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Abstract. We study the dynamics of reaction-diffusion-advection models for single and two
competing species in one-dimensional periodic habitats, where the individuals are subject to both
diffusion and advection. We investigate the monotone dependence of the principal eigenvalue on
diffusion and drift rates. As applications, we first consider the persistence and spatial spreading
of a single species and establish the critical threshold for the persistence as well as the monotone
dependence of the minimal wave speed on the drift rate. We also consider two competing species
model and study the local and global stability of semi-trivial steady states. Furthermore, the existence
of evolutionarily singular strategies is established, which helps gain deeper insight into the evolution
of dispersal in advective environments.
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1. Introduction. In recent years there has been increasing interest in studying
the dynamics of reaction-diffusion-advection systems of the form⎧⎨

⎩
Ut = ∇ · [μ∇U + U

−→
b1] + f(x, U, V ) in Ω× (0,∞),

Vt = ∇ · [ν∇V + V
−→
b2] + g(x, U, V ) in Ω× (0,∞),

(1.1)

where Ω is a domain in R
N with smooth boundary ∂Ω, U(x, t) and V (x, t) are the

population densities of two species, parameters μ, ν > 0 are their diffusion rates,

and vectors
−→
bi(x), i = 1, 2, account for the advection of the species. Understanding

the ecological and evolutionary impact of dispersal and advection on system (1.1) is
a challenging issue [5, 8, 28, 31]. Some recent progress in this direction has been

made for the case of
−→
bi = 0 [15, 16, 17, 18, 33], the case of advection along resource

gradient [1, 6, 7, 25, 26, 34], and the case of passive drift in water columns; see also
[12, 29, 30, 32, 36, 37, 38, 39, 40, 45, 50, 51, 52, 53, 54, 55] and references therein.

We are interested in the situation when bi describes a divergence free steady flow,
i.e.

∇ · −→bi = 0 in Ω,
−→
bi · n = 0 on ∂Ω, i = 1, 2, (1.2)

where n(x) denotes the unit outward normal vector at x ∈ ∂Ω. Our goal is to
understand how such steady flow will affect the outcome of competitions. For river

models in one-dimensional bounded interval with passive drift,
−→
b1 = α and

−→
b2 = β

for positive constants α, β, thus ∇ · −→bi = 0 but they do not satisfy the boundary
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conditions
−→
bi · n = 0 on ∂Ω. To this end, in this paper we consider the following

two-species competition model in a one-dimensional, spatially periodic (i.e. with ∂Ω
as an empty set) and advective environment to mimic (1.2):⎧⎪⎪⎨

⎪⎪⎩
Ut = μUxx + αUx + U [r�(x)− U − V ] in R× (0,∞),

Vt = νVxx + βVx + V [r�(x)− U − V ] in R× (0,∞),

U(x, t) = U(x+ �, t), V (x, t) = V (x+ �, t) in R× (0,∞),

(1.3)

where r�(x) := r(x/�) with some 1-periodic function r ∈ C2(R) accounts for the
common local intrinsic growth rate, and α, β ∈ R are their advection rates and are
assumed to be constants. We assume that two species are neutral in competition, i.e.
neither of them has advantage over the other in terms of the competitive ability.

In (1.3), as
−→
b1 = α and

−→
b2 = β, and ∂Ω can be viewed as an empty set, they

satisfy (1.2). We envision that two competing species are subject to random diffusion
and passive drift in a spatially periodic environment, for instance, in a circular tube.
Surprisingly, even for such (deceptively) simple looking steady flow, full understanding
the dynamics of (1.3) turns out to be quite challenging, as illustrated by the results
in the rest of this section.

As the advection terms in system (1.3) describe passive flows (e.g. the drift due to
the river flow), they are generally not correlated with the growth function rl; i.e. the
advection may not push the populations to move upward along the resource gradient.
It will be of interest to consider the case of spatially heterogeneous and periodic drift
rates, which is more practical biologically.

1.1. Persistence and Spreading. In this subsection, we focus on the logistic
type single population models with diffusion and advection in the periodic habitat
with the form {

ut = μuxx + αux + u (r�(x) − u) in R× (0,∞),

u(x, t) = u(x+ �, t) in R× (0,∞).
(1.4)

Here u(x, t) is the population density, μ > 0 is the diffusion rate, and r� represents
the growth rate of the population. The dynamics of (1.4) are not only of independent
interest, they are also building blocks in studying the dynamics of (1.3), especially
issues concerning the invasions of exotic species. The steady states of (1.4) are given
by the solutions of

μθxx + αθx + θ(r� − θ) = 0 and θ(x) = θ(x + �) in R. (1.5)

We denote the unique positive solution of (1.5), when it exists, as θμ.
Given any �-periodic function p ∈ C(R), we define

pmin := min
x∈[0,�]

p(x), pmax := max
x∈[0,�]

p(x), and p̂ :=
1

�

∫ �

0

p(x)dx.

Our first result concerns the persistence of a single species.

Theorem 1.1 (Critical habitat period). Assume r�(x) = r(x/�) for some 1-
periodic function r ∈ C(R). Then the followings hold.

(1) If rmax < 0, then (1.5) has no positive solutions;
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(2) If r̂ > 0, then for all μ, � > 0 and α ∈ R, (1.5) has a unique positive solution
θμ which is globally asymptotically stable among all solutions of (1.4) with
non-negative and not identically zero initial data;

(3) If r̂ < 0 and rmax > 0, then there is a unique �∗ = �∗(μ, α) ∈ (0,∞) such that
if � > �∗, (1.5) has a unique positive solution θμ which is globally asymptoti-
cally stable among all solutions of (1.4) with non-negative and not identically
zero initial data; if � ≤ �∗, (1.5) has no positive solutions. Furthermore,
(i) for each μ > 0, �∗(μ, α) = �∗(μ,−α), ∂�∗

∂α > 0 for α > 0, and
lim

α→∞
�∗(μ, α) =∞;

(ii) for each α ∈ R, lim
μ→0

�∗(μ, α) = lim
μ→∞

�∗(μ, α) =∞.

In case r̂ < 0 and rmax > 0, Theorem 1.1 says that the species can persist if and
only if the underlying spatial period is larger than the critical number �∗, which refers
to the minimal period of the habitat required for population survival. Fix diffusion
rate μ > 0, then the critical habitat period �∗ is an increasing function of drift rate
α > 0, so that the faster drift decreases the likelihood of the persistence. We will
see in Theorem 1.3 that it is competitively advantageous for species to adopt the
slower drift. Fix drift rate α ∈ R, then Theorem 1.1(3)-(ii) indicates that there exists
some μ∗ = μ∗(α) ∈ (0,∞) such that �∗ attains its minimum at μ∗. Biologically,
this suggests that there exists an intermediate diffusion rate μ∗ which is the optimal
strategy for population survival.

In what follows, we always assume that the positive steady state of (1.4) exists
and consider the spreading properties related to (1.4). Of particular interest are the
solutions connecting the two steady states 0, θμ and propagating in a given direction
with a constant average speed: the so-called pulsating front. It was shown in [3, 4]
that there exists a critical speed c∗ = c∗(μ, α, �) such that a pulsating front with speed
c ≥ c∗ connecting two equilibria 0 and θμ exists and no pulsating fronts exist when
c < c∗. A variational formula established in [4] for the minimal speed c∗ is given by

c∗(μ, α, �) = min
λ>0

Λ(μ, α, �, λ)

λ
, (1.6)

where Λ(μ, α, �, λ) is the principal eigenvalue of the problem{
μφxx + (α+ 2μλ)φx +

(
μλ2 + αλ + r�

)
φ = Λφ in R,

φ(x) = φ(x + �) in R.
(1.7)

Our next result is concerned with the dependence of c∗ on the parameters μ, α, �.

Theorem 1.2. Assume r�(x) = r(x/�) for some 1-periodic function r ∈ C(R)
satisfying r̂ > 0. Let c∗(μ, α, �) be the minimal speed given by (1.6).

(1) If r ≡ r̂ is a constant, then c∗ = 2
√
r̂μ+ α for all μ, α, � > 0;

(2) If r is non-constant, then c∗ is differentiable with respect to μ, α, �, and

∂c∗

∂�
> 0,

∂(c∗/α)

∂α
< 0, and

∂c∗

∂α
>

1

2
for all μ, α, � > 0.

Moreover, c∗/α→ 1 as α→∞, and

lim
�→0

c∗(μ, α, �) = 2
√
μr̂ + α and lim

�→∞
c∗(μ, α, �) = 2

√
μrmax + α.
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Generally, the presence of advection may enhance mixing [14, 56] and is expected
to speed-up the spatial spreading. It was conjectured in [4, 14] that the minimal
speed c∗ is increasing in α, and c∗/α is decreasing in α for α > 0. The monotonicity
of c∗/α was completely solved in [35] for the general incompressible flow. We present
a simpler proof for the specific flow given in (1.4). Yet, the monotonicity of c∗ in α
was proved only for the shear flows in a straight cylinder [2, 43] and remains open for
general case. Theorem 1.2 gives the first example to illustrate the monotonicity for
non-shear flows.

The monotoncity of c∗ in � and the asymptotic behavior as � → 0 were initially
proved by Nadin [42, 44]. It means that the fragmentation of environment may slow
down the propagation [42, 47]. The differentiability of c∗, the monotonicity in α, and
the limit as � → ∞ are new results. We also refer to [21, 48, 49] and references
therein for some results on the dependence of c∗ on the diffusion rate μ.

1.2. Competition and Evolution. We set � = 1 and r̂ > 0 throughout this
subsection. System (1.3) has a trivial equilibrium (0, 0), and two semi-trivial equilibria
(θμ, 0) and (0, θν), where θμ is the unique positive solution of (1.5), and θν > 0 solves

ν(θν)xx + β(θν)x + θν(r� − θν) = 0 and θν(x) = θν(x + �) in R. (1.8)

In game theory, a player’s strategy is defined as an option which the player chooses
in a setting, where the final outcome depends on their own actions and the actions
of other players. In our setting we regard parameters μ and α as strategies for the
populations. As it is fairly challenging to consider the changes of two strategies
simultaneously, in this paper we only consider the evolution of a single trait; i.e. we
either set μ = ν and consider the case α 
= β, or consider the case α = β and μ 
= ν.

We study the evolution of dispersal for system (1.3) in the adaptive dynamics
framework [10, 11]. A central concept of adaptive dynamics theory is the notation of
an evolutionarily stable strategy (ESS), which was first introduced by Maynard Smith
and Price in the seminal paper [41]. A strategy is said to be an ESS if the resident
species playing it cannot be invaded by rare mutant species that plays any different
strategies. For system (1.3), a strategy μ∗ is a local ESS if (θμ, 0) is locally stable
whenever μ = μ∗ and ν 
= μ∗ but sufficiently close to μ∗. Another important concept
in adaptive dynamics theory is convergence stable strategy (CSS). Biologically, a
strategy is a CSS if the strategies successively closer to it can invade a population
using any nearby strategy value.

Our next result determines the global dynamics of (1.3) for the case μ = ν.

Theorem 1.3. Assume μ = ν > 0 and 0 ≤ |α| < |β| in (1.3). Then the semi-
trivial state (θμ, 0) is globally asymptotically stable, whenever it exists. In particular,
the strategy α∗ = 0 is a global ESS and a global CSS.

Theorem 1.3 shows that if two competing species have the same diffusion rate,
then the species with the slower drift will be favored, regardless of the drift direction.
Mathematically, the underlying one-dimensional domain can be identified as a circle
due to the spatial periodicity. The drift along the circle may force individuals to
depart from locations with more resources (and are thus favorable), and instead the
populations are only accessible to the average resources in the habitat. Therefore,
the slower drift could be more advantageous for the population to locate favorable
regions, which in turn yields some competitive advantage for the species.

It is natural to inquire what happens if μ 
= ν. Concerning general μ, ν, α, β, we
have the following result:
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Theorem 1.4. Assume 0 < μ < ν. Let θμ be the unique positive solution of
(1.5).

(1) If |β| ≥
√

ν
μ |α|, the semi-trivial state (θμ, 0) is globally asymptotically stable;

(2) If |β| <
√

ν
μ |α|, the stability of (θμ, 0) and (0, θν) can be described as follows.

(i) For each α ∈ R, there is a unique β∗ = β∗(α) ∈ [0,
√

ν
μ |α|) such that

(θμ, 0) is linearly stable for |β| > β∗ and linearly unstable for |β| < β∗.
Furthermore, there exists some constant ε1 > 0 such that β∗(α) ≡ 0 for
α ∈ [−ε1, ε1], and

lim
|α|→∞

β∗(α)

|α| =

√
ν

μ
; (1.9)

(ii) For each β ∈ R, there is a unique α∗ = α∗(β) ∈ (
√

μ
ν |β|,∞) such that

(0, θν) is linearly stable for |α| > α∗ and linearly unstable for |α| < α∗.
Furthermore, there exists some constant ε2 > 0 such that α∗(β) > ε2 for
all β ∈ R, and

lim
|β|→∞

α∗(β)

|β| =

√
μ

ν
. (1.10)

Theorem 1.4 gives a characterization of the local stability of two semi-trivial
steady states of (1.3). For general μ, ν, α and β, it is unknown whether the global
dynamics of (1.3) is determined by its local dynamics, i.e. any locally stable non-
negative steady state of (1.3) may or may not be globally asymptotically stable among
non-negative and non-trivial initial data. We give some illustrations of Theorem 1.4
in Fig. 1.

Fig. 1. Illustrations of the curves of β∗(α) and α∗(β) determined by Theorem 1.4 in the
first quadrant of α − β plane. In the region above the curve β = β∗(α) including the small
square (0, ε1) × (0, ε1), the semi-trivial state (θμ, 0) is linearly stable, whereas it is globally
stable in the region above the ray β =

√
μ

ν
α. In the region below the curve α = α∗(β), (0, θν)

is linearly stable. Both curves approach the ray β =
√

μ

ν
α asymptotically as α, β → ∞ and

intersect the diagonal at some point, as proved by (1.9) and (1.10). However, it remains
open to determine the relationship between the two curves.
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It is well known that if α = β = 0 and r is non-constant, then (θμ, 0) is globally
stable when μ < ν, and (0, θν) is globally stable when μ > ν. That is, the slower
diffuser is favored [9, 13]. The following result concerns the drift case α = β 
= 0:

Theorem 1.5. Given any α = β 
= 0 and non-constant r, there exists some δ > 0
such that the followings hold:

(1) If μ < ν < δ, then (0, θν) is globally stable;
(2) If ν > μ > 1/δ, then (θμ, 0) is globally stable.

Theorem 1.5 says the faster diffuser can confer some competition advantages pro-
vided that the underlying diffusion rates are both small, while the slower diffuser turns
out to be competitively advantageous if the diffusion rates are both large. Therefore,
neither large nor small diffusion rate is always beneficial to the competing species.
We conjecture naturally that for each α = β 
= 0, there is an intermediate diffusion
rate μ∗(α) > 0 which is a ESS.

Let λ(μ, ν) denote the principal eigenvalue of the problem{
νϕxx + βϕx + (r − θμ)ϕ = λϕ in R,

ϕ(x) = ϕ(x + 1) in R.
(1.11)

Assume α = β. It is clear that λ(μ, μ) = 0 for all μ > 0 by regarding θμ as the
corresponding eigenfunction. We say μ∗ > 0 is an evolutionarily singular strategy
if λν(μ

∗, μ∗) = 0. Therefore, if some μ∗ > 0 is an evloutionarily stable strategy,
it is necessarily a singular strategy. Our next result gives a partial answer to the
conjecture by establishing the existence of singular strategy and determining some of
its asymptotic behaviors.

Theorem 1.6. Suppose that β = α and r is non-constant. Then for each α 
= 0,
there exists some μ∗ = μ∗(α) ∈ (0,∞) such that it is a singular strategy and satisfies

λν(μ, μ) =

⎧⎨
⎩

+ μ < μ∗ and μ close to μ∗,
0 μ = μ∗,
− μ > μ∗ and μ close to μ∗.

(1.12)

Moreover, μ∗(α) → 0 as α → 0 and μ∗(α) → ∞ as |α| → ∞. Furthermore, if
r(x) > 0 for all x ∈ R, then there exists some positive constant C such that for all
small |α| > 0,

C−1|α| ≤ μ∗(α) ≤ C|α|. (1.13)

Theorem 1.6 shows that a singular strategy μ∗ exists for each α ∈ R, and moreover
satisfies (1.12). It is natural to inquire whether such a singular strategy μ∗ is also
evolutionarily stable. Our numerical simulations in Fig. 2 suggest that μ∗ is a local
ESS but not necessarily a global ESS generally. Biologically, the estimate (1.13) says
that diffusion and advection have to be properly balanced in order to be evolutionarily
stable strategies.

The rest of this paper is organized as follows: In Section 2 we study the principal
eigenvalue of a linear problem in one-dimensional periodic domain and establish the
monotone dependence of the principal eigenvalue on diffusion and drift rates. Further-
more, we characterize the level sets of the principal eigenvalue in terms of diffusion
and drift rates. In Section 3, we consider the persistence and spatial spreading of a
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Fig. 2. Numerical diagram of λ(μ, ν) in μ − ν plane under r(x) = 1 + M(sin(2πx) +
cos(2πx) + cos(4πx)) and α = β = 2. The dyed parts correspond to the parameter regions
whereas λ(μ, ν) < 0. When the amplitude of r is small (M = 1), μ∗ found in Theorem 1.6
is a global ESS, as illustrated in Fig. 2(A). As the amplitude increases, μ∗ may no longer be
a global ESS; see Fig. 2(B).

single species in one-dimensional periodic domain to establish Theorems 1.1 and 1.2.
In Sections 4 and 5 we consider two competing species in one-dimensional periodic
domain. Section 4 is devoted to the study of local and global stability of semi-trivial
steady states, and Theorems 1.3 and 1.4 are established there. In Section 5 we study
the evolution of dispersal in one-dimensional periodic habitat with drift and prove
Theorems 1.5 and 1.6. Finally in the Appendix we present the Taylor expansion of
some principal eigenvalue for sufficiently large drift rates.

2. An eigenvalue problem in periodic domain. In this section, we consider
the principal eigenvalue of the following problem:{

μϕxx + αϕx + V ϕ = λϕ in R,

ϕ(x) = ϕ(x + 1) in R,
(2.1)

where V ∈ C(R) is assumed to be 1-periodic. By the Krein-Rutman Theorem [23],
problem (2.1) admits a real and simple eigenvalue (called principal eigenvalue), de-
noted by λ1(μ, α), which corresponds to a positive eigenfunction (called principal
eigenfunction). Furthermore, λ1(μ, α) has the smallest real part among all eigenval-
ues of (2.1).

Our main result can be stated as follows.

Theorem 2.1. Suppose that μ = μ(α) ∈ C1(R+;R+), μ′(α) ≥ 0, and[
μ(α)/α2

]′ ≤ 0 in (2.1). Set λ(α) := λ1(μ(α), α). Then λ′(α) ≤ 0 for each α ≥ 0,
and either λ′(α) < 0 for all α > 0, or λ′(α) ≡ 0. Furthermore, λ′(α) ≡ 0 if and only
if V is a constant. In particular, for each μ > 0, λ1(μ, α) is strictly decreasing in
α > 0, provided that V is non-constant.

Proof. Let ψ > 0 denote the principal eigenfunction of the adjoint problem to
(2.1) associated with eigenvalue λ(α), which is given by{

μψxx − αψx + V ψ = λ(α)ψ in R,

ψ(x) = ψ(x + 1) in R.
(2.2)
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Define ϕ > 0 as the principal eigenfunction of (2.1). Differentiate both sides of (2.1)
with respect to α and denote ϕ′ = ∂ϕ

∂α , we arrive at

μ′(α)ϕxx + μ(α)ϕ′
xx + ϕx + αϕ′

x + V ϕ′ = λ′(α)ϕ + λ(α)ϕ′.

Multiply the above equation by ψ and (2.2) by ϕ′, respectively, subtract the resulting
equations, and integrate over [0, 1], then

λ′(α)

∫
ϕψ = −μ′(α)

∫
ϕxψx +

∫
ψϕx. (2.3)

Step 1. We show that

λ′(α)

∫
ϕψ = −μ′(α)

∫ [
∂x

√
ϕψ

]2
+

α2

4

[
μ(α)

α2

]′ ∫
ϕψ

[
∂x log

(
ϕ

ψ

)]2
. (2.4)

It suffices to prove that

∫
ψϕx = −μ(α)

2α

∫
ϕψ

[
∂x log

(
ϕ

ψ

)]2
. (2.5)

Then substituting (2.5) into (2.3) gives

λ′(α)

∫
ϕψ = −μ′(α)

∫
ϕxψx − μ(α)

2α

∫
ϕψ

[
∂x log

(
ϕ

ψ

)]2

= −μ′(α)

{∫
ϕxψx +

1

4

∫
ϕψ

[
∂x log

(
ϕ

ψ

)]2}

+
α2

4

[
μ(α)

α2

]′ ∫
ϕψ

[
∂x log

(
ϕ

ψ

)]2
,

which implies (2.4) immediately.
To establish (2.5), we set S :=

{
ζ ∈ C2(R) : ζ(x) > 0 and ζ(x) = ζ(x+ 1) for x ∈ R

}
and define the functional F on S by

F (ζ) :=

∫
ϕψ

[
μζxx + αζx

ζ

]
, ζ ∈ S. (2.6)

Direct calculation yields

F (ϕ)− F (ψ) = 2α

∫
ψϕx.

Thus to prove (2.5), it remains to show

F (ψ)− F (ϕ) = μ(α)

∫
ϕψ

[
∂x log

(
ϕ

ψ

)]2
. (2.7)

This can be proved by the similar arguments developed in [35], and we sketch the
proof for completeness. By definition (2.6), we observe that

F (ζ) = μ

∫
ϕψ(∂x log ζ)

2 +

∫ [
αϕψ − μ(ϕψ)x

]
· (∂x log ζ), (2.8)
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from which the Fréchet derivation F ′(ϕ) at point ϕ can be written as

F ′(ϕ)η = 2μ

∫
ϕψ(∂x logϕ) ·

(
η

ϕ

)
x

+

∫ [
αϕψ − μ(ϕψ)x

]( η

ϕ

)
x

(2.9)

for all 1-periodic function η ∈ C1(R). Using (2.8), we can calculate

F (ψ)− F (ϕ)

= μ

∫
ϕψ∂x log(ϕψ) · ∂x log

(
ψ

ϕ

)
+

∫ [
αϕψ − μ(ϕψ)x

]
· ∂x log

(
ψ

ϕ

)

= μ

∫
ϕψ

[
∂x log

(
ψ

ϕ

)
+ 2∂x logϕ

]
· ∂x log

(
ψ

ϕ

)
+

∫ [
αϕψ − μ(ϕψ)x

]
· ∂x log

(
ψ

ϕ

)

= μ

∫
ϕψ

[
∂x log

(
ψ

ϕ

)]2
+ 2μ

∫
ϕψ(∂x logϕ) · ∂x log

(
ψ

ϕ

)

+

∫ [
αϕψ − μ(ϕψ)x

]
· ∂x log

(
ψ

ϕ

)
.

Therefore, choosing η = ϕ log
(

ψ
ϕ

)
in (2.9), we find

F (ψ)− F (ϕ) = μ

∫
ϕψ

[
∂x log

(
ψ

ϕ

)]2
+ F ′(ϕ)η. (2.10)

For any 1-periodic function η ∈ C1(R), by definition (2.6) we calculate

F ′(ϕ)η =

∫
ϕψ

[
μηxx + αηx

ϕ
− η(μϕxx + αϕx)

ϕ2

]

=

∫
η
[
μψxx − αψx + V ψ − λ(α)ψ

]
= 0,

which together with (2.10) proves (2.7). Hence (2.4) is proved and Step 1 is complete.

Step 2. In view of μ′(α) ≥ 0 and
[
μ(α)/α2

]′ ≤ 0, (2.4) implies that λ′(α) ≤ 0 for
each α ≥ 0. It remains to show λ′(α) = 0 for some α > 0 if and only if V is constant.

First, if V is constant, then λ(α) ≡ V , and thus λ′(α) = 0 for all α > 0 with the
principal eigenfunction ϕ ≡ 1. Next, we assume λ′(α) = 0 for some α > 0 and show
V is a constant. We shall claim that ϕ = cψ for some constant c > 0. Then plugging
ϕ = cψ into the first equation in (2.1), and using (2.2) we can derive ψ is a constant,
which implies V is a constant as desired. To this end, we consider the following two
cases: (i) If

[
μ(α)/α2

]′
> 0, then from (2.4) we see that ∂x log(

ϕ
ψ ) ≡ 0 for all x ∈ R,

and thus ϕ = cψ for some c > 0; (ii) If μ′(α) > 0, then by (2.4), ϕψ ≡ c1 for some
constant c1 > 0. From the definitions of ϕ and ψ, it can be verified directly that

α(ϕψ)x = μ

[
ϕψ∂x log

(
ψ

ϕ

)]
x

.

This together with ϕψ ≡ c1 implies ∂xx log(
ψ
ϕ ) ≡ 0, and thus ϕ = cψ for some c > 0.

The proof is now complete.
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Our next result gives some asymptotic behaviors for the principal eigenvalue of
(2.1).

Theorem 2.2. Let λ1(μ, α) be the principal eigenvalue of (2.1). Then for all
μ > 0, α 
= 0,

lim
|α|→∞

λ1(μ, α) = lim
μ→∞

λ1(μ, α) = lim
μ→0

λ1(μ, α) = V̂ .

Proof. By the maximum principle, it is straightforward to see that

Vmin ≤ λ1(μ, α) ≤ Vmax for all μ > 0, α ∈ R. (2.11)

Define ϕ > 0 as the principal eigenfunction corresponding to λ1(μ, α) such that
∫
ϕ2 =

1.

Step 1. We show that for each μ > 0, λ1(μ, α)→ V̂ as α→∞. Multiply both sides
of (2.1) by ϕx, and integrate the resulting equation over [0, 1]. Then∫

|ϕx|2 = − 1

α

∫
V ϕϕx ≤ 1

2α2

∫
V 2ϕ2 +

1

2

∫
|ϕx|2. (2.12)

This implies
∫ |ϕx|2 → 0 as α→∞. Set ζ := ϕ− ϕ̂. The Poincaré inequality implies∫

ζ2 → 0 as α→∞. Note that ζ solves

μζxx + αζx + V ζ + ϕ̂V = λϕ̂ + λζ in R. (2.13)

Integrate both side of (2.13) over [0, 1], and send α → ∞ in the resulting equation.
In view of

∫
ζ2 → 0, one can deduce λ1(μ, α)→ V̂ as desired.

Step 2. We show that for each α ∈ R, λ1(μ, α)→ V̂ as μ→∞. Multiply both sides
of (2.1) by ϕ and integrate over [0, 1], then we obtain∫

|ϕx|2 =
1

μ

[
λ1(μ, α)−

∫
V ϕ2

]
.

This together with (2.11) implies
∫ |ϕx|2 → 0 as μ →∞. By the same arguments as

in Step 1, we can derive λ1(μ, α)→ V̂ as μ→∞.

Step 3. We show that for each α 
= 0, λ1(μ, α) → V̂ as μ → 0. By (2.12), ϕ is
uniformly bounded in H1((0, 1)) for all μ > 0. Passing to a subsequence if necessary,
we may assume ϕ ⇀ φ weakly in H1((0, 1)) and λ1(μ, α) → λ∗ as μ → 0 for some
φ ∈ H1((0, 1)) and λ∗ ∈ R, which can be verified to satisfy

αφx + V φ = λ∗φ and φ(x) = φ(x+ 1) in R.

We divide the above by φ and integrate over [0, 1] to obtain λ∗ = V̂ . Due to the
arbitrariness of subsequence, we have λ1(μ, α) → V̂ as μ → 0. The proof is now
complete.

We conclude this section by characterizing the level sets of the principal eigen-
value.

Theorem 2.3. Let λ1(μ, α) be the principal eigenvalue of (2.1) with non-constant
V . Then λ1 ∈ (V̂ , Vmax) for any μ > 0 and α ∈ R. Furthermore, for any A ∈
(V̂ , Vmax), there exist a unique μA ∈ (0,∞) and a unique continuous function αA :
[0, μA] → [0,∞) such that λ1(μ, αA(μ)) ≡ λ1(μ,−αA(μ)) ≡ A for all μ ∈ [0, μA].
Moreover,
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(i) μA is decreasing in A, μA →∞ as A→ V̂ , and μA → 0 as A→ Vmax;
(ii) αA(0) = αA(μA) = 0 and αA > 0 in (0, μA);
(iii) for each μ ∈ (0,∞), αA(μ) is decreasing in A ∈ (V̂ , A∗), where A∗ ∈

(V̂ , Vmax) is uniquely determined such that μA∗
= μ.

Fig. 3. Illustrations of the level sets λ1(μ, α) = A in μ − α plane, where V̂ < A <
Vmax. The different colored curves in the first quadrant represent the graphs of function αA

determined in Theorem 2.3, which intersects μ axis at the origin and (μA, 0). These closed

curves of level sets will shrink to the origin as A→ Vmax; As A → V̂ , they will expand and
converge to {(0, α) : α ∈ R} ∪ {(+∞, α) : α ∈ R} ∪ {(μ,+∞) : μ > 0} ∪ {(μ,−∞) : μ > 0}
in proper sense, which is consistent with Theorem 2.2. Finally, Theorem 2.1 implies that
λ1(μ, α) is increasing in α, but as shown by Fig. 2, it is never monotone in μ when V is
non-constant.

Proof. Let ϕ > 0 be the principal eigenfunction of (2.1). Divide both sides of
(2.1) by ϕ and integrate the resulting equation over [0, 1], then using the periodicity
of ϕ we can deduce λ1 > V̂ for any μ > 0 and α ∈ R. This together with (2.11) gives
λ1 ∈ (V̂ , Vmax).

Now we define μA. Set α = 0 in (2.1). The variational characterization of λ1(μ, 0)
implies that λ1(μ, 0) is a decreasing function of μ [5, Corollary 2.2], and

lim
μ→0

λ1(μ, 0) = Vmax and lim
μ→∞

λ1(μ, 0) = V̂ . (2.14)

Hence, for any A ∈ (V̂ , Vmax), we define the unique μA ∈ (0,∞) such that λ(μA, 0) =
A. The monotonicity of λ(μ, 0) asserts that μA is decreasing in A, and (2.14) implies
μA →∞ as A→ V̂ and μA → 0 as A→ Vmax. This proves (i).

Next, we define the function αA. By the definition of μA and the monotonicity of
λ1(μ, 0) in μ, it follows λ1(μ, 0) > A for any μ ∈ (0, μA). Using Theorem 2.2, we have
λ1(μ, α)→ V̂ < A as α→ ∞. Thus, by the monotonicity of λ1(μ, α) in α (Theorem
2.1), there is a unique αA(μ) ∈ (0,∞) such that λ1(μ, αA(μ)) = A. The continuity
of αA(μ) in μ follows from the implicit function theorem. Due to λ1(μA, 0) = A, by
definition we see that αA(μA) = 0. Hence, to prove (ii), it remains to show αA → 0
as μ→ 0.

Choose any sequence {μn}∞n=1 satisfying μn → 0 as n → ∞. Assume by the
contrary that αA(μn)→ α∗ as n→∞ for some α∗ ∈ (0,∞] upon some subsequence.
Fix some α̃∗ ∈ (0,∞) such that α̃∗ < α∗. Using the monotonicity of λ1(μ, α) in α
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(Theorem 2.1), we derive

A = lim
n→∞

λ1(μn, αA(μn)) ≤ lim
n→∞

λ1(μn, α̃∗). (2.15)

Note that λ1(μn, α̃∗)→ λ∗ as n→∞, where λ∗ is the principal eigenvalue of

α̃∗φx + V φ = λ∗φ and φ(x) = φ(x+ 1) in R.

Divide the above by φ and integrate over [0, 1], then we deduce λ∗ = V̂ (see also
Theorem 2.2), which together with (2.15) implies A ≤ V̂ . This is a contradiction and
(ii) is proved.

It remains to prove (iii). Fix any μ ∈ (0,∞). By (i), there is a unique A∗ ∈
(V̂ , Vmax) such that μA∗

= μ, then αA(μ) is well defined in (V̂ , A∗]. In view of

λ1(μ, αA(μ)) ≡ A, direct calculation gives ∂λ1

∂α · ∂αA(μ)
∂A = 1. Since ∂λ1

∂α < 0 as proved

in Theorem 2.1, we have ∂αA(μ)
∂A < 0 as desired. The proof is now complete.

3. Persistence and spreading for a single species. In this section, we con-
sider the persistence and spatial spreading of a single species modeled by (1.4) and
prove Theorems 1.1 and 1.2. Mathematically, the persistence of species is equiva-
lent to the instability of the trivial equilibrium, which is in turn characterized by the
negativity of the principal eigenvalue, denoted by λ(μ, α, �), of the following problem:{

μϕxx + αϕx + r�ϕ = λϕ in R,

ϕ(x) = ϕ(x + �) in R.
(3.1)

More precisely, we have the following persistence and extinction result:

Lemma 3.1. Let λ(μ, α, �) denote the principal eigenvalue of (3.1).
(1) If λ(μ, α, �) > 0, then (1.4) has a unique positive equilibrium θμ(x) which

attracts every non-trivial non-negative solution;
(2) If λ(μ, α, �) ≤ 0, then (1.4) has no positive equilibria and all non-negative

solutions tend uniformly to zero as t→∞.

Lemma 3.1 can be proved by the same arguments developed in [5, Propositions
3.1 and 3.2], and thus we omit the proof; see also [31].

Proposition 3.2. Let λ(μ, α, �) be the principal eigenvalue of (3.1). Then
λ(μ, α, �) is a non-decreasing function of �, and either ∂λ

∂� > 0 or ∂λ
∂� ≡ 0. Furthermore,

∂λ
∂� ≡ 0 if and only if r is a constant. Moreover,

lim
�→0

λ(μ, α, �) = r̂ and lim
�→∞

λ(μ, α, �) = rmax. (3.2)

Proof. Let ϕ > 0 denote the principal eigenfuntion of (3.1) corresponding to
λ(μ, α, �). Set r(x) = r�(�x) and φ(x) = ϕ(�x), which are 1-periodic functions. Then
φ defines the principal eigenfunction of the problem{ μ

�2φxx + α
� φx + r(x)φ = λφ in R,

φ(x) = φ(x + 1) in R.
(3.3)

A direct application of Theorem 2.1 yields that λ(μ, α, �) is non-increasing in 1/�,
and thus non-decreasing in �, and moreover, ∂λ

∂� = 0 if and only if r is a constant. It
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remains to show (3.2). Letting � → 0 in (3.3) and using the same arguments as in
Step 1 of Theorem 2.2, we can deduce λ(μ, α, �)→ r̂. We next prove λ(μ, α, �)→ rmax

as �→∞.
First, by the maximum principle, λ(μ, α, �) ≤ rmax for all � > 0. Thus it suffices

to claim for each ε > 0, there holds λ(μ, α, �) ≥ rmax − ε for large �. To this end,
we choose some x∗ ∈ [0, 1] such that r(x∗) = rmax. Choose δ > 0 small such that
r(x) ≥ rmax− ε/2 for all x ∈ [x∗−δ, x∗+δ]. Define a non-negative 1-periodic function
φ ∈ C2(R) satisfying

∫
φ2 = 1 and suppφ ⊂ [x∗ − δ, x∗ + δ]. Then we can choose �

large such that

(μ/�2)φ
xx

+ (α/�)φ
x
+ r(x)φ ≥ (rmax − ε)φ in R. (3.4)

Let φ > 0 be the principal eigenfunction of (3.3) for such chosen �. Set w := φ/φ ≥ 0.
Then by (3.3) and (3.4) we derive that

(μ/�2)wxx +
[
2μ/�2(logφ)x + α/�

]
wx ≥ [rmax − ε− λ(μ, α, �)]w in R. (3.5)

The proof is completed by evaluating (3.5) at the maximum point of w.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let λ(μ, α, �) be the principal eigenvalue of (3.1). Com-
bining with the adjoint problem of (3.1), it is easily seen that λ(μ, α, �) = λ(μ,−α, �)
for any μ, � > 0 and α ∈ R. Hence we only prove Theorem 1.1 in the case α > 0. We
claim that

r̂ ≤ λ(μ, α, �) ≤ rmax for all μ, α, � > 0. (3.6)

The fact that λ(μ, α, �) ≤ rmax is a direct consequence of the maximum principle. For
any μ, � > 0, applying Theorem 2.1 (with μ′(α) = 0) and Theorem 2.2 gives

λ(μ, α, �) ≥ lim
α→∞

λ(μ, α, �) = r̂ for all α > 0.

Thus inequality (3.6) holds. From (3.6) we see that if rmax < 0, then λ(μ, α, �) < 0,
and if r̂ > 0, then λ(μ, α, �) > 0. By Lemma 3.1, this establishes Theorem 1.1(1) and
(2).

In what follows, we assume r̂ < 0 and rmax > 0. Proposition 3.2 implies ∂λ
∂� > 0,

and that there is a unique �∗ = �∗(μ, α) ∈ (0,∞) such that λ(μ, α, �∗) = 0, and
λ(μ, α, �) > 0 if � > �∗, and λ(μ, α, �) < 0 if � < �∗. Applying Lemma 3.1 again, this
proves the first part of Theorem 1.1(3) and it remains to show (i) and (ii).

To establish (i), we fix μ > 0. First, the assertion �∗(μ, α) = �∗(μ,−α) is a direct
consequence of λ(μ, α, �) = λ(μ,−α, �) and ∂λ

∂� > 0. Next, noting that λ(μ, α, �∗) = 0

for α > 0, we have ∂λ
∂α + ∂λ

∂� · ∂�
∗

∂α = 0. Using ∂λ
∂α < 0 and ∂λ

∂� > 0, we deduce ∂�∗

∂α > 0

immediately, where ∂λ
∂α < 0 follows from Theorem 2.1. Finally, we claim �∗(μ, α) =∞

as α→∞. Suppose not. Then there exists some sequence {αn}∞n=1 such that αn →∞
and �∗(μ, αn) → L as n → ∞ for some L ∈ (0,∞). The fact that ∂�∗

∂α > 0 implies

�∗(μ, αn) ≤ L, so that by ∂λ
∂� > 0, we have 0 = λ(μ, αn, �

∗(μ, αn)) ≤ λ(μ, αn, L) for all
n ≥ 1, for which letting n → ∞ and using λ(μ, αn, L)→ r̂ (Theorem 2.2), we arrive
at r̂ ≥ 0. This is a contradiction since it is assumed that r̂ < 0. The assertion (i) is
now proved.

To establish (ii), we fix α ∈ R. We only prove �∗(μ, α) → ∞ as μ → 0, and the
assertion �∗(μ, α)→∞ as μ→∞ follows from a similar argument. If not, then there
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exists a sequence {μn}∞n=1 such that μn → 0 and �∗(μn, α) → L as n → ∞ for some
L ∈ (0,∞). Thus there exists some L̃ > L such that �∗(μn, α) ≤ L̃ for all n ≥ 1. Again
by invoking the montonicity ∂λ

∂� > 0, we deduce 0 = λ(μn, α, �
∗(μn, α)) ≤ λ(μn, α, L̃)

for all n ≥ 1. Letting n→∞, we reach r̂ ≥ 0, a contradiction. Hence (ii) follows and
Theorem 1.1 is proved.

Next, we consider the spatial spreading of a single species and prove Theorem
1.2.

Proof of Theorem 1.2. Recall that Λ = Λ(μ, α, �, λ) defines the principal eigenvalue
of (1.7). If r ≡ r̂ is constant, then it is clear that Λ = μλ2 + αλ + r̂ independent of
� > 0 with the principal eigenfunction φ ≡ 1. By (1.6) we have

c∗(μ, α, �) = min
λ>0

[
μλ+

r̂

λ
+ α

]
= 2

√
μr̂ + α,

which establishes Theorem 1.2(1). It remains to show Theorem 1.2(2).
It was shown in [46, Proposition 4.2] that the minimum in (1.6) can be attained

uniquely at some λ∗ = λ∗(μ, α, �) ∈ (0,∞) for any given μ, α, � > 0 such that

c∗(μ, α, �) =
Λ(μ, α, �, λ∗)

λ∗
. (3.7)

Hence the map (μ, α, �) �→ λ∗ is well defined. At the minimal point λ∗(μ, α, �), by the
argument of extreme point we have

λ∗ ∂Λ(μ, α, �, λ
∗)

∂λ
= Λ(μ, α, �, λ∗). (3.8)

Set F (μ, α, �, λ) := λ∂Λ(μ,α,�,λ)
∂λ − Λ(μ, α, �, λ). Then F (μ, α, �, λ∗) = 0 and ∂F

∂λ =
∂2Λ(μ,α,�,λ)

∂λ2 . It was proved in [35, Proposition 6.2] that ∂2Λ
∂λ2 < 0, so that ∂F

∂λ 
=
0 particularly. The implicit function theorem implies that λ∗(μ, α, �), and hence
c∗(μ, α, �), are differentiable with respect to μ, α, �.

Step 1. We prove ∂c∗

∂� > 0. Differentiate both sides of (3.7) with respect to �, then
at (μ, α, �, λ∗) we have

∂c∗

∂�
=

1

λ∗

[
∂Λ

∂�
+

∂Λ

∂λ

∂λ∗

∂�
− Λ∂λ∗

∂�

λ∗

]
,

which together with (3.8) implies ∂c∗

∂� = 1
λ∗

∂Λ
∂� . We apply Proposition 3.2 to (1.7) and

deduce ∂Λ
∂� > 0 as r is non-constant. This gives ∂c∗

∂� > 0 as desired.

Step 2. We show that ∂(c∗/α)
∂α < 0 and ∂c∗

∂α > 1
2 . Set Λ := Λ−μλ2−αλ, which is the

principal eigenvalue of the problem{
μφxx + (α+ 2μλ)φx + r�φ = Λφ in R,

φ(x) = φ(x+ �) in R.
(3.9)

A direct application of Theorem 2.1 to (3.9) yields

∂Λ

∂α
=

1

2μ

∂Λ

∂λ
< 0 for all μ, α, λ, � > 0. (3.10)
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By (3.7) and (3.8), as in the calculation of ∂c∗

∂� we obtain

∂c∗

∂α
=

∂Λ
∂α

λ∗
=

∂Λ
∂α

λ∗
+ 1. (3.11)

The fact that ∂(c∗/α)
∂α < 0 has been proved in [35, Theorem 1.4] for the general

incompressible steady flow. We here provide a simpler proof for (1.4) with a special
incompressible flow in one dimension. Using (3.7) and (3.11) we can calculate

∂(c∗/α)

∂α
=

1

α

[
∂c∗

∂α
− c∗

α

]
=

1

α

[
∂Λ
∂α

λ∗
− Λ

αλ∗
− μλ∗

α

]
. (3.12)

Let φ > 0 be the principal eigenfuntion of (3.9). Divide both sides of (3.9) by φ and
integrate over [0, �], then we deduce Λ ≥ r̂ > 0. This, along with (3.10) and (3.12),

implies that ∂(c∗/α)
∂α < −μλ∗

α2 < 0 as desired.

It remains to show ∂c∗

∂α > 1
2 . Observe from (3.8) and the definition of Λ that at

the minimal point λ∗, there holds ∂Λ
∂λ + μλ∗ = Λ

λ∗
. This together with (3.10) and

(3.11) implies

∂c∗

∂α
=

∂Λ
∂λ

2μλ∗
+ 1 =

Λ

2μ(λ∗)2
+

1

2
>

1

2
,

where the last inequity is due to Λ ≥ r̂ > 0. Step 2 is now complete.

Step 3. We prove the limit of c∗/α as α → ∞ and the limits of c∗ as � → 0 and
� → ∞. Again recall that Λ = Λ(μ, α, �, λ) denotes the principal eigenvalue of (1.7).
Proposition 3.2 implies that ∂Λ

∂� > 0 and

lim
�→0

Λ(μ, α, �, λ) = μλ2 +αλ+ r̂ and lim
�→∞

Λ(μ, α, �, λ) = μλ2 + αλ+ rmax, (3.13)

so that μλ2+αλ+ r̂ < Λ < μλ2+αλ+ rmax for all μ, α, �, λ > 0. By (1.6), this means

2
√
μr̂ + α ≤ c∗ ≤ 2

√
μrmax + α for all μ, α, � > 0. (3.14)

This implies c∗/α→ 1 as α→∞.

Set λ :=
√

r̂
μ . Then (1.6) implies that c∗ ≤ Λ(μ,α,�,λ)

λ
, for which letting � → 0,

we use (3.13) to obtain lim sup�→0 c
∗ ≤ 2

√
μr̂ + α. This together with (3.14) implies

lim�→0 c
∗ = 2

√
μr̂ + α as desired. It remains to consider the case �→∞.

Fix any sequence {�n}∞n=1 such that �n → ∞ as n → ∞. By passing to a
subsequence if necessary, we may assume the minimal point λ∗(μ, α, �n) → λ∗

∞ as
n → ∞ for some λ∗

∞ ∈ [0,∞]. By (3.7) and the definition of Λ given in Step 1, we
see that

c∗(μ, α, �n) =
Λ(μ, α, �n, λ

∗)

λ∗(μ, α, �n)
+ μλ∗(μ, α, �n) + α. (3.15)

Note from (3.9) that r̂ ≤ Λ ≤ rmax for all μ, α, �, λ > 0. Letting n→∞ in (3.15), the
uniform boundedness of c∗ in (3.14) implies λ∗

∞ ∈ (0,∞). Hence, by (3.13) we have

lim
n→∞

c∗(μ, α, �n) =
rmax

λ∗
∞

+ μλ∗
∞ + α ≥ 2

√
μrmax + α,

which together with (3.14) implies c∗(μ, α, �n) → 2
√
μrmax + α as n → ∞. This

completes the proof by noting the arbitrariness of the sequence.
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4. Ecological dynamics: Proofs of Theorems 1.3 and 1.4. In this section,
we apply Theorem 2.1 to (1.3) and establish the ecological dynamics given in Theorems
1.3 and 1.4. To this end, we first state the following result derived from the theory of
monotone dynamical system [19].

Lemma 4.1 ([20, 27]). For any μ, ν > 0 and α, β ∈ R, suppose that system (1.3)
has no positive steady state, then the followings hold:

(i) If (0, θν) is linearly unstable, then (θμ, 0) is globally asymptotically stable;
(ii) If (θμ, 0) is linearly unstable, then (0, θν) is globally asymptotically stable.

We now prove Theorem 1.3.

Proof of Theorem 1.3. We first claim that the semi-trivial state (0, θν) is linearly
unstable. The linear stability of (0, θν) is determined by the principal eigenvalue
λ̃(μ, ν, α, β) of {

μϕxx + αϕx + (r − θν)ϕ = λ̃ϕ in R,

ϕ(x) = ϕ(x+ 1) in R,
(4.1)

where θν defines the unique positive solution of (1.8). Since μ = ν, it is convenient
to write λ̃(α, β) = λ̃(μ, μ, α, β). By definition, we can check that λ̃(α, β) = λ̃(−α, β),
and λ̃(β, β) = 0 by regarding θν in (1.8) as the corresponding eigenfunction. Thus it
suffices to consider the case 0 < α < β.

A direct application of Theorem 2.1 yields λ̃(α, β) ≥ λ̃(β, β) = 0. We claim
λ̃(α, β) > 0. Suppose by the contrary that λ̃(α, β) = 0, then Theorem 2.1 implies
λ̃(α̃, β) ≡ 0 for all α̃ ≥ 0. By (1.11) and Theorem 2.1, there holds r − θν is constant
in x. Then using (1.8), we may deduce θν , and thus r are constant, which is a
contradiction. Hence, λ̃(α, β) > 0 so that (0, θν) is linearly unstable; see e.g. [5].

By Lemma 4.1, it remains to show that (1.3) has no positive steady states for
0 < α < β. Suppose not, then there exists solution (U, V ) with U > 0, V > 0 solving⎧⎪⎪⎨

⎪⎪⎩
μUxx + αUx + U [r(x) − U − V ] = 0 in R,

μVxx + βVx + V [r(x) − U − V ] = 0 in R,

U(x) = U(x+ 1), V (x) = V (x + 1) in R.

This implies that the principal eigenvalues of operators μ d2

dx2 + α d
dx + (r − U − V )

and μ d2

dx2 + β d
dx +(r−U −V ) are both zero. Since α > β, applying Theorem 2.1, we

derive that r−U−V is a constant. This implies that U and V are both constant, and
so is r, which is a contradiction. This proves the global stability of (θμ, 0), and hence
the strategy α∗ = 0 is a global ESS and a global CSS. Theorem 1.3 thus follows.

Next, we turn to prove Theorem 1.4.

Proof of Theorem 1.4. We divide the proof into the three steps.

Step 1. We first consider the case |β| ≥
√

ν
μ |α| and establish the global stabil-

ity of (θμ, 0). Let λ̃(μ, ν, α, β) denote the principal eigenvalue of (4.1). By the

definition of θν in (1.8), we see that λ̃(ν, ν, β, β) = 0 by regarding θν as the prin-
cipal eigenfunction. Since λ̃(μ, ν, α, β) = λ̃(μ, ν,−α, β) for all α ∈ R, there holds

λ̃(ν, ν, |β|, β) = λ̃(ν, ν, β, β) = 0. In view of |β| ≥
√

ν
μ |α| and ν > μ, applying Theo-

rem 2.1 we can derive

λ̃(μ, ν, α, β) = λ̃(μ, ν, |α|, β) ≥ λ̃
(

μ
ν ν, ν,

√
μ
ν |β|, β

)
≥ λ̃(ν, ν, |β|, β) = 0. (4.2)
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We claim that λ̃(μ, ν, α, β) > 0. If not, by (4.2), λ̃(μν ν, ν,
√

μ
ν |β|, β) =

λ̃(ν, ν, |β|, β). Using Theorem 2.1 we find r − θν is a constant, i.e. r − θν ≡ c for
some c ∈ R. Substituting this into (1.8) gives

νrxx + βrx + c(r − c) = 0 in R. (4.3)

If c = 0, i.e. θν ≡ r, then (4.3) means νrxx + βrx = 0, which together with the
periodicity of r asserts that r is constant, a contradiction. If c 
= 0, then integrating
both sides of (4.3) yields r̂ = c, which is also a contradiction since r(x) > c for all
x ∈ R (due to θν = r − c > 0). Hence, it follows λ̃(μ, ν, α, β) > 0, i.e. the semi-trivial
state (0, θν) is linearly unstable.

To establish the global stability of (θμ, 0), by Lemma 4.1 it suffices to show that
(1.3) has no positive periodic solutions. Suppose not, i.e. (1.3) admits some periodic
solution (U, V ) with U > 0, V > 0. Define λ(d, q) as the principal eigenvalue of the
problem {

dϕxx + qϕx + (r − U − V )ϕ = λϕ in R,

ϕ(x) = ϕ(x+ 1) in R.

Then the definition of (U, V ) implies λ(μ, α) = λ(ν, β) = 0. Since |β| ≥
√

ν
μ |α| and

ν > μ, applying the monotonicity in Theorem 2.1 we find

λ(ν, β) = λ(ν, |β|) ≤ λ
(

ν
μμ,

√
ν
μ |α|

)
≤ λ(μ, |α|) = λ(μ, α),

which implies λ( νμμ,
√

ν
μ |α|) = λ(μ, |α|). Due to ν > μ, by Theorem 2.1 it must hold

that r − U − V is constant. Using the same arguments as above, we can reach a
contradiction and Theorem 1.4(1) is proved.

Step 2. We assume |β| <
√

ν
μ |α| and prove Theorem 1.4(2)-(i). The stability of

(θμ, 0) can be determined by the principal eigenvalue λ(μ, ν, α, β) of (1.11) with θμ
defined by (1.5). Note that λ(μ, ν, α, β) = λ(μ, ν, α,−β) for all μ, ν > 0 and α, β ∈ R.

We only consider the situation when α, β > 0 and β <
√

ν
μα, and other cases can be

proved similarly.
We first define the continuous function β∗(α) for α > 0. Define

D+ := {α ∈ (0,∞) : λ(μ, ν, α, 0) > 0} , (4.4)

where λ(μ, ν, α, 0) := lim
β→0

λ(μ, ν, α, β). As in (4.2), by Theorem 2.1 we find for any

α > 0,

λ(μ, ν, α,
√

ν
μα) < λ(μ, μ, α, α) = 0.

Thus for each α ∈ D+, the monotonicity in Theorem 2.1 implies that there exists a

unique β∗(α) ∈ (0,
√

ν
μα) depending continuously on α such that

λ(μ, ν, α, β∗(α)) = 0. (4.5)

Here the continuity follows from the implicit function theorem. It is clear that
β∗(∂D+) = 0. We extend β∗ to (0,∞) by setting β∗(α) := 0 for α ∈ (0,∞) \ D+.
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By construction, D+ = {α ∈ (0,∞) : β∗(α) > 0}. By Theorem 2.1 and the symmetry
of λ(μ, ν, α, β) in β, we see that (θμ, 0) is linearly stable for |β| > β∗ and linearly
unstable for |β| < β∗.

Setting α = β = 0 in (1.5) and (1.11), it is easily seen that λ(μ, ν, 0, 0) is decreasing
in ν [5, Corollary 2.2], so that λ(μ, ν, 0, 0) < λ(μ, μ, 0, 0) = 0. By continuity, there
exists some ε1 > 0 small such that λ(μ, ν, α, 0) ≤ 0 for α ∈ [0, ε1]. The definition of
D+ in (4.4) implies D+ ∩ [0, ε1] = ∅, and thus β∗(α) ≡ 0 for all α ∈ [0, ε1].

It remains to prove (1.9). We shall claim β∗(α) → ∞ as α → ∞, then (1.9) is a
direct consequence of Theorem A.1 in the appendix section. Suppose by the contrary
that β∗(α)→ β∗

∞ ∈ [0,∞) as α→∞ upon some subsequence. By Lemma 5.1, θμ → r̂
uniformly, so that we send α→∞ in (1.11) to deduce λ(μ, ν, α, β∗(α))→ λ∞, where
λ∞ defines the principal eigenvalue of the problem{

νφxx + β∗
∞φx + (r − r̂)φ = λ∞φ in R,

φ(x) = φ(x+ 1) in R.
(4.6)

The definition of β∗(α) in (4.5) implies λ∞ = 0. Define φ > 0 as the principal
eigenfunction of (4.6) corresponding to λ∞ = 0. Divide both sides of (4.6) by φ and

integrate over [0, 1], then we have ν
∫ |φx|

2

φ2 = 0, and thus φ ≡ c for some constant

c > 0. Substituting this into (4.6) yields r ≡ r̂, which is a contradiction. Hence,
β∗(α)→∞ as α→∞ and (1.9) holds.

Step 3. We assume |β| <
√

ν
μ |α| and prove Theorem 1.4(2)-(ii). Let λ̃(μ, ν, α, β)

denote the principal eigenvalue of (4.1). Due to λ̃(μ, ν, α, β) = λ̃(μ, ν,−α, β) for all
α ∈ R, we only consider the case α, β > 0, and other situation follows by a similar
argument.

Since μ < ν, choosing α =
√

μ
ν β in (4.2), we find λ̃

(
μ, ν,

√
μ
ν β, β

)
> 0 for all

β > 0. Applying Theorem 2.2 we deduce from (1.8) that for β ≥ 0,

lim
α→∞

λ̃(μ, ν, α, β) = r̂ − θ̂ν = −ν
∫

(θν)
2
x

θ2ν
< 0. (4.7)

Therefore, the monotonicity of λ̃ in α (Theorem 2.1) implies that there is a unique
continuous function α∗(β) ∈ (

√
μ
ν β,∞) such that λ̃(μ, ν, α∗(β), β) = 0, and (0, θν) is

linearly stable for |α| > α∗ and linearly unstable for |α| < α∗.
Set α = β = 0 in (1.8) and (4.1). It is easily seen that λ̃(μ, ν, 0, 0) > λ̃(ν, ν, 0, 0) =

0. Since λ̃(μ, ν, α, 0) < 0 for large α as in (4.7), we have α∗(0) > 0. Due to α∗ >
√

μ
ν β,

it follows that α∗(β) > ε2 for some ε2 > 0 independent of β. Also, α∗ >
√

μ
ν β implies

α∗(β)→∞ as β →∞. By Theorem A.1 in the Appendix, we can deduce (1.10).

5. Evolutionary dynamics: Proofs of Theorems 1.5 and 1.6. In this sec-
tion, we aim to study the evolution dynamics of (1.3), and establish Theorems 1.5
and 1.6. To this end, we first prepare the following result:

Lemma 5.1. Let θμ be the unique positive solution of (1.5). Then θμ → r̂ in
H2((0, 1)) as max{μ, |α|} → ∞. In particular, θμ → r̂ in H2((0, 1)) uniformly for
α ∈ R as μ→∞, and θμ → r̂ in H2((0, 1)) uniformly for μ ∈ (0,∞) as |α| → ∞.

Proof. We write θμ as θ for simplicity. Let C denote a generic positive constant
independent of μ > 0 and α ∈ R. We first prove that there exists some C such that

max{μ, α2}
∫
|θx|2 < C. (5.1)



COMPETITION IN PERIODIC AND ADVECTIVE HABITATS 441

To establish (5.1), multiply both sides of (1.5) by θ and integrate over [0, 1], then
μ
∫ |θx|2 =

∫
θ2(r − θ). Since rmin ≤ θ ≤ rmax for all μ > 0 and α ≤ R, this implies

μ
∫ |θx|2 < C. Similarly, multiplying both sides of (1.5) by θx and integrating the

resulting equation over [0, 1] yield α
∫ |θx|2 = − ∫

θθx(r − θ). By Hölder inequality
and the uniform boundedness of θ in L∞(R), we have α2

∫ |θx|2 < C for some C. This
proves (5.1).

Next, we show that there exists some C such that

max{μ2, α2}
∫
|θxx|2 < C

(
1 +

1

max{μ, α2}
)
. (5.2)

Multiply both sides of (1.5) by θxx and integrate over [0, 1], then μ
∫ |θxx|2 =∫

θxxθ(θ − r). By Hölder inequality and the uniform boundedness of θ, this im-
plies μ2

∫ |θxx|2 < C. To establish the rest of (5.2), differentiate (1.5) with respect to
x, multiply the resulting equation by θxx, and integrate over [0, 1]. Then we derive

α2

∫
|θxx|2 ≤ C

(
1 +

∫
|θx|2

)
< C

(
1 +

1

max{μ, α2}
)
, (5.3)

where the last inequality follows from (5.1). This proves (5.2).

It follows from (5.1) and (5.2) that if max{μ, |α|} → ∞, then
∫ |θx|2 → 0 and∫ |θxx|2 → 0. Hence, Poincaré inequality implies θ − θ̂ → 0 in L2((0, 1)), so that

via a compactness argument and subject to passing to a sequence, we have θ → c in
L2((0, 1)) for some positive constant c as max{μ, |α|} → ∞. Integrate (1.5) in [0,1]
then we find

∫
θ(r−θ) = 0, from which it follows that c = r̂. Since c is independent of

the choice of sequence, it thus follows that θ → r̂ in H2((0, 1)) as max{μ, |α|} → ∞.

We are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Step 1. We prove (i). Since β = α, (1.11) becomes

{
νϕxx + αϕx + (r − θμ)ϕ = λϕ in R,

ϕ(x) = ϕ(x+ 1) in R.
(5.4)

Let (λ(μ, ν), ϕ) denote the principal eigenpair of (5.4) such that
∫
ϕ2 =

∫
θ2μ. We de-

fine ψ, normalized by
∫
ϕψ = 1, as the principal eigenfunction of the adjoint problem

{
νψxx − αψx + (r − θμ)ψ = λψ in R,

ψ(x) = ψ(x+ 1) in R.
(5.5)

Differentiate both sides of (5.4) with respect to ν and multiply the resulting equation
by ψ, then by (5.5) we obtain

λν(μ, ν) = −
∫

ϕxψx. (5.6)

Multiply both sides of (5.4) by ϕx, then integrate the resulting equation over [0, 1].
By Hölder inequality and the boundedness of θμ in L∞(R), we can derive that ϕ is
uniformly bounded in H1((0, 1)) independent of μ, ν > 0. Letting μ, ν → 0 in (5.4)
and (5.5), by the standard arguments one can conclude that ϕ ⇀ θ∗ and ψ ⇀ θ̃∗
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weakly in H1((0, 1)) and strongly in L2((0, 1)), where θ∗ and θ̃∗ satisfying
∫
θ∗θ̃∗ = 1

define the unique positive solutions of{
αθ∗x + (r − θ∗)θ∗ = 0 in R,

θ∗(x) = θ∗(x + 1) in R,
and

{ −αθ̃∗x + (r − θ∗)θ̃∗ = 0 in R,

θ̃∗(x) = θ̃∗(x+ 1) in R.
(5.7)

We claim that r− θ∗ is non-constant. Indeed, if r− θ∗ is a constant, then integrating
the first equation in (5.7) over [0, 1] gives r ≡ θ∗. Substituting this in (5.7) yields θ∗,
and thus r are constants, contrary to our assumption. Hence, using (5.6) we find

lim
(μ,ν)→(0,0)

λν(μ, ν) = −
∫

θ∗xθ̃
∗
x =

1

α2

∫
(r − θ∗)2θ∗θ̃∗ > 0,

where the last inequality holds since r − θ∗ is non-constant and θ∗, θ̃∗ > 0. This
implies that there exists some δ1 > 0 such that λν(μ, ν) > 0 for all μ, ν ∈ (0, δ1). Due
to λ(μ, μ) = 0, we deduce λ(μ, ν) > 0 for all μ < ν < δ1, i.e. the semi-trivial state
(θμ, 0) is unstable. Therefore, by Lemma 4.1, it remains to find some δ ∈ (0, δ1) such
that (1.3) has no positive steady states for any μ < ν < δ.

Suppose there exist μk < νk and solution (Uk, Vk) with Uk > 0, Vk > 0 such that
(μk, νk)→ (0, 0) as k →∞ and⎧⎪⎪⎨

⎪⎪⎩
μk(Uk)xx + α(Uk)x + Uk[r(x) − Uk − Vk] = 0 in R,

νk(Vk)xx + α(Vk)x + Vk[r(x) − Uk − Vk] = 0 in R,

Uk(x) = Uk(x+ 1), Vk(x) = Vk(x+ 1) in R.

(5.8)

By the maximum principle, we see that Uk and Vk are uniformly bounded in L∞(R)
for all k ≥ 1. Multiply the first and second equations in (5.8) by (Uk)x and (Vk)x,
respectively, and integrate over [0, 1], then by adding the resulting equations we can
derive α2

∫ [
(Uk)

2
x + (Vk)

2
x

] ≤ ∫
(U2

k +V 2
k )(r−Uk−Vk)

2. This implies that Uk and Vk

are uniformly bounded in H1((0, 1)) for all k ≥ 1. Hence, there holds Uk + Vk → W
weakly in H1((0, 1)) and strongly in L2((0, 1)) as k → ∞ for some non-negative 1-
periodic function W ∈ H1((0, 1)). We claim that r −W is non-constant. Indeed, if
W ≡ 0, the assertion follows from the assumption that r is non-constant. If W 
≡ 0,
then W = θ∗, where θ∗ is the unique positive solution of the first equation in (5.7),
and thus the assertion holds since r − θ∗ is non-constant.

Let λ(d,W ) be the principal eigenvalue of the problem{
dφxx + αφx + (r −W )φ = λφ in R,

φ(x) = φ(x + 1) in R.

Since r −W is non-constant, we may apply the same arguments as above to derive
∂λ
∂d > 0 for all d ∈ (0, δ) with some δ ∈ (0, δ1). By continuity, we can choose k large

such that μk, νk < δ/2 and ∂λ
∂d (d, Uk + Vk) > 0 for all d ∈ (0, δ/2). For the chosen

k, (5.8) implies λ(μk, Uk + Vk) = λ(νk, Uk + Vk) = 0, which contradicts ∂λ
∂d > 0 and

μk < νk. Therefore, (1.3) has no positive steady states for μ < ν < δ and Theorem
1.5(i) follows from Lemma 4.1.

Step 2. We prove (ii). Let α = β in (4.1), then λ̃(μ, ν) is the principal eigenvalue of{
μϕxx + βϕx + (r − θν)ϕ = λ̃ϕ in R,

ϕ(x) = ϕ(x+ 1) in R.
(5.9)
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Denote by ϕ > 0 the principal eigenfunction of (5.9) such that
∫
ϕ2 =

∫
θ2ν . We define

ψ > 0, normalized by
∫
ϕψ = 1, as the principal eigenfunction of the adjoint problem

{
μψxx − βψx + (r − θν)ψ = λ̃ψ in R,

ψ(x) = ψ(x+ 1) in R.
(5.10)

Since ϕ is periodic, there exists some x∗ = x∗(μ, ν) ∈ (0, 1] such that ϕx(x∗) = 0.
Integrating both sides of (5.9) and (5.10) from x∗ to x gives

μϕx + β (ϕ− ϕ(x∗)) +

∫ x

x∗

(r − θν)ϕ = λ̃

∫ x

x∗

ϕ, (5.11)

μ (ψx − ψx(x∗))− β (ψ − ψ(x∗)) +

∫ x

x∗

(r − θν)ψ = λ̃

∫ x

x∗

ψ. (5.12)

By (5.9) and (5.10), direct calculation yields

μ2λ̃μ(μ, ν) = −μ2

∫
ϕxψx = −μ2

∫
ϕx(ψx − ψx(x∗))

= −
∫ [∫ x

x∗

(r − θν)ϕ

]
·
[∫ x

x∗

(r − θν)ψ

]
+R(μ, ν),

(5.13)

where the remainder term R(μ, ν) can be expressed explicitly from (5.11) and (5.12).
By the Sobolev embedding theorem [24], Lemma 5.1 implies θμ → r̂ uniformly as
μ →∞. Thus letting (μ, ν)→ (∞,∞) in (5.9) and (5.10), we deduce from Theorem
2.2 that λ̃→ 0, and hence it can be verified readily that ϕ→ r̂ and ψ → 1/r̂ uniformly
as in Lemma 5.1. This implies R→ 0 uniformly. Thus one can send (μ, ν)→ (∞,∞)
in (5.13) to deduce

lim sup
(μ,ν)→(∞,∞)

μ2λ̃μ(μ, ν) ≤ − min
y∈[0,1]

{∫ [∫ x

y

(r − r̂)

]2}
< 0,

which implies that there exists some δ2 > 0 small such that λ̃μ(μ, ν) < 0 for all

μ, ν > 1/δ2. Since λ̃(ν, ν) = 0, we have λ̃(μ, ν) > 0 for all ν > μ > 1/δ2, i.e.
(0, θν) is linearly unstable. As in Step 1, we may use a similar argument to show
that there is some δ ∈ (0, δ2) such that (1.3) has no positive steady states for any
ν > μ > 1/δ. Then Theorem 1.5(ii) is a direct consequence of Lemma 4.1. The proof
is now complete.

In what follows, we turn to establish Theorem 1.6. By the definition of λ(μ, ν) in
(1.11) with β = α, direct calculation yields that for each μ > 0,

λν(μ, μ) = −
∫
θxθ̃x∫
θθ̃

, (5.14)

where θ = θμ is the unique positive solution of (1.5) and θ̃ = θ̃μ is the unique positive
solution of the adjoint problem{

μθ̃xx − αθ̃x + θ̃(r − θ) = 0 in R,

θ̃(x) = θ̃(x+ 1) in R and
∫
θ̃2 = 1.

(5.15)
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We first establish the existence of evolutionarily singular strategies.

Proposition 5.2. Assume β = α and r is non-constant. Then for each α 
= 0,
there exists some μ∗ = μ∗(α) ∈ (0,∞) such that it is a singular strategy and (1.12)
holds.

Proof. Recall that θ defines the unique positive solution of (1.5). It is straight-
forward to verify that θ ⇀ ϑ weakly in H1((0, 1)) and strongly in L2((0, 1)) as μ→ 0,
where ϑ is the unique positive solution of the problem

αϑx + ϑ(r − ϑ) = 0 and ϑ(x) = ϑ(x+ 1) in R. (5.16)

Similarly, it can be shown that θ̃ ⇀ ϑ̃ weakly in H1((0, 1)) and strongly in L2((0, 1))
as μ→ 0, where θ̃ is given by (5.15) and ϑ̃ > 0 solves

−αϑ̃x + ϑ̃(r − ϑ) = 0, ϑ̃(x) = ϑ̃(x + 1) in R, and
∫
ϑ̃2 = 1. (5.17)

By (5.16) and (5.17), we use (5.14) to deduce

lim
μ→0

λν(μ, μ) = −
∫
ϑxϑ̃x∫
ϑϑ̃

=

∫
ϑϑ̃(r − ϑ)2

α2
∫
ϑϑ̃

> 0, (5.18)

where the strict inequality holds since r is non-constant. Hence, to establish Propo-
sition 5.2, it suffices to show λν(μ, μ) < 0 for large μ.

By the periodicity of θ, we may assume θx(x∗) = 0 for some x∗ ∈ [0, 1] depending
on μ. Integrating both sides of (1.5) and (5.15) from x∗ to x, we obtain

μθx + α [θ − θ(x∗)] +

∫ x

x∗

θ(r − θ) = 0

and μ
[
θ̃x − θ̃x(x∗)

]
− α

[
θ̃ − θ̃(x∗)

]
+

∫ x

x∗

θ̃(r − θ) = 0,

which together with (5.14) implies that

μ2λν(μ, μ) = − μ2∫
θθ̃

∫
θx

[
θ̃ − θ̃(x∗)

]

= − 1∫
θθ̃

∫ [∫ x

x∗

θ(r − θ)

]
·
[∫ x

x∗

θ̃(r − θ)

]
+R2.

(5.19)

Here the remainder term R2 can be calculated explicitly. By the Sobolev embedding
theorem [24], Lemma 5.1 implies θ → r̂ uniformly as μ→∞. Direct calculation yields
that the remainder term R2 in (5.19) satisfies R2 → 0 as μ →∞. Letting μ→ ∞ in
(5.19), we apply Lemma 5.1 again to deduce

lim sup
μ→∞

μ2λν(μ, μ) ≤ − min
y∈[0,1]

{∫ [∫ x

y

(r − r̂)

]2}
< 0. (5.20)

As both θ and θ̃ are analytic functions of μ ∈ (0,∞), by (5.14) we conclude that
λν(μ, μ) is also analytic in μ. Hence, by (5.18) and (5.20), there exists some singular
strategy, denoted by μ∗, such that (1.12) holds.

Our next result concerns the limits of the singular strategies for small and large
|α|.
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Proposition 5.3. Assume β = α 
= 0 and r is non-constant. Let μ∗ be any
evolutionarily singular strategy given in Proposition 5.2. Then μ∗(α) → 0 as α → 0
and μ∗(α)→∞ as |α| → ∞.

Proof. LetK denote any compact subset of (0,∞). Multiply both sides of (1.5) by
θ and integrate over [0, 1], then we observe that θ is bounded in H1((0, 1)) uniformly
for μ ∈ K and uniformly for α ∈ R. Let θ0 be the unique positive solution of (1.5)
with α = 0. By Lp-estimate and the embedding theorems [24], we derive that θ → θ0
in H1((0, 1)) as α → 0, uniformly for μ ∈ K. Similarly, θ̃ → θ0

(
∫
θ2

0
)1/2

in H1((0, 1))

as α → 0 uniformly for μ ∈ K, where θ̃ is defined by (5.15). Hence letting α → 0 in
(5.14) we find limα→0 λν(μ, μ) < 0 uniformly for μ ∈ K. This asserts that μ∗(α)→ 0
or μ∗(α) → ∞ as α → 0. If μ∗(α) → ∞, we use (5.20) to derive (μ∗)2λν(μ

∗, μ∗) < 0
for small |α|, which contradicts λν(μ

∗, μ∗) ≡ 0 for all α ∈ R. Thus, we conclude
μ∗(α)→ 0 as α→ 0.

To prove μ∗(α) → ∞ as |α| → ∞, it suffices to show that for each μ̄ > 0, there
holds

lim
α→∞

α2λν(μ, μ) > 0 uniformly for μ ∈ (0, μ̄]. (5.21)

By definitions (1.5) and (5.15), we use (5.14) to calculate

α2λν(μ, μ) =
1∫
θθ̃

∫
[μθxx + θ(r − θ)] ·

[
μθ̃xx + θ̃(r − θ)

]
=

∫
θ̃θ(r − θ)2∫

θθ̃
+ μR3,

(5.22)

where R3 = 1∫
θθ̃

[
μ
∫
θxxθ̃xx +

∫
θxxθ̃(r − θ) +

∫
θ̃xxθ(r − θ)

]
. Thus,

R3 ≤ C(μ+ 1)
(
‖θxx‖L2((0,1)) + ‖θ̃xx‖L2((0,1))

)
(5.23)

for some constant C > 0 independent of α > 0 and μ ∈ R. We claim that for any
given μ̄ > 0, R3 → 0 uniformly for μ ∈ (0, μ̄] as α → ∞. It follows from Lemma 5.1
that

∫ |θxx|2 → 0 uniformly for μ ∈ (0,∞) as α→∞. Similar to the proof of Lemma

5.1, we have
∫ |θ̃xx|2 → 0 uniformly for μ ∈ (0,∞) as α → ∞, and thus the claim is

a direct consequence of (5.23).
By Lemma 5.1, θ → r̂ in L2((0, 1)) uniformly for μ ∈ (0,∞) as α→∞. Similarly,

θ̃ → 1 in L2((0, 1)) uniformly for μ ∈ (0,∞) as α→∞. Thus letting α→∞ in (5.22)
we have

lim
α→∞

α2λν(μ, μ) =

∫
(r − r̂)2 > 0

uniformly for μ ∈ (0, μ̄], where the last inequality holds since r is non-constant.
Therefore, (5.21) holds and Proposition 5.3 is proved.

To further study the asymptotic behaviors of the singular strategies as α→ 0, we
prepare the following result:

Lemma 5.4. Let μ∗(α) be any evolutionarily singular strategy. Suppose that
α/μ∗(α) is bounded for small α. Then θ → r (strongly) in H1((0, 1)) as α→ 0, where
θ is the unique positive solution of (1.5) with μ = μ∗(α).
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Proof. By (1.5) we observe that

μ∗(θ − r)xx + α(θ − r)x + θ(r − θ) + μ∗rxx + αrx = 0.

Multiply the above by θ − r and integrate the resulting equation over [0, 1], then∫
|θx − rx|2 ≤

∫
rxx(θ − r) +

α

μ∗

∫
rx(θ − r). (5.24)

Since μ∗/α is uniformly bounded, (5.24) implies∫
|θx − rx|2 ≤ C

∫
|θ − r| ,

where C is some positive constant independent of α ∈ R. In view of θ → r in
L2((0, 1)), we deduce θx → rx in L2((0, 1)) as α→ 0. This completes the proof.

Proposition 5.5. Let μ∗(α) be any evolutionarily singular strategy given in
Proposition 5.2. If r(x) > 0 for all x ∈ R, then there exists some C > 0 independent
of α such that C−1|α| ≤ μ∗(α) ≤ C|α| for small |α| > 0.

Proof. We divide the proof into two steps.

Step 1. We show that there exists some C > 0 independent of α such that μ∗(α) ≤
Cα for small α > 0. Suppose not, then by passing to some subsequence if necessary,
we may assume μ∗(α)/α → ∞ as α → 0. Set P := θ−r

μ∗
. By (1.5) we see that P

satisfies {
μ∗Pxx + αPx − Pθ = −rxx − α

μ∗
rx in R,

P (x) = P (x+ 1) in R.
(5.25)

Note that 0 < rmin ≤ θ ≤ rmax for all α ∈ R. Applying the maximum principle to
(5.25), we deduce |P | ≤ C for some C > 0 independent of α.

Rewrite the equation of θ̃ in (5.15) as θ̃xx − α
μ∗

θ̃x − θ̃P = 0. Multiply the above

by θ̃ and then integrate the resulting equation over [0, 1]. In light of
∫
θ̃2 = 1 and

|P | ≤ C, we derive
∫ ∣∣∣θ̃x∣∣∣2 = − ∫

P θ̃2 ≤ C for all α ∈ R, which means that θ̃ is

uniformly bounded in H1((0, 1)). Thus by passing to a subsequence if necessary, we
assume θ̃ converges weakly in H1((0, 1)) to some θ̃∗ ∈ H1((0, 1)) as α → 0 such that∫
(θ̃∗)2 = 1. Observe that θ̃ also solves

θ̃xx − α

μ∗
θ̃x − θ̃

[
θxx + α

μ∗
θx

θ

]
= 0.

Using α/μ∗ → 0 and θ → r in H1((0, 1)) (Lemma 5.4), one can deduce

θ̃∗xx −
[rxx

r

]
θ̃∗ = 0 and θ̃∗(x) = θ̃∗(x+ 1) for x ∈ R.

Due to
∫
(θ̃∗)2 = 1, we have θ̃∗ = r√∫

r2
. Since λν(μ

∗, μ∗) ≡ 0, letting α→ 0 in (5.14)

gives

0 = lim
α→0

λν(μ
∗, μ∗) = −

∫ |rx|2∫
r2

,
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which contradicts our assumption that r is non-constant. Step 1 is thus complete.

Step 2. We show that there exists some c > 0 independent of α such that μ∗(α) ≥ cα
for small α. Assume on the contrary that μ∗(α)/α→ 0 as α→ 0 for some subsequence.
Define Q := θ−r

α , which satisfies

{
μ∗Qxx + αQx −Qθ = −μ∗

α rxx − rx in R,

Q(x) = Q(x+ 1) in R.

As in Step 1, applying the maximum principle we derive |Q| ≤ C for some C > 0

independent of α. Observe from (1.5) that μ∗

α θxx+θx−Qθ = 0, for which multiplying
both sides by θx gives

∫ |θx|2 =
∫
Qθθx ≤ C

∫ |θθx|. This together with Hölder
inequality implies that

∫ |θx|2 ≤ C
∫
θ2. Thus θ is uniformly bounded in H1((0, 1))

for all α ∈ R. Noting that θ → r in L2((0, 1)), we deduce θ ⇀ r weakly in H1((0, 1))
as α→ 0.

From (5.15) we see that θ̃ satisfies μ∗

α θ̃xx− θ̃x−Qθ̃ = 0. By the same arguments as

above, it follows that ‖θ̃‖H1((0,1)) is uniformly bounded with respect to α. So θ̃ ⇀ θ̃∗∗

weakly in H1((0, 1)) as α→ 0 for some θ̃∗∗ ∈ H1((0, 1)) satisfying
∫
(θ̃∗∗)2 = 1. Note

that θ̃ solves

μ∗

α
θ̃xx − θ̃x − θ̃

[
μ∗

α θxx + θx

θ

]
= 0. (5.26)

Letting α→ 0 in (5.26), since θ ⇀ r and μ∗

α → 0, we find that θ̃∗∗ satisfies

θ̃∗∗x +
[rx
r

]
θ̃∗∗ = 0 and θ̃∗∗(x) = θ̃∗∗(x+ 1) for x ∈ R,

from which we deduce θ̃∗∗ = 1

r
√∫

1

r2

. Thus letting α→ 0 in (5.14) gives

0 = lim
α→0

λν(μ
∗, μ∗) =

∫ |rx|2
r2

,

which is also a contradiction. The proof is now complete.

Finally, Theorem 1.6 is a direct consequence of Propositions 5.2, 5.3, and 5.5.

Appendix A. Taylor expansion of the principal eigenvalue for α, β � 1.
By [5, Proposition 3.6], the unique positive solution θ = θμ of (1.5) depends smoothly
on α ∈ R. Thus the principal eigenpair (λ, ϕ) of (1.11) depends smooth on α, β ∈ R.
Our main result in this section can be stated as follows:

Theorem A.1. Let λ(μ, ν, α, β) be the principal eigenvalue of (1.11). Then for
α, β � 1,

λ(μ, ν, α, β) = −μ
∫
(r − r̂)2

α2
+

ν
∫
(r − r̂)2

β2
+O

(
1

α3
+

1

β3

)
.

To prove Theorem A.1, we first Taylor expand the unique positive solution θ of
(1.5).
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Lemma A.2. Let θ(x) = ϑ0(x) +
ϑ1(x)

α + ϑ2(x)
α2 + ϑ3(x)

α3 + O( 1
α4 ) as α → ∞ for

1-periodic smooth functions ϑi, i = 0, 1, 2, 3. Then

ϑ0 ≡ r̂, ϑ̂1 = 0, and ϑ̂2 = μ

∫
(r − r̂)2.

Proof. First, we observe from Lemma 5.1 that ϑ0 ≡ r̂. Using this in (1.5), we
obtain

0 = μ (ϑ1)xx

α + μ (ϑ2)xx

α2 + (ϑ1)x + (ϑ2)x
α + (ϑ3)x

α2 +O
(

1
α3

)
+
[
r − r̂ − ϑ1

α − ϑ2

α2 +O( 1
α3 )

] · [r̂ + ϑ1

α + ϑ2

α2 +O( 1
α3 )

]
.

(A.1)

Consider the zero order terms in (A.1), then

(ϑ1)x + r̂(r − r̂) = 0. (A.2)

By the periodicity of ϑ1, we observe that
∫
(r − r̂)ϑ1 =

∫
(r − r̂)ϑ2

1 = 0. From (A.1)
we derive the first order equation given by

μ(ϑ1)xx + (ϑ2)x + (r − 2r̂)ϑ1 = 0. (A.3)

Integrating both sides of (A.3) gives r̂ϑ̂1 =
∫
ϑ1(r − r̂) = 0, i.e. ϑ̂1 = 0.

It remains to show ϑ̂2 = μ
∫
(r− r̂)2. Consider the second order equation in (A.1):

μ(ϑ2)xx + (ϑ3)x + (r − 2r̂)ϑ2 = ϑ2
1. (A.4)

Integrate both sides of (A.4) over [0, 1], then by (A.2) we have

r̂2ϑ̂2 = −r̂
∫

ϑ2
1 +

∫
r̂(r − r̂)ϑ2 = −r̂

∫
ϑ2
1 +

∫
(ϑ2)xϑ1. (A.5)

Multiplying both sides of (A.3) by ϑ1 and integrating over [0, 1] yield∫
(ϑ2)xϑ1 = μ

∫
(ϑ1)

2
x −

∫
(r − r̂)ϑ2

1 + r̂

∫
ϑ2
1 = μ

∫
(ϑ1)

2
x + r̂

∫
ϑ2
1, (A.6)

where the last equality is due to
∫
(r − r̂)ϑ2

1 = 0. Combining (A.5) and (A.6) with

(A.2), we deduce ϑ̂2 = μ
r̂2

∫
(ϑ1)

2
x = μ

∫
(r−r̂)2 as desired. Lemma A.2 is thus proved.

We are in a position to prove Theorem A.1.

Proof of Theorem A.1. Fix any μ, ν > 0 and let (λ, ϕ) be the principal eigenpair of
(1.11) such that

∫
ϕ2 = 1. By Theorem 2.2 and Lemma 5.1, we see that λ(μ, ν, α, β)→

0 and ϕ → 1 uniformly as α, β → ∞. Thus, by smoothness we may assume that for
α, β � 1,

λ(μ, ν, α, β) =
Λ1

α
+

Λ2

β
+

Λ3

α2
+

Λ4

β2
+

Λ5

αβ
+O

(
1

α3
+

1

α2β
+

1

αβ2
+

1

β3

)
, (A.7)

and

ϕ(x) = 1 +
p1(x)

α
+

q1(x)

β
+

∞∑
i=2

[
pi(x)

αi
+

qi(x)

βi
+

∑
k + h = i
k, h ≥ 1

zkh(x)

αkβh

]
, (A.8)
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for 1-periodic smooth functions pi, qi and zkh (i, k, h ≥ 1). It suffices to show

Λ1 = Λ2 = Λ5 = 0, Λ3 = −μ
∫
(r − r̂)2, and Λ4 = ν

∫
(r − r̂)2. (A.9)

To this end, dividing both sides of (1.11) by β and substituting (A.7) and (A.8)
into the resulting equation, we obtain

ν
(p1)xx
αβ

+ ν
(q1)xx
β2

+ ν
(p2)xx
α2β

+ ν
(q2)xx
β3

+ ν
(z11)xx
αβ2

+O

(
1

α3β
+

1

α2β2
+

1

αβ3
+

1

β4

)

+
(p1)x
α

+
(q1)x
β

+
(p2)x
α2

+
(z11)x
αβ

+
(q2)x
β2

+
(p3)x
α3

+
(z12)x
αβ2

+
(z21)x
α2β

+
(q3)x
β3

v

+
1

β

[
r − r̂ −

ϑ1

α
−

ϑ2

α2
+O(

1

α3
)

]
·

[
1 +

p1

α
+

q1

β
+

p2

α2
+

z11

αβ
+

q2

β2

]

=
1

β

[
Λ1

α
+

Λ2

β
+

Λ3

α2
+

Λ4

β2
+

Λ5

αβ

]
·

[
1 +

p1

α
+

q1

β
+

p2

α2
+

z11

αβ
+

q2

β2

]
. (A.10)

For i = 1, 2, 3, we collect the coefficients of the term 1
αi in (A.10) to obtain (pi)x = 0,

whence the periodicity of pi implies pi ≡ ci for some constant ci ∈ R. Considering
the terms including 1

β , we deduce

(q1)x + (r − r̂) = 0. (A.11)

Using the periodicity of q1, this implies
∫
(r− r̂)q1 =

∫
(r− r̂)q21 = 0. Then we collect

the coefficients of 1
αβ to derive that

ν(p1)xx + (z11)x + (r − r̂)p1 − ϑ1 = Λ1. (A.12)

Since p1 ≡ c1, integrating (A.12) over [0, 1] gives Λ1 = −ϑ̂1 = 0, where ϑ̂1 = 0 is
proved in Lemma A.2. Also, we collect the terms of 1

β2 in (A.10) and obtain

ν(q1)xx + (q2)x + (r − r̂)q1 = Λ2. (A.13)

Integrating in x over [0, 1], this implies Λ2 =
∫
(r− r̂)q1 = 0. Hence, we have deduced

Λ1 = Λ2 = 0.
Now, we claim Λ3 = −μ ∫

(r − r̂)2. Collect the terms including 1
α2β in (A.10) to

find

ν(p2)xx + (z21)x + (r − r̂)p2 − p1ϑ1 − ϑ2 = Λ1p1 + Λ3.

In view of p2 ≡ c2 and Λ1 = 0, integrating the above over [0, 1] we deduce Λ3 = −ϑ̂2,
so that Lemma A.2 implies Λ3 = −μ ∫

(r − r̂)2.
Next, we show Λ4 = μ

∫
(r− r̂)2. Considering the coefficients of 1

β3 , it follows that

ν(q2)xx + (q3)x + (r − r̂)q2 = Λ2q1 + Λ4. (A.14)

Due to Λ2 = 0, using (A.11) and (A.13), we deduce from (A.14) that

Λ4 =

∫
(r − r̂)q2 =

∫
q1(q2)x = ν

∫
(q1)

2
x −

∫
(r − r̂)q21 = ν

∫
(r − r̂)2,

where the last equality holds since
∫
(r − r̂)q21 = 0.
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Finally, we prove Λ5 = 0. Collecting the coefficients of 1
αβ2 in (A.10) yields

ν(z11)xx + (z12)x + (r − r̂)z11 − q1ϑ1 = Λ1q1 + Λ2p1 + Λ5. (A.15)

Since Λ1 = Λ2 = 0, (A.15) implies Λ5 =
∫
(r − r̂)z11 −

∫
q1ϑ1. By (A.11) and (A.12),

in view of p1 ≡ c1 we have

Λ5 =

∫
(z11)xq1 −

∫
q1ϑ1 = −c1

∫
(r − r̂)q1 = 0.

Therefore, (A.9) holds and Theorem A.1 is proved.
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