∞.

It has been proven by Sznitman [43, Proposition 2.2.] that μN = 1
N

N∑
i=1

δ
X

i,ε(N)
t

converges in law to m. Since m is a constant random variable, then the convergence
in probability follows.
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4. Appendix.

Proof of Claim 1 in Section 2.3. Based on the uniform estimates in Theorem 2.2,
there exists a constant C which is independent of ε such that∫ T

0

‖ ∇ρε ‖2L2(Rd) dt ≤ C and

∫ T

0

‖ ∂tρε ‖2H−1(Rd) dt ≤ C,

then the following compact embedding holds: for any ball BR centered at 0 with
radius R,

H1(BR) ↪→↪→ L2(BR) ↪→ H−1(BR).

By the Lions-Aubin lemma and combining with the regularity, one arrives at

ρε is compact in L2(0, T ;L2
(
BR)

)
.

Consequently, there exists a subsequence ρε without relabeling such that

ρε → ρ in L2(0, T ;L2
(
BR)

)
as ε → 0. (4.1)

By the uniform estimates in Lemma 2.2, the regularity of ρ follows:
i) ρ ∈ L∞(

0, T ;L∞(Rd) ∩ L1(Rd, (1 + |x|)dx)),
ii) ρ ∈ L2

(
0, T ;H1(Rd)

)
and ∂tρ ∈ L2

(
0, T ;H−1(Rd)

)
.

Now, we prove that ρ(t, x) is exactly a weak solution to (1.3). For any test function
ϕ(x) ∈ C∞

0 (Rd), it satisfies the following equation∫
Rd

ρε(t, ·)ϕ(x)dx−
∫
Rd

ρ0ϕ(x)dx− ν

∫ t

0

∫
Rd

ρε(t, x)Δϕdxds

=

∫ t

0

∫
Rd

ρε(t, x)
( ∫

Rd

Fε(x− y)ρε(t, y)dy
) · ∇ϕ(x)dxds. (4.2)

By the weak convergence of ρε(t, x), the linear parts converge as follows∫
Rd

ϕ(x)ρε(t, x)dx →
∫
Rd

ϕ(x)ρ(t, x)dx, as ε → 0. (4.3)

∫ t

0

∫
Rd

ρε(t, x)Δϕdxds →
∫ t

0

∫
Rd

ρ(t, x)Δϕdxds, as ε → 0. (4.4)

The nonlinear part is divided as follows

∣∣ ∫
Rd

[
ρε(t, x)

∫
Rd

Fε(x− y)ρε(t, y)dy − ρ(t, x)

∫
Rd

F (x− y)ρ(t, y)dy
] · ∇ϕ(x)dx

∣∣
≤ ∣∣ ∫

Rd

ρε(t, x)
[ ∫

Rd

Fε(x− y)ρε(t, y)dy −
∫
Rd

F (x− y)ρ(t, y)dy
] · ∇ϕ(x)dx

∣∣
+
∣∣ ∫

Rd

[
ρε(t, x)− ρ(t, x)

] ∫
Rd

F (x− y)ρ(t, y)dy · ∇ϕ(x)dx
∣∣. (4.5)

By Lemma 2.2, V (t, x) =
∫
Rd |F (x− y)ρ(t, y)|dy ≤ C(ρ0) for any x ∈ R

d and V (t, x)

is continuous in space. Hence V (t, x) · ∇ϕ(x) ∈ C0(R
d), and then the second term

goes to zero, i.e.

∣∣ ∫
Rd

[
ρε(t, x)− ρ(t, x)

] ∫
Rd

F (x− y)ρ(t, y)dy · ∇ϕ(x)dx
∣∣ → 0 as ε → 0. (4.6)



342 J.-G. LIU AND R. YANG

With the strong convergence (4.1), the first term is estimated by

∣∣ ∫
Rd

ρε(t, x)
[ ∫

Rd

Fε(x− y)ρε(t, y)dy −
∫
Rd

F (x− y)ρ(t, y)dy
] · ∇ϕ(x)dx

∣∣
≤ C

∫
Rd

ρε(t, x)
∣∣ ∫

Rd

[
Fε(x− y)ρε(t, y)− F (x− y)ρε(t, y)

]
dy

∣∣dx
+
∣∣ ∫

Rd

ρε(t, x)

∫
Rd

[
F (x− y)ρε(t, y)− F (x− y)ρ(t, y)

]
dy · ∇ϕ(x)dx

∣∣
≤ C(ρ0)ε+

∣∣ ∫
Rd

[
ρ(t, y)− ρε(t, y)

] ∫
Rd

ρε(t, x)F (x− y) · ∇ϕ(x)dxdy
∣∣

≤ C(ρ0)ε+
∣∣ ∫

|y|≤R

[
ρ(t, y)− ρε(t, y)

] ∫
Rd

ρε(t, x)F (x− y) · ∇ϕ(x)dxdy
∣∣

+
∣∣ ∫

|y|>R

[
ρ(t, y)− ρε(t, y)

] ∫
Rd

ρε(t, x)F (x− y) · ∇ϕ(x)dxdy
∣∣. (4.7)

Since
∫
Rd |ρε(t, x)F (x− y) · ∇ϕ(x)|dx ≤ C, combining with (4.1), one has

∫ t

0

∣∣ ∫
|y|≤R

[
ρ(t, y)− ρε(t, y)

] ∫
Rd

ρε(t, x)F (x− y)

·∇ϕ(x)dxdy
∣∣ds → 0 as ε → 0. (4.8)

Since ρ(t, y), ρε(t, y) ∈ L1(Rd) and
∫
Rd |ρε(t, x)F

(
x − y

) · ∇ϕ(x)|dx ≤ C uniformly
with ε ≥ 0, ∫ t

0

∣∣ ∫
|y|>R

[
ρ(t, y)− ρε(t, y)

] ∫
Rd

ρε(t, x)F (x− y)

·∇ϕ(x)dxdy
∣∣ds → 0 as R → ∞. (4.9)

Combining (4.7), (4.8) and (4.9) leads to

∫ t

0

∫
Rd

ρε(t, x)
[ ∫

Rd

Fε(x− y)ρε(t, y)dy
] · ∇ϕ(x)dxds

→
∫ t

0

∫
Rd

ρ(t, x)
[ ∫

Rd

F (x− y)ρ(t, y)dy
] · ∇ϕ(x)dxds as ε → 0. (4.10)

Owing to (4.3), (4.4) and (4.10), passing to the limit ε → 0 in (4.2), we obtain that
for any t ∈ (0, T ]

∫
Rd

ρ(t, ·)ϕ(x)dx−
∫
Rd

ρ0ϕ(x)dx− ν

∫ t

0

∫
Rd

ρ(t, x)Δϕdxds

=

∫ t

0

∫
Rd

ρ(t, x)
( ∫

Rd

F (x− y)ρ(t, y)dy
) · ∇ϕ(x)dxds,

which finishes the proof.

Proof of Theorem 2.2. First, multiplying (2.18) with pρp−1
ε , p ≥ 2, one has

d

dt

∫
Rd

ρpεdx+
4(p− 1)ν

p

∫
Rd

∣∣∇(ρ
p
2
ε )

∣∣2dx ≤ (p− 1)

∫
Rd

ρp+1
ε dx. (4.11)
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For d ≥ 3, using the Gagliardo-Nirenberg-Sobolev inequality (see [7], [14] and
[17]), for any p ≥ d

2 − 1, one has

(p− 1)

∫
Rd

ρε
p+1dx ≤ (p− 1)Sd

−1

∫
Rd

∣∣∇(ρε
p
2 )
∣∣2dx(∫

Rd

ρε
d
2 dx

) 2
d

,

where Sd = d(d−2)
4 22/dπ1+1/dΓ

(
d+1
2

)−2/d
. Then taking p = d

2 in (4.11), one has

d

dt

∫
Rd

ρ
d
2
ε dx ≤ (

d

2
− 1)

∫
Rd

∣∣∇(ρ
d
4
ε )

∣∣2dx(Sd
−1‖ρε‖

L
d
2 (Rd)

− 8ν

d

)
,

which means that if ‖ρ0‖
L

d
2 (Rd)

< 8νSd

d , we have

‖ρε‖
L

d
2 (Rd)

< ‖ρ0‖
L

d
2 (Rd)

<
8νSd

d
.

In [2, Theorem 4.2.], the uniform bound of ‖ρε‖L∞(0,T ;L∞(Rd)) has been proven under
the above condition.

For d = 2, under the sharp condition of
∫
R2 ρ0dx < 8πν, the estimate of

‖ρε‖L∞(0,T ;L3(R2)) was given by [3, 15] with a bounded second moment. Similarly,
with a bound of the first moment, there exists a constant CT (depending only on T )
such that

sup
t∈[0,T ]

‖ρε‖3L3 ≤ CT . (4.12)

Then, we establish the uniform bound of ‖ρε‖L∞(0,T ;L∞(R2)) under this sharp
condition and divide the proof into two steps by using an iteration method.

Step 1 Define qk = 2k + 2, k ≥ 0. We have already obtained the uniform
estimate for ρε in Lq0(R2) with q0 = 3 in (4.12). Now taking p = qk, k = 1, 2, · · · , in
(4.11), the inequality becomes

d

dt

∫
R2

ρqkε dx ≤ −4(qk − 1)ν

qk

∫
R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx+ (qk − 1)

∫
R2

ρqk+1
ε dx. (4.13)

In this step, we derive the following inequality:

d

dt

∫
R2

ρqkε dx ≤ −
∫
R2

ρqkε dx+ C22k
{(∫

R2

ρqk−1
ε dx

)γ
+
( ∫

R2

ρqk−1
ε dx

)2}
, (4.14)

where γ = qk
qk−1

≤ 2.

Ladyzhenskaya’s inequality reads∫
R2

ρ2qkε dx ≤ 2
( ∫

R2

ρqkε dx
)( ∫

R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx). (4.15)

Using the interpolation inequality yields∫
R2

ρqk+1
ε dx ≤ ( ∫

R2

ρqk−1
ε dx

) (qk+1)(1−θ)

qk−1
( ∫

R2

ρ2qkε dx
) (qk+1)θ

2qk , (4.16)

∫
R2

ρqkε dx ≤ ( ∫
R2

ρqk−1
ε dx

) qk(1−β)

qk−1
( ∫

R2

ρ2qkε dx
) β

2 , (4.17)
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where θ = 2qk(qk+1−qk−1)
(qk+1)(2qk−qk−1)

, β = 2(qk−qk−1)
2qk−qk−1

.

Plugging (4.17) into (4.15), one has∫
R2

ρ2qkε dx ≤ 2
2

2−β
( ∫

R2

ρqk−1
ε dx

) 2qk(1−β)

qk−1(2−β)
( ∫

R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx) 2
2−β . (4.18)

Plugging (4.18) into (4.16), one has∫
R2

ρqk+1
ε dx ≤ 2

(qk+1)θ

qk(2−β)
( ∫

R2

ρqk−1
ε dx

) (qk+1)(2−θ−β)

qk−1(2−β)
( ∫

R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx) (qk+1)θ

qk(2−β)

≤ 4
( ∫

R2

ρqk−1
ε dx

)( ∫
R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx) 1
2

≤ 2a−1
( ∫

R2

ρqk−1
ε dx

)2
+ 2a

∫
R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx, (4.19)

for any a > 0. Let a = ν
qk

and take (4.19) into (4.13),

d

dt

∫
R2

ρqkε dx ≤ −2(qk − 1)ν

qk

∫
R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx+
2qk

2

ν

( ∫
R2

ρqk−1
ε dx

)2
≤ −ν

∫
R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx+
2qk

2

ν

( ∫
R2

ρqk−1
ε dx

)2
. (4.20)

Plugging (4.18) into (4.17) induces that∫
R2

ρqkε dx ≤ 2
β

2−β
( ∫

R2

ρqk−1
ε dx

) 2qk(1−β)

qk−1(2−β)
( ∫

R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx) β
2−β

≤ δ′b−
1
δ′
(
2

∫
R2

ρqk−1
ε dx

) 2qk(1−β)

qk−1(2−β)δ′ + δb
1
δ

( ∫
R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx) β
(2−β)δ ,

for any b > 0, where δ + δ′ = 1.

Let δb
1
δ = ν and δ = β

2−β = 2k−1

2k+2
∈ [ 18 ,

1
2 ], the above inequality becomes

∫
R2

ρqkε dx ≤ (1− δ)(
ν

δ
)−

δ
1−δ

(
2

∫
R2

ρqk−1
ε dx

)γ
+ ν

∫
R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx
≤ λ

( ∫
R2

ρqk−1
ε dx

)γ
+ ν

∫
R2

∣∣∇(ρ
qk
2
ε )

∣∣2dx, (4.21)

where γ = 2qk(1−β)
qk−1(2−β)(1−δ) =

qk
qk−1

≤ 2 and λ = 2max{(1− δ)( νδ )
− δ

1−δ }.
Plugging (4.21) into (4.20), we have

d

dt

∫
R2

ρqkε dx ≤ −
∫
R2

ρqkε dx+ λ
( ∫

R2

ρqk−1
ε dx

)γ
+

2qk
2

ν

( ∫
R2

ρqk−1
ε dx

)2
≤ −

∫
R2

ρqkε dx+ C22k
{(∫

R2

ρqk−1
ε dx

)γ
+
( ∫

R2

ρqk−1
ε dx

)2}
,

which gives the inequality (4.14).
Step 2 Denote xk(t) :=

∫
R2 ρ

qk
ε dx, the inequality (4.14) can be recast as an

ordinary differential inequality problem:

x′
k(t) ≤ −xk(t) + C22k

(
xγ
k−1(t) + x2

k−1(t)
)
,
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where 0 < γ ≤ 2 and C is a constant independent of k. From the above inequality,
one has

xk(t) ≤ xk(0)e
−t + C22k max

{
1, sup

t∈[0,T ]

x2
k−1(t)

}
(1− e−t)

≤ C22k max
{
1, sup

t∈[0,T ]

x2
k−1(t), xk(0)

}
. (4.22)

Plugging xk(0) =
∫
R2 ρ

qk
0 dx ≤ ‖ρ0‖L1‖ρ0‖qk−1

L∞ ≤ Dqk , D =

max
{
1, ‖ρ0‖L1(R2), ‖ρ0‖L∞(R2)

}
, into (4.22), we achieve

xk(t) ≤ C22k max
{

sup
t∈[0,T ]

x2
k−1(t), D

2k+2
}

≤ C22k
(
C22(k−1)

)2(
C22(k−2)

)22 · · · (C22
)2k−1

max
{

sup
t∈[0,T ]

x2k

0 (t), D2k+1}
= C2k−122

k+2−4k−4 max
{

sup
t∈[0,T ]

x2k

0 (t), D2k+1}
. (4.23)

Take the power 1
2k+2

to both sides of (4.23), since ‖ρε‖L2k+2(R2)
= x

1

2k+2

k (t), then

the estimate is obtained by passing to the limit k → ∞,

‖ρε‖L∞(0,T ; L∞(R2)) ≤ Cmax
{

sup
t∈[0,T ]

x0(t), D
2
}
. (4.24)

Since x0(t) =
∫
R2 ρ

3
εdx, combining (4.12) and (4.24) together, we finish the proof of

the uniform estimate of ‖ρε‖L∞(0,T ; L∞(R2)).
Now we prove (ii). Taking p = 2 in (4.11), one has

d

dt

∫
Rd

ρ2εdx+ 2ν

∫
Rd

∣∣∇ρε
∣∣2dx ≤

∫
Rd

ρ3εdx ≤ C. (4.25)

Integrating (4.25) from 0 to T yields

∫
Rd

ρ2ε(T, x)dx+ 2ν

∫ T

0

∫
Rd

∣∣∇ρε
∣∣2dxdt ≤ CT +

∫
Rd

ρ20(x)dx,

then
∫ T

0

∫
Rd

∣∣∇ρε
∣∣2dxdt ≤ CT +

∫
Rd ρ

2
0(x)dx, i.e.∫ T

0

‖∇ρε‖2L2(Rd)dt ≤ CT +

∫
Rd

ρ20(x)dx. (4.26)

Multiplying (2.18) with a test function ϕ(x) ∈ C∞
0 (Rd), then integrating in space,

one has ∫
Rd

∂tρεϕdx =

∫
Rd

(
∇cερε − ν∇ρε

)
∇ϕdx. (4.27)

From Lemma 2.2, |∇cε| ≤
∫
Rd

∣∣ρε(t, y)Fε(x− y)
∣∣dy ≤ C, it follows

∣∣∣ ∫
Rd

∂tρεϕdx
∣∣∣ ≤ ‖∇ϕ‖L2

(
C + ν‖∇ρε‖L2(Rd)

)
. (4.28)
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Hence this directly derives that

‖∂tρε‖H−1(Rd) ≤ sup
ϕ∈C∞

0 (Rd)

∣∣∣ ∫
Rd ∂tρεϕdx

∣∣∣
‖ϕ‖H1(Rd)

≤ C + ν‖∇ρε‖L2(Rd) for any t ∈ [0, T ]. (4.29)

By (4.26), integrating (4.29) in time space, one achieves

∫ T

0

‖∂tρε‖2H−1(Rd)dt ≤ 2CT + 2ν

∫ T

0

‖∇ρε‖2L2(Rd)dt, (4.30)

thus the proof of Theorem 2.2 is completed.
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