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Abstract. This short exposition is devoted to a brief overview of several challenging problems
in modern harmonic analysis. Some of them have been through a considerably long period of time
while the others are developed very recently. The clue that we intend to follow is the development
of the restriction theorem in harmonic analysis and the theory of oscillatory integrals satisfying the
Carleson-Sjölin conditions. We try to summarize all the recent results on these related problems.
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1. Introduction. Fourier analysis originates from the systematic study of the
classical trigonometric series. It grows rapidly to an independent branch in modern
mathematics, namely harmonic analysis, and is widely applied to almost every ana-
lytical problems nowadays. Among all the implements in harmonic analysis, the most
frequently used object is Fourier transform, which is a fundamental idea of Fourier
analysis, and also the simplest example of the Fourier integral operator (FIO).

Nowadays, Fourier integral operators play a considerably important role in the
mathematical theory of partial differential equations, differential geometry, ergodicity,
dynamical systems, classical and quantum mechanics, etc. There are an enormous
amount of interesting questions with strong motivation either from mathematics or
from physics, which are well investigated with the aid of FIOs. It turns out from
empirical aspect that the approaches based on FIOs usually yield sharp or nearly
sharp result. It is in this sense that an in-depth knowledge of as much properties for
FIOs as possible is absolutely deserved.

To get a comprehensive survey on all kinds of FIOs arising from practical problems
is by no means possible. However, a systematical theory has been developed on a
special class of FIOs which is intimately connected to wave equations and we will
confine ourselves to various of subjects around these specific integral operators. One
more reason for us to focus on this special class is that they find direct applications in
several topics such as Riesz means on manifolds, concentration of eigenfunctions along
submanifolds (an alternative Fourier restriction phenomena), quantum ergodicity etc.
Such operators often satisfy the so called cinematic curvature condition, and we
would like to call it ccFIOs for brevity. They are not only frequently used in the
topics alluded above, but also generate several extremely sophisticated open questions
concerning themselves, for instance the local smoothing conjecture by Sogge and its
applications to the variable coefficient version of maximal functions on manifolds.

This simple note is not intended to give an overall treatment from the didactical
purpose. We start with Tomas-Stein’s restriction and the Carleson-Sjölin condition in
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Section 2. Some extensions of this theory to the finite type of some oscillatory integral
operators used in [53] will be addressed in Section3. In Section 4, we shall recall the
Kakeya problem and its relation to the restriction theorem. The 5th section deals with
the sharp and non-sharp local smoohing estimates for ccFIOs with symbols in different
classes. Section 6 is devoted to the maximal Riesz means on compact manifold where
some related problems and conjectures will be discussed. In Section 7, we will turn
to a very important breakthrough in the quantitative estimates, which sheds new
light on many problems we discused . Finally, we will take a look at several natural
questions on the very recent results upon eigenfunctions, where we will encounter the
Carleson-Sjölin condition once more.

We hope this brief and concise paper of manuscript can be of some help for those
who would like to contribute to this area.

2. The Carleson-Sjölin conditions and Tomas-Stein’s restriction theo-
rem. The Bochner-Riesz spherical summation operator plays a fundamental role in
the theory of Fourier transforms. These operators are defined on functions on R

n by
the formula

T̂λf(ξ) = mλ(ξ)f̂(ξ),

where mλ(ξ) = (1− |ξ|2)λ if |ξ| ≤ 1 and mλ(ξ) = 0 elsewhere.
Fefferman [28] pointed out that Tλ is never bounded outside the range

p(λ) =
2n

n+ 1 + 2λ
< p <

2n

n− 1− 2λ
= p̃(λ),

and he also proved for n ≥ 2 that Tλ is bounded on Lp(Rn) provided that p(λ) < p <
p̃(λ) and λ > (n − 1)/4, where he made use of a remarkable observation by E. M.
Stein, namely the following a priori inequality(∫

Sn−1

|f̂(ξ)|2dσ(ξ)
) 1

2 ≤ Ap‖f‖p, n > 1 (2.1)

holds for 1 ≤ p < 4n/(3n+ 1). This is a primary version of the celebrated restriction
theorem (∫

Sn−1

|f̂(ξ)|2dσ(ξ)
) 1

2 ≤ Ap‖f‖p, 1 ≤ p ≤ 2(n+1)
n+3 , n > 1. (2.2)

It is a very deep conjecture asserting that if the L2−norm is replaced by Lr-norm in
(2.1), i.e. (∫

Sn−1

|f̂(ξ)|rdσ(ξ)
) 1

r ≤ Ap‖f‖p, n > 1

then it holds for all 1 ≤ p < 2n/(n+ 1) and 1 ≤ r ≤ ∞.
The Bochner-Reisz conjecture asserts that the necessary condition

p(λ) < p < p̃(λ) is also sufficient for Tλ to be bounded on Lp(Rn) for all
λ > 0 and n ≥ 2. This conjecture is very deep and still widely open in general cases.
However, in the two dimensional case n = 2, it was completely resolved by Carleson-
Sjölin [19], Hörmander [45], Fefferman[29] and Cordoba [22]. Simultaneously, the
methods they adopted confirms the two dimensional restriction theorem as well.
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As observed by Hörmander, to unify the treatment of the restriction and Bochner-
Riesz problem, it is very natural to consider the following oscillatory integral, where
we adopt notations from [53]

Tλf(z) =

∫
Rn−1

eiλΦ(z,y)a(z, y)f(y)dy, (2.3)

where a ∈ C∞
0 (R2n−1) and Φ ∈ C∞(R2n−1) is real valued, fulfilling the Carleson-

Sjölin condition

rank
( ∂2Φ

∂z∂y

)
≡ n− 1, (z, y) ∈ supp a(z, y), (2.4)

det
( ∂2

∂yj∂yk
〈Φ′

z, θ〉
)

= 0, (z, y) ∈ supp a(z, y), (2.5)

where θ ∈ R
n \ {0} is the unique unit vector such that ∇y〈Φ′

z,±θ〉 = 0.
As remarked in [53], the Carleson-Sjölin condition is an assumption invariant

under change of variables. Geometrically, it says that the projection maps

CΦ ≡ {(z,Φ′
z, y,−Φ′

y)}

ΠZ

��

ΠT∗Y

��

ΠT∗z Z

��
T ∗Y Z Sz ⊂ T ∗

z Z

have the property that rank dΠT∗Y ≡ 2(n− 1), and Sz := ΠT∗z Z(CΦ) is an immersed
hypersurface with nowhere vanishing Gaussian curvature.

The operators defined via oscillatory integral (2.3) are of great importance since
they are linked in a sense to the problems of Bochner-Riesz means and restriction
theorems as formulated by Hörmander [45]. In particular, if we set y → Ψ(y) to be
an immersion of Rn as a surface of total curvature 
= 0 and

Sf(z) =

∫
Rn−1

ei〈z,Ψ(y)〉a0(y)f(y)dy,

with a0(y) ∈ C∞
0 (Rn−1), then one can evaluate Sf in certain Lq space which is

bounded in the following way

‖Sf‖q ≤ Cq,r‖f‖r (2.6)

as a consequence of a dispersive estimate for (2.3)

‖Tλf‖q ≤ Cq,rλ
−n

q ‖f‖r. (2.7)

A remarkable question is then raised by Hörmander asking whether

q >
2n

n− 1
,

n+ 1

q
≤ n− 1

r′
, (2.8)

known as a necessary condition for (2.7), is also sufficient.
The answer is affirmative when n = 1 as indicated above and this corresponds

to the celebrated Carleson-Sjölin-Hörmander-Stein’s full adjoint restriction theorem
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in dimension two, as well as Cordoba’s theorem on the Bochner-Riesz multiplier on
Lp(R2). In higher dimensions, Stein [69] proved based on analytic interpolation that

(2.7) is true for r = 2 and q ≥ 2(n+1)
n−1 , known as the adjoint Tomas-Stein restriction

theorem. Previously, Tomas [70] proved the restriction estimate (2.2) holds for 1 ≤
p < 2(n+1)

n+3 , with the endpoint p = 2(n+1)
n+3 settled by Stein’s interpolation. Since

this result deals with the case for r = 2, Tomas-Stein’s estimates is also called the
L2−restriction theorem and it plays a very important role in the theory of nonlinear
dispersive equations, known as various kinds of Strichartz’s estimates. Bourgain [6]
obtained certain counterexamples showing that Hörmander’s conjecture, formulated in
such a general manner, does not always hold true. In [14], the progress has been made
on Hörmander’s problems by the multilinear restriction estimates and in a very recent
work [39], Hörmander’s problem was settled by using the polynomial partitionning
argument.

3. Oscillatory integral operators of finite order type. In applications as
well as for the sake of theoretical completeness, it is interesting and useful to study the
cases where the curvature assumption (2.5) fails on some subset of points. It turns out
that such kind of oscillatory integrals occurs frequently in a wide range of subjects
of mathematical analysis, where a representative as a substitute of the curvature
assumption is the condition of finite type imposed on the underlying surfaces1.

In the past decades, hypersurfaces of finite type have received extensive inves-
tigations in harmonic analysis since it connects with a few different mathematical
branches. These estimates play a crucial role in a number of problems, such as pseu-
doconvex domain of finite type in the theory of several complex variables, Riesz means
on a convex domain in R

n with boundary of finite line type, asymptotic estimates on
the discrepancy function of the lattice pointsD(λ) = #(λB∩Zn)−#(λnB) as λ→∞,
where B is a convex body whose boundary ∂B has finite type properties. Moreover,
there are also applications in problems with strong physical background. In [20], the
authors contribute a systematic treatment to a class of dispersive estimates for classi-
cal and general wave equations, Klein-Gordon equations, Schrödinger equations under
the geometric assumptions of finite type, where the phase is inhomogeneous and al-
lowed to have vanishing Gaussian curvature along curves. The restriction theorem for
Fourier transforms on certain hypersurfaces with vanishing curvature, together with
some specific geometric assumptions, is found useful in the study of the long-time
behavior of the random Schrödinger equation

i∂tψ(t, x) =
[
−1

2
Δx + λV (x)

]
ψ(x), ψ(t, x) ∈ L2(R3) (3.1)

in the quantum diffusion theory.
Considering the importance of various finite type properties, we are interested in

studying estimates like (2.7) for oscillatory integrals of the form (2.3) with the modified
Carleson-Sjölin condition where the curvature assumption (2.5) can be weakened to
include the degenerating second fundamental forms. Certainly, a natural route of
exploration is to develop this theory with finite type assumption. It can be regarded
in a sense as the variable coefficient version of the objects alluded to the last paragraph,
and it might be interesting to find its relation to those things as what Hörmander did
in [45].

1We refer to [20, 69] for precise definition of finite type.
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4. Kakeya conjecture and restriction theorems beyond Tomas-Stein. In
higher dimensions n ≥ 3 the adjoint Fourier restriction problem and Bochner-Riesz
means are still widely open, especially the non-L2 restriction conjecture. Indeed,
it is demonstrated by Bourgain [6] that in general, Hörmander’s conjecture is not
true. The pathology involves considerations of Kakeya compression phenomenon. We
remark that although Hörmander’s conjecture fails in general, it still works for some
special phase functions including that involved in the Bochner-Riesz means operator.
We refer to [14, 37, 38] for the recent development.

The existence of Kakeya type sets exhibits essential distinctions between higher
Euclidean spaces and the two dimension case. Even though Kakeya compression
phenomena in higher dimensions prevent Hörmander’s approach to Bochner-Riesz
and restriction problem, understanding the Kakeya problem can also bring about some
progress to the knowledge of the latter problems, especially the restriction theorem
beyond Tomas-Stein’s L2-scheme. In fact, when the left side of (2.1) is replaced
by its L1-norm, it is possible to be bounded by ‖f‖Lp(Rn) with some p between
2(n + 1)/(n + 3) and 2n/(n + 1). This is the first result on the non-L2 restriction
inequality, which is due to Bourgain[5] by using some inequalities for Kakeya maximal
functions.

The Kakeya maximal functions were introduced by Bourgain [5] to evaluate the
Hausdorff dimension of Kakeya sets in R

n. The Nikodym type maximal function
was employed by Cordoba to resolve the two dimensional Bochner-Riesz summation
problem. In [5], Bourgain formulated them in a standard form that now people use

f∗
δ (ξ) = δ−(n−1) sup

a∈Rn

∫
T δ
a (ξ)

|f(x)|dx (4.1)

where ξ ∈ S
n−1 and T δ

a (ξ) is a tube of dimension 1 × δ × · · · × δ︸ ︷︷ ︸
n−1

centered at a. The

Nikodym maximal function is dual to the Kakeya maximal function as follows

f∗∗
δ (x) = δ−(n−1) sup

ξ∈Sn−1

∫
T δ
x (ξ)

|f(y)|dy. (4.2)

The Kakeya maximal conjecture asserts that for 1 ≤ p ≤ n

‖f∗
δ ‖Lp(Sn−1) ≤ Cε

(1
δ

)n
p −1+ε

‖f‖Lp(Rn), ∀ ε > 0. (4.3)

Bourgain in [5] made a crucial observation that although the restriction conjecture
implies the Kakeya maximal conjecture, it is possible to derive some progress on the
restriction theorem conversely.

The Kakeya conjecture was settled by Cordoba [22] in dimension two. In higher
dimensions, Drury [24] proved the case when p = (n + 1)/2. Bourgain [5] improved
this result for each n ≥ 3 to p = εn + (n + 1)/2 for some 0 < εn < 1/2 by using the
bush argument. Four years later, Wolff [78] refined Bourgain’s bush argument and
obtained the classical (n + 2)/2−estimate by using his induction on scale argument.
Based on some observations from the arithmetic combinatorics, Bourgain [8] was able
to improve Wolff’s result further for n ≥ 8, where some part of his records are refreshed
later by Katz-Tao [46].

Wolff’s L
n+2
2 −estimate for n ≥ 3 also coincides with the two dimensional case

exactly well. By inputting some new ingredients of observation, induction on scales



472 C. MIAO AND J.-U. YANG

argument with the one involving the auxiliary maximal functions, Sogge [60] was able
to generalize Wolff’s estimate to the Nikodym type estimate in the case where the
ambient space is three dimensional non-Euclidean space. This strategy indeed can

be used to give a new proof of Wollf’s L
n+2
2 -estimates for n ≥ 3, and we refer to the

work [50] and [81] for more details. The key assumption on the manifold is the totally
geodesic property, which is fulfilled by manifolds of constant curvatures. Without
this assumption, there are counterexamples to show the easily deduced estimate p =
(n+ 1)/2 can not be improved to more general index of p [59].

There are some other improvements related to the Kakeya problem, but we just
focus on the most impressive ones. The interested readers may consult [41, 44, 47,
48, 74, 83] for further investigations. We will return to Kakeya problem and its
applications to some very recent results of problems in mathematical analysis.

5. The deepest conjecture: sharp and non-sharp local smoothing for
ccFIOs. Let Y and Z be C∞ paracompact manifolds of dimension n and n+ 1 and
Iσ(Z, Y ;C ) denote a class of σ−order Fourier integral operators, which is determined
by the properties of the canonical relation of C .

We assume C is a canonical relation from T ∗Y \0 to T ∗Z\0 which is homogeneous,
Lagrangian with respect to the symplectic form dζ ∧ dz − dη ∧ dy and closed in
T ∗Z \ 0× T ∗Y \ 0. Thus C ⊂ T ∗Z \ 0× T ∗Y \ 0 is a conic submanifold of dimension
2n+ 1.

Consider

C

ΠZ

��

ΠT∗Y

��

ΠT∗z Z

��
T ∗Y \ 0 Z T ∗

z Z \ 0

We assume the following nondegeneracy condition

rank dΠT∗Y ≡ 2n, rank dΠZ ≡ n+ 1.

To describe the second assumption, we denote by

Γz0 = ΠT∗z0Z
(C ).

Then Γz0 is a smooth immersed hypersurface in T ∗
z0Z \ 0. We assume that for every

ζ ∈ Γz0 , n− 1 principal curvatures do not vanish. These two assumptions constitute
the so called cinematic curvature condition formulated in [57]. In following context,
the Fourier integral operators which satisfy the cinematic curvature condition are
called ccFIOs.

The main object in [53] is to establish some Lp−local smoothing estimate for
ccFIOs belonging to I μ−1/4(Z, Y ;C ), where μ satisfies a condition like

μ < −(n− 1)
(1
2
− 1

p

)
+ ε(p, n),

for some ε(p, n) > 0. Here, we consider a ccFIO F ∈ I μ−1/4 which can be written
microlocally as the form

Ff(z) =

∫
Rn

eiϕ(z,η)a(z, η)f̂(η)dη, (5.1)
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where ϕ satisfies the conditions described in Section 2 of [53], and a(z, η) ∈ C∞(Rn+1×
R

n) is compactly supported in z having the property that

|∂γ
z ∂

α
η a(z, η)| ≤ Cα,γ(1 + |η|)μ−ρ|α|+δ|γ|, ρ = 1, δ = 0.

This is an abstract geometrically invariant generalization of the local smoothing con-
jecture for wave equations, formulated by Sogge [57], and it is the deepest one among
a series of analytical conjectures. There are many sophisticated papers dedicated
to improving the previously known result, however, we chose to avoid them in this
paper since otherwise it would consume a considerable content which is less related
to our theme here. The interested readers may consult with [35]. In two recent
papers[32, 33], the authors, collaborated with C. Gao, obtained certain improvement
at the level of abstact frame work. In the constant coefficient case, the problem is
settled by Guth, Wang and Zhang [40] in 2D, where the variable coefficient case is
solved by Gao, Liu, Miao and Xi in [34].

For ccFIOs associated to this class of symbols a(z, η), the local smoothing esti-
mates obtained in [53] is far from being optimal. However, if one considers the same
local smoothing properties for ccFIOs with symbols as above with ρ = δ = 1/2, then
it is possible to obtain the sharp result which can be found in Theorem 4.8 of [53].

This motivates to study the intermediate cases between the two extremes where
we may take ρ+ δ = 1, 0 ≤ δ ≤ ρ ≤ 1 and classify for what (ρ, δ) it is possible to get
the sharp local smoothing estimates. Such operators are also useful in practice. For
example, they naturally appear in the microlocal wave packet decompositions of the
argument of [2] and play a crucial role in the microlocal Kakeya-Nikodym averages of
eigenfunctions to which we will return.

6. The maximal Bochner-Riesz means on compact manifolds. To exhibit
the importance of the local smoothing conjecture, we examine its relation to the
weaker conjecture which is also stronger than the rest series of conjectures such as
restriction, Kakeya etc [71]. This conjecture is about the maximal version of Bochner-
Riesz means.

Let f be a Schwartz function on R
2 and define its Bochner-Riesz means of order

δ > 0 to be

Bδ
R(f)(x) =

∫
R2

(1− |ξ/R|2)δ+f̂(ξ)e2πix·ξdξ, R > 0.

It is proved by Carleson-Sjölin, Hörmander and Cordoba that if 0 < δ ≤ 1/2 and
4

3+2δ < p < 4
1−2δ , for all f ∈ Lp(R2), one has Bδ

R(f) → f in Lp(R2). Since δ > 1/2
implies the integrability of the kernel of the Bochner-Riesz multiplier, the result for
1 ≤ p ≤ ∞ follows from Young’s inequality.

A more sophisticated problem is about the almost everywhere convergence of the
limit lim

R→∞
Bδ

R(f)(x). For p > 2, this question was completely settled by Carbery

[17]. In particular, we have Bδ
R(f)(x) → f(x), a.e. as R → ∞ for arbitrary Lp(R2)

functions f with p > 2 if and only if δ > max(0, 1
2 − 2

p ). An alternative approach can

be found in Chapter 2 of [59], on account of the square-function method and Kakeya
type maximal inequalities which is reminiscent of the argument in [53] in dealing with
local smoothing effect of ccFIOs. Indeed, the local smoothing conjecture is strong
enough to imply the correct estimates on maximal Bochner-Riesz operator. Let us
take a digression to this fact.
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Local smoothing conjecture implies maximal Bochner-Riesz. It suffices to consider
p = 4 for the same reason in Chapter 2 in [59]. Take η ∈ C∞

0 (R2) adapted to the
interval [1/2 ≤ |ξ| ≤ 2], and define

T̂ δ
Rf(ξ) = η

( ξ

R

)(
1−

∣∣∣ ξ
R

∣∣∣)δ
+
f̂(ξ).

Let

EδRf(x) � Bδ
Rf(x)− T δ

Rf(x),

then

sup
R>0

EδR(f)(x) ≤ cMf(x),

since (1 − η(ξ/R))(1 − |ξ/R|)δ+ ∈ C∞
0 (Rn), where Mf(x) is the Hardy-Littlewood

maximal function. Noting that

T δ
∗ f(x) � sup

R>0
|T δ

Rf(x)|p ≤
∑
k∈Z

sup
2k≤R≤2k+1

∣∣T δ
R

( ∑
|j−k|≤2

Δ̇jf(x)
)∣∣p,

we have by square-function estimates and Young’s inequality∥∥T δ
∗ f
∥∥p
p
≤
∑
k

∥∥∥( ∑
|j−k|≤2

|Δ̇jf |2
) 1

2

∥∥∥p
p
≤ ‖f‖pp, (6.1)

provided ∥∥ sup
2k≤R≤2k+1

|T δ
Rf |

∥∥
p
≤ c ‖f‖p, supp f̂ ⊂ [2k−3 ≤ |ξ| ≤ 2k+3]. (6.2)

After a re-scaling, we have

sup
2k≤R≤2k+1

|T δ
Rf(x)| ≤ sup

1≤R≤2
|Bδ

Rfk|(2kx),

where fk(x) = f(2−kx). We may thus reduce (6.2) to∥∥ sup
1≤R≤2

|Bδ
Rf |

∥∥
p
≤ cδ ‖f‖p, supp f ⊂ [2−3 ≤ |ξ| ≤ 23]. (6.3)

Using that tδ+ is the inverse Fourier transform of (t+ i0)−δ−1, we rewrite

Bδ
Rf(x) = Bδ

R, 0f(x) +
∑
k≥1

Bδ
R, kf(x),

where

Bδ
R, kf(x) := R−δ

∫
e−iR tηk(t)(t+ i0)−δ−1eit

√−Δf(x)dt,

with ηk(t) = η(2−kt) for k ≥ 1 and η0(t) = 1−∑k≥1 ηk(t). Invoking the elementary
inequality

sup
s
|G(s)|2 ≤ |G(0)|2 + 2‖G‖2‖G′‖2
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and introducing a smooth function ρ(R) supported in [ 12 , 4], we have

sup
1≤R≤2

|Bδ
R, kf |2(x) ≤ c ‖ρF̂k‖L2

R
‖(ρF̂k)

′‖L2
R
,

where Fk(t) := ηk(t)(t+ i0)−δ−1eit
√−Δf . By Plancherel, this is estimated further by[ ∫

2k≤t≤2k+1

|eit
√−Δf |2 dt

t−2(1+δ)

] 1
2
[ ∫

2k≤t≤2k+1

|eit
√−Δf |2 dt

t−2δ

] 1
2

. (6.4)

Thus by Cauchy-Schwarz

‖ sup
1<R<2

|Bδ
R,kf | ‖2p, ≤‖eit

√−Δf‖Lp
xL

2

t∼2k
(t−2(1+δ)dt)‖eit

√−Δf‖Lp
xL

2

t∼2k
(t−2δdt)

≤2−k(1+δ− 1
2− ε

2+δ− 1
2− ε

2 )‖eit
√−Δf‖2Lp

xL
2

t∼2k
(t−(1+ε)dt).

We only need to show

‖eit
√−Δf‖2Lp

xL
2

t∼2k
(t−(1+ε)dt) ≤ cε ‖f‖p. (6.5)

Changing variables t → 2kt and setting f̂k(ξ) = 2−kdf̂(2−kξ), one verifies by simple
scaling that (6.5) is equivalent to the following weaker version of local smoothing
estimate

‖eit
√
Δf‖Lp

xL
2
t [1, 2]

≤ c ‖f‖ε, p, supp f̂ ⊂ {ξ, 2k−3 ≤ |ξ| < 2k+3},

where ‖ · ‖ε, p denote the norm of Sobolev space W ε, p.

Now that we have understood in a partial sense the local smoothing for ccFIOs
on manifolds, it is natural to ask the question how to use that strategy to obtain the
maximal estimate for Reisz means on some Riemann manifolds (M, g). The authors
in [53] proved the maximal inequality⎧⎪⎪⎨⎪⎪⎩

‖Sδ
∗f‖Lp(M) ≤ C‖f‖p, 2 ≤ p <∞, Sδ

∗f(x) � sup
R>0

∣∣Sδ
Rf(x)

∣∣,
Sδ
Rf(x) �

∑
k≤R

(
1− k

R

)δ
Ekf(x), Ek projection operator

(6.6)

under the same condition as Carbery’s for

2 ≤ p <∞, δ > max
{
2
∣∣∣1
2
− 1

p

∣∣∣− 1

2
, 0
}
,

where the two dimensional manifold (M, g) is assumed to be Zoll in the sense that
all the geodesic flow on M is periodic with a minimal period. We are interested in
general manifolds (M, g) with other different type of geometric assumptions.

Further more, we also would like to investigate the case for p < 2. This becomes
much more delicate and difficult to deal with as observed in [73], where it is shown
that this maximal inequality (6.6) fails if δ < 3

2p − 1. Tao also obtained some positive
result on the almost everywhere convergence under the condition that 1 < p < 2 and

δ > max
( 3

4p
− 3

8
,

7

6p
− 2

3

)
, (6.7)
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which to the authors’ knowledge is the best result so far. Our second problem in
this section cares for the possibility of extending Tao’s result alluded above to the
Zoll surfaces. This would be added to the progress to the result of [53] for p < 2.
However, it seems not easy to carry Tao’s argument directly to handle the maximal
Bochner-Riesz operator on compact Zoll surfaces, for instance S

2.
One may also consider the higher dimensional counterparts of the results for

Bochner-Riesz in [53]. To attack this, the bilinear or multilinear estimates for oscil-
latory integrals will necessarily be involved. We will not pursue these matters here.

At the end of this section, we include the chain of implications of the series of
conjectures as collected in [71]:

local smoothing⇒ maximal Bochner-Riesz

⇓
Bochner-Riesz⇒ restriction⇒ Kakeya.

Here we do not consider the parabolic case.

7. Multilinear Kakeya/restriction theorems opens up a new approach.
From this section on, we shall turn to the very recent progress on harmonic analysis
that we promised in the previous contexts and the objects we are ready to consider
are the main subjects of the aim of this article.

Before we go further, we have to confess that all of the above problems and
conjectures had arrived at a extremely high level, where the techniques are developed
almost to their limits. However, in very recent years, a completely new method arises.
This method is so effective that even crude manipulations based on its idea would
bring about certain progress.

Roughly speaking, this method is composed of two aspects. The first is the use of
the multilinear restriction theorem due to Bennett-Carbery-Tao [1], while the second
one is the polynomial method motivated by Dvir’s proof of the Kakeya conjecture in
finite fields [27] and developed by Guth [36] to prove the endpoint multilinear Kakeya
conjecture of Bennett-Carbery-Tao [1]. The polynomial method can also be applied
to some other problems such as the Erdös distinct distance problem, however we will
not include it in this paper.

It has turned out that the multilinear restriction theorem and multilinear Kakeya
theorem are much deeper observations in approaching to the linear ones. In fact, the
curvature assumption that the linear restriction conjecture relies on is replaced by the
transversality condition in the multilinear case, which can still be verified even though
the curvature condition no longer holds. The multilinear restriction and Kakeya con-
jecture was formulated by Bennett-Carbery-Tao [1], where the authors proved the
non-endpoint case and the endpoint case of the multilinear Kakeya conjecture was
resolved by Guth [36]. The above multilinear restrictin theorem with full multiplicity
is a special case of a more general theory concerning the varying multiplicities with
respect to the dimension [23]. In particular, the classical bilinear Fourier restriction
theorem is initiated from the work of Bourgain [7] and Klainerman-Machedon [31],
which is developed further by Tao-Vargas-Vega [76], and Tao-Vargas [77] with ap-
plications to PDEs. The first sharp result on the cone was obtained by Wolff [80]
by using the celebrated induction on scale argument, apart from the endpoint case
which is settled by Tao [72]. The sharp result on the paraboloid is established by Tao
[75] based on the same idea of Wolff without proving the endpoint case. By using
the enhanced induction argument in [72] and the method of descent, this question is



CARLESON-SJÖLIN OSCILLATORY INTEGRAL OPERATORS 477

recently settled by the second author [82]. Interestingly, one finds applications of the
bilinear restriction estimates in the Calderón’s problem for conductivities [42, 43, 30]
and it is pointed out in [HKL] that further improvements would be available provided
the endpoint bilinear estimates were true.

It was realized immediately in the work [14] that the result in [1] and the poly-
nomial method will become a fundamental step in penetrating almost all the classical
conjectures we have discussed before this section and indeed, the authors in [14] ob-
tained new results on the restriction conjecture by showing that

‖f̂dσ‖Lp(Rn) ≤ Cp‖f‖L∞(S,dσ)

is valid for S a surface with nowhere vanishing Gauss curvature and p > pn, where

pn =

⎧⎪⎨⎪⎩
2(4n+ 3)/(4n− 3), if n ≡ 0 (mod3),

(2n+ 1)/(n− 1), if n ≡ 1 (mod3),

4(n+ 1)/(2n− 1), if n ≡ 2 (mod3).

(7.1)

If S enjoys some symmetries, the standard factorization theorem along with the above
result would yield the following restriction theorem

‖f̂‖Lp(S,dσ) ≤ Cp‖f‖Lp(Rn)

for 1 ≤ p < p′n. Moreover, the three dimension case is refined in [14] to p > 3.3
by establishing an induction-on-scales inequality, which we would like to call the
Bourgain-Guth inequality. The improvements in higher dimensions is obtained by
Guth [38]. It is very essential in getting improvement of the results on Carleson’s
problem about the maximal Schrödinger operator

S (f)(x) = sup
0<t<1

∣∣eitΔf(x)∣∣, x ∈ R
n.

In fact, by using the induction-on-scales inequality alluded above, Bourgain[9] ob-
tained ∥∥S f

∥∥
L2(B(0,1))

≤ C‖f‖Hs(Rn), s >
1

2
− 1

4n
. (7.2)

The case n = 1 was completely settled by Carleson [18]. Previous to [9], one only
knows (7.2) for s > 3/8 in the case n = 2 [49] and s > 1/2 in the higher dimensional
case n ≥ 3 [54]. We refer two recent works concerning this classical problems[25, 26].

We need to indicate that in [54], Sjölin proved the more general result concerning
the fractional order operator∥∥ sup

0<t<1
|eit(−Δ)a/2

f |
∥∥
L2(B(0,1))

≤ C‖f‖Hs(Rn), s > 1/2, (7.3)

for all a > 1 and in particular, one can refine the method to get s ≥ 1/2 if n = 2.
Dealing with the general case a > 1 is more delicate than a = 2 and it is proved
in [51] that if n = 2, then (7.3) is valid for all s > 3/8, and if n ≥ 3 one is able
to obtain (7.3) for some s < 1/2. We mainly adopted the argument of [9] however
rebuild the Bourgain-Guth inequality and handled some other intricate points where
the argument in [9] breaks down. It is interesting to ask whether (7.3) holds in the
higher dimensions for all s > (2n− 1)/4n and a > 1.

The method based on multilinear restriction estimates developed by Bourgain and
Guth [14] has further applications. In the rest part of this section, we will introduce
some of the most important results.
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7.1. Moment inequalities for trigonometric polynomials. Let

f(x) =
∑
z∈E

aze
2πix·z

where E stands for the set of Zn-points on some dilate λS of a fixed compact surface
S in R

n with positive definite second fundamental form. Assume S is the standard
unit sphere in R

n. Then f is the eigenfunction for the Laplacian on T
n and

−Δf = λ2f.

It is conjectured that

‖f‖Lq(Tn) ≤ Cq‖f‖L2(Tn), q <
2n

n− 2
, (7.4)

and

‖f‖Lq(Tn) ≤ Cqλ
n( 1

2− 1
q )−1‖f‖L2(Tn), q >

2n

n− 2
. (7.5)

Using the idea in [14], Bourgain [10] proved

‖f‖Lp(Tn) ≤ Cελ
ε‖f‖L2(Tn), p =

2n

n− 1
. (7.6)

The argument in [10] also yields some further improvement for the scaling invariant

Strichartz estimates for periodic Schrödinger equations, namely for q > 2(n+3)
n and

n ≥ 4

‖eitΔP≤Nφ‖Lq(Tn+1) ≤ CqN
n
2 −n+2

q ‖φ‖2. (7.7)

In a successive work, Bourgain and Demeter [12] proved the following nearly sharp
Strichartz estimate in a very general framework

‖eitΔP≤Nφ‖Lp(Tn
θ ×I) ≤ CεN

n
2 −n+2

p +ε|I|1/p‖φ‖2, p ≥
2(n+ 1)

n− 1
, (7.8)

where T
n
θ =

∏n
j=1(R/θjZ) with 1/2 < θj < 2.

The proof relies on a very deep result called the �2-decoupling theorem. To
describe this theorem, we denote by

Pn−1 := {(ξ1, · · · , ξn−1, ξ
2
1 + · · ·+ ξ2n−1) ∈ R

n : |ξj | ≤ 1/2}

and Nδ be the δ−neighborhood of Pn−1 and let Pδ be a finitely overlapping cover of
Nδ with curved regions θ of the form

θ =
{
(ξ1, · · · , ξn−1, η + ξ21 + · · ·+ ξ2n−1) : (ξ1, · · · , ξn−1) ∈ Cθ, |η| ≤ 2δ

}
where Cθ runs over all cubes

c+
[
− δ1/2/2, δ1/2/2

]n−1
, c ∈ δ1/2

2
Z
n−1 ∩

[
− 1/2, 1/2

]n−1
.

We denote by fθ the Fourier restriction of f to θ. The parabola in Pn−1 can be
replaced by any surface and the decomposition as above is the same.
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The �2-decoupling theorem tells us that for any compact C2 hypersurface S in
R

n with positive definite second fundamental form and suppf̂ ⊂ Nδ, we have

‖f‖p ≤ Cεδ
−n−1

4 +n+1
2p −ε

(∑
θ∈Pδ

‖fθ‖2p
)1/2

, (7.9)

for all p ≥ 2(n+ 1)/(n− 1) and any ε > 0.

Apart from (7.8), the above decoupling theorem gives the best result so far for
(7.5) when n ≥ 4∥∥∥ ∑

z∈Z
n

z2
1+···+z2

n=N2

aze
2πiz·x

∥∥∥
Lp(Tn)

≤ CεN
n( 1

2− 1
p )−1+ε

(∑
z

|az|2
)1/2

, (7.10)

holds for p ≥ 2(n−1)
n−3 and any ε > 0.

There are many other applications of this result to various number theoretic
problems, such as Diophantine inequalities, additive energies and incidence geometry
etc. We refer to [12] for details. One should also notice that the method pioneered in
[14] work as well in [12] for the decoupling estimate associated to the cone

Cn−1 = {(ξ1, · · · , ξn−1,
√
ξ21 + · · ·+ ξ2n−1); 1 ≤

√
ξ21 + · · ·+ ξ2n−1 ≤ 2}.

Such inequalities as observed by Wolff [79]would improve the known results on the
conjecture of “local smoothing” of wave equations that we considered in the previous
sections.

7.2. Further improvements on the restriction theorem. Motivated by the
work [27], [14] and [79], Guth [37, 38] applied the polynomial partitioning to the
restriction theorem and got a small improvement of the result in [14]. In particular,
it is shown that Stein’s restriction theorem for the unit sphere in R

3 is valid for
1 ≤ p < 13

9 . As the author said in [37], this method is the first application of
polynomial partitioning to the restriction theorem. We believe it has great potential
to be explored more.

7.3. Decoupling and applications to classical analytic number theory.
Let e(z) = e2πiz, z ∈ R, and define

Js,n(N) =

∫
[0,1]n

∣∣∣ N∑
j=1

e(x1j + x2j
2 + · · ·+ xnj

n)
∣∣∣2sdx1 · · · dxn.

Bourgain-Demeter-Guth [13] proved the main conjecture in Vinogradov’s Mean Value
Theorem up to an ε−loss

Js,n(N) ≤ Cε(N
s+ε +N2s−n(n+1)

2 +ε). (7.11)

The method is pure harmonic analysis and the relevant machinery is called decou-
plings. The decoupling theory has since proved to be a very successful tool for a wide
variety of problems in number theory that involve exponential sums. We refer to [13]
for details and references therein.



480 C. MIAO AND J.-U. YANG

8. Concentration of eigenfunction on compact Riemman manifolds. In
this section, we turn to another topic, that is the concentration of eigenfunctions on
compact Riemann manifolds, which is a very fascinating study field and developing
actively because of its connection with mathemaical theory of quantum mechanics.

Let (M, g) be a compact, n-dimensional smooth Riemannian manifold without
boundary. We denote by Δ the associated positive Laplace-Beltrami operator, and
by γ : [a, b] → M a smooth curve parametrized by arc length. Let (eλ)λ, λ ≥ 0 be
the eigenfunctions of Δ such that Δeλ = λ2eλ, ‖eλ‖2 = 1 and Πλ be the projection
operator on L2(M) defined by

Πλf :=
∑

λj∈[λ,λ+1]

(f |eλj )eλj ,

where (·|·) is the usual L2 inner product with respect to the Riemannian volume form.
A classical estimate on the spectral projector is due to Sogge [58], namely

‖Πλf‖Lp(M) ≤ Cλδ(n,p)‖f‖L2(M), (8.1)

where

δ(n, p) =

⎧⎪⎪⎨⎪⎪⎩
n
(1
2
− 1

p

)
− 1

2
, p ≥ 2(n+ 1)

n− 1
,

(n− 1)

2

(1
2
− 1

p

)
, 2 ≤ p ≤ 2(n+ 1)

n− 1
.

To prove (8.1), one first observes that ‖Πλ‖L2→L2 ≤ C and

‖Πλf‖L∞(M) ≤ Cλ
n−1
2 ‖f‖L2(M),

which appeared in Hörmander’s proof of the sharp Weyl’s asymptotic formula. Thus
by interpolation, it suffices to show

‖Πλf‖
L

2 n+1
n−1 (M)

≤ Cλ
n−1

2(n+1) ‖f‖L2(M). (8.2)

The crucial point is that by using Fourier transform, one can rewrite the spectral pro-

jector Πλ by means of half-wave operator eit
√
Δ, which from Hörmander’s parametrix

construction can be written up to a negligible error term as an oscillatory integral

λ
n−1
2 Tλf(x)

Tλf(x) =
∫
Rn

eiλφ(x,y)aλ(x, y)f(y)dy,

where φ(x, y) = dg(x, y) is the geodesic distance between x and y. The key point
is that φ satisfies the so-called n × n Carleson-Sjölin condition in [59]. Now Stein’s
argument for the endpoint estimate of Hörmander oscillatory integral as in the first
section demonstrates that

‖Tλf‖
L

2 n+1
n−1 (Rn)

≤ Cλ−n(n−1)
2(n+1) ‖f‖L2 ,

and (8.2) follows.
The parametrix we used above is very fundamental in the study of eigenfunctions

and we refer to [59] for details. From this, one can see the oscillatory integral that we
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started with from the very beginning of this paper plays the key role in the analysis
dealing with eigenfunctions.

The estimate (8.1) is saturated by letting M = S
n and choosing f as the highest

weight spherical harmonics for 2 ≤ p ≤ 2n+1
n−1 , and as the zonal functions for p ≥ 2n+1

n−1 .
Although the relation (8.1) is optimal in general, one can gain some improvement

under certain geometric assumptions for p > 2n+1
n−1 . In the p = ∞ case, Sogge and

Zelditch [63] proved that if the set of geodesic loops has measure zero, i.e. |Lx| = 0
for every x ∈M , where

Lx =
{
ξ ∈ S∗

xM : Φt(x, ξ) = (x, η), for some |t| > 0, η ∈ S∗
xM

}
,

then

‖eλ‖Lp(M)

‖eλ‖2
= o(λδ(n,p)), p >

2(n+ 1)

n− 1
.

See also [65] for an exposé in a straightforward way. This result was somehow improved
by Sogge-Toth-Zelditch [62]. We refer to [66] for the precise statement, where the
results on the real analytic Riemannian manifolds and the manifolds of nonpositive
sectional curvatures.

If 2 < p < 2n+1
n−1 , the picture is completely different and the attempt to improve

the estimation on eigenfunctions becomes subtle. Given a compact Riemannian man-
ifold (M, g) and denote by Π the space of unit length geodesics, one shall use the
Kakeya-Nikodym norms

|||eλ|||KN = sup
γ∈Π

‖eλ‖L2(T
λ−1/2 (γ)),

which is introduced by Sogge [64] as a way to refine the Lp-L2 estimates in two
dimensions. In particular, it is shown in [64] that the following three statements are
equivalent

λ
−δ(2,p)
jk

‖eλjk
‖Lp(M) → 0, ∀ 2 < p < 6 (8.3)

|||eλjk
|||KN → 0 (8.4)

and

λ
−1/4
jk

sup
γ∈Π

(∫
γ

|eλjk
|2ds

)1/2
→ 0. (8.5)

Previous to [64], Burq et al [16] showed that in two-dimensionas, one has2

sup
γ∈Π

(∫
γ

|eλ|2ds
)1/2

≤ Cλ1/4‖eλ‖L2(M). (8.6)

A general result was obtained by Bourgain

sup
γ∈Π

(∫
γ

|eλ|2ds
)1/2

≤ Cλ1/2p‖eλ‖Lp(M), 2 ≤ p ≤ ∞. (8.7)

2See also [21] for some sharp restriction theorem for eigenfunctions in dimension three.
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Both of these two results, as were used in one of the steps to show the equivalency of
(8.3)-(8.5), are based on the Hörmander parametrix construction which is used in the
proof of Sogge’s classical estimate on eigenfunctions that we recalled at the beginning
of this section.

The higher dimensional analogue of the main result in [64] was found by Blair and
Sogge [3], where the key point in their argument is exploring the bilinear oscillatory
integral estimates for the oscillatory integrals satisfying Carleson-Sjölin conditions.
In [2] and [4], the above results were refined microlocally. It is interesting to find the
applications of these refined estimates to the theory of nonlinear partial differential
equations.

The final result we want to mention is the possible refinement for the critical index
p = pc. Notice that this is the transition point where the behavior of the highest weight
spherical harmonics concentrating along curves and the zonal functions accumulating
around a pole confront each other at this level. Thus it becomes very hard to find
an appropriate norm to formulate a unified form of refinement. However, Sogge in
[67] improved critical eigenfunction estimates in the case of nonpositive curvature. It
involved many ideas including Blair-Sogge’s improvement for 2 < p < pc, classical
improved supnorm estimates of Bérard, Bourgain’s proof of weak-type estimates for
Stein-Tomas Fourier restriction theorem as well as Bak-Seeger’s improved estimates
in the Lorentz space.

Theorem 8.1 (Sogge, [67]). Assume that (M, g) is of nonpositive curvature.
Then there is a constant C = C(M, g) so that for λ� 1

‖eλ‖
L

2(n+1)
n−1

≤ Cλ
n−1

2(n+1) (log log λ)
− 2

(n+1)2 . (8.8)

We refer to Sogge’s survey article [66] for more informations.

We end up this paper by mentioning a bilinear version of the Kakeya-Nicodym
maximal average initiated in [52], as a further refinement of [15]. Let (M, g) be a two-
dimensional compact boundaryless Riemannian manifold and we adopt the above
notations. Then we have for 0 < λ ≤ μ and eλ, eμ being two eigenfunctions of

√
−Δ

associated to the frequecies λ and μ. Then for every ε > 0 small, we have Cε > 0,
such that

‖eλeμ‖L2(M) ≤ Cελ
ε/2‖eμ‖L2(M)|||eλ|||KN(λ,ε) (8.9)

and

‖eλeμ‖L2(M) ≤ Cελ
ε/2‖eλ‖L2(M)|||eμ|||KN(λ,ε) (8.10)

where

|||f |||KN(λ,ε) =

(
sup
γ∈Π

λ1/2−ε

∫
T
λ−1/2+ε

|f(x)|2dx
)1/2

.

Notice that from the quantum unique ergodicity conjecture, it is natural to expect
that the ε−loss in these estimate should be removed. This result is obtained by
combining Sogge’s Kakeya-Nikodym maximal averages [64] and the bilinear Carleson-
Sjölin conditions used by [15].
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[19] L. Carleson and P. Sjölin, Oscillatory integrals and multiplier problem for the disc, Studia
Math., 44 (1972), pp. 287–299

[20] W. Chen, C. Miao and X. Yao, Comm Partial Diff. Eq., 37 (2012), pp. 479–510.
[21] X. Chen and C. D. Sogge, A few endpoint geodesic restriction estimates for eigenfunctions,

Comm. Math. Phys., 329 (2014), pp. 435–459.
[22] A. Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer.

J. Math., 99 (1977), pp. 1–22.
[23] C. Demeter, Fourier restriction, decoupling, and applications, Cambridge Studies in Advanced

Mathematics, 184. Cambridge University Press, Cambridge 2020.xvi+331.
[24] S. Drury, Lp estimates for the x-ray transformation, Illinois. J. Math., 27 (1983), pp. 125–129.
[25] X. Du, L. Guth and X. Li, A sharp Schrödinger maximal estimate in R2, Ann. of Math. (2),

186:2 (2017), pp. 607–640.
[26] X. Du and R. Zhang, A sharp L2−estimates of the Schrödinger maximal function in higher

dimensions, Ann. of Math. (2), 189:3 (2019), pp. 837–861.
[27] Z. Dvir, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc., 22 (2009), pp. 1093–



484 C. MIAO AND J.-U. YANG

1097.
[28] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math., 124

(1970), pp. 9–36.
[29] C. Fefferman, A note on spherical summation multipliers, Isreal J. Math., 15 (1973), pp. 44–

52.
[30] P.-V. Felipe, A bilinear strategy for Calderón’s problem, Rev. Mat. Iberoam., 37:6 (2021),

pp. 2119–2160.
[31] D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equations,
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