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Abstract. We consider the steady states of a gas between two parallel plates that is ionized
by a strong electric field so as to create a plasma. There can be a cascade of electrons due both to
the electrons colliding with the gas molecules and to the ions colliding with the cathode (secondary
emission). We use global bifurcation theory to prove that there is a one-parameter family X of such
steady states with the following property. The curve X begins at the sparking voltage and either the
particle density becomes unbounded or X ends at an anti-sparking voltage. These critical voltages
are characterized explicitly.
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1. Introduction. This paper is concerned with a model for the ionization of a
gas such as air due to a strong applied electric field. For instance, the strong electric
field may be created when a capacitor discharges into a gap between electrodes. The
high voltage thereby creates a plasma, which may possess very hot or bright electrical
arcs. A century ago Townsend experimented with a pair of parallel plates to which
he applied a strong voltage that produced cascades of free electrons and ions. This
phenomenon is called the Townsend discharge or avalanche.

Such an avalanche primarily occurs due to free electrons colliding with gas
molecules, thus liberating other electrons. This is called the a-mechanism. Another
important contribution to an avalanche may be due to the impact of ions with the
cathode, which then emits additional electrons. This is called the secondary emission
or the «-mechanism. In this paper we discuss a model that takes account of both
mechanisms.

The model is as follows. Let I = (0, L) be the distance between the planar parallel
plates. Let us put the anode at = 0 and the cathode at x = L. Let p; be the density
of positive ions, p. the density of electrons, and —® the electrostatic potential. Let
u; and u, be the ion and electron velocities. Then the equations within the region I
are as follows.

Orpi + 0z (piu;) = aexp (—b|6w<1>|71) Pe |ve| s (1.1a)

Ope + Oz (petic) = aexp (—b|8m<1>|_1) Pe Vel (1.1b)

92® = pi — pe; (1.1c)

w; = ki0p®, ue = Ve — keOppe/pe, Ve := —keDy®. (1.1d)

Here k;, ke, a, and b are positive constants. The constitutive velocity relations (1.1d)
are due to the ions being much heavier than the electrons. The right sides of (1.1a)
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2 W. A. STRAUSS AND M. SUZUKI

and (1.1b) come from the a-mechanism. They express the number of ion—electron
pairs generated per unit volume by the impacts of the electrons. Specifically, the
coefficient o = aexp (—b|0,®| ™) is the first Townsend ionization coefficient.

The boundary conditions at the anode x = 0 are p; = p. = ® = 0, due to the
assumption that the anode is a perfect conductor, so that the electrons are absorbed
by the anode and the ions are repelled from the anode. We denote the voltage at the
cathode © = L by V.. > 0. The secondary emission at the cathode (or y-mechanism)
is expressed by

Pellc = —YPitl; (1.2)

where v > 0 is average number of electrons ejected from the cathode by an ion impact.

In this paper we consider the steady state problem, where the unknowns do not
depend on time, even though the individual particles can move rapidly. First of all,
there are the completely trivial solutions p; = 0, p. = 0, ®(x) = %x, where V, is an
arbitrary constant. Avalanche does not occur unless the electric field is strong enough.
In our model the ionization coeflicient a or the secondary emission coefficient v must
be large enough, depending on b and L, in order to reach this threshold. Then the
critical threshold value of the voltage is called the sparking voltage V,J. Assuming that
the sparking voltage does exist, we prove that there are many other steady solutions,

in fact a whole global curve of them, for most choices of the parameters (a, b, ).

THEOREM 1.1. Assume that the sparking voltage VI exists. For almost every
(a,b,7), there exists a unique continuous one-parameter family KC (that is, a curve)
of steady solutions of the system of equations together with the boundary conditions
written above with the following properties. Both densities are positive, p; € C', pe €
C?, @ € C3, the curve begins at the trivial solution with voltage V| and “ends” with
one of the following three alternatives:

Either the density |pi| + |pe| becomes unbounded along X,

Or the potential ® becomes unbounded along X,

Or the curve ends at a different trivial solution with some voltage V} > V.

The sparking voltage V.| is the smallest positive root of a certain elementary
function D(-), which we call the sparking function. We say that the sparking voltage
exists for a given parameter triple (a,b,~y) if D has a positive root for any triple in a
neighborhood of it. We call V} the anti-sparking voltage; it is a larger root of D(-).
The explicit sparking function D is defined as follows. For brevity we first denote

Ve

A= h(N) = are A g(AL) = h()\) — A?/4. (1.3)
Then let = L\/—g(V,) and
1 - Ve _ R
— = (et Iz I A
D(V.) 2(6 +e )-1-4# (et —e™H) 1+762 . (1.4)

Note that, even if ¢g(V,) is positive, D(V;) is real. In case g(V,) vanishes, D(V.) is
defined as the limit limg(y,)o D(V;). Thus D € C((0,00);R). Depending on v, a,b
and L, the sparking function D may have no root, one root or several roots. If D has
a root, the sparking voltage V] > 0 is defined as the smallest one:

VIi=inf{V.>0; D(V.) = 0}. (1.5)

(&
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Sufficient conditions for D to have one or more roots, or none, are given in Appendix
A.

We prove Theorem 1.1 by a local, and then a global, bifurcation argument. In
Section 2 we set up the notation used in the analysis. In Section 3 we apply the
well-known local bifurcation theorem. In particular, we prove that the nullspace
and the range of the linearized operator around any trivial solution is determined
by the function D. A transversality condition is required in order to guarantee the
local bifurcation. We prove in Lemma 3.4 that this condition is valid for almost every
(a,b,7y). Then in Section 4 we apply a global bifurcation theorem to construct a global
curve X of steady solutions (p;, pe, ®). The general properties of this global curve are
given in Theorem 4.4. The curve may include mathematical solutions with positive
densities as well as solutions with negative “densities”. In Section 5 we restrict our
attention to positive densities. Further analysis of the possible ways that the curve
may “terminate” is then provided. The main conclusion (as in Theorem 1.1) is given
in Theorem 5.5. In case the voltage becomes unbounded, it is proven in Section 5
that the densities tend to zero.

Appendix A is devoted to the sparking function (1.4). It is shown that there is
a sparking voltage if either a or v is large enough. In Appendix B we discuss the
location of the sparking voltage (1.5).

2. History and Notation. We now briefly summarize the history of the model.
Many models have been proposed to describe this phenomenon [1, 9, 10, 11, 13, 14,
15, 16]. In 1985 Morrow [16] was perhaps the first to provide a model of its detailed
mechanism in terms of particle densities. The model consists of continuity equations
for the electrons and ions coupled to the Poisson equation for the electrostatic po-
tential. For simplicity in this paper we consider only electrons and positive ions and
we focus on the v and o mechanisms. Various other mechanisms can occur, such
as ’attachment’ and ’recombination’ as mentioned in Morrow’s paper, which have a
much smaller effect on the ionization.

The interesting article [9] of Degond and Lucquin-Desreux derives the model
directly from the general Euler-Maxwell system by scaling assumptions, in particular
by assuming a very small mass ratio between the electrons and ions. In an appropriate
limit the Morrow model is obtained at the end of their paper in equations (160) and
(163), which we have specialized to assume constant temperature and no neutral
particles.

Suzuki and Tani in [20] gave the first mathematical analysis of the Morrow model.
Typical shapes of the cathode and anode in physical and numerical experiments are
a sphere or a plate. Therefore they proved the time-local solvability of an initial
boundary value problem over domains with a pair of boundaries that are plates or
spheres. In another paper [21] they did a deeper analysis of problem (1.1), proving
that there exists a certain threshold of voltage at which the trivial solution transitions
from stable to unstable. This fact means that gas discharge can occur and continue
for a voltage greater than the threshold.

In [19] we considered the Morrow model with the a-mechanism but without the ~-
mechanism. The boundary condition (1.2) was replaced by the condition that p. =0
at the cathode, which means that the electrons are simply repelled by the cathode.
For that simpler model the sparking voltage V! is the smallest root of the function
g and the anti-sparking voltage V. is the other root if it exists. We proved similarly
that there is a global curve of steady solutions that starts at V.| and either goes to
infinity or is a half-loop that goes to V}. In that case we eliminated the alternative
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that the voltage may be unbounded.

Now we describe some notation that we use in the rest of the paper. For math-
ematical convenience we rewrite the problem (1.1) in terms of the new unknown
function

Ve,

Re := pee2L®,
We decompose the electrostatic potential as

Ve
Thus 92V = p; — e~ R, with the boundary conditions V(0)=V(L)=0. As a
result, from (1.1) we have the following system for stationary solutions:

ki 0y { (azv + Z) pi} = keh <azv + ‘2) TR, (2.1a)
—keO?’Re — keg(Ve)Re = ke fe[Ve, Re, V], (2.1b)
02V = p; — e TR, (2.1c)

with the boundary conditions

pi(0) = Re(0) = V(0) = V(L) =0, (2.1d)
V.

3p ) Rty = et (v + ) i), (219

O:Re(L) + (&EV(L) +
where the nonlinear term f. = f.[V., R, V] is defined as

Ve
2L

% %

s (5) +(or s 2]

It is convenient to draw the graph of g(V.), which of course depends on the
physical parameters a, b, and L. The function g has at most one local maximum in
(0, 00).

For the analysis in the rest of the paper it is convenient to write the system (2.1)
as

Fi(A\, pisRe, V) =0 for j=1,2,3,4, (2.2)
where we denote A = V,./L and

F1 =0y {(0,V + N)pi} — keh (3,V + A) e 2R,
2

Fo =~ 07Re — (0,V)0s Re + {;M — 9V + % —h(0:V + A)} Re,

I ::(ﬁV —pi + e_%wRe,
A ki
?4 ::8mR6(L) + (6mV(L) + 5) Re(L) - Vk_eéL (6mV(L) + /\) pi(L)'

€
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A

Fi1G. 1. local maz is positive

Fic. 2. local mazx is negative

3. Bifurcation. In this section we apply the following well-known theorem [5]
on bifurcation from a simple eigenvalue. Let N(£) and R(£) denote the nullspace
and range of any linear operator £ between two Banach spaces.

THEOREM 3.1. Let X and Y be Banach spaces, O be an open subset of R x X
and F: O =Y be a C? function. Suppose that
(H1) (\,0) €0 and F(A,0) =0 for all A € R;
(H2) for some X\* € R, N(9,F(\*,0)) and Y\R(0,F(\*,0)) are one-dimensional,

with the null space generated by u*, which satisfies the transversality condition
MO, TF (N, 0)(1,u*) ¢ R(0,F(N\*,0)),

where Oy, and 0x0,, denote Fréchet derivatives for (A, u) € O.
Then there exists in O a continuous curve K = {(A\(s),u(s));s € R} of solutions of
the equation F(\,u) = 0 such that:
(C1) (/\(0)7 u(0)) = (A", O);
(C2) u(s) = su*+o(s) in X as s = 0;
(C3) there exists a neighborhood W of (A*,0) and € > 0 sufficiently small such that

{(Au) € Wiu # 0 and F(A\, u) =0} = {(A(s),u(s));0 < |s] < e}.

In order to apply the theorem to our situation, we use the notation u = (p;, Re, V')
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and we define the two spaces

X :pie{feCH0,L]); f(0) =0}, Ree{feC*([0,L]); f(0) =0},
Ve {feC3([0,L]); f(0) = f(L) = 0};
Y F; € C%0,L]), FoeC0,L]), FseC(0,L]), FseR

and the sets

O :={(\, pi, Re, V) € (0,00) x X3 9,V + A >0} = | 0O, where
JjeN
0 :={(\, pis Re, V) € (0,00) x X3 A+ [(pis Re, V)l[x <J, A>3, 0.V +A> 5}

Note that O is an open set and each O; is a closed bounded subset of O. Furthermore,
the F; are real-analytic operators because they are polynomials in (A, p;, Re, V') and
their a-derivatives, except for the factor h(9,V + \). However, 9,V + X > 0 in O and
the function s — h(s) is analytic for s > 0. Hypothesis (H1) is obvious. The local
bifurcation condition (H2) is verified in Lemmas 3.2-3.4.

LEMMA 3.2. Recall that X = V. /L. Let L = 0, r..v)F (X, 0,0,0) be the linearized
operator around a trivial solution and let N (L) be its nullspace. Then
(a) N(L) is at most one-dimensional for any X > 0.
(b) N(L) is one-dimensional if and only if D(V.) = 0. Thus the sparking voltage
exrists.

(¢c) N(L) has a basis (p;, e, ) with
wi(x) >0, @e(x)>0 forxe(0,L] (3.1)
if and only if

(3.2)

(d) VI defined in (1.5) satisfies (3.2).

Proof. We remark that the positivity (3.1) will lead to the positivity of R, and
p; in the local bifurcation proof.
(a) If (S;, Se, W) € N(£L) C X, then (S;, Se, W) solves

3pr . v)F1(A,0,0,0)[S;, Se, W] = kA, S — keh (A) e 278, = 0, (3.3)
8(pq;,Re,V)STQ(Av Oa 07 O)[Slv SG? W] = _8586 - g(/\L)SG = 07 (34)
8(Pi,Re,V)g:3(/\7 Oa 07 O)[Slv SG? W] = 8§W - Sl + 67%1'86 = 07 (35)
A ki a
pu e v) Fa(A,0,0,0)[S;, Se, W] = 0pSe(L) + T Se(L) — T 2LSi(L)=0. (3.6)
Solving (3.3) with S;(0) = 0, we have
AS@) = k) [ e sity) dy (3.7
e 0
By (3.7) with = L, we rewrite the boundary condition (3.6) so that
A Ar, L _A
9xSe(L) + §SG(L) =7h(A)e> e 2YSe(y) dy, (3.8)
0
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which is a closed equation with respect to S.. Therefore, we have a differential
equation for S, with two boundary conditions. It suffices to solve it in order to obtain
all elements of the nullspace. Indeed, S; is obtained by (3.7) and S, and W is obtained
by solving (3.5) with W(0) = W(L) = 0. The general solutions of the second order
equation (3.4) with S.(0) = 0 are

Asinh y/—g(AL)x if g(AL) <0,
Se(x) =(¢ Ax if g(AL) =0, (3.9)
Asiny/g(AL)x if g(AL) > 0,

where we have also used the the boundary condition S.(0) = 0. This fact means that
the null space N (9, r.,v)F(A,0,0,0)) is at most one-dimensional for any A > 0.

(b) We will show that equation (3.4) with S.(0) = 0 and (3.8) admits nontrivial
solutions if and only if D(V,) = 0. We write g = g(AL) and first treat the case g < 0.
To this end, we substitute the general solution into (3.8) and see that a necessary and
sufficient condition for the existence of nontrivial solutions is

A L
0 =v/—gcosh+/—gL + §sinh\/—gL—7h()\)e%L/ e_%ysinh\/—gydy

0

A 2
=1+ {\/—g cosh /—gL + 5 sinh \/—gL} + 2vy/—ge2 L

In deriving the last equality, we have also used the fact g + )‘72 = h(\). This equality
is equivalent to D(V.) = 0. Now we consider the case g = 0. As above, we find the
condition

A
2

L
O:1+%L—~yh(/\)e%L/ e 2Vydy = (147) <1—|—/2\L>—”ye .
0
This too is equivalent to D(V,) = 0. For the case g > 0, we have
AL s (Foa
Oz\/gcos\/gL+551n\/§L—7h()\)e2 e 2¥sin /gy dy
0

=(147) <\/§cos V9L + %sin \/§L> — yy/gez "

Once again this is equivalent to D(V,) = 0. Thus we conclude in all three cases that
N(L) is one-dimensional if and only if D(V.) = 0.

(¢) Furthermore, it is seen from (3.9) that the null space N (L) has a basis with
(3.1) if and only if (3.2) holds.

(d) It remains to show that the sparking voltage V.| must satisfy (3.2). Suppose
on the contrary that g(V./) > 72/L? holds. Then the graph of g must be drawn as in
Figure 1. Therefore, there exists a positive constant V* < V.I such that g(V,.) < 72/L?
for all V, € [0, V) and g(V,*) = 7?/L?. Evaluating D(V,) at V. = V.*, we see that

Vv vooow Ve
D(V)) = cos VF)L+ ——=——sin V)L — e =—-1l-——e2 <0
(V) = eon VoV + b sin oV L= -

However, limy,_,o D(V;) = 1/(1++) > 0. These facts together with the intermediate
value theorem means that there exists 0 < ¢ < V* such that D(cg) = 0, so that Vf
is not the smallest root of D, which contradicts its definition. O
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In order to apply Theorem 3.1, we define \* = V. /L and we let u* = (goz, o, o)
denote a basis of N(9,, r, vyF(VI/L,0,0,0)) that satisfies (3.1).

LEMMA 3.3. The quotient space Y\R(L) is at most one-dimensional. Further-
more, it is one-dimensional if and only if D(V.) = 0.

Proof. Let us denote 0(,, r.v)F(V./L,0,0,0)) by £. We begin by representing
the range as

R(L) = {(fi, fe, fo, f») € Y;(3.11)}, (3.10)
L
/0 (fivri + fetbe + forbo)dz + fohp = 0 for all (vi, Ye, ¥y, dp) € N((£%)"). (3.11)

Here (£°)* is defined conveniently on a Hilbert space as follows. Let X*® be the same
as X except that C* is replaced by H” for k = 1,2,3. Let Y* be the same as Y
except that C* is replaced by H¥ for k = 0, 1. Define £* : X* — Y® to be the unique
linear extension of £ to X®, and (£°)* to be the adjoint operator of £°. By standard
operator theory,

R(L®%) = {(fi, fe, o, f5) € Y*;(3.11)}.

From this and the fact Y C Y'*, (3.11) is necessary for the solvability of the problem
L2(S;, 8, W) = (fi, fes fos f5) € Y. On the other hand, if (f;, fe, fo, fo) € {f €
Y; (3.11)}, we have a unique solution (S;, S, W) € X*® to the problem £°(S;, Se, W) =
(fis fes fu, fo) € Y. Then (S;,S., W) € X by standard elliptic estimates. These facts
lead to the representation (3.10).

It remains to prove that N((£°%)*) is at most one-dimensional, and it is one-
dimensional if and only if D(V.) = 0. We first claim that the operator (£°)* is
precisely given by

D((£2)*) := {(¥i, Ve, v, ) € HY(I) x H*(I) x H3(I) x R;(3.12¢) holds}, (3.12a)
(L.)T(d}iﬂ/}ea 1/}1)5 1/117) = _kz)\aaﬂ/)z - 1/}1)7 (3 12b)
(L£%)5(Wis e, Yo, ) 1= —02be — gAL)e — keh(N)e™ 2% + e 2%, (3.12¢)
(£2)5 (i, e, Y, ) := Ozth, (3.12d)

where

ki a
e(L) = = $e(0) = u(0) = (L) = kidti(L) = 77~ Ae 4y
A
= 0 (L) + 51/117 =0. (3.12e)
We now verify the claim. It suffices to check that

<( I(Sla S67 W) (Sla S67 W)a Lg(sla S67 W))a (Uh‘ﬂ/’e, 1/}1)» + LZ(SH Se; W)d}b
<(S'L'7865W)7( )*(Wﬂ/)eﬂ/)vﬂ/)b»

for all (S;, Se, W) € X*® and (¢, Ye, Uy, ¥p) € D((L®)*), where (-, -) denotes the inner
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product of L?(I). We observe that

(L3S, Ses W), £3(Si, Ses W), £5(Si, Ser W), (Wi, e, ) + £5(Si, Se, W)y
—(Si, kiMduthi) + Si(L)kiXbi (L) — (S, keh(N)e™ 2%4;)
— (Se, 0*e) — DuSe(L)ve(L >+a Se(0)8e(0) + Se(L)Dutbe (L) = (S, g(AL)e)
+ (W, 0%0,) + 0, W (L), (L) — < Y0 (0) = (Si, 0} + (Se, €2,

+0,5,(L)by + 5.(L) 0 — SiL A o,

due to integration by parts and S;(0) = Se(0) = W(0) = W(L) = 0. Grouping them
with respect to S;, Si(L), Se, 0xSe(L), 0:5:(0), Se(L), W, 9,W(L), and 9,W(0),
and also using the boundary conditions (3.12e), we have

<('£’;(S7«7 Sﬁy W)7 'C;(SU Sey W)7 'CZ;(S’L: Sey W))? (w’bv 77/1&: T/f’v» + 'CZ(SU Sﬁy W)'l/}b

—(Si, kiADuthi + o) — (Sey keh(N)e™ 274 + 0%e + g(AL)e — €~ 274,) + (W, 924)
= <(Sl7 567 W)7 (L.)*(d)i? w€7¢v7¢b)>'

This proves the claim.

Next we compute N((£°)*). To this end, we seek solutions (¢, e, ¥y, ¥p) €
D((£°)*) to the problem (£°)*(¢;, e, ¥y, ¥p) = 0. From (£°)5 = 0 and boundary
conditions v, (0) = ¢, (L) = 0, we see that

¥y = 0. (3.13)

From this and (£°)7 = (£°)3 = 0, we have the equations
Ou1p;i = 0, (3.14a)
—02pe — gAL)pe — keh(N)e™ 274; = 0. (3.14D)

Owing to (3.12e) and substituting ¢¥» = (L), the boundary conditions for this
system are

vi(L) = LB (L) = 0, (3.14¢)
$e(0) =0, (3.14d)
Buibe (L) + %we(L) —0. (3.14e)

Now it remains to solve the problem (3.14) in order to check the dimension of
N((£2%)").

Let us reduce the problem (3.14) to a problem with a scalar equation for 1. alone.
Integrating (3.14a) over [z, L] and using (3.14c¢), we obtain

bi(z) = klee%Lwe(L). (3.15)

Plugging this into (3.14b), we have the problem for v.:
~03te — gAL)We = vh(N)ez " (L)e 27, (3.16)
together with (3.14d) and (3.14e).
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Then, regarding ¢.(L) on the left hand side of (3.16) as a given value, we have
general solutions to (3.16):

AeV 9Dz 4 Be=V 9D _ ’ye%Lwe(L)eféx if g(AL) <0,
Ve =S Ax+ B —~e2ly (L)e 2° if g(A\L) =0, (3.17)
Asin\/g(AL)x + Bcos \/g(AL)x — ye%Lwe(L)efgz if g(AL) > 0.
We do a separate but similar calculation in each case.
Case g < 0. We write g = g(AL) and put = L in (3.17). Then we see that

1
_ gL gL
Vel(L) = AV 4 Be Vo),

This and (3.14d) give

0=¢e(0)=A+B—11 ez b(AeV=IE 4 BemVTIL),
Y

Furthermore, from (3.14e) and 896(@*%90) + %e*%r — 0, it must hold that
A A
0= 0:ve(L) + §¢B(L) = \/jg (Ae\/ng — Be_\/jgl’) + 5 (Ae\/ng + Be—\/ng) )

Summarizing these two, we have a linear system for the pair (A, B):

A 0 3LeV=gL 1— 7 edLe—v—dL
vl =] | "
B 0 V—geV=b 4 2evTal . /=ge~ = + Se V9L

It has nontrivial solutions if and only if det M~ = 0. Then the kernel is one-
dimensional since my; is positive. On the other hand, it holds that

det M~ = <_\/fge—\/ng n ge—FqL _JgeVTal _ %quL)
g esl
vV=9-3 + \/_+

1+ 7
= —2y/=gD(V.).

Hence we conclude that N((L£°)*)
dimensional if and only if D(V.) = 0.

Case g = 0. Putting 2 = L in (3.17), we have 1.(L) = AL + B — v.(L). In the
same way as above, using (3.14d) and (3.14e), we have

is at most one-dimensional, and it is one-

A A
MO A _ 0 MO — _11’762LL 1— 11’76214
B 0]’ 1+3L 2

Note that 1+ %L > 0 and

det M° = — (1 + %L) TR RS 1 (—5L+ 1+ 3L) =—D(V,).
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Hence we conclude that N((£°)*) is at most one-dimensional, and it is one-
dimensional if and only if D(V,) =

Case g > 0. We write g = g(AL) and put = L in (3.17). Then

1
Ye(L) = r(A sin\/gL + B cos/gL).
Y
This, (3.14d) and (3.14e) give us the identities

.
1+~

0 = 0pve(L) + %1/)6(L) = /g(Acos\/gL — Bsin/gL) + %(A sin /gL + B cos/gL).

0=1¢.(0)=DB e%L(Asin\/gL—i—Bcos\/f]L),

Summarizing these two, we have a linear equation for (A, B):

__7 AL o AL
ek sin /gL 1 €2 cos /gL

+ |4 0 +
M = 5 M™ = A - : A
B 0 Vgcos/gL+ §sin/gL —./gsin /gL + % cos /gL

But note that

det M = —/gcos /gL + %sin\/EL
i AL ). . A
+1+762 sin /gL \/§51n\/§L—§cos\/§L
A
+cos/gL (\/gcos VoL + 5 sin \/§L>}
= —VgD(Ve).

Hence we conclude that N((£°)*) is at most one-dimensional, and it is one-
dimensional if and only if D(V,) =0. 0

In order to clarify the variables in the next lemma, we denote D(V.) =
D(V.,a,b,7). Let us also define

A ={(a,b,y) € (Ry)?; there exists a root of D(V,,a,b,vy) = 0}.

Then by definition V. = V.[(a,b,7) is the smallest root, for any (a,b,7) € A. Let A°

be the interior of A. Let (901, oI, ¢l) generate the one-dimensional nullspace of £. We

2
also explicitly denote g(V.) = g(Ve,a,b) = ‘ZTVC exp _‘fCL — 4VLC2. Transversality is the

condition that the tangent of the presumed local curve and the tangent of the trivial
curve do not coincide.

LEMMA 3.4. The transversality condition
aAa(Pi,Re,V)‘(‘:F(V::T/Lu 07 07 O)[L 9017 (plu SDI)] ¢ R(a(Pi,Re,V)?(V::T/Lu 07 07 O)) (318)

is valid for almost every (a,b,v) € A°.

Proof. The first part of the proof is devoted to showing that various sets of points
(a,b,7) have measure zero in R3. It is easy to check that g(V.,a,b) = 0 has no
solution if a < £b, exactly one solution Wy(a,b) if a = $b, and exactly two solutions
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Wi(a,b), Wa(a,b) if a > £b. The set Zy = {(a,b,7) € (Ry)* ; a = $b} obviously has
measure zero. On its complement Z§ we calculate that aivcg(Wj(a,b),a,b) # 0 for
j=1,2.

Denoting p = Lv/—g(Ve, a,b) as before, recall the definition (1.4) of the sparking

function:

(e"+e )+ Ve (" —e™) S (3.19)

D‘/ca 7b7 = -
(Ve,a,b,7) m ¢

N | =

A short calculation shows that if both g(W,a,b) = 0 and D(W, a,b,~) = 0, then

=1+ Y] [ep(F) -1 - %)
The set Z1 = {(a,b,7) € (R4+)3 ; (3.20) holds, where g(W,a,b) = 0} obviously
has measure zero. Thus it is clear that on the complementary set Z{ we have
g(Vi(a,b,7),a,b) # 0. Within Z{ the implicit function theorem ensures that the
functions W, (a, b) are continuous (j = 1,2).

Clearly the set A := A° N Z§ N Z5 is open. Now let

(3.20)

~ dD
_ A - Vi _
ZQ—{(G/7b,'7)€ 5 8‘/6( C7a7b77) 0}7

where V! = V.f(a,b,7). We claim that An Z$ is an open set. In order to prove the
claim, notice that both g(V.[,a,b) # 0 (as shown above) and g—‘l/jc(VcT, a,b,v) # 0 are
true on AN Z§. The sparking function D(V,,a, b, ) is a real-analytic function of four
variables except where g(V.,a,b) vanishes. So for each point (a,b,v) € AN Z§, we
can apply the real-analytic version of the implicit function theorem to the equation
D(V!,a,b,7) = 0. Hence there is a neighborhood of (a,b,7) in which the function
VI is real-analytic and g—‘l/jc(VcT,a,b,w) # 0. Thus AN 7§ is open. Furthermore,
VI AN Z§ — R is a real-analytic function for which g_l]Z (V.1 a,b,v) does not vanish.

Next we claim that the set Z5 also has R3-measure zero. Within Z, both of the
equations, D = 0 and g—‘l,z = 0, are satisfied by (VCT, a,b,v). We calculate

oD _ —L*g' (Ve) {(1 Ve (et —e M) + XT‘;(Q# —l—e”)}

ov, 241 2 4p?
1 _ 1 ~v w
— (et —e™) ————e2, 3.21
+4u(e e ) 31+ (3.21)

The equation D — 23—‘2 = 0 contains no explicit . It is a single equation for (V. a, ).
Thus, within Z,, the function V.| depends only on (a,b). Hence, using (3.19) within
Zs, we see that the variable 7 is determined uniquely by (a,b). So, due to the Fubini-
Tonelli theorem, Z5 has R3-measure zero.

Now we define the function

vd L x vd
Fla.b) = =1e S 0e(0) [ {WV/0) = Ghvi/D) e timpla) da
L

—Lg' (V) i be(z)pl (2) d

T
+300 D) - LoD - ). (3:22)
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where 1), is given in (3.17) and ¢ is equal to the function S, in (3.9) with (3.2).
In (3.22) the functions V[, 1. and ¢! depend on the parameters (a,b,v). Not only
is VI : AN Z5 — R real-analytic, but we observe from (3.9) and (3.17) that ¢}
and 1. also depend analytically on (a,b,v). It follows that the set Zs = {(a,b,v) €
A; F(a,b,v) = 0} also has measure zero because the zero set of any analytic function
# 0 must have measure zero. In the rest of the proof we will only consider the set
A=ANZSNZ§ = A° N ZEN ZEN Z5N Z5. Because of the definition of Z3, we know
that F(a,b,~) # 0 within A.
By differentiating (3.3)—(3.6) with respect to A\, we see that
T- TR eyl

A

aka(ﬂi,Rc,V)‘rfl ()‘7 0,0, O)[lu 9017 9027 (PZ] = kiai(pj — ke {h/ ()‘) e 2

(3.23)
Oy, m.v)F2(X,0,0,0)[1, 0!, 0f, 0}] = —Lg'(AL), (3.24)
D, e) T3 (1,0.0,0)[L gl ol o] = =T e 37k, (3.25)
N F4(0,0,0,0)[1, 01, of, o1] = 2T (L) ’“(eéuLAe%L) hw).
AO(pi,Re,V)T4 (A, U U, »PirPer Py 2% Wke 9 Pi

(3.26)

On the other hand, consider the range R(0(,, r.,v)F(Ve/L,0,0,0)), which is given in
(3.10) and (3.11). Owing to these formulas together with (3.12e), (3.13), and (3.15),
the transversality condition (3.18) can be written as

Letuw | ) [kiamd(x) kAW Wi/ - Shwiin) e-ﬁwwﬂ dz

L ) vi vt
~Lg W) [ @il drrum) {5am -2 (% + T ) ) o
(3.27)

This is what we have to prove. However, the first and last terms in (3.27) add up to

v r ki (v VEow
kle 2 %(L)/ kiaxsﬁ;r(x) dx % <€ 2+ e’ >¢6(L)@I(L)
e 0

€

vl !
= Bt el = —juun { Loty + ).

The last equality is due to (3.6) and the fact that (p;,@e,00) €
N(8(p;,r.v)F(VI/L,0,0,0)). Substituting this simple equality into (3.27) shows that
the transversality condition (3.22) is precisely the same as F(a,b,c) # 0, which we
have already shown is true within A. We previously showed that the complement of
A has measure zero. O

4. Global Bifurcation. In this section, we apply a functional-analytic global
bifurcation theorem to the stationary problem (2.2). The theory of global bifurcation
goes back to Rabinowitz [18] using topological degree. For a nice exposition see [12].
A different version using analytic continuation goes back to Dancer [8] with major
improvements in [4] and a final improvement in [7]. The specific version that is most
convenient to use here is Theorem 6 in [7], which is the following:

THEOREM 4.1 ([7]). Let X and Y be Banach spaces, O be an open subset of
Rx X and F: 0 =Y be a real-analytic function. Suppose that
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(H1) (X\,0) € O and F(A,0) =0 for all X € R;
(H2) for some \* € R, N(9,F(A*,0)) and Y\R(9,F(\*,0)) are one-dimensional,

with the null space generated by u*, which satisfies the transversality condition
NOuF (A%, 0)(1,u7) ¢ R(0,F(X",0)),

where Oy and 9\0,, mean Fréchet derivatives for (A\,u) € O, and N(L) and
R(L) denote the null space and range of a linear operator L between two Banach
spaces;

(H3) 0,F(\,u) is a Fredholm operator of index zero for any (A, u) € O that satisfies
the equation F(\,u) = 0;

(H4) for some sequence {0} en of bounded closed subsets of O with O = U;en0j,
the set {(A,u) € O;F(A\,u) =0} N0O; is compact for each j € N.

Then there ezists in O a continuous curve K = {(A(s),u(s));s € R} of F(A\,u) =0

such that:

(OZ) (A(O),U(O)) = ()‘*70);

(C2) u(s) =su*+o(s) in X as s = 0;

(C3) there exists a neighborhood W of (A*,0) and € > 0 sufficiently small such that

{(A\u) € Wiu#£0 and F(\u) =0} = {(A(s),u(s));0 < |s| < e}

(C4) X has a real-analytic reparametrization locally around each of its points;
(C5) one of the following two alternatives occurs:
(I) for every j € N, there exists s; > 0 such that (A(s),u(s)) ¢ O; for all
s € R with |s| > s;;
(IT) there exists T > 0 such that (A(s),u(s)) = (A(s + T),u(s + T)) for all
seR.
Moreover, such a curve of solutions of F(\,u) = 0 having the properties (C1)-(C5) is
unique (up to reparametrization).

Hypothesis (H2) is the same local bifurcation condition as in Theorem 3.1, while
(H3) and (H4) are the global ones. (C1) — (C3) are local conclusions, (C4) is a
statement of regularity, which is a consequence of the real-analyticity of F. (C5) is
the global conclusion which states that either the curve reaches the boundary of the
set O; orthe curve is periodic (that is, forms a closed loop). The hypotheses (H3) and
(H4) are validated in Lemmas 4.2 and 4.3, respectively. For that purpose, consider
the linearized operator around an arbitrary triple of functions (p9, R, V?) € X.

LEMMA 4.2.  For any (A p? RO, VY) € O, the Fréchet derivative L° =

piro )T (A, P, RO V) is a linear Fredholm operator of index zero from X toY.

Proof. For any fixed choice of (X, p?, R?, V), we know that inf, 9,V° + X > 0.
The operator £° = (L1, L2, L3,L4) acting linearly on the triple (S;,Se, W) € X has
the form

L1 = L1(Si, Se, W) =k;0y ({0, VO + A}S;) + b102W + baS; + b3 Se + ba0, W,  (4.1)
Lo = Lo(Si, Se, W) = — 028, + 4105 Se + b5Se + 602 W + b7, W, (4.2)
Lg=L3(S;,Se, W) =— (ﬁW + aS; + asSe,

Ly = L3(Si, Se, W) =0,5(L) + (0:V°(L) + 3)Se(L) + 9, W (L)R(L)

— W exp(3L)[0:VO(L) + N)Si(L) + 0. W(L)p(L)],  (4.4)
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where the coefficients a; = —9, V", as and a3 belong to C*([0, L]) and the coefficients
b1, ..., by belong to C°([0, L]).

Let us first show that the linear operator £° has a finite-dimensional nullspace
and a closed range. By [22, Theorem 12.12] or [3, Exercise 6.9.1], it is equivalent to
prove that £° satisfies the estimate

OH(SU Sea W)”X < HLO(SZ',Se,W)HY + H(Sivsea W)”Z (45)

for all (S;,Se,W) € X and for some constant C' depending only on (X, p?, R, V?),
where

Z = C°([0,L]) x C°([0, L]) x C*([0, L]).

Keeping in mind that 9,V° + X\ > 1/4, we see from (4.1) and (4.4) that S; can be
estimated by

[02Silco

= [0V + X)) ({0:(0:V° + N)}Si + b192W + byS; + b3 Se + bs0, W — £1) [ o
< O([[Silleo + [1Sellco + [W ez + [|£1] o)

< C”LO(Siv Se? W)”Y + C||(Si7 Se? W)HZ (4'6)

Next, (4.4) leads to the required estimate of W as follows:
103W [l = llazSi + asSe — Lallor < CILY(Si, Se, W)lly + ClI(Si, Se, W)z (4.7)

We also have ||, W ||co < L||02W||co because fOL 0. W(x)dx = 0.

Finally, we estimate S, as follows. Due to the bounds on S; and W, the equa-
tion (4.2) implies that 825, + (90:V?)0.S. is bounded by the right side of (4.5).
Furthermore, Se(0) = 0 and 9, Sc(L) + (9.V°(L) + 3)Se(L) is also bounded. Thus
0,{0:Se + (0,V°)S,} is also bounded. Integrating from z to L, we find that

02 Se(x) 4+ 0,V (2)Se(2) — 02Se(L) + 0, V(L) S (L)

is also bounded, whence 0,S.(x) is bounded as well. The preceding estimates on
Si, W and S, prove (4.5).

Owing to the fact limy, 0 D(V.) > 0, we can find a constant V > 0 such that
D(V!) > 0. The preceding lemmas state that the nullspace of 9(,, r_v)F(V//L,0,0,0)
has dimension zero and the codimension of its range is also zero, so that its index is
zero. Because O is connected and the index is a topological invariant [2, Theorem
4.51, p166], £° also has index zero. This means that the codimension of £° is also
finite. This completes the proof of Lemma 4.2. O

LEMMA 4.3. For each j € N, the set Kj = {(\, pi, Re, V) € Oj; F(\, pi, Re, V) =
0} is compact in R x X.

Proof. Let {(An, pin, Ren, Vn)} be any sequence in K. It suffices to show that
it has a convergent subsequence whose limit also belongs to K;. By the assumed
bound |M\,| + ||(pin, Ren, Va)llx < j, there exists a subsequence, still denoted by
{(An; Pins Ren, Vi) }, and (A, ps, Re, V') such that

A — A in R,
Pin - Pi in OO([O,L]), (48)
Ren, — R. in CY(]0, L)), '
V., — V in C2%(0,L
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Furthermore,

@V+Az;

Since O; is closed in X, it remains to show that
Fi(A\, pi,Re, V) =0 for j=1,2,3,4,
pin — pi in CY([0,L]), Ren — Re in C?([0,L]), V, — V in C3([0, L]).

Now the first equation F1 (A, pin, Ren, Vn) = 0 with p;,(0) = 0 is equivalent to

x

ke — _An
pinle) = EOV(@) + A0 [ OV + M) F R )

Taking the limit and using (4.8), we see that

ke [ —2
pila) = L@V @) + 07 [ h@V )+ Ve PR (o) d,
i 0
where the right hand side converges in C*([0, L]). Hence, we see that

?1()\,pi7Re, V) =0 and Pin — Pi in Ol([O,L])
Taking the limit using (4.8) in the third equation F3(\,, pin, Ren, Vi) = 0 imme-
diately leads to

8§V =p; — eiézRe.

Hence F3(\, pi, Re, V) = 0 and V,, — V in C3([0, L]).
The second equation Fa(\,,, pin, Ren, Vi) = 0 can be written as

02{02Ren — (0Vi)Ren} = {23 + 225 — h(8, Vi + An)} Ren.

Because the right side converges in C*([0, L]), we see that {0z Ren, — (02 Vi) Ren } con-
verges in C2([0, L]). But (9,V,)Ren converges in C1([0, L]). Hence 8, R.,, converges
in C1([0, L]), which means that R., converges to R in C?([0, L]).

It is obvious from (4.8) and F4(An, pin, Ren, Vi) = 0 that F4(\, pi, Re, V) = 0
holds. O

As we have checked all conditions in Theorem 4.1, the following conclusion is
valid.

THEOREM 4.4. Assume that the sparking voltage V., defined by (1.5), emists.
There exists in the open set O a continuous curve X = {(A\(s), pi(s), Re(s),V (s));s €
R} C R x X of stationary solutions to problem (2.2) such that
(C1) (X0), p;(0), R.(0),V(0)) = (V.I/L,0,0,0), where V.| is defined in (1.5);

(C2) (pi(s), Re(s),V(s)) = s(ol, 08, 08) + o(s) in the space X as s — 0, where
(gpz,gpl,%‘:) is a basis with (3.1) of N(a(the)V)?(‘g/L,O,O,O)).
(C3) there exists a neighborhood W of (V.1/L,0,0,0) and € < 1 such that

{\ pis Re, V) € Wi (pi, Re, V) # (0,0,0), F(\, pi, Re, V') = 0}
={(A(5),pi(s), Re(s5),V(s)): 0 < [s] < e};

(C4) X has a real-analytic reparametrization locally around each of its points;
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(C5) at least one of the following four alternatives occurs:
(a) lim,_,  A(s) = 0;
(b) lim, . (infye; 0,V (2, 5) + A(5)) = 0;
(c) Ty (lpillen + 1Rellcz + [V s + A)(s) = o0;
(d) there exists T > 0 such that

§—r 00

(A(5); pi(s), Re(s), V(s)) = (M(s +T), pi(s + T), Re(s + T), V(s + T))

for all s € R.
Moreover, such a curve of solutions to problem (2.2) having the properties (C1)-(C5)
is unique (up to reparametrization).

Conditions (C1)-(C3) are an expression of the local bifurcation, while (C4)-(C5)
are assertions about the global curve K. Alternative (c) asserts that X may be
unbounded. Alternative (d) asserts that X may form a closed curve (a ‘loop’).

5. Positive Densities. Of course, we should keep in mind that for the physical
problem p; and R, are densities of particles and so they should be non-negative. In
this section we investigate the part of the curve X that corresponds to such densities.
We will often suppress the variable x, as in p;(s) = pi(s,-), Re(s) = Re(s,-),V(s) =
V(s,-).

A basic observation is the following theorem, which states that either (i) p; and
R, remain positive or (i) the curve of positive solutions forms a half-loop going from
VI to some other voltage V}. Here VI is defined in (1.5) and V} is a voltage with (3.2)
and V! < V}. We remark that the curve X is never the half-loop unless a voltage
VI > VI exists satisfying (3.2).

THEOREM 5.1. Assume the sparking voltage V.| exists. For the global bifurca-
tion curve X = (A(s), pi(s), Re(s),V (s)) in Theorem 4.4, one of the following two
alternatives occurs.

(i) pi(s,x) >0 and Re(s,z) >0 for all 0 < s < oo and z € (0, L].
(ii) there exists a voltage V} satisfying (3.2) and VI < V} and a finite parameter
value s* > 0 such that
(1) pi(s,z) >0 and Re(s,z) >0 for all s € (0,s) and x € (0, L];
(2) ()‘(Si)v pi(si)v Re(si)v V(Si)) = (V;:J:/Lv 0,0, O);
(3) (pi(s), Re(s)) = (s* = 5)(¢}, o) + o(ls — s¥|) as s /st where (o], 1) is a
basis with (3.1) of N(@(pi)Re)V)?(‘Qi/L,O,O,O));
(4) pi(s,z) <0 and R.(s,z) <0 for0<s—st <1 andz € (0,L)].

Proof. First let us define
st :=inf{s > 0: R.(s,29) = 0 for some zo € (0, L]}. (5.1)

Clearly R. > 0 in (0,s%) x (0, L]. By (C2) in Theorem 4.4, s* > 0. If s* = oo, then
R, > 01n (0,00) x (0, L]. Also 9,V + X is positive owing to (A(s), pi(s), Re(8),V(s)) €
0. Then the following formula from (2.1a) also yields p; > 0.

x

OV + N [ OV + N PR B (52)

_ ke

pi(z) »

Thus alternative () is valid.
Assuming that st < oo, we will show that (4i) happens. First we will show that
R.(s*,-) vanishes identically. Certainly R.(s*,-) takes the value zero, which is its
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minimum, at some point xg € [ = [0,L]. In case zg € I, 0,R.(s*,2¢) = 0 also
holds. Solving Fo(\, pi, Re, V) = 0 with Re.(st,2¢) = 9, R.(s%,19) = 0, we see by
uniqueness that R.(s*) = 0. Secondly, in case xg = 0, by (5.1) there exists a sequence
{(8n,Tn) Ynen such that Re(s,,z,) = 0 with s, N\, s and z,, \, 0. Rolle’s theorem
ensures that there also exists some y,, € (0,x,) such that 9, Re(sy,yn) = 0. Letting
n — oo, we see that y, — 0 and thus 9, R.(s*,0) = 0. Hence we again deduce by
uniqueness that R, = 0. Thirdly, in case zg = L, it is obvious that BwRe(si, L) <o.
On the other hand, we see from ¥4 = 0 and (5.2) that

OxRo(st, L) = 'y%e%L 8,V (L) + ) pi(st, L) > 0.
This leads to 0, R.(s*, L) = 0 so that R, = 0 once again. Therefore we conclude
that R, = 0 in every case. By (5.2), we also have p; = 0 and thus V' = 0. Hence
(pi, Re, V) (s%) = (0,0,0) is the trivial solution. So (1) and (2) in the theorem are
valid.

Continuing to assume that s* < 0o, we now know that p;, R. and V are identically
zero at s = st. We define V} = L A(s*). By the simple bifurcation theorem of [5], the
nullspace N = N[9(,,, r.,v)F(A(s%),0,0,0)] is non-trivial because the curve K crosses
the trivial curve transversely at s = s. So by Lemma 3.2, we have D(V}) = 0. It
remains to prove (3) and (4) and also that V} > VI and g(V}) < Z—z .

Suppose on the contrary that g(V}) > Z—z Then as in the proof of Lemma 3.2,
the nullspace N has a basis (p;, @e, @) with

pel) = sinJg(Vye, o) > T

In that case the function ¢, has a node (changes its sign) in the interval I. Therefore
R.(s,-) also has a node for s near s*, which contradicts the positivity. Thus g(V}) <
Z—z so that the basis of N is positive, due to Lemma 3.2. Thus (3) and (4) are valid.

Finally, suppose that V} = VI. Then A(s*) = V] /L, so that the curve X goes
from the point P = (V.1 /L,0,0,0) at s = 0 to the same point P at s = s*. By (C3) and
(C4) of Theorem 4.4, X is a simple curve at P and is real-analytic. So the only way
X could go from P to P would be if it were a loop with the part with s approaching
st from below coinciding with the part with s approaching 0 from below (s < 0). By
(C2) of Theorem 4.4, p;(s,-) and R.(s,-) would be negative for —1 < s — s¥ < 0,
which would contradict their positivity. Hence V} > V.I. O

Since p; and Ree™Ye*/2L are the densities of the ions and electrons, respectively,

we are interested only in the positive solutions. Let us investigate in detail the case
that the global positivity alternative (i) in Theorem 5.1 occurs. More precisely, the
next two lemmas show that if either one of the alternatives (a) or (b) in Theorem 4.4
occurs, then alternative (c) also occurs. In these proofs, we use the written boundary
condition from (2.1e) and (5.2):

O Re(L) = — ((%V(L) + %) Ro(L) +~e2" /OL h(9,V () + N e 2" R(z)dz (5.3)

and the elementary Poincaré inequality

lull > < VL|Opull 2 foru e {f € H'(I); f(0) = 0}. (5-4)
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LEMMA 5.2. Assume alternative (i) in Theorem 5.1. If lim
sup,~q |V (s)||c2 is unbounded.

A(s) = 0, then

§—r 00

Proof.  On the contrary suppose that sup,. ||V (s)||c2 is bounded. Because
lim, . A(s) = 0 and (9;V + A)(s,x) > 0, there exists a sequence {s,}nen and
limits (A*, V*) such that

Asn) — 0 in R,
{V(sn) - V* in CY([0,L]), (5.5)
V*(0) = V*(L) =0, (5.6)
0, V* > 0. (5.7)

The boundary condition (5.6) means that fOL 0, V*(x)dx = 0. This together with
(5.7) implies 9, V* = 0. Using (5.6) again, we have V* = 0.

It follows that for suitably large n the three expressions |h(9.V (sn) +
Asa))llco,  |A(sn)| and ||[V(sp)|lcz, are arbitrarily small. Multiplying
Fo(A(8n), pi(Sn), Re(8n), V(sn)) = 0 by Re(sy) leads to

(0xRe)?(sn) = O {Re(80)0uRe(5n) 4+ 02V (50)RZ(sn) } — 305V (sn) Re(sn) 0z Re(s0)
+ {/\(;")(?IV(SH) + # —h(0,V(sn) + )\(sn))} R%(s,).

Then integrating this by parts over [0,L], using R.(s,,0) = 0, and rewriting
Oz Re(sn, L) by (5.3), we have

L
/ (0:R.)?(sp) dx
0

_ (@V(sn,L) + M;“) R2(sy, L)

A(sn) A(s

L
e LRe(sn,L)/ B0,V (50) + Alsn)) e~ 2527 B, (5,) da
0

L
—3/ 02V (80)Re(50)0x Re(8n) dx + 0,V (85, L) R (5, L)
0

B L )\(Sn) )\Q(Sn)_ s s 2(s T
Ao+ 2850, s s | B2

1 [E )
< —/ (0xRe)*(8n) dz,
2 Jo

where we also have used Sobolev’s and Poincaré’s inequalities and taken n suitably
large in deriving the last inequality. Hence 0, R.(s,) = 0. Since R, vanishes at = 0,
we conclude that R.(s,) = 0, which contradicts the assumed positivity. O

LEMMA  5.3. Assume alternative (i) in  Theorem 5.1 If
lim, , {infrer 8;V(s,2) + A(s)} = 0, then supgo{[lpi(s)lco + [|Re(s)llc2 +
1V (s)|lcz + A(s)} is unbounded.

Proof. On the contrary, suppose that sup - o{[/pi(s)||co+ || Re(s)||c2+]|V (s)]| o2+
A(s)} is bounded. We see from lim {inf,cr 0.V (s,2) + A(s)} = 0 that there exist

e S— 00
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a sequence {s, }nen and a quadruple (A*, pf, R%, V*) with A\* < oo such that

A(sn) - A\ in R,
pi(sn) - in L*(0,L) weakly-star,
Re(sn) — R in C([0, L)), (5.8)
0?Re(sn) — O2R: in L*>(0,L) weakly-star, ’
V(sn) — Vv in C([0, L)),
02V(s,) — 02V* in L*>(0,L) weakly-star,

R(0) = V*(0) = V*(L) =0, (5.9)

pi >0, R'>0, (5.10)
inf (9, V*+ X\")(z) = 0. 5

z€[0,L]
We shall show that
Fi(Npi R, V*)=0 forae. zandj=1,2,3.
The equation F1(A(sn), pi(sn), Re(sn), V(sn)) = 0 with p;(s,,0) = 0 is equivalent to

ke

(0:V (8n) + A(sn))pi(sn) = T /Ow h(0:V (sn) + )\(sn))e_ﬁyRe(sn) dy.

Multiplying by a test function ¢ € C°([0, L]) and integrating over [0, L], we obtain

/0 0V (5n) + A(5n))pi (50 )

( h(0zV (sn) + A(sn))e™ e(Sn) dy) pd. (5.12)

O

We note that

L
/0 {(92V (sn) + A(sn))pi(sn) = (0:V" + X)pi} pdu

L
< / {0,V (5n) + A(sn) — 0. V" — X} pi(sn)p de
0

L
T / (pi(5n) — p1) (V™ + N ) da| .
0

So passing to the limit n — oo in (5.12) and using (5.8), we obtain

L L z *
/ (0V™ + X")pip dw:/ ]Z_ (/ W@ V* + X)e” T YR} dy) pdx
0 o fi \Jo
for any ¢ € C°([0, L]).

This immediately gives
ke [* *
O V* + XN )pr = = | R(O,V* +N\)e” TYRdy a.e., 5.13
3 k (S
i JO

which is equivalent to F1(A*, pf, RE, V*) =0 a.e.
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We can write Fo(A(sn), pi(sn); Re(Sn), V(sn)) = 0 and Re(sy,0) = 0 weakly as
L 2 L
| ouRetswonp e+ XD [T )00
0 0

L
= —/ Gonpdx  for any ¢ € Hy(0, L),
0

where
Gon = =0,V (80)0uRe(8n)

N { A(;n) 0aV (50) — 02V (sn) — h (3V (50) + )\(Sn))} Re(sn)-

Noting that

L
/0 {02V ()R (50) — (BV*)R: }p i

< +

)

L
/ 02V (s,) — 2V*)Ripda
0

L
/0 02V (5,)(Re(50) — RY)p

taking the limit n — oo in the weak form, and using (5.8), we have

L )\2 L L
/ (0. R.)(0z¢) dx + I/ Rlpdx = —/ Giodx  for any o € Hg (0, L),
0 0 0
where
G35 = —(0,V*)O.R! + {%amv* — PV —h(0,V* + )\*)} R: € L*(0,L).

This and (5.8) mean that R € C*([0, L]) N W*°(0, L) satisfies F5 = 0. Similarly we
can show Fs(A*, pf, RE, V*) = 0.
We now set

zy = inf{z € [0, L]; (0, V™ + X\*)(z) = 0}.

We divide our proof into two cases z, = 0 and x. > 0.

We first consider the case z,. > 0. The equation (5.13), which holds for a sequence
T, — T4, yields the inequality

ke o * * At *
0= (0V" +X)pill oy > k_/ W0V + N)e™ T VR; dy.
i JO

Together with the nonnegativity (5.10) this implies that (h(9,V*+ /\*)efg'R:)(x) =
0 for € [0, z,]. From the definition of x,, we see that

(O V*+ X )(x) >0 forz € [0,z.), (5.14)

so that h(9,V*4+A*) > 0 on [0, z,). Therefore, R:(x) = 01in [0, x.). Hence from (5.13)
and (5.14), pf = 0 a.e. in [0,z.). Now from the equation Fs3(A*, p¥, RE, V*) = 0 we
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see that 9, V* is a constant in (0, z,). Thus 0, V*+ X* = 0 in [0, z,]. This contradicts
the definition of z..

Now consider the other case x, = 0. We first suppose that there exists yg > 0
such that (9, V* + A*)(yo) > 0. Let us set

y* = sup{x < yo; (0, V™ + A\")(z) = 0}.

Note that y* € [0,y0) and (0,V* + A*)(y*) = 0. On the other hand, inte-
grating F1(\*, pf, RE,V*) = 0 a.e. over [y*,y] for any y € [y*,yo] and using
Fs(N*, pf, RE, V*) =0, we have

(0, V* + N2V + e T VRY)(y)

YL .
< / k—eh(amV* + )\*)ef%zR: dz for a.e. y € [y*, yol. (5.15)
y* i

By (5.10) and (5.11), the left hand side is estimated from below as
* 1
OV + MOV + e F VR 2 (V" + NV = S0, {(azv* + A*)Q} ae.

since 9, V* is absolutely continuous. The integrand on the right hand side of (5.15)
is estimated from above by Ce=?@V'+A) ™" " que to the behavior of h; see (1.3).
Consequently, substituting these expressions into (5.15), integrating the result over
[y*, x], and using (0, V* 4+ A*)(y*) = 0, we have

T py B
@V + 2 () < C/ / e b@ VT (AT dzdy for x € [y*, yol. (5.16)
y* Jy*
Now let us define x,, by
Ty 1= 1nf{:1c <wyo; 0LV'(x)+ A" = E}

Notice that y* < z, and (9,V* + X\*)(z) < 1/n for any = € [y*,x,], since the
continuous function (9,V* + \*) vanishes at x = y*. Then we evaluate (5.16) at
T = x,, to obtain

iz < C/wn /y e bV (@+A) 7 dzdy < Ce™".
n S -

For suitably large n, this clearly does not hold. So once again we have a contradiction.

The remaining case is that ., = 0 and 9,V* + A* = 0 . In this case, 8§V* =0
and so the equation Fo(\*, p¥, R*, V*) = 0 yields 0%(e=* */2R*) = e N */2(02R} —
A0, R + A;RZ) = 0. This means that e~ */2R*(x) = cx + d for some constants ¢
and d. Furthermore, d = 0 also follows from (5.9). On the other hand, (5.3) holds for
any s, > 0 and then using (5.8) and (9,V* + A*) = 0, we have

A*

* L A*
. R:(L) = — (BIV*(L) + ?> R*(L) +76%L/0 h(9,V*(x) + \) e™ 2 “R*(z) dz

_)\*

= 5 R(L).
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Substituting R’ (z) = cze* */2, we find ¢ = 0. Consequently, R = 0. Then we obtain
p;‘ = 0 from F3(\*, pf, RE,V*) = 0. Solving F3(\*, pf, RX,V*) = 0 with (5.9) and

= R} =0, we also have V* = 0. Consequently A* = 0 holds and lim_ ., A(s) = 0.
Th1s contradicts Lemma 5.2, since sup,~ ||V (s)||¢2 is bounded. O

=225 —0

Next, we reduce Condition (c) in Theorem 4.4 to a simpler condition. We write the
result directly in terms of the ion density p; and the electron density p. = Ree **/2.

LEMMA 5.4. Assume the global positivity alternative (i) in Theorem 5.1.  If

supo{[lpi(s)llco+lpe(s)lco+A(s)} is bounded, then sup,o{l|pi(s)ll o1+ Re(s)l o2+
IV (s)|lca} is bounded.

Proof. Tt is clear from F5 = 0 together with the definition p. = R.e~**/2, that

sup [V(s)llcz < OSHIS{HM(S)HCO +[[pe(s)lco} < +o0.
s> s>

From this, the equation F» = 0, and sup,.qA(s) < +oo, we also deduce that
Sup,~q [|[Re(s)||lcz2 < +oo. Now Lemma 5.3 implies that lim,  ,{inf,(0,V +
A)(s,x)}} # 0. Together with (5.2), this result leads to sup,.g ||pi(s)|cr < +o00. Fi-
nally the bound sup,. [|02V (s)||co < 400 follows from F5(A(s), pi(s), Re(s), V(s)) =
0.0

We conclude with the following main result.

THEOREM b5.5. Assume that the sparking voltage exists (that is, D wvanishes
somewhere), and the transversality condition (3.22) holds. Then one of the following
two alternatives occurs:

(A) Both pi(s,z) and p(s,z) = (Ree /?)(s,x) are positive for any s € (0,00) and

x € I. Furthermore, lim,_,o0{||pi(5)||co + [|pe(s)||co + A(s)} = o0
(B) there exists a finite s-value s* > 0 and a voltage V.} > VI such that

(1) D(V¥) =0, (Vi) < 7*/L? ;

(2) pi(s,z) >0 and pe(s,x) >0 for all s € (0,s%) and x € (0, L];
(3) (A(s%), pi(st), Re(s*), V() = (VF/L,0,0,0);

(4) pi(s, )<0 and pe(s,z) <0 for0<s—si<<1 and x € (0, L].

Proof. Suppose that (B), which is the same as the second alternative (ii) in
Theorem 5.1, does not hold. We will prove (A). Then the first alternative (i) in
Theorem 5.1 must hold. Now in Theorem 4.4 there are four alternatives. Alternative
(d) cannot happen because p; and R, are negative on part of the loop. Lemmas 5.2
and 5.3 assert that either (a) or (b) implies that sup,.o{l/pi(s)llco + [|Re(8)|c2 +
IV(s)llc2 + A(s)} is unbounded. Then Lemma 5.4 implies that sup,.{l/pi(s)|co +
[lpe(8)llco + A(s)} must also be unbounded. This means that (A) holds. O

This concludes the proof of Theorem 1.1. We remark that (B) never occurs
unless a voltage Vi > VI exists satisfying (3.2).

6. Bounded Densities. It is of interest to know how the global bifurcation
curve behaves for the case that the densities are bounded but A is unbounded. We
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see from (2.2) that (p;, pe, V') solves

0. {(3.V + N pi} = %h(axv+x) Pe, (6.1a)
—0,{(02V + \) pe + Oupe} = h (0:V + \) pe, (6.1Db)
02V = pi — pe, (6.1c)
(8.V (L) 4 X) pe(L) + 8,pe (L) = ”y:— (8, V(L) + \) pi(L) (6.1d)
with boundary conditions
pi(0) = pe(0) = V(0) = V(L) = 0. (6.1e)

LEMMA 6.1. Assume y(1 + )~ # e~*L and that there is a sparking voltage *.
Also assume alternative (A) in Theorem 5.5. Furthermore, suppose that there exists
a sequence {sy tnen such that

n—roo

lim s, = oo, SL;};(sz(sn)Hco + [[pe(sn)|lco) < 400, nl;rgo A(sp) =00.  (6.2)

Then limy, o0 (|| pi(sn)llco + llpe(sn)ll 1) = 0.
Proof. First, it is clear from (6.1¢) and (6.1e) that

sup [V (sn)llc> < Csupdlipi(sn)llce + llpe(sn)lleo} < +oo. (6.3)

Solve (6.1a) for 9,.p; and write h explicitly from (1.3) to obtain

b NV AN v
0.V + N ) 0.V + AT v+ A

€

» a exp

ampi =

From this, (6.2), and (6.3), we see that sup,,~1 [|pi(sn)||c1 < 400 and thus there exist
a subsequence [still denoted by s,] and (pf, p5, V*) such that

Asn) — oo in R,

Pi (Sn) - P;k m CO([07 L])u (6 4)
pe(sn) — pi in L*®(0,L) weakly-star, '
V(s,) — V* in CYJ0,L]),
pi(0)=V*(0) =V*(L) =0, (6.5)
pi 20, pg>0. (6.6)
For the completion of the proof, we claim that it suffices to prove the identity
L L
—or [ piwdy o) =a [ ndy e (6.7)

In order to prove this claim, first note that (6.7) implies that p’ is a continuous
function. Now multiplying the identity by e®*, we have

L L
o (e‘” / Pe(y) dy) = —ay / pe(y) dye™ a.e.
x 0

1Lemma A.2 ensures that we can have a sparking voltage VCJr under the inequality v(1 +~)~! >
e~ol,
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Then integration over [0, L] leads to

L
/0 pi(y) dy {1 —~(e* —1)} =0,

which together with the assumption (1 +v)~! # e~*% means that ||p}||z: = 0. We
also see from (6.4) and pc(s,) > 0 that

L L
Hpe(sn)”Ll = /0 1 'pe(snux) dr — ‘/0 1- pZ(JJ) dr =0 asn — oc. (68)

It follows that ||pe(sn)|zr — 0 for the whole original sequence. Furthermore, solving
(6.1a) with (6.5), we have

pilsnsa) = ot / " K (9)pe(sm ) dy < Cllpe(sn)le, (6.9)
where
L -b |6mv(5nay) + )‘(Sn)|
Enly) := exp (|azv<sn, e A(snn) 0,V (5m2) + Asn)

Here we have used (6.3) in derving the last inequality. Together with (6.8) this
completes the proof of the lemma.

It remains to prove (6.7). Integrating (6.1b) over [z, L], using (6.1d), and multi-
plying the result by A=!, we obtain

- 7:—: <8ﬂi\(L) + 1) pi(L) + <8IVT(I) - 1> pe(x) + iazpe(x)

- / P <|amv<_yl>) + A|)

We take this identity at s = s,, and look at the behavior of each term as s, — co. We
multiply it by a test function ¢ € C2°((0, L)), integrate it over (0, L), and let n — oo.
Then we notice from (6.2)—(6.4) that

e(%ﬂ)msm /¢ )dz — 71@ /¢
/0 (% + 1) Pe(sn, 2)¢(z) da —>/0 ol () o(z) da

b1 b1
/0 Xawpe(sn,:v)qﬁ(:v) dx = _/0 Xpe(sn,x)awﬂx) dx — 0.

2:V(y)
A

+ 1| pe(y) dy.

Furthermore, there holds that

/OL / P <|amv<sn,;§7 + A(sn>|>

=1+ Ion,

02V (50, 9)

A(sn) o

p@(Sn, y) dy] (b(x) dx
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Do = /OL l‘l L {eXp (|8xV(sn,;;)+ A(sn)l)

where

Then it is also seen from (6.2)—(6.4) that

_b axv(snay)
I o <|lpellprll@l Ly sup exp( > 1| -1 =0,
T1nl < llpellzr )l S 0V (mry) - Ao Non)
L Yy
I2,n = a/ Pe(Smy) |:/ (b(d?) dI:| dy
0 0
L Yy L L
so [ o) [ owar a= [ la [ dy} B(a) da.
0 0 0 z
Therefore, we conclude that
k; o
D) =a [ Wy (6.10)
Comparing with (6.7), it is left to show that
A
P =a)” [ ni)dn (6.11)
i Jo

Indeed, plugging (6.11) into (6.10) leads to (6.7). Evaluating (6.9) at x = L, we have

ke [*
pi(sn, L) = a?/ K (y)pe(sn,y) dy.
i Jo
Now K, — 1 uniformly and p.(s,) — p} in L*° weakly-star. Therefore, letting
n — 0o, we get (6.11) in the limit. O

Appendix A. Roots of the Sparking Function D. In this appendix we
investigate the roots of D(V,). The first lemma means that in the case of Figure 3,
which we discussed in our first paper [19], D always has at least one root.

LEMMA A.1. (i) If maxy,~og(V.) > n%/L?, then D(V.) has at least one root V.
that satisfies g(V.1) < w2/L? in the interval (0, V). (i) In addition, if

a>4"teb+er?h !, (A1)

then maxy, <o g(V.) > m2/L?.

Proof. (i) Since max g > 0, the function g has exactly two positive roots. Define
Ve by

gV =25, (V) >0 (A-2)
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A

Fic. 3. local maz is greater than w2/ L?

as in Figure 3. We have

D(V})=-1- 1176V:/2 <.

In addition, limy, o D(V.) = ﬁ > 0. So we see that D(V.) has at least one root V.
that satisfies (3.2) on the interval (0,V.*). For (ii) we simply note that (A.1) implies
that g(b) > n%/L% O

We also can find a sufficient condition for the existence of roots of D that is caused
by the y-mechanism. In this case it does not matter whether or not maxy,_ ~g g(Ve) >
72 /L? holds.

LEMMA A.2. Suppose that
Y1 +7)"t > ek, (A.3)

Then D(V..) has at least one root.

Proof. First limy, o D(V.) = ﬁ > 0 holds. We also see that u = Ly/g(—V;) =
V./2 —aL + O(V, ') as V. — oo. Thus
D(V:J) —alL B

lim = —emal T
Vcinoo eVe/2 € 1+’}/< ’

which means limy, o, D(V.) = —oc. Hence D has a positive root. O

We remark the roots in Lemmas A.1 and A.2 are sparking voltages. Indeed for a
fixed triple (a,b,7) in the open set {(a,b,7) € (R4)% ; either (A.1) or (A.3) holds},
the sparking function D has a positive root for any triple in a neighborhood of it.

In the next lemma, we find a candidate of the anti-sparking voltage V. Therefore
alternative (B) in Theorem 5.5 is an actual possibility.

LEMMA A.3. Let (A.1) hold. There exists a positive constant vy such that if
v < 7o, then D(V..) has at least two roots V.| and V} with (3.2).

Proof. We know from Lemma A.1 and its proof that a root V, with (3.2) exists
in the open interval (0, V*). Let us seek another root V}. The graph of g is sketched

in Figure 3 and thus V* is the unique value such that g(V.#) = Z—z and ¢'(V#) < 0.
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The function g has three roots 0, A*, and A# such that 0 < A* < V. < V# < A#.
We emphasize that ¢ is independent of 7. Now consider the function D on the interval
[V#, A#]. Evaluating D(V,) at the point V. = V., we have

DVH#)=—-1— 1 ¢V¥/2 <,
1+~
On the other hand, evaluating D(V,) at the point V. = A#, we have

N
DA#) =1+ " — T A"/25
(A7) Ty 1—1—76 -

where the last inequality is valid for suitably small v. Thus there must be a root in
between; that is, D has a root with (3.2) in the open interval (V.#, A#). O

The next lemma states a sufficient condition for the absence of any root of D.
LEMMA A.4. Ifa <47 teb and v(1+7)"t < e 2%L hold, then D(V,) has no root.

Proof. We first claim that g(AL) is negative for any A = V./L € (0,00) if and
only if a < 47 eb. Indeed, g(AL) < 0 holds if and only if ae=%/* < % holds. By taking
logarithms, we see that g(AL) < 0 is equivalent to G(\) := —log A— % +loga+logd <
0. It is straightforward to check that G attains a maximum at A = b. Furthermore,
the maximum is less than zero if and only if @ < 4~ 'eb. This proves the claim.

For any A = V./L > 0, the negativity of g(AL) implies that

= # in - — T e
D(AL) = cosh(Ly/=g(A\L)) + vk h(Ly/=g(AL)) = 5 g o

> eL v —9(AL) - ﬁeéll (A4)

because
A - A
2y/—g(AL)  24/X\?/4
and cosh z + sinh z = e®. Now we note that

VIO - 3 = -h) (VgD +3) > —h()(3) 7 > ~2a.

So the right side of (A.4) is greater than

AL,
e2lfe2al _ 15120

by hypothesis. O

Independently, it can be shown numerically that D(V.) has a unique root or
many roots for suitable choices of L, a, b, and . To illustrate this, the graphs of
(1+~)e~Y/2D(V,) are sketched in Figures 4 and 5 for the case L =1, a = 3, b = 4,
v =5 and for the case L =1, a =70, b= 0.1, v = 0.1, respectively.

Appendix B. The Sparking Voltage V.. In this brief appendix we illustrate
the location of the sparking voltage if 7 is very small or very large. Let V* be defined
in (A.2).
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4+ 4l
2F 2F
\\ 20 20 o0 % 100 \/ #\/h 3 3 s
2t -2t
-4+ -4
Fic. 4. unique root Fia. 5. many roots

LEMMA B.1. Suppose that maxy,~og(Ve) > w2 /L? (see Figure 3). If vy is suffi-
ciently small, then V] < V* and % <g(V]) < z—i
Proof. We know from Lemma A.1 that V! < V* and ¢g(V,J) < z—z It only remains

2

to show that g(V.f) > 1r=z- By continuity it suffices to prove the strict inequalities of

the conclusion in case 7 = 0. We begin by proving that g(V./) > 0. On the contrary,
suppose that g(V,J) < 0. This assumption and v = 0 lead to D(V,) > 0, which
contradicts to the fact that V. is the sparking voltage, that is, D(V,}) = 0. Now let

us suppose that 0 < g(V.[) < %. We see from D(V,[) = 0 that

v = —cot <L g(vj)).

2L4\/g(V)

The signs are contradictory. Thus we conclude that g(V,[) > %. O

LEMMA B.2. Suppose that maxy,~o g(Ve) > 0 (see Figure 1). There exists I' > 0
such that for v > T, we have V] € (0,A*), where A* is the smallest positive root of
g(Ve) = 0.

Proof. We first see that limy, .o D(V;) = ﬁ > (. Evaluating D at V. = A* and
using g(A*) = 0, we have

o A* v ooar 1 A* 1 v A\ 2
DA") =1+ 5 1—|—’ye <1—|—’y(1+ 2) ( ) < 0.

In deriving the last inequality, we have taken - suitably large. Therefore, the inter-
mediate value theorem gives V.| € (0,A*). O
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