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REALIZATIONS OF THE HOMOGENEOUS BESOV-TYPE SPACES∗

FARES BENSAID† AND MADANI MOUSSAI‡

Abstract. Using the notion of realizations, we study the dilation commuting realizations of the
homogeneous Besov-type spaces Ḃs,τ

p,q (Rn), which are defined modulo polynomials of degree less than
μ; the integer μ will be determined from the parameters n, s, p, q and τ .
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1. Introduction and the main results. The homogeneous Besov-type spaces
Ḃs,τ

p,q (R
n) are quasi-Banach spaces defined by functions in the space S ′

∞(Rn) of tem-
pered distributions modulo polynomials on Rn. After Bs,τ

p,q (R
n) the inhomogeneous

Besov-type spaces introduced by El Baraka in [9, 10], the homogeneous counterparts
have been investigated in several papers, for instance by Liang et al. [12], Sawano et
al. [16], Wu et al. [20], Yang et al. [22, 23, 24] and Yuan et al. [26].

Using the realizations, these spaces can be given in the space S ′
μ(R

n) of tempered
distributions modulo polynomials of degree less than μ, where the value of the positive
integer μ is completely determined from the parameters n, s, p, q and τ .

The notion of realization of homogeneous spaces has been introduced by G. Bour-
daud [3] in the case of the homogeneous Besov spaces Ḃs

p,q(R
n). Now, there are

many papers in this subject for other function spaces than Ḃs
p,q(R

n), as homogeneous

Triebel-Lizorkin spaces Ḟ s
p,q(R

n) and homogeneous Sobolev spaces Ẇm
p (Rn), see e.g.,

[5, 6, 14, 25]. There are also various works related to the realizations of certain ho-
mogeneous spaces as in e.g., Navier-Stokes, pseudodifferential operators, pointwise
multipliers and wavelets, see e.g., [2, 8, 13, 19].

Our main result consists of the realization of Ḃs,τ
p,q (R

n), where for this purpose, we
first need to define the spaces of tempered distributions modulo polynomials, and for
brevity, as all function spaces occurring in this work are defined on Euclidean space
Rn, we omit Rn in notations throughout the paper.

– N denotes the set of natural numbers, N0 = N∪{0}, Z the set of the integers,
and R the set of the real numbers.

– For s ∈ R, [s] denotes the greatest integer less than or equal to s. For x ∈ Rn,
E(x) denotes the vector ([x1], . . . , [xn]) ∈ Zn. For a ∈ R we put a+ := max(0, a). For

α ∈ Nn
0 multi-indice we write ∂|α|f

∂xα = ∂αf = f (α) with |α| := α1 + . . .+ αn.

– For k ∈ N we denote by Pk the set of all polynomials on Rn of degree less
than k, we put P0 = {0} and denote by P∞ to the set of all polynomials on Rn.

– For k ∈ N0 ∪{∞}, the symbol Sk will be used for the set of functions ϕ in the
Schwartz class S such that 〈u, ϕ〉 = 0 for all u ∈ Pk (i.e., ϕ̂(α)(0) = 0 for all |α| < k).
The topological dual space of Sk is denoted by S ′

k. For all f ∈ S ′, we denote by
[f ]k the equivalence class of f modulo Pk. The mapping which takes any [f ]k to the
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restriction of f to Sk turns out to be an isomorphism from S ′/Pk onto S ′
k. For this

reason, S ′
k is called the space of tempered distributions modulo Pk.

We second need to recall the notion of realization from the different works of
G. Bourdaud [3]–[6], then we define the realized space.

Definition 1. Let m ∈ N0∪{∞} and k ∈ {0, . . . ,m}. Let E be a vector subspace
of S ′

m endowed with a quasi-norm such that the continuous embedding E ↪→ S ′
m holds.

A realization of E in S ′
k is a continuous linear mapping σ : E → S ′

k such that
[σ(f)]m = f for all f ∈ E. The image set σ(E) is called the realized space of E with
respect to σ.

Remark 1. A realization is entirely determined by the corresponding realized
space, since for any f ∈ E, the element σ(f) is the unique representative of f such that
σ(f) ∈ σ(E). We also note that if we require extra properties such that translation or
dilation invariance, a realization of E in Sk for k < m has some chances to be unique,
in the case k = m the identity is the unique realization, cf., see [6, props. 2.2, 2.4].

The set of realizations has a phenomenon of generation, in the sense that if a
realization is known then it generates other realizations. We recall the following
assertion and refer to [3, prop. 2] for the proof.

Proposition 1. Let σ0 : E → S ′
k be a realization. For all finite family

(Lα)k≤|α|≤m of continuous linear functionals on E, the following formula defines a
realization of E in S ′

k:

σ(f)(x) := σ0(f)(x) +
∑

k≤|α|≤m

Lα(f)x
α .

Conversely, any realization of E is given in such a way.

On the other hand, the weak convergence of distributions to 0 at the infinity plays
a major role in this work, we recall this fact.

Definition 2. A tempered distribution f ∈ S ′ tends to 0 at the infinity in the
weak sense if limλ→0 f(λ

−1(·)) = 0 in S ′. The set of all such distributions is denoted

by C̃0.

Here some examples of distributions vanish at the infinity in the weak sense: (i)
functions in Lp for 1 ≤ p < ∞, (ii) derivatives distributional of bounded functions,

(iii) derivatives of the members of C̃0.

To give the main result we also need to introduce the Littlewood-Paley setting.
We choose, once and for all, a standard cut-off function ρ. More precisely, we assume
that ρ is a radial C∞ function satisfying 0 ≤ ρ ≤ 1, ρ(ξ) = 1 for |ξ| ≤ 1, ρ(ξ) = 0 for
|ξ| ≥ 3/2. We define γ := ρ − ρ(2(·)). Then γ is supported by the compact annulus
1/2 ≤ |ξ| ≤ 3/2 (the Tauberian condition), and the following identities hold:∑

j∈Z

γ(2jξ) = 1 (∀ξ ∈ Rn \ {0}), ρ(2−kξ) +
∑
j>k

γ(2−jξ) = 1 (∀ξ ∈ Rn, ∀k ∈ Z).

We introduce the convolution operators (Qj)j∈Z by means of the following formula

Q̂jf := γ(2−j(·))f̂ . It is clear that Qj is defined on S ′
∞ since Qjf = 0 if, and only if,

f is a polynomial on Rn. In the following we say:

if f ∈ S ′
∞ we set Qjf := Qjf1 for all f1 such that [f1]∞ = f .
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The operators Qj (∀j ∈ Z) take values in the space of analytical functions of ex-
ponential type, see the Paley-Wiener theorem e.g., in [11, thm. 1.7.7, p. 21]. Then
we have the Littlewood-Paley decompositions of any tempered distribution or any
smooth function: For every f ∈ S∞ (S ′

∞, respectively) it holds f =
∑

j∈Z
Qjf in S∞

(S ′
∞, respectively), and for every f ∈ S (S ′, respectively) and every k ∈ Z it holds

f = 2knF−1ρ(2k(·)) ∗ f +
∑

j>k Qjf in S (S ′, respectively).

To define the homogeneous Besov-type spaces, therefore we need some more no-
tation (the dyadic cubes): For k ∈ Z and ν = (ν1, . . . , νn) ∈ Zn we set

Pk,ν := {x = (x1, . . . , xn) ∈ Rn : νj ≤ 2kxj < νj + 1, j = 1, . . . , n}.

Definition 3. Let s, τ ∈ R and p, q ∈]0,+∞]. The homogeneous Besov-type
space Ḃs,τ

p,q is the set of f ∈ S ′
∞ such that

‖f‖Ḃs,τ
p,q

:= sup
k∈Z

sup
ν∈Zn

2knτ
(∑

j≥k

(
2sj‖Qjf‖Lp(Pk,ν)

)q)1/q

< ∞. (1)

As it is announced in the beginning, we turn to define the positive integer μ where
its value will be justified and fixed throughout this paper: To any 5-tuple (n, s, p, q, τ)
of real numbers we associate an integer μ ∈ N0 defined as

μ :=

{ (
[s+ nτ − n/p] + 1

)
+

if either s+ nτ − n/p /∈ N0 or q > 1,

s+ nτ − n/p if s+ nτ − n/p ∈ N0 and 0 < q ≤ 1.
(2)

Then our main result is the following statement.

Theorem 1. Let s, τ ∈ R and p, q ∈]0,+∞]. Let f ∈ Ḃs,τ
p,q . Then the series∑

j∈Z
Qjf converges in S ′

μ. Let us define σμ(f) as the its sum which belongs to S ′
μ.

Then the mapping σμ : Ḃs,τ
p,q → S ′

μ defined in such a way is a translation and dilation

commuting realization of Ḃs,τ
p,q into S ′

μ, and σμ(f) is the unique representative of f

satisfying ∂ασμ(f) ∈ C̃0 for all |α| = μ.

An immediate consequence of Theorem 1 is a characterization of the realized
space of the homogeneous Besov-type space without reference to Littlewood-Paley
decompositions.

Corollary 1. Let σμ be the mapping defined in Theorem 1. Then the realized

space σμ(Ḃ
s,τ
p,q ) coincides with the set of f ∈ S ′

μ such that [f ]μ ∈ Ḃs,τ
p,q and f (α) ∈ C̃0

for all |α| = μ; this set is denoted by
˙̃
Bs,τ

p,q . The space
˙̃
Bs,τ

p,q is endowed with the
quasi-seminorm ‖f‖ ˙̃

Bs,τ
p,q

:= ‖[f ]μ‖Ḃs,τ
p,q

.

To prove Theorem 1, we will give in the first time an assertion which is a variant
of the Nikol’skij representation method; see e.g., [15, p. 59], [18, p. 79], [21] for the
case of inhomogeneous Besov spaces Bs

p,q. This assertion also presents one of our
contributions in this work.

Theorem 2. Let s, τ ∈ R and p, q ∈]0,+∞]. Let a, b be real numbers such that
0 < a < b. Let (uj)j∈Z be a sequence in S ′ such that

• ûj is supported by the annulus a2j ≤ |ξ| ≤ b2j,
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• A := supk∈Z
supν∈Zn 2knτ

(∑
j≥k

(
2sj‖uj‖Lp(Pk,ν)

)q)1/q
< ∞.

Then the series
∑

j∈Z
uj converges in S ′

μ to a limit u which belongs to S ′
μ and satisfies

‖[u]μ‖Ḃs,τ
p,q

≤ cA, (3)

where c depends only on n, s, τ, p, q, a and b.

Remark 2. Since we work in S ′
μ, Theorem 2 also holds if we replace, in its

conclusion, the series
∑

j∈Z
uj by any series of type

∑
j∈Z

uj − v for every poly-
nomial v ∈ Pμ; e.g., we will use in Section 4 below the particular cases v(x) :=∑

j≤0

∑
|α|<μ u

(α)
j (0)xα/α! and v(x) :=

∑
j∈Z

∑
|α|<μ u

(α)
j (0)xα/α!. On the other

hand, the value of the remarkable integer μ can be justified, this affirmation is due
to G. Bourdaud in the case of the homogeneous Besov spaces Ḃs

p,q cf., [4, prop. 2.2.1]

which is also taken for Ḃs,τ
p,q , see Proposition 4 and Remark 4 below.

The paper is organized as follows. In Section 2, we collect definitions and basic
properties of Ḃs,τ

p,q . Section 3 is devoted to the proofs of main results where for
technical reasons, we begin by proving Theorem 2 then Theorem 1. In Section 4, we
discuss some remarks. In a final section (an appendix), we give some proofs.

Notations. We recall some usual notations. For all k,N ∈ N0 and all f ∈ S, the
standard seminorms are given by

ζN,k(f) := sup
x∈Rn

sup
|α|≤N

(1 + |x|)k |f (α)(x)|.

For a function f ∈ L1 the Fourier transform and its inverse on Rn are defined by

Ff(ξ) = f̂(ξ) :=

∫
Rn

e−ix·ξf(x)dx and F−1f(x) := (2π)−nf̂(−x).

The operators F and F−1 can be extended to the whole S ′ in the usual way.
For a ∈ Rn and λ > 0, we denote by τa and hλ the translation operator and the
dilation operator, respectively, i.e., τaf := f(· − a) and hλf := f(λ−1(·)). Constants
c are strictly positives and depend only on the fixed parameters n, s, p, q and τ and
probably on auxiliary functions, unless otherwise stated, its value may vary from line
to line. Finally, we will use the symbol �; the notation A � B means that A ≤ cB.

2. The Besov-type spaces. In Definition 3 we have the following independence
observation:

Remark 3. The spaces Ḃs,τ
p,q are quasi-Banach independent of the choices of γ,

i.e., if we take a function γ1 (with the same properties of γ) positive, radial, C∞

and supported by the annulus a ≤ |ξ| ≤ b with 0 < 2a < b i.e., the Tauberian

condition, and define ‖ · ‖(γ1)

Ḃs,τ
p,q

the resulting quasi-seminorm of Ḃs,τ
p,q by replacing in

(1) the quantity Qjf by
(
2jnh2−jF−1γ1

) ∗ f , then ‖ · ‖(γ1)

Ḃs,τ
p,q

is equivalent to (1), and

there exist positive constants c1, c2 depending on n, s, τ, p, q, a, b, F−1γ and F−1γ1
such that

c1‖f‖Ḃs,τ
p,q

≤ ‖f‖(γ1)

Ḃs,τ
p,q

≤ c2‖f‖Ḃs,τ
p,q

(∀f ∈ Ḃs,τ
p,q );

the proof of this fact can be found in [23, coro. 3.1].
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We have also the chain of continuous embeddings S∞ ↪→ Ḃs,τ
p,q ↪→ S ′

∞, see again
[23, props. 3.1, 3.4], and ‖f‖Ḃs,τ

p,q
= 0 if, and only if, f is a polynomial. Now, to

explain why the spaces Ḃs,τ
p,q are called homogeneous, we give the following assertion

which will be proved in the final section:

Proposition 2. There exist two positive constants c1 and c2 such that the in-
equality

c1‖f‖Ḃs,τ
p,q

≤ λs+nτ−n/p‖hλf‖Ḃs,τ
p,q

≤ c2‖f‖Ḃs,τ
p,q

(4)

holds for all f ∈ Ḃs,τ
p,q and all λ > 0. In case λ = 2k (k ∈ Z), the above inequality

becomes an equality, i.e., ‖f‖Ḃs,τ
p,q

= 2k(s+nτ−n/p)‖h2kf‖Ḃs,τ
p,q

.

In the following statement (that will be proved later on) there are some properties
of Ḃs,τ

p,q and a link with the “ordinary” homogeneous Besov spaces Ḃs
p,q which will be

defined before:

Definition 4. Let s ∈ R and p, q ∈]0,+∞]. The homogeneous Besov space Ḃs
p,q

is the set of f ∈ S ′
∞ such that

‖f‖Ḃs
p,q

:=
(∑

j∈Z

(
2sj‖Qjf‖Lp(Rn)

)q)1/q

< ∞.

Proposition 3. (i) If τ = 0, then Ḃs,0
p,q = Ḃs

p,q holds in the sense of equivalent
quasi-seminorms.

(ii) If τ < 0, then the equality Ḃs,τ
p,q = P∞ holds.

(iii) For all f ∈ Ḃs,τ
p,q , its first order derivatives ∂lf (l = 1, . . . , n) belong to

Ḃs−1,τ
p,q and ‖∂lf‖Ḃs−1,τ

p,q
� ‖f‖Ḃs,τ

p,q
.

(iv)The continuous embedding Ḃs,τ
p,q ↪→ Ḃ

s+nτ−n/p
∞,∞ holds; this presents a link

between Ḃs
p,q and Ḃs,τ

p,q .

Noticing that the most properties of Ḃs
p,q (some of them are listed in above two

propositions with the case of Ḃs,τ
p,q and obtained by taking τ = 0) can be found in

[1, 7, 18].

3. Proofs of main results.

3.1. Preparation. We need the following two assertions; they also present an-
other examples of functions in C̃0, where the first one is easy and the second is proved
in [3] or [6, prop. 4.4].

Lemma 1. If a polynomial f belongs to C̃0, then f = 0, i.e., C̃0 ∩ P∞ = {0}.

Lemma 2. Any bounded function f , such that supp f̂ is a compact set in Rn\{0},
belongs to C̃0.

The proof of Theorem 2 is based on the following statement which is an estimate
of functions in S and Sm and is proved in e.g., [14, prop. 2.5].

Lemma 3. (i) Let k,m ∈ N0. Then there exists a constant c > 0 such that

|ϕj ∗ f(x)| ≤ c2−jmζm,k(f)ζm,k(ϕ) (1 + |x|)−k
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for all f ∈ S, all ϕ ∈ Sm (with ϕj := 2njh2−jϕ), all j ∈ N0 and all x ∈ Rn.
(ii) Let k,m ∈ N0. Then there exists a constant c > 0 such that

|ψj ∗ f(x)| ≤ c2j(m+n)ζm,k(f)ζm,k(ψ) (1 + 2j |x|)−k

for all f ∈ Sm, all ψ ∈ S (with ψj := 2njh2−jψ), all j ∈ Z \ N and all x ∈ Rn.

3.2. Proofs. We begin by the proof of Theorem 2 as mentioned in the Introduc-
tion.

Proof of Theorem 2. For the simplicity and clarity, we will subdivide the proof
into several steps.

Step 1: convergence in S ′
μ. We introduce a radial and positive function

γ̃ ∈ D(Rn \ {0}) such that γ̃(ξ) = 1 if a ≤ |ξ| ≤ b, and we define Q̃k := γ̃(2−kD); i.e.,̂̃
Qkf = γ̃(2−k(·))f̂ for all k ∈ Z. We have Q̃kuk = uk.

Suppose for a moment that μ exists and is given by (2). Let f ∈ Sμ.

Substep 1.1: the case either s + nτ − n/p /∈ N0 or q > 1. Here μ :=
(
[s + nτ −

n/p]+1
)
+
, i.e., μ > s+nτ −n/p. The assumption on γ̃ yields 〈Q̃kuk, f〉 = 〈uk, Q̃kf〉.

Then it follows ∑
k∈Z

|〈uk, f〉| ≤
∑
k∈Z

∑
ν∈Zn

‖uk‖L∞(Pk,ν)‖Q̃kf‖L1(Pk,ν). (5)

Now, we are going to estimate ‖uk‖L∞(Pk,ν), where we will prove:

‖uk‖L∞(Pk,ν) � 2k(n/p−s−nτ)A (∀k ∈ Z, ∀ν ∈ Zn). (6)

We first observe that

‖uk‖Lp(Pk,ν) � 2−ks
(∑

j≥k

2sjq‖uj‖qLp(Pk,ν)

)1/q

� 2−k(s+nτ)A (∀k ∈ Z, ∀ν ∈ Zn), (7)

and we continue by considering the cases p ≥ 1 and p < 1 separately, for technical
reasons.

• The case p ≥ 1. By Hölder’s inequality and (7) we have

|uk(x)| = |Q̃kuk(x)| � 2kn
∑
η∈Zn

∫
Pk,η

(2 + 2k|x− y|)−n−1|uk(y)| dy

� 2kn
∑
η∈Zn

‖uk‖Lp(Pk,η)

(∫
Pk,η

(2 + 2k|x− y|)−(n+1)p′ dy
)1/p′

(p′ := p/(p− 1))

� 2k(n−s−nτ)A
∑
η∈Zn

(∫
Pk,η

(2 + 2k|x− y|)−(n+1)p′ dy
)1/p′

. (8)

For x ∈ Pk,ν and y ∈ Pk,η we have 1 + |ν − η| ≤ √
n(2 + 2k|x− y|), then∑

η∈Zn

(∫
Pk,η

(2 + 2k|x− y|)−(n+1)p′
dy

)1/p′

� 2−kn/p′ ∑
η∈Zn

(1 + |ν − η|)−n−1 .
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By translation invariance with respect to the summation on η, the last inequality is
bounded by c 2−kn/p′

. Inserting this estimate into (8). By taking the supremum on
x ∈ Pk,ν in the first term of (8), we then get (6).

• The case 0 < p < 1. We write

|uk(x)| = |Q̃kuk(x)| � 2kn
∑
η∈Zn

∫
Pk,η

(2 + 2k|x− y|)−n−1|uk(y)| dy

� 2kn sup
ω∈Zn

‖uk‖1−p
L∞(Pk,ω)

∑
η∈Zn

∫
Pk,η

(2 + 2k|x− y|)−n−1|uk(y)|p dy. (9)

As above, x ∈ Pk,ν and y ∈ Pk,η imply 1+ |ν − η| ≤ √
n(2+ 2k|x− y|), and by (7) we

also have that the right-hand side of (9) (with x ∈ Pk,ν) is bounded by

c2kn2−(s+nτ)kpAp sup
ω∈Zn

‖uk‖1−p
L∞(Pk,ω)

∑
η∈Zn

(1 + |ν − η|)−n−1.

Again, by translation invariance with respect to the summation on η, we obtain

‖uk‖L∞(Pk,ν) � 2(n/p−s−nτ)kpAp sup
ω∈Zn

‖uk‖1−p
L∞(Pk,ω) (∀k ∈ Z, ∀ν ∈ Zn);

take the supremum over all ν ∈ Z in the left-hand side, the estimate (6) holds again.

We now turn to (5). By Lemma 3 we have, since f ∈ S (recall that f ∈ Sμ ⊂ S),

‖Q̃kf‖L1(Pk,ν) � 2−kN1ζN1,n+1(f)

∫
Pk,ν

(1 + |y|)−n−1 dy (with k > 0) (10)

for some positive integer N1. Since f ∈ Sμ, and by the change of variables x := 2ky
in 2kn

∫
Pk,ν

(1 + 2k|y|)−n−1dy, we get

‖Q̃kf‖L1(Pk,ν) � 2μkζμ,n+1(f)

∫
P0,ν

(1 + |x|)−n−1 dx (with k ≤ 0). (11)

Now, inserting (6), (10) and (11) into (5), i.e.,∑
k∈Z

|〈uk, f〉| ≤ c(f)A
(∫

Rn

(1 + |x|)−n−1 dx
)∑

k∈Z

2(n/p−s−nτ)k min(2μk, 2−kN1),

choosingN1 such thatN1+s+nτ−n/p > 0 and using the fact that μ−s−nτ+n/p > 0,
we obtain the desired conclusion.

Substep 1.2: the case μ := s+ nτ − n/p ∈ N0 and 0 < q ≤ 1. We first instead of
(5) use the following splitting∑

k∈Z

|〈uk, f〉| ≤
∑
k>0

∑
ν∈Zn

‖uk‖L∞(Pk,ν)‖Q̃kf‖L1(Pk,ν) +
∑
k≤0

|〈uk, f〉| .

Using (6) and (10), the estimate of the first part (i.e.,
∑

k>0 . . .) can be done as in
Substep 1.1, and will be omitted. Now, for the second one (i.e.,

∑
k≤0 . . .), we will
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distinguish between the cases p ≥ 1 and p < 1.

• The case 1.2.1: p ≥ 1. We first use the Hölder inequality (recall p′ := p/(p−1))∑
k≤0

|〈uk, f〉| ≤
∑
k≤0

∑
ν∈Zn

‖uk‖Lp(Pk,ν)‖Q̃kf‖Lp′ (Pk,ν). (12)

Since the assumption f ∈ Sμ, we proceed as in (10)–(11) by taking Lp′(Pk,ν) instead
of L1(Pk,ν), we obtain on the one hand∑
k≤0

‖uk‖Lp(Pk,ν)‖Q̃kf‖Lp′ (Pk,ν)

≤ cζμ,n+1(f)
(∑

k≤0

2(s+nτ)k‖uk‖Lp(Pk,ν)

)(∫
P0,ν

(1 + |x|)−(n+1)p′
dx

)1/p′

, (13)

where the term in the last integral
∫
P0,ν

. . . is obtained by a change of variables

x := 2ky, see again (11) and in particular the sentence just before this formula.
On the other hand, we will use the following property of the support of ûk: for

all couples (j, k) ∈ Z2 it holds:

if |j − k| ≥ log2(b/a) then {ξ : a2j ≤ |ξ| ≤ b2j} ∩ {ξ : a2k ≤ |ξ| ≤ b2k} = ∅. (14)

Thus
∑

k∈Z
ûk(ξ), for all ξ ∈ Rn \ {0}, contains at most 2m+ 1 non-vanishing terms

(where m is the non-negative integer near of log2(b/a)) corresponding to the compact
annulus 2k−l ≤ |ξ| ≤ 2k+l (l = −m, . . . ,m). Consequently, k ∈ Λ with CardΛ =
2m+ 1 where CardΛ denotes the cardinal number of a finite set Λ � Z.

We turn to (12). Then in its left-hand side, we have
∑

k≤0 . . . =
∑

k≤0, k∈Λ . . ..
The set Λ is constituted by consecutive elements, say Λ := {J, J + 1, . . . , J + 2m}
where J < 0. We continue, since

k ≥ J ⇒ Pk,ν ⊂ PJ,E(2J−kν) ∪ PJ,E(2J−kν)+w0
,

where w0 = (1, 1, . . . , 1) ∈ Zn. Then

‖uk‖Lp(Pk,ν) ≤ ‖uk‖Lp(PJ,E(2J−kν)
) + ‖uk‖Lp(PJ,E(2J−kν)+w0

), (15)

and it holds∑
k≤0

2(s+nτ)k‖uk‖Lp(Pk,ν) =
∑

k≤0, k∈Λ

2(s+nτ)k‖uk‖Lp(Pk,ν)

≤ max(22mnτ , 1) 2Jnτ
J+2m∑
k=J

2sk
(‖uk‖Lp(PJ,E(2J−kν)

) + ‖uk‖Lp(PJ,E(2J−kν)+w0
)

)
≤ 2max(22mnτ , 1)

J+2m∑
k=J

(
2Jnτ2sk sup

η∈Zn

‖uk‖Lp(PJ,η)

)
≤ 2max(22mnτ , 1)

J+2m∑
k=J

(
sup
j∈Z

sup
η∈Zn

2nτj
∑
l≥j

2sl‖ul‖Lp(Pj,η)

)
� sup

j∈Z

sup
η∈Zn

2nτj
(∑

l≥j

(
2sl‖ul‖Lp(Pj,η)

)q)1/q

(since 0 < q ≤ 1)

� A (∀ν ∈ Zn). (16)
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Finally by replacing (16) into (13), and by taking into account that x ∈ P0,ν implies
1 + |ν| ≤ √

n(2 + |x|), we get, from the second member of (12),∑
k≤0

|〈uk, f〉| ≤ cAζμ,n+1(f)
∑
ν∈Zn

(∫
P0,ν

(1 + |x|)−(n+1)p′
dx

)1/p′

≤ cAζμ,n+1(f)
∑
ν∈Zn

(1 + |ν|)−n−1 � Aζμ,n+1(f).

• The case 1.2.2: 0 < p < 1. We introduce a real number 0 < d < p < 1 which will

be chosen later on. The function ûk ∗ ̂̃
Qkf is supported by the ball |ξ| ≤ (b+ 3/2)2k,

then the Bernstein inequality yields∑
k≤0

|〈uk, f〉| �
∑
k≤0

2kn(1/d−1)
(∫

Rn

|uk(x)Q̃kf(x)|d dx
)1/d

�
∑
k≤0

2kn(1/d−1)
( ∑

ν∈Zn

∫
Pk,ν

|uk(x)Q̃kf(x)|d dx
)1/d

.

By using the Minkowski inequality w.r.t. �1/d(�1(Zn)), the third term in the last
inequality is bounded by

c
( ∑

ν∈Zn

{∑
k≤0

(
2kn(1−d)

∫
Pk,ν

|uk(x)Q̃kf(x)|d dx
)1/d}d)1/d

. (17)

By the Hölder inequality with exponents p/d and w := p/(p− d), it holds(∫
Pk,ν

|uk(x)Q̃kf(x)|d dx
)1/d

≤ ‖uk‖Lp(Pk,ν)‖Q̃kf‖Ldw(Pk,ν), (18)

on the one hand. On the other, by Lemma 3 since k ≤ 0 we obtain, for a positive
integer N and a change of variables y := 2kx,

‖Q̃kf‖Ldw(Pk,ν) ≤ c2k(μ+n)ζμ,N (f)
(∫

Pk,ν

(1 + |2kx|)−Ndw dx
)1/(dw)

= c2k(μ+n−n/d+n/p)ζμ,N (f)
(∫

P0,ν

(1 + |y|)−Ndw dy
)1/(dw)

. (19)

Inserting now (19) and (18) into (17), it follows

∑
k≤0

|〈uk, f〉| � ζμ,N (f)
{ ∑

ν∈Zn

(∑
k≤0

2k(s+nτ)‖uk‖Lp(Pk,ν)

)d

×
(∫

P0,ν

(1 + |y|)−Ndw dy
)1/w}1/d

.

But we can here apply (16) since (15) is also valid in the following sense:

‖uk‖Lp(Pk,ν) ≤ 21/p−1
(‖uk‖Lp(PJ,E(2J−kν)

) + ‖uk‖Lp(PJ,E(2J−kν)+w0
)

)
; (20)
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therefore, we find the bound

cAζμ,N (f)
{ ∑

ν∈Zn

(∫
P0,ν

(1 + |y|)−Ndw dy
)1/w}1/d

.

Since 1 + |ν| ≤ (1 +
√
2n)(1 + |y|) if y ∈ P0,ν , it follows∑

k≤0

|〈uk, f〉| � Aζμ,N (f)
( ∑

ν∈Zn

(1 + |ν|)−Nd
)1/d

.

As
∏n

i=1(1 + |νi|) ≤ (1 + |ν|)n, it suffices to choose N ∈ N sufficiently large such that
N > n/p and d satisfying n/N < d < p.

Step 2: proof of (3). Now
∑

j∈Z
uj =: u in S ′

μ is well defined, and we are going
to estimate ‖[u]μ‖Ḃs,τ

p,q
.

Since ûj is supported by the annulus a2j ≤ |ξ| ≤ b2j , there exist two integers m1

and m2, depending only on a and b, such that Qk(uj) = 0 if j ≤ k+m1 or j ≥ k+m2

(m1 and m2 are the integers near to log2(1/2b) and log2(3/2a), respectively, with
m1 < m2).

We will estimate ‖Qku‖Lp(Pl,ν). We put d := min(1, p) and use the Minkowski
inequality, then for all ν ∈ Zn and all couples (k, l) ∈ Z2 we obtain

‖Qku‖Lp(Pl,ν) ≤
( ∑

k+m1<j<k+m2

‖Qk(uj)‖dLp(Pl,ν)

)1/d

≤
( ∑

k+m1<j<k+m2

2sjq‖Qk(uj)‖qLp(Pl,ν)

)1/q( ∑
k+m1<�<k+m2

2−sd�
)1/d

.

Thus

‖Qku‖Lp(Pl,ν) � 2−sk
( ∑

k+m1<j<k+m2

2sjq‖Qk(uj)‖qLp(Pl,ν)

)1/q

. (21)

We now continue by considering the cases p ≥ 1 and p < 1 separately.

Substep 2.1: the case p ≥ 1. By using the Hölder inequality (recall p′ := p/(p−1)),
we obtain

‖Qk(uj)‖pLp(Pl,ν)
=

∫
Pl,ν

( ∑
w∈Zn

∫
Pl,w

|uj(y)| |2knF−1γ(2k(x− y))|dy
)p

dx

�
∫
Pl,ν

( ∑
w∈Zn

{∫
Pl,w

|uj(y)|pdy
}1/p{∫

Pl,w

|2knF−1γ(2k(x− y))|p′
dy

}1/p′)p

dx,

(22)

we continue by the Minkowski inequality, we get the bound

c

( ∑
w∈Zn

‖uj‖Lp(Pl,w)

(∫
Pl,ν

{∫
Pl,w

|2knF−1γ(2k(x− y))|p′
dy

}p/p′

dx
)1/p

)p

.

Since x ∈ Pl,ν and y ∈ Pl,w imply that

1 + |w − ν| ≤ √
n(2 + 2l|x− y|) ≤ √

n(2 + 2k|x− y|) with k ≥ l,
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then∫
Pl,ν

{∫
Pl,w

|2knF−1γ(2k(x− y))|p′
dy

}p/p′

dx � 2(k−l)np(1 + |w − ν|)−(n+1)p .

We turn to (22), it holds

‖Qk(uj)‖Lp(Pl,ν) � 2(k−l)n
∑
w∈Zn

‖uj‖Lp(Pl,w)(1 + |w − ν|)−(n+1) . (23)

On the one hand, as in (14) the series
∑

k∈Z
Q̂ku(ξ), for all ξ ∈ Rn \ {0}, contains

at most three non-vanishing terms corresponding to the compact annulus 2k−r−1 ≤
|ξ| ≤ 3 · 2k+r−1 (r = −1, 0, 1), consequently, k ∈ Λ with CardΛ = 3. Then we turn to
(21) and obtain

(∑
k≥l

2skq‖Qku‖qLp(Pl,ν)

)1/q

�
( ∑

k≥l, k∈Λ

k+m2∑
j=k+m1

2sjq‖Qk(uj)‖qLp(Pl,ν)

)1/q

. (24)

We set Λ := {J, J + 1, J + 2} (Λ is constituted by consecutive elements), and using
both (22) and (23) with l := J , then since we have 1 ≤ 2(k−J)n ≤ 22n, the right-hand
side of (24) is bounded by

c
( J+2∑

k=J

k+m2∑
j=k+m1

2jqs
{ ∑

w∈Zn

‖uj‖Lp(PJ,w)(1 + |w − ν|)−(n+1)
}q)1/q

�

� sup
η∈Zn

( ∑
j≥J+m1

2jqs‖uj‖qLp(PJ,η)

J+2∑
k=J

1
)1/q ∑

w∈Zn

(1 + |w − ν|)−(n+1) �

� sup
η∈Zn

( ∑
j≥J+m1

2jqs‖uj‖qLp(PJ,η)

)1/q

. (25)

On the other hand, by the elementary inequality

[2m1ηj ] ≤ 2J+m1xj < [2m1ηj ] + [2m1 ] + 2 (x ∈ PJ,η, j = 1, . . . , n)

we obtain

PJ,η ⊂
[2m1 ]+1⋃

r=0

PJ+m1,E(2m1η)+rw0
(26)

where w0 = (1, 1, . . . , 1) ∈ Zn. Then we continue the estimation of (25), we find( ∑
j≥J+m1

2sjq‖uj‖qLp(PJ,η)

)1/q

≤
( ∑

j≥J+m1

2sjq
{ [2m1 ]+1∑

r=0

‖uj‖Lp(PJ+m1,E(2m1η)+rw0
)

}q)1/q

�
[2m1 ]+1∑

r=0

( ∑
j≥J+m1

2sjq‖uj‖qLp(PJ+m1,E(2m1η)+rw0
)

)1/q

� 2−nτJA.
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Hence
(∑

k≥J 2skq‖Qku‖qLp(PJ,ν)

)1/q
is bounded by c2−JnτA, and the desired result

follows.

Substep 2.2: the case 0 < p < 1. Using (6), we begin by the following estimate

‖Qk(uj)‖pLp(Pl,ν)
≤

∫
Pl,ν

( ∑
w∈Zn

‖uj‖L∞(Pj,w)

∫
Pj,w

2kn|F−1γ(2k(x− y))| dy
)p

dx

� 2jp(n/p−s−nτ)Ap

∫
Pl,ν

( ∑
w∈Zn

∫
Pj,w

2kn|F−1γ(2k(x− y))| dy
)p

dx.

Then we have∫
Pl,ν

( ∑
w∈Zn

∫
Pj,w

2kn|F−1γ(2k(x− y))| dy
)p

dx =

=

∫
Pl,ν

(∫
Rn

2kn|F−1γ(2k(x− y))| dy
)p

dx = 2−ln‖F−1γ‖pL1(Rn).

Hence

‖Qk(uj)‖Lp(Pl,ν) � 2j(n/p−s−nτ)2−ln/pA (∀k, l, j ∈ Z, ∀ν ∈ Zn). (27)

As in the previous substep that it has been observed that the series
∑

k∈Z
Q̂ku(ξ) is

given for k ∈ Λ with CardΛ = 3 and Λ := {J, J+1, J+2}. Then from (21) we obtain(∑
k≥l

2skq‖Qku‖qLp(Pl,ν)

)1/q

�
( ∑

k≥l, k∈Λ

k+m2∑
j=k+m1

2sjq‖Qk(uj)‖qLp(Pl,ν)

)1/q

. (28)

Using both (27) and (28) with l := J , then the right-hand side of (28) is bounded by

cA 2−Jn/p
( J+2∑

k=J

k+m2∑
j=k+m1

2jq(n/p−nτ)
)1/q

�

� A 2−Jn/p
( J+2∑

k=J

2kq(n/p−nτ)
)1/q

� 2−JnτA.

Hence agian we obtain that
(∑

k≥J 2skq‖Qku‖qLp(PJ,ν)

)1/q
is bounded by c2−JnτA.

The proof is complete.

Proof of Theorem 1. Let f ∈ Ḃs,τ
p,q .

Step 1. The convergence of the series
∑

j∈Z
Qjf in S ′

μ follows directly from
Theorem 2, see also [22, lem. 2.4]. We put σμ(f) :=

∑
j∈Z

Qjf in S ′
μ.

Step 2. We prove ∂ασμ(f) ∈ C̃0 for |α| = μ. Owing to Proposition 3(iv), the proof
in the case s+ nτ − n/p /∈ N0 or q > 1 is similar to that in [6, p. 483, step 3] or [14,

p. 170] since [∂ασμ(f)]∞ ∈ Ḃs−μ,τ
p,q ↪→ Ḃ

s+nτ−n/p−μ
∞,∞ (|α| = μ) and s+nτ−n/p−μ < 0.

We now see the case μ = s+nτ−n/p ∈ N0 and 0 < q ≤ 1. By again Proposition 3(iii)–
(iv) we have [∂ασμ(f)]∞ ∈ Ḃ0

∞,∞ (with |α| = μ) which implies that ‖Qjf
(α)‖L∞(Rn) �

2−jμ‖[σμ(f)]∞‖Ḃs,τ
p,q

for all j ∈ Z. We put

fm :=
∑

|j|≤m

Qjf
(α) (α ∈ Nn

0 is fixed such that |α| = μ and m = 1, 2, . . .),
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then for all λ > 0 and all g ∈ S we write

〈hλ∂
ασμ(f), g〉 =

〈
hλ

(
∂ασμ(f)− fm

)
, g

〉
+ 〈hλfm, g〉. (29)

Since ‖fm‖L∞(Rn) < ∞ and f̂m is supported in Rn \ {0} by the annulus 2−m−1 ≤
|ξ| ≤ 3 · 2m−1, by Lemma 2 it holds that 〈hλfm, g〉 tends to 0 with λ → 0.

To treat the second term in (29), we introduce a positive integer r such that
2−r−1 < λ ≤ 2−r. The function F(

hλ(Qjf
(α))

)
is supported by the annulus 2j+r−1 ≤

|ξ| ≤ 3 · 2j+r. Then

F(
Qk+rhλ(Qjf

(α))
)
= 0 if k − j ≥ 3 or k − j ≤ −2 .

Hence

〈
hλ(Qjf

(α)), g
〉
=

∑
k∈Z

〈
Qk+rhλ(Qjf

(α)), g
〉
=

3∑
l=−2

〈
hλ(Qjf

(α)), Qj+r+lg
〉
;

here we used the fact that γ is a radial function on Rn. Finally we obtain

〈
hλ

(
∂ασμ(f)− fm

)
, g

〉
=

∑
|j|>m

3∑
l=−2

〈
hλ(Qjf

(α)), Qj+r+lg
〉
. (30)

As in (26) it holds

∣∣〈hλ

(
∂ασμ(f)− fm

)
, g

〉∣∣ ≤
∑
ν∈Zn

∑
|j|>m

3∑
l=−2

‖hλ(Qjf
(α))‖L∞(Pj,ν)‖Qj+r+lg‖L1(Pj,ν)

�
1+[1/λ]∑
r=0

∑
ν∈Zn

∑
|j|>m

3∑
l=−2

‖Qjf
(α)‖L∞(Pj,E(ν/λ)+rw0

)‖Qj+r+lg‖L1(Pj,ν) , (31)

where w0 := (1, 1, . . . , 1) ∈ Zn, on the one hand. On the other, in (30) we have the
equality

∑
|j|>m . . . =

∑
|j|>m,j∈Λ . . . with CardΛ = 3, (noticing that Λ := {J, J +

1, J+2}, cf., see the sentence just before formula (28)). Then, using (6) with uk, Pk,ν

and s replaced by Qjf
(α), Pj, E(ν/λ)+rw0

and s− μ, respectively, it holds that

‖Qjf
(α)‖L∞(Pj,E(ν/λ)+rw0

) � 2j(n/p−s+|α|−nτ)‖f (α)‖Ḃs−μ,τ
p,q

= c‖f (α)‖Ḃs−μ,τ
p,q

where the positive constant c is independent of j, ν and λ (recall |α| = μ). Hence

∣∣〈hλ

(
∂ασμ(f)− fm

)
, g

〉∣∣ ≤ c(2 + [1/λ])‖f (α)‖Ḃs−μ,τ
p,q

3∑
l=−2

J+2∑
j=J

∑
ν∈Zn

‖Qj+r+lg‖L1(Pj,ν)

= c(2 + [1/λ])‖f (α)‖Ḃs−μ,τ
p,q

3∑
l=−2

J+2∑
j=J

‖Qj+r+lg‖L1(Rn) .

By Young’s inequality we have ‖Qjg‖L1(Rn) � ‖g‖L1(Rn) for all j ∈ Z, then∣∣〈hλ

(
∂ασμ(f)− fm

)
, g

〉∣∣ � (2 + [1/λ])‖f (α)‖Ḃs−μ,τ
p,q

‖g‖L1(Rn) ,
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which yields

lim
m→∞

∣∣〈hλ

(
∂ασμ(f)− fm

)
, g

〉∣∣ = 0,

see again (30) and (31). Then from the expression (29), for a fixed arbitrarily ε > 0,
there exists a positive integer m0, such that for all m ≥ m0 it holds∣∣〈hλ∂

ασμ(f), g〉
∣∣ ≤ ε+ |〈hλfm, g〉|,

which gives limλ→0〈hλ∂
ασμ(f), g〉 = 0, and this proves that ∂ασμ(f) ∈ C̃0 if |α| = μ

in all cases.
We note that if we put σ̃(f) :=

∑
j∈Z

Qjf + v with any nonzero polynomial

v ∈ Pμ, then σ̃ are realizations of Ḃs,τ
p,q into S ′

μ, and it is clear that ∂ασ̃(f) ∈ C̃0 if
|α| = μ and σ̃(f) = σμ(f) in S ′

μ, i.e., [σ̃(f)]μ = [σμ(f)]μ.

Step 3. Since τa ◦ Qj = Qj ◦ τa for all j ∈ Z and all a ∈ Rn, the mapping f →
σμ(f) :=

∑
j∈Z

Qjf commutes itself with τa. For the commutation with dilations, we
first observe that from the equality

〈hλ

(
hβf

)(α)
, ϕ〉 = βn−|α|〈hλf

(α), h1/βϕ〉 (∀λ > 0, ∀β > 0, ∀ϕ ∈ S),

we have, if f (α) ∈ C̃0 then
(
hβf

)(α) ∈ C̃0. It holds that the realized space
˙̃
Bs,τ

p,q is
dilation invariant. Second, we then obtain σμ(f)− f =: v1 with v1 ∈ Pμ. Also, for all
λ > 0 we have σμ(hλf)− hλf =: v2 with v2 ∈ Pμ. Then this yields

σμ(hλf)− hλσμ(f) = v2 − hλv1;

as v2 − hλv1 ∈ Pμ, then σμ(hλf) = hλσμ(f) in S ′
μ, i.e., [σμ(hλf)]μ = [hλσμ(f)]μ.

The mapping σμ defined from Ḃs,τ
p,q into S ′

μ commutes with dilations.

Step 4. The uniqueness of σμ(f), the representative of f , follows immediately by
Lemma 1. The proof is complete.

Proof of Corollary 1. We prove σμ(Ḃ
s,τ
p,q ) =

˙̃
Bs,τ

p,q . Indeed, by definition the

embedding in the one sense holds. Let now g ∈ ˙̃
Bs,τ

p,q . By Theorem 1 we have

∂α
(
g − σμ([g]μ)

) ∈ C̃0 for all |α| = μ, i.e., g − σμ([g]μ) ∈ Pμ, then g and σμ([g]μ)
coincide in S ′

μ, and the converse embedding holds too.

4. Concluding Remarks. We are interested in the integer μ in the sense of
Remark 2.

Proposition 4. Let s ∈ R, p, q ∈]0,+∞] and τ ≥ 0 be given such that μ ≥ 1.
Let a, b be real numbers such that 0 < a < b. Then there exists a sequence (uj)j∈Z in
S ′ satisfying

(i) ûj is supported by the annulus a2j ≤ |ξ| ≤ b2j,

(ii) A := supk∈Z
supν∈Zn 2knτ

(∑
j≥k

(
2sj‖uj‖Lp(Pk,ν)

)q)1/q
< ∞,

and such that the series
∑

j∈Z
uj diverges in S ′

μ−1.

Proof. Only some changes are needed w.r.t. the proof given in [4, prop. 2.2.1].
We briefly outline this. We put m := μ− 1. Let ϕ ∈ D be such that

∫
Rn ϕ(x)dx = 1
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(this implies ∂m
x1
ϕ ∈ Sm), then we split

〈∑
j∈Z

uj , ∂
m
x1
ϕ
〉
into I1 + I2 where

I1 := (−1)m
∑
j∈Z

∫
Rn

(
∂m
x1
uj(x)− ∂m

x1
uj(0)

)
ϕ(x)dx,

I2 := (−1)m
∑
j∈Z

∂m
x1
uj(0).

It suffices to choose (uj)j∈Z such that (i) and (ii) are satisfied, and in more

|I2| =
∑
j∈Z

∂m
x1
uj(0) = ∞ and |I1| ≤ c

∑
j∈Z

‖∇∂m
x1
uj‖∞ < ∞,

which are possible, where it suffices to change s by s + nτ in all occurrences in the
proof of [4, prop. 2.2.1].

Remark 4. If there exists a sequence (uj)j∈Z in S ′ satisfying (ii) of Proposition
4 with τ < 0, then uj = 0 for all j ∈ Z, see below the proof of Proposition 3(ii) by
replacing Qjf by uj .

Remark 5. In [3, 6] Bourdaud has given the construction of realizations from
the homogeneous Besov spaces Ḃs

p,q into the tempered distributions space S ′. This

construction is also hold for Ḃs,τ
p,q . Namely, for all f ∈ Ḃs,τ

p,q we have

σμ,1(f) :=
∑

k∈Z
Qkf , if either s+ nτ < n/p or s+ nτ = n/p

and q ≤ 1, (32)

σμ,2(f) :=
∑

k∈Z

(
Qkf −∑

|α|<μ(Qkf)
(α)(0)xα/α!

)
,

if either s+ nτ − n/p ∈ R+ \ N0 or s+ nτ − n/p ∈ N and q ≤ 1, (33)

σμ,3(f) :=
∑

k>0 Qkf +
∑

k≤0

(
Qkf −∑

|α|<μ(Qkf)
(α)(0)xα/α!

)
,

if s+ nτ − n/p ∈ N0 and q > 1, (34)

where these series converge in S ′ and satisfy ∂ασμ,i(f) ∈ C̃0 (i = 1, 2, 3) for all |α| = μ.

In that case,
˙̃
Bs,τ

p,q can be characterized as a subset of S ′ by other properties;
e.g., in the case μ ≥ 1 we have the following two statements and refer to [6] for this
direction.

Proposition 5. Let s, τ ∈ R and p, q ∈]0,+∞] satisfy either s + nτ − n/p ∈
R+ \ N0 or s+ nτ − n/p ∈ N and 0 < q ≤ 1. Then every element f of

˙̃
Bs,τ

p,q satisfies

f ∈ S ′, [f ]μ ∈ Ḃs,τ
p,q and the following properties:

(i) f is a function of class Cμ−1,
(ii) f (α)(0) = 0 for all |α| ≤ μ− 1,

(iii) f (α) ∈ C̃0 for all |α| = μ.

Proof. We first note that μ ≥ 1. Let g be a function in Ḃs,τ
p,q . Clearly

[σμ,2(g)]μ = [σμ(g)]μ, where σμ,2 and σμ are the realizations defined in (33) and
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Theorem 1, respectively. Then the convergence of σμ,2(g) in S ′
μ results from Remark

2 and we have ‖[σμ,2(g)]μ‖Ḃs,τ
p,q

� ‖g‖Ḃs,τ
p,q

. The function

f := σμ,2(g)

easily satisfies (i)–(ii), this can be done by the same method used in the proofs of [6,
prop. 4.8] and [14, thm. 4.5]; however by Theorem 1, the item (iii) is also satisfied for
f since ∂ασμ,2(g) = ∂ασμ(g) if |α| = μ.

Remark 6. If s, τ ∈ R and p, q ∈]0,+∞] satisfy s + nτ − n/p ∈ R+ \ N0, then

every element f of
˙̃
Bs,τ

p,q satisfies

|f (α)(x)| ≤ c|x|s+nτ−n/p−μ+1‖[f ]μ‖Ḃs,τ
p,q

(∀x ∈ Rn, ∀|α| = μ− 1)

where the positive constant c is independent of f and x. This follows by [14, prop.

5.1/(5.2)] and the embedding Ḃs,τ
p,q ↪→ Ḃ

s+nτ−n/p
∞,∞ .

Proposition 6. Let s, τ ∈ R and p, q ∈]0,+∞]. If μ ≥ 1 then
˙̃
Bs,τ

p,q is the set of

distributions f satisfying [f ]μ ∈ Ḃs,τ
p,q and

(i) f (α) ∈ C̃0 for all |α| = μ,
(ii) 〈f (α), γ〉 = 0 for all |α| = μ− 1,
(iii) f ∈ S ′

μ−1.

Proof. That is the same as in [6, lem. 4.13/proof], just it suffices to take the
realization from Ḃs,τ

p,q into S ′
μ−1 defined by

σ(f) := σ̃μ(f)− c
∑

|β|=μ−1

〈
∂β

(
σ̃μ(f)

)
, γ

〉xβ

β!

where 1/c :=
∫
Rn γ(ξ)dξ, and σ̃μ : Ḃs,τ

p,q → S ′ is the realization defined by σ̃μ := σμ,1

or σμ,2 or σμ,3 given in (32) or (33) or (34), respectively.

Remark 7. Using the assertions (i) and (ii) of Proposition 6, in [6, 4.4.2] it has
been proved the nonexistence of dilation commuting realization of the Besov spaces
Ḃs

p,q into S ′
μ−1 in case s− n/p ∈ N and q > 1 (here τ = 0 and μ := s− n/p+ 1). We

have the same characterization in the Besov-type spaces Ḃs,τ
p,q when s+nτ −n/p ∈ N,

q > 1 and τ > 0 (recall that Ḃs,τ
p,q is reduced to P∞ if τ < 0, see Proposition 3(ii)).

Namely:
(i) If σ : Ḃs,τ

p,q → S ′
m (m ∈ N0) is a dilation commuting realization, then it holds∣∣〈hλ

(
∂ασ(f)

)
, g

〉∣∣ ≤ cλn/p−s−nτ+|α|ζN,k(g)‖[σ(f)]m‖Ḃs,τ
p,q

, (35)

for all λ > 0, all α ∈ Nn
0 , all f ∈ Ḃs,τ

p,q and all g ∈ Sm, the positive constant c does
not depend on λ, α, N , k, f and g. Indeed, assume that σ be given; since we have

〈σ(α)(hλf), g〉 = λ−|α|〈hλ(σ
(α)(f)), g〉 (∀g ∈ Sm),

then (35) is an easy computation of the equality σ(α)(hλf) = λ−|α|hλ(σ
(α)(f)) in

S ′
m, separately continuous functions property cf., [17, coro, sect. 34.2, p. 354] and the

inequality

‖[σ(α)(hλf)]m+|α|‖Ḃs−|α|,τ
p,q

� ‖[σ(hλf)]m‖Ḃs,τ
p,q

� λn/p−s−nτ‖[σ(f)]m‖Ḃs,τ
p,q

,
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recall that ∂ασ : Ḃ
s−|α|,τ
p,q → S ′

m+|α|.
(ii) Assume that s+ nτ − n/p ∈ N and q > 1 (then μ = s+ nτ − n/p+ 1). If we put
m := μ− 1 the inequality (35) becomes∣∣〈hλ

(
∂ασ(f)

)
, g

〉∣∣ ≤ cζN,k(g)‖[σ(f)]μ−1‖Ḃs,τ
p,q

, (∀|α| = μ− 1, ∀λ > 0). (36)

However in [6, pp. 486-487] it has been proved the existence of functions f0 (see again
[6, (4.8)] for their expressions) such that [f0]μ ∈ Ḃs

p,q and the inequality (36), with

f := f0, g := γ and τ = 0, cannot be hold. This is also true in Ḃs,τ
p,q for all τ > 0 by the

same functions f0, since [f0]μ ∈ Ḃs,τ
p,q can be easily obtained by both Proposition 2 and

properties of f0; we omit details. Then there are nonexistence of dilation commuting
realizations of Ḃs,τ

p,q into S ′
μ−1 in this situation.

5. Annexe.

Proof of Proposition 2. Step 1. We first prove (4) with λ := 2m, m ∈ Z. We
consider f ∈ Ḃs,τ

p,q and put fm := h2−mf . By using the identity

Qjfm = Qj−mf(2m(·)), (37)

we have

‖Qjfm‖Lp(Pk+m,ν) = 2−nm/p‖Qj−mf‖Lp(Pk,ν) (∀k ∈ Z, ∀ν ∈ Zn). (38)

Then we write(
2nτ(k+m)q

∑
j≥k+m

2sjq‖Qjfm‖qLp(Pk+m,ν)

)1/q

= 2(nτ−n/p)m
(
2nτkq

∑
j≥k+m

2sjq‖Qj−mf‖qLp(Pk,ν)

)1/q

= 2(s+nτ−n/p)m
(
2nτkq

∑
l≥k

2slq‖Qlf‖qLp(Pk,ν)

)1/q

≤ 2(s+nτ−n/p)m‖f‖Ḃs,τ
p,q

. (39)

Taking the supremum over all k ∈ Z and all ν ∈ Zn in the first term of (39) we deduce

‖fm‖Ḃs,τ
p,q

≤ 2(s+nτ−n/p)m‖f‖Ḃs,τ
p,q

.

For the converse inequality we proceed as in (37)–(39). Indeed, by the equality
Qjf(2

m(·)) = Qj+mfm we get ‖Qjf‖Lp(Pk−m,ν) = 2nm/p‖Qj+mfm‖Lp(Pk,ν) (∀k ∈ Z,
∀ν ∈ Zn), and(

2nτ(k−m)q
∑

j≥k−m

2sjq‖Qjf‖qLp(Pk−m,ν)

)1/q

= 2(n/p−nτ)m
(
2nτkq

∑
j≥k−m

2sjq‖Qj+mfm‖qLp(Pk,ν)

)1/q

= 2(n/p−nτ−s)m
(
2nτkq

∑
l≥k

2slq‖Qlfm‖qLp(Pk,ν)

)1/q

≤ 2(n/p−nτ−s)m‖fm‖Ḃs,τ
p,q

.
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Taking again the supremum over all k ∈ Z and all ν ∈ Zn, we obtain

‖f‖Ḃs,τ
p,q

≤ 2−(s+nτ−n/p)m‖fm‖Ḃs,τ
p,q

.

Step 2. We consider λ > 0. Let m ∈ Z be such that 2m ≤ λ < 2m+1. We also
consider a function f ∈ Ḃs,τ

p,q and put fm,λ := f
(
2−mλ(·)). By Step 1, it holds that

‖f(λ(·))‖Ḃs,τ
p,q

= 2(s+nτ−n/p)m‖fm,λ‖Ḃs,τ
p,q

.

Then it suffices to prove c1‖f‖Ḃs,τ
p,q

≤ ‖fm,λ‖Ḃs,τ
p,q

≤ c2‖f‖Ḃs,τ
p,q

with positive constants

c1 and c2 independent of m, λ and f . By Remark 3 we introduce the equivalent quasi-
seminorm in Ḃs,τ

p,q defined by the function γ1 := γ
(
2mλ−1(·)) which has a support in

the annulus 1/2 ≤ |ξ| ≤ 3 (recall that 1 ≤ 2−mλ < 2). On the one hand, by a simple
change of variables we have(

2jnh2−jF−1γ1
) ∗ fm,λ = Qjf(2

−mλ(·)) . (40)

On the other hand, for all ν ∈ Zn and all k ∈ Z we have

x ∈ Pk,ν ⇒ 2−mλx ∈ Pk,E(2−mλν) ∪ Pk,E(2−mλν)+w0
∪ Pk,E(2−mλν)+2w0

, (41)

where w0 := (1, 1, . . . , 1) ∈ Zn, and

‖Qjf(2
−mλ(·))‖Lp(Pk,ν) ≤ max(1, 22(1/p−1))

(
‖Qjf‖Lp(Pk,E(2−mλν))

+

+ ‖Qjf‖Lp(Pk,E(2−mλν)+w0
) + ‖Qjf‖Lp(Pk,E(2−mλν)+2w0

)

)
(∀j ∈ Z, ∀ν ∈ Zn).

Then we obtain

‖fm,λ‖Ḃs,τ
p,q

= c1 sup
k∈Z

sup
ν∈Zn

2nτk
(∑

j≥k

2sjq‖(2jnh2−jF−1γ1
) ∗ fm,λ‖qLp(Pk,ν)

)1/q

≤ c2 sup
k∈Z

sup
ν∈Zn

2nτk
(∑

j≥k

2sjq
{ 2∑

l=0

‖Qjf‖Lp(Pk,E(2−mλν)+lw0
)

}q)1/q

≤ c3 sup
k∈Z

sup
w∈Zn

2nτk
(∑

j≥k

2sjq‖Qjf‖qLp(Pk,w)

)1/q

= c3‖f‖Ḃs,τ
p,q

.

For the converse inequality, we proceed as in (40)–(41) and it is clear that the
roles of fm,λ and f may be exchanged. Indeed, we write Qjf =

(
2jnh2−jF−1γ1

) ∗
fm,λ(2

mλ−1(·)), and

x ∈ Pk,ν ⇒ 2mλ−1x ∈ Pk,E(2mλ−1ν) ∪ Pk,E(2mλ−1)+w0
.

We continue as above, and we deduce that ‖f‖Ḃs,τ
p,q

≤ c‖fm,λ‖Ḃs,τ
p,q

holds as desired.

Remark 8. For Proposition 2 we can see [26, rem. 8.1, p. 254].

Proof of Proposition 3. Step 1: proof of (i). Obviously we have ‖f‖Ḃs,0
p,q

≤ ‖f‖Ḃs
p,q

for all f ∈ Ḃs
p,q. For the converse inequality, we assume that q < ∞ (the case

q = ∞ can be done completely similar) and we will apply twice the Fatou’s lemma.

We consider the union of the two dyadic cubes P−k,ν0
∪ P−k,ν1

=: P̃k with ν0 :=
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(0, 0, . . . , 0) and ν1 := (−1,−1, . . . ,−1), ((ν0, ν1) ∈ (Zn)2), i.e., if x ∈ P̃k then −2k ≤
xj < 2k for j = 1, . . . , n. Let f ∈ Ḃs,0

p,q . Then the inequality

‖Qjf‖Lp(Pl,ν) � 2−js‖f‖Ḃs,0
p,q

(∀l ∈ Z, ∀j ≥ l, ∀ν ∈ Zn)

yields that
∣∣Qjf(·)

∣∣p1
˜Pk
(·) with −j ≤ k are positive and Lebesgue measurable func-

tions on Rn, where 1
˜Pk

denotes the characteristic function of the set P̃k. Then on the
one hand, we have

‖Qjf‖qLp(Rn) =
(∫

Rn

lim inf
k→∞

∣∣Qjf(x)
∣∣p1

˜Pk
(x) dx

)q/p

≤
(
lim inf
k→∞

∫
Rn

∣∣Qjf(x)
∣∣p1

˜Pk
(x) dx

)q/p

≤ lim inf
k→∞

‖Qjf‖qLp( ˜Pk)
(∀j ∈ Z),

(the last term is obtained by using the following easy assertion: if gn ≥ 0 are measur-

able functions and β ≥ 0 then
(
lim infn→∞ gn(x)

)β ≤ lim infn→∞ gβn(x)), and∑
j≥l

2jsq‖Qjf‖qLp(Rn) ≤
∑
j≥l

lim inf
k→∞

2jsq‖Qjf‖qLp( ˜Pk)

≤ lim inf
k→∞

∑
j≥l

2jsq‖Qjf‖qLp( ˜Pk)
. (42)

But in the last term of (42) and since k is large, there exists a positive integer k0 such
that for all k ≥ max(k0, l) we have

∑
j≥l . . . ≤

∑
j≥−k . . ., and by making l → −∞ in

the left-hand side of (42) we find

‖f‖q
Ḃs

p,q

≤ lim inf
k→∞

∑
j≥−k

2jsq‖Qjf‖qLp( ˜Pk)
. (43)

On the other hand, since P−k,ν0
∩ P−k,ν1

= ∅, then it holds∑
j≥−k

2jsq‖Qjf‖qLp( ˜Pk)
�

∑
j≥−k

2jsq‖Qjf‖qLp(P−k,ν0
) +

∑
j≥−k

2jsq‖Qjf‖qLp(P−k,ν1
).

Now, taking the supremum over, both, all ν ∈ Zn and all k ∈ Z in the right-hand side
of the last inequality and inserting this into (43), the wanted estimate will be obtained.

Step 2: proof of (ii). We assume that τ < 0 and prove Ḃs,τ
p,q ⊂ P∞. We restrict

ourselves to q < ∞ since the case q = ∞ can be done in the same manner. We consider
f ∈ Ḃs,τ

p,q . For all ν ∈ Zn and all k ∈ Z \ N we have P0,ν ⊂ Pk,E(2kν) ∪ Pk,E(2kν)+w0
,

where w0 = (1, 1, . . . , 1) ∈ Zn. Then in the first time we get

‖Qjf‖Lp(P0,ν) ≤ c
(‖Qjf‖Lp(Pk,E(2kν)

) + ‖Qjf‖Lp(Pk,E(2kν)+w0
)

)
(∀j ∈ Z, k ≤ 0), (44)

where c = max(1, 21/p−1), see e.g., (15) and (20). In the second, by assumption on
f , we obtain

2nτk
(∑

j≥k

2sjq‖Qjf‖qLp(Pk,E(2kν)
)

)1/q

≤ ‖f‖Ḃs,τ
p,q

(∀k ∈ Z),
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and the same inequality holds with Pk,E(2kν)+w0
instead of Pk,E(2kν). Then using

(44), we drive

‖Qjf‖Lp(P0,ν) � 2−sjq2−nτk‖f‖Ḃs,τ
p,q

(∀k ≤ 0, ∀j ≥ k, ∀ν ∈ Zn).

Letting k → −∞ we conclude Qjf = 0 a.e. for any P0,ν and all j ∈ Z, and since ν is
arbitrary then Qjf = 0 a.e. on Rn, which implies that f ∈ P∞.

Step 3: proof of (iii). We introduce a function ψ ∈ S∞ such that ψ̂(ξ) := ξ1γ(ξ),
and we set ψj := 2jnh2−jψ, (j ∈ Z). By Remark 3, we can replace in Definition 3 the
operator Qj by ψj . Now, since Qj(∂1f) = 2jψj ∗ f , the desired result follows.

Step 4: proof of (iv). By (6) with Qjf instead of uk, we get

|Qjf(x)| �
∑
ν∈Zn

2jn
∫
Pj,ν

∣∣F−1γ̃
(
2j(x− y)

)
Qjf(y)

∣∣ dy
�

(
2jn

∫
Rn

∣∣F−1γ̃(2jz)
∣∣ dz) sup

ω∈Zn

‖Qjf‖L∞(Pj,ω) � 2(n/p−s−nτ)j‖f‖Ḃs,τ
p,q

for all x ∈ Rn and all j ∈ Z. The result follows.

Remark 9. Of course, the statements of Proposition 3 are essentially known.
For example (iii) can be found in [20], and the assertion (iv) is proved in [24] with the
restriction τ > 1/p and q < ∞ or τ ≥ 1/p and q = ∞. See also e.g., [23, 26].
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