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INVERSION OF A NON-UNIFORM DIFFERENCE OPERATOR AND
A STRATEGY FOR NASH-MOSER˚

BLAKE TEMPLE: AND ROBIN YOUNG;

Abstract. We consider the problem of inverting the linear difference operator ΔΦrvs “ v ˝
Φ ´ v and obtaining bounds for the inverse operator, where Φ is a non-uniform shift on the circle.
This represents the scalar version of a linearized difference operator arising in the construction of
periodic solutions to the compressible Euler equations by Nash-Moser methods. We characterize the
degeneracies in the linearized operators, thereby describing the complications that can arise in the
application of Nash-Moser iteration to quasilinear problems. There are two cases, resonant and non-
resonant, which correspond to the rationality or irrationality of the rotation number of Φ, respectively.
We introduce a solvability condition which characterizes the range of the difference operator, and
obtain uniform bounds for the inverse operator Δ´1

Φ on this range in both cases, but our bounds are
not immediately expressible in terms of standard Cr or Sobolev norms. In the resonant case, the
bound is in terms of the inverse width of “Arnold tongues”. In the non-resonant case the solvability
condition simplifies and we translate our estimate into uniform estimates on Sobolev norms with a
uniform loss of derivatives, as required for the Nash-Moser method. Our analysis is based on the
introduction of the “ergodic norm”, which in addition provides an effective rate of convergence in
the classical ergodic theorem.
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1. Introduction. We develop estimates for inverting non-uniform difference op-
erators which arise in authors’ program to prove the existence of periodic solutions
of the compressible Euler equations. To identify the difficulties that can arise, we
address the general case of a non-uniform difference operator on the circle with an
arbitrary constant drift term. When the operator has sufficiently large drift it has no
fixed points, and this general case more accurately addresses the difficulties in the Eu-
ler problem than the zero drift case which we addressed in our earlier paper [16]. We
consider smooth difference maps on the circle defined by a shift Φptq “ t` θ`αφptq.
For each such Φ, we define the shift operator by SΦrvs “ v ˝ Φ, and the correspond-
ing difference operator ΔΦ “ SΦ ´ I. Here θ is the drift, α the amplitude, and
φ is the perturbation from pure rotation, assumed to be any C2 periodic function
with non-degenerate zeros, the prototype being φptq “ sin t ` Opαq, motivated by
[11, 14, 15]. The problem of periodic solutions to compressible Euler by Nash-Moser
methods leads to the problem of inverting linearized difference operators which are
vectorized versions of ΔΦ.

To begin, we identify a solvability condition for both resonant and non-resonant
θ, which provides a necessary and sufficient condition for the existence of an inverse
for ΔΦ. We prove that in the resonant case of rational Poincare rotation number
ρpΦq, the norm of Δ´1

Φ is on the order of the inverse width of the “Arnold Tongue”,
a mathematical construct whose width is difficult to estimate. On the other hand,
for irrational rotation numbers, we establish that the solvability condition can be
expressed in terms of an ergodic average. We then introduce what we call the “ergodic
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norm”, a new norm in terms of which the difference operator becomes an isometry.
The problem then is to estimate the ergodic norm in terms of the classical Sobolev and
Hölder norms. We accomplish this by conjugating the shift map Φ to a pure rotation
Rρ. This is based on the conjugation developed in Herman’s fundamental paper [8]
on circle maps, and we use this to connect the subject of circle maps to our problem
of estimating the ergodic norm. This yields bounds for the inverse operator Δ´1

Φ with
a loss of derivatives depending on how far the rotation number is from rational. This
is precisely the loss of derivatives estimate required to apply a Nash-Moser version
of Newton’s method. For completeness we record relevant theorems from Herman’s
paper in the Appendix.

The difference operator ΔΦ here is based on a nonlinear Burgers model which has
no non-trivial kernel. Because of its elemental nature, we believe that this problem
is of fundamental importance in its own right. However, we believe that the essential
difficulties dealt with in inverting the linearized operator ΔΦ also accurately reflect
essential structural issues which apply in the context of the compressible Euler equa-
tions – the case when there is a nontrivial kernel in the nonlinear problem. This
analysis suggests a new strategy for expunging parameters in Nash-Moser iterations
for quasilinear problems. The idea is that, for fixed φ, the Poincare rotation number
ρpθq is a Cantor function which depends continuously and monotonically on θ, reflect-
ing the complicated nature of the set of “bad” resonant and near resonant drift angles
θ on which Δ´1

Φ is not uniformly bounded. Indeed, the Arnold Tongues, intervals
of positive measure in θ where the periodic structure is maintained, get mapped to
rational rotation numbers, a set of measure zero in ρ. Our new strategy for Nash-
Moser, then, is to fix the rotation number ρ at the start of a Newton iteration, with
the idea to solve for the parameter θ which gives that rotation number ρ at each step
of Nash-Moser, this being accomplished by appropriate choice of the constant state,
a free parameter in the Euler problem. By this method one would obtain the uniform
loss of derivatives associated with any fixed rotation number ρ at each Newton step,
the result being to effectively expunge a Cantor set of bad values of θ by means of
the controllable parameter ρ.

We comment that Nash-Moser methods have been successful in obtaining peri-
odic solutions to semi-linear problems, [3], but the methods seem not to have been
successfully applied to quasi-linear problems like compressible Euler. The difference
between semi-linear and quasi-linear is that in the semi-linear problem there is a fixed
set of characteristics, but in quasi-linear problems the characteristics are different in
each linearized shift operator whose inverse must be estimated at each step of the
Newton method [3, 15]. Our paper here thus addresses the essential problem of in-
verting difference operators based on linearized shift operators with bounds uniform
in amplitude α, i.e., uniform over the characteristic fields on which they are based. In
this sense, the operator ΔΦ represents the simplest example of the linearized operators
which emerge in quasi-linear problems.

In authors’ prior work on the problem of constructing periodic solutions of the
Compressible Euler Equations by Nash-Moser Newton methods, we realized that the
“wall” in these methods is the lack of estimates for the inverses of operators which
impose periodicity conditions in terms of “shift operators”. The simplest of these
is the difference operator ΔΦrus “ SΦrus ´ u, where SΦrus is the time one map of
the leading order part of the linearization of Burger’s equation ut ` uux “ 0 about
some fixed periodic solution, [14]. Our program now is to understand the problem of
inverting such linear shift operators by isolating phenomena in models simpler than
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compressible Euler, and we propose that these simple models will uncover the hidden
difficulties for Nash-Moser problems involving shifts in more complicated settings.
Our starting point is [16] which describes the inverses of difference operators ΔΦ with
vanishing drift θ “ 0, and here we address the problem of incorporating a constant
drift term θ ‰ 0. Somewhat surprisingly, the problem of inverting shift operators
with non-zero drift presents a mathematical landscape which is much richer than the
case of zero drift resolved in [16].

In the problem without drift, the fixed points of the shift Φ determine fundamental
intervals for the difference operator ΔΦ, and estimates for the norms of the inverses
of difference operators are determined by the character of the shift operator at the
fixed points. When the drift is non-zero, there are two cases, depending on whether
Φ has periodic orbits or not, distinguished by the rationality of the Poincare rotation
number ρpΦq. When the rotation number is rational, ρ “ 2πp{q, then Φ has periodic
orbits of order q. In this case we show that the problem of inverting ΔΦ can be
reduced to our earlier case [16] by viewing the periodic points as fixed points of Φq.
The set of drift angles θ which produce periodic orbits are known as Arnold tongues,
and form a set of positive measure when α ą 0. Our estimate is essentially that
the inverse Δ´1

Φ is bounded by the inverse size of the corresponding Arnold tongue.
This width is the subject of the Arnold conjecture and we are unable to get rigorous
uniform estimates in the resonant case of rational rotation number. We do not know
of bounds strong enough to control the rate at which }Δ´1

Φ } blows up as α Ñ 0, which
would pose problems for the Nash-Moser method.

On the other hand, we prove that the norm of the inverses for drifts with irrational
rotation number are always uniformly bounded in what we call the “ergodic norm”,
a norm constructed in terms of ergodic sums. In fact the inverse Δ´1

Φ is an isometry
between the ergodic norm of the data and the Lipshitz norm of the solution. We
then use ergodic theory to bound the ergodic norm in terms of Sobolev norms with
a finite loss of derivative depending on how far the irrational rotation number ρ is
from the rationals. From this we obtain a uniform bound on the inverse Δ´1

Φ with a
uniform loss of derivative, off a set Eε of arbitrarily small Lebesgue measure μpEεq “ ε
containing the rationals, but the bound on Δ´1

Φ tends to infinity as ε Ñ 0. This is
precisely the type of estimate utilized by the Nash-Moser method.

To state our results precisely, define

ΔΦv :“ SΦv ´ v “ w, (1)

where SΦ is defined by

SΦv “ v ˝ Φ, so that SΦvptq “ vpΦptqq, (2)

and Φptq has the form
Φptq “ t` θ ` αφptq. (3)

Again, we call SΦ the shift operator, φ the perturbation, α the amplitude and
θ P p0, 2πs the drift. Assume φ is C2 continuous, has at least two isolated zeros,
and has non-zero derivative at any zero. The prototypical problem from [14] is the
case φptq “ sin t`Opαq.

Recall the following facts from the theory of circle maps Φ : S1 Ñ S1. The
translation number of the lift (3) (as a map RÑ R) is the average shift, given by

τpΦq “ lim
nÑ8

Φnptq ´ t

n
,
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which is independent of t for C1 functions Φ, and the rotation number is then given
by

ρpΦq “ τpΦq pmod 2πq,
representing the average rotation of the map Φ around the circle [9, 8, 4]. For fixed
C1 perturbation φ, and for

α ă 1{}φ1}8, (4)

the translation number τpΦq is a continuous monotone function of the drift θ, so the
rotation is locally continuous and monotone as a function of θ [9, 4]; for this paper we
always assume that (4) holds. The rotation number ρ “ ρpΦq depends on α, φ and θ,
but when α and φ are fixed we refer to it as ρpθq.

The ergodic properties of Φ vary depending on the rationality of rescaled rotation
number ρpΦq{2π. In particular, assuming (4), if ρ{2π P Q, then Φ has periodic orbits,
while if ρ{2π R Q, all orbits are dense and there is a unique invariant measure μ for
Φ, satisfying μpΦEq “ μpEq for all intervals E. We get uniform bounds by restricting
ρ to irrationals satisfying a Diophantine condition of order r, namelyˇ̌̌

ˇ ρ

2π
´ p

q

ˇ̌̌
ˇ ě Cpρq

qr
, (5)

for any integers p and q ą 0.
In the resonant case of rational rotation number, the inverse Δ´1

Φ in the Lipschitz
norm satisfies

}Δ´1
Φ }Lip ď Op1q

δΦq

, (6)

where δΦq is the width of the Arnold tongue corresponding to rotation number ρpΦq “
2πp{q. Because of the difficulties of estimating δΦq and enforcing the corresponding
solvability condition, we conclude that this estimate is not well-suited to the Nash-
Moser iteration. We suggest that this identifies the essential difficulties encountered
in applying Nash-Moser to periodic solutions of quasi-linear problems. Thus we focus
our attention on the non-resonant case of irrational rotation number.

In the non-resonant case, because the rotation number is irrational, all orbits are
dense and our solvability condition for the inverse Δ´1

Φ simplifies dramatically due to
the ergodicity of each orbit. Our main theorem (Theorem 5, stated and proved below)
states that in this case ΔΦ is invertible with finite loss of derivatives as measured
in classical function spaces, estimates perfectly suited to Nash-Moser methods. We
let W k,p denote the usual Sobolev space of 2π-periodic functions whose k-th weak
derivative is in Lp, and let Cr,ν denote the space of 2π-periodic functions whose r-th
derivative is Hölder continuous of order ν [6].

Theorem 1. Let Φ be a fixed shift of the form (3), whose rotation number
ρ “ ρpΦq is an irrational number which satisfies the Diophantine condition (5) of
order r, and assume w satisfies the solvability condition

ż 2π

0
w dμ “ 0, (7)
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where μ is the invariant measure of Φ. Then, for 1{2 ă ν ď 1, p ě 2, and integers
� ě 1 and �1 “ �`1, there exists a 2π-periodic function v, unique to within a constant,
which solves ΔΦrvs “ w, with estimates

}v}C�,ν ď K }w}C�`r,ν , or }v}W �1,p ď K }w}W �1`r,p . (8)

That is, we have uniform bounds on Δ´1
Φ with a uniform loss of r derivatives.

For the proof, given in Theorem 5 below, we introduce what we call the “ergodic
norm” ~ ¨~, defined as follows. Let V denote the set of functions Lipschitz continuous
on the circle, let V0 denote the subset of V satisfying (7), and define

~w~ :“ sup
t0,k

ˇ̌̌ řk´1
j“0 wptjq

ˇ̌̌
|tk ´ t0| , and W :“

!
w P V | ~w~ ă 8

)
, (9)

where tj :“ Φjt0. The ergodic norm precisely characterizes the bound on the inverse
Δ´1
Φ as stated in the following lemma.

Lemma 1. The difference operator ΔΦ “ SΦ ´ I : V Ñ V0 is invertible on
the subset W Ă V, in the following sense: Given w P W, there is a unique v P V0,
denoted Δ´1

Φ w, such that ΔΦv “ w, and moreover, this inverse is bounded in the
operator norm,

}Δ´1
Φ }WÑV0 “ sup

wPW

}Δ´1
Φ w}Lip

~w~ “ 1.

Interestingly, the ergodic norm introduced here provides an effective estimate for
the rate of convergence of ergodic averages in the classical ergodic theorem, as stated
in the following corollary.

Corollary 1. If ~w~ ă 8, then for every k P Z, we haveˇ̌̌
ˇ̌1
k

k´1ÿ
j“0

wptjq ´ 1
2π

ż
w dμ

ˇ̌̌
ˇ̌ ď ~w~

ˇ̌̌
ˇ1k ptk ´ t0q

ˇ̌̌
ˇ .

Lemma 1 shows that the inverse Δ´1
Φ is an isometry between the the ergodic norm

on W and the Lipschitz norm on V0 for each irrational rotation number ρ P 2πQc.
The main issue is that there is no uniform bound on the ergodic norm in terms
of classical Sobolev norms, with a finite loss of derivatives. In Corollary 5 below,
we give a counterexample demonstrating that no such bound exists uniformly for
irrational ρ. Our idea to prove Theorem 1 is to use the ergodic theory of circle maps
to get a uniform estimate by restricting ρ to those values which satisfy a Diophantine
condition (5). By this method we are able to identify and remove a Cantor-like set
of near-resonant values of θ on which Δ´1

Φ is not uniformly bounded. That is, by
expunging those ρ which do not satisfy a Diophantine condition, and then solving for
θ, we characterize the desired set of drift values θ for which the norm of the inverse
Δ´1
Φ meets a uniform bound in Sobolev norms, with a uniform loss of derivatives. We

expect that this estimate will apply to Nash-Moser iterations for quasi-linear problems
because of the freedom to choose the constant state, as explained above.

The paper is laid out as follows: in Section 2, we recall the results from our pre-
vious paper [16], which is the case of zero drift θ “ 0. We also show that the resonant
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case can be reduced to this case by factoring the difference operator corresponding to
finite powers of the shift Φ. In Section 3, we obtain a bound for the inverse in the
resonant case subject to a solvability condition. Our inverse in this case is estimated
in terms of the inverse width of the corresponding Arnold tongue. Obtaining uniform
estimates is problematic in this case for two reasons: it is difficult to interpret the
solvability condition, and estimates for the inverse widths of Arnold tongues are not
currently available. In Section 4, we consider the case of irrational rotation number,
and introduce the ergodic norm, in terms of which we characterize the solution of (1).
The solvability condition, which describes the range, reduces to the simple mean zero
condition (7), and we use the ergodic theory of circle maps to describe our bounds
in terms of finite loss of derivative in Sobolev norms. In Section 5 we discuss our
proposed strategy for applying these estimates in a Nash-Moser iteration. In a brief
appendix we list relevant results from the theory of circle maps.

2. The case of zero drift. In our previous paper [16] we considered the case
of zero drift θ “ 0, and we now recall the relevant definitions and results from that
paper. We proved that the difference operator ΔΦ is invertible on its range, with
bound

}Δ´1
Φ } ď

K0
α

, where ΔΦ “ SΦ ´ I, (10)

and where the constant K0 depends only on the perturbation φ and not on the am-
plitude α in the shift

Φptq “ t` αφptq. (11)

We begin by recalling the main theorem from [16]. The starting assumption is that
φptq is Lipschitz continuous, has at least two zeroes, and near any zero t˚ of φ we
have the Taylor estimate

φptq “ φ1pt˚q pt´ t˚q `O
`pt´ t˚q2

˘
with φ1pt˚q ‰ 0. (12)

From this assumption, we identified a solvability condition that deteremines when the
target w is in the range of ΔΦ, namelyÿ

kPZ
wpΦktq “ B, (13)

B being some constant, for any t between two roots of φ. In particular, continuity
implies that wpt˚q “ 0 at any root of φ, and this in turn implies convergence of the
series in (13). The constant B is the total growth of the solution v over the interval,

vpt`8q ´ vpt´8q “ B. (14)

In particular, if φ has exactly two zeroes, then these split the circle into the non-
overlapping intervals tφ ą 0u and tφ ă 0u, and the roots t´8 and t`8 such that
φ1pt´8q ą 0 and φ1pt`8q ă 0 are the unstable and stable equilibria on each interval
separately. This implies that the constant B of (14) is the same for both intervals
tφ ą 0u and tφ ă 0u, so (13) must hold for each nontrivial orbit of Φ, with the same
constant B.

If w satisfies the solvability conditions (13), (14), then we obtained the explicit
formula for the solution v of the equation

ΔΦv “ `SΦ ´ I˘
v “ w, so that vpΦtq ´ vptq “ wptq.
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The solution v is uniquely determined up to constant v´8 by the explicit formulae

vpt´8q “ v´8, vpt`8q “ v´8 `B, and

vptq “ v´8 `
ÿ

nă0
wpΦntq, t ‰ t˘8. (15)

The main theorem from [16], which provides bounds for the solution, can be stated
as follows.

Theorem 2. For shift Φ given by (11), there exist constants αφ and Kφ, de-
pending only on φ, such that, if α ă αφ and w P C0,1rt´8, t`8s satisfies wpt´8q “
wpt`8q “ 0 together with the solvability condition (13), then the equation

ΔΦvptq “ vpΦtq ´ vptq “ wptq
has a solution v P C0,1rt´8, t`8s, uniquely determined up to constant, which satisfies

}v}Lip ď Kαφ }w}Lip, (16)

so

}Δ´1
Φ }Lip ď Kαφ, (17)

where

Kαφ “ Op1q
}αφ}Sup

. (18)

We proved the theorem for several norms, each of which must dominate the
Lipschitz norm } ¨ }Lip. In particular, the result holds for any Cp norm, provided
φ P Cp`1, and it would also follow for general Hs norms, provided s is large enough.

Recall that we proved the theorem by restricting the equation to the intervals cut
out by the zeroes of φ, and our solvability condition and solution depend on the fact
that the shift Φ defines a monotone discrete dynamical system on each such interval.

Note that, starting with φ0ptq P C2 satisfying our assumptions, we can perturb
by a nonzero drift α γ for any constant γ such that

minφ0 ă φ0 ď γ ď φ0 ă max φ0,

without affecting the result of the theorem. Thus although our result is stated for no
drift, this actually includes the case of small drift. We state this as a corollary.

Corollary 2. Suppose that the perturbation φ0 is C2, has only two zeros, and
changes sign at both of these. Then, given a compact interval Γ Ď pminφ0,max φ0q,
there is a constant KΓ such that for any γ P Γ, the operator

ΔΦ “ SΦ ´ I, where Φptq “ t` α pφ0ptq ´ γq,
is invertible on its range, with

}v} ď KΓ
α
}w}, so that }Δ´1

Φ } ď
KΓ
α

.

Note that because we have assumed only two roots, the two intervals, say
rt´8, t`8s and rt`8, t´8 ` 2πs, form a non-overlapping cover of the whole circle,
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with φp¨q´γ ą 0 and φp¨q´γ ă 0 on pt´8, t`8q and pt`8, t´8`2πq, respectively. It
follows that the forward and backward limits are the same for both intervals modulo
2π, and that

t`8 “ lim
kÑ8Φkt and t´8 “ lim

kÑ´8Φkt

coincide for all points t ‰ t˘8 on the circle. In particular, imposing the solvability
condition on a single w requires that (13) hold for each point t ‰ t˘8 (with the same
constant). Because the roots t˘8 of Φ depend on α and γ, the actual range of ΔΦ, and
corresponding solvability condition, changes in a highly nonlinear and unpredictable
way. Even though we know of no procedure to satisfy the solvability condition, our
proof only requires that Φ have fixed points, and the conclusion continues to hold.

The lift of the shift function Φ : R Ñ R is nonlinear and 2π-periodic, so it
projects to a circle map S1 Ñ S1, where S1 denotes the unit circle parameterized by
angle θ P r0, 2πq. Our function space X is some Banach space of periodic functions,
or functions on the circle, X “ tu : S1 Ñ Ru with appropriate norm, say Cp or Hs

norm. Given 2π-periodic Φ : RÑ R, we define the shift operator

SΦ : X Ñ X by SΦpuq “ u ˝ Φ, so that SΦpuqptq “ upΦtq,
which is linear and bounded on X. At this point we have not made any assumptions
beyond smoothness on Φ.

Next, given two shift functions Φ1 and Φ2, our shift operators satisfy

SΦ1

“SΦ2u
‰ “ SΦ1

“
u ˝ Φ2

‰ “ u ˝ Φ2 ˝ Φ1 “ SΦ2˝Φ1u,

so that SΦ1SΦ2 “ SΦ2˝Φ1 , and in particular

pSΦqk “ SΦk ,

for k P N. Moreover, for Φ invertible, which is always the case for us, this last
expression holds for all integers k P Z.

The above identities express the fact that the shift operators on X form an algebra
(non-commutative with identity), and in particular we can make sense of the partial
Neumann series,

SΦq ´ I “ `SΦ ´ I˘`I ` SΦ ` ¨ ¨ ¨ ` SΦq´1
˘
, (19)

and these last two factors commute. In the next section we will use this factorization
in the resonant case to reduce the case of nonzero drift to that of zero drift, by showing
that some power of Φ has a fixed point when the winding number ρpΦq is rational.

3. Resonant Case. In this section we address the problem of estimating the
inverse of ΔΦ in (1), in the case when the rotation number is rational, ρ “ 2πp{q,
taken in lowest terms. To start, we show that for such ρ, Φq has a fixed point,
and so our problem reduces to the previous case of no drift. From this we deduce
a solvability condition which characterizes the domain and range of (1) when Φ is
replaced by Ψ “ Φq. An argument based on (19) together with the zero drift case [16]
shows that ΔΦ is invertible. To apply Theorem (2) to get a bound on the inverse of
ΔΦ we need a bound on the amplitude of Ψ, which we denote by δΨ, c.f. (16)-(18). We
then give an argument that the amplitude δΨ is on the order of the size of the Arnold
Tongue, an open set of drifts angles around each θ with rational rotation number, on



INVERSION OF A DIFFERENCE OPERATOR WITH DRIFT 273

which the rotation number is constant, a set of positive measure in θ when α ą 0, [2].
This, then, would imply that the inverse of ΔΦ is on the order of the inverse size of the
Arnold Tongue. The size of Arnold tongues is the subject of the Arnold conjecture.
Based on these arguments, the norm of the inverse Δ´1

Ψ is on the order Opαqq. We
end the section with a brief discussion of Arnold tongues and the conjecture, which to
our knowledge remains unsolved. The difficulty in analyzing the solvability condition
and the problem of estimating the sizes of Arnold Tongues clarified in this section
for the resonant case of rational rotation number, leads us to establish the bounds
we seek on the inverse of ΔΦ in the non-resonant case of irrational rotation number.
This is accomplished in the next section.

3.1. Periodic Points. Suppose that the shift Φ has the form (3), namely

Φptq “ t` θ ` αφptq,
with nonzero drift θ and amplitude α satisfying

α ! θ{2π ă 1,

so we are out of the zero drift regime of Corollary 2. That is, in this case, the
shift Φ has no fixed points, so we cannot apply our earlier result directly. Regarding
Φ : R Ñ R as (the lift of) a degree one circle diffeomorphism, or circle map, the
translation number τpΦq P R of Φ and corresponding rotation number ρpΦq P r0, 2πq
are defined by

τpΦq “ lim
nÑ8

Φnt´ t

n
“ lim

nÑ8
tn ´ t0

n
, and ρpΦq “ τpΦq pmod 2πq,

respectively. It is known [9, 4] that if ρpΦq is a rational multiple of 2π,

ρpΦq “ 2πp

q
,

in lowest terms, then the map Φ has periodic points of period q, so that the q-fold
composition Φq has fixed points.

Furthermore, Φq1 has no fixed points for q1 ă q. It follows that

Φqptq “ t` q θ `Opαq,
and thus qθ “ Opαq. Therefore Ψ :“ Φq can be written

Ψptq “ t` α rψ,

where rψptq depends on α, θ and φptq. Since Ψptq has fixed points, and therefore has
zero drift, our previous result can be applied.

We cannot apply the results directly to Ψ “ t ` α rψ because rψ is not Op1q as
α Ñ 0, so we need to rescale to apply the theorem. To identify what play the roles of
α, φ and Φ in terms of our iterated map, we write

Ψptq “ t` δΨ ψptq, (20)

where the amplitude δΨ is defined to be the smallest value of Ψ´ t at critical points
of Ψptq ´ t,

δΨ “ min
Ψ1ptq“1

|Ψptq ´ t|, (21)
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and ψptq is rψptq after rescaling,
ψptq :“ pΨptq ´ tq{δΨ,

so ψ “ Op1q. In applying our previous results, δΨ and ψ now play the roles of α and
φ, respectively.

Theorem 2 gives us an immediate estimate of the inverse Δ´1
Ψ on each subinterval

invariant under Ψ in terms of δΨ. It remains to estimate the inverse Δ´1
Φ in terms of

Δ´1
Ψ on the full circle, and then to estimate δΨ in terms of α.
The iteration Ψ “ Φq has either 2q or q fixed points, as shown in the two cases

in Figure 1. Generically, Φq changes sign and there are 2q fixed points, while if Φq

has one sign, there are only q fixed points [9, 4]. We now apply Theorem 2 on each
of these separate intervals.

t0̊

t3̊

t1̊

t4̊

t2̊

J0

ΦJ0

J0

Φ5

t0̊

t˚p0
t3̊t˚p3

t1̊

t˚p1
t4̊

t˚p4 t2̊

t˚p2

J0

ΦJ0

J0

Φ5

Fig. 1. Orbit of a periodic point

To be specific, assume that there is some q such that Φ has a periodic point of
period q, or equivalently, the q-th power Ψ :“ Φq has a fixed point t0̊ . That is,

Ψt0̊ “ Φqt0̊ “ t0̊ , while Φjt0̊ ‰ t0̊ , 1 ď j ă q.

The orbit of t0̊ , which is the set ttj̊ “ Φjt0̊ | j “ 0, . . . , q´1u, cuts the circle S1 into q

non-overlapping intervals Jj “ ΦjJ0, where J0 “ rt0̊ , tm̊s, where tm̊ minimizes t˚
k ´ t0̊pmod 2πq. It follows that each Jj is invariant under Ψ “ Φq, namely ΨpJjq “ Jj , and

we can write

S1 “
q´1ď
j“0

Jj “
q´1ď
j“0

ΦjJ0, with
č

Jj “ ttj̊ u.

In Figure 2 left, we plot the first q “ 5 iterations of the shift map corresponding
to θ “ 2π{5, observing that Φq “ t ` Opα2q pmod 2πq, and on the right, we plot
Φq ´ t ´ 2πp as a regular plot, and as a perturbation of the unit circle in a polar
plot. By perturbing the drift θ as necessary, we assume that the periodic points are
generic, so we are in the left case of Figure 1.

Since by assumption, Φptq ´ t´ θ changes sign monotonically (as a function of t)
at each zero, the same is true for its q-th power, that is

Ψ1pt0q ‰ 1 whenever Ψt0 “ t0.

Thus the left picture in Figure 1, the generic case, is structurally stable under small
perturbations. The right picture of Figure 1 corresponds to a bifurcation in the
rotation number of Φ.
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0 π{2 π 3π{2 2π
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Φ1t
Φ2t
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0 π{2 π 3π{2 2π

´δΨ

0.0

δΨ

Φqt ´ t ´ 2πp, p{q “1/5

0

π{2

π

3π{2

Fig. 2. Iterations of shift map, θ{2π “ 1{5

In order to reduce the general case of rational rotation number ρ to case the case
of zero drift considered in Theorem 2, we next identify the intervals between fixed
points associated with powers of Φ.

Writing Ψ “ Φq, it is easy to see inductively that for all t0,

Ψ1pt0q “
q´1ź
k“0

Φ1ptkq, tk “ Φkt0, (22)

and in particular we have Ψ1pt˚
kq “ Ψ1pt0̊ q for each k. Since Ψ1pt0̊ q ‰ 1, it follows

that Ψ : J0 Ñ J0 has a second fixed point, which we label t˚p0 , and in particular Φ has
exactly 2q periodic points of period q. Thus the interval J0 (and each Jk) splits into
two subintervals,

Jk “ J 1
k Y J2

k , J 1
k “ rt˚

k , t˚pk s, J2
k “ rt˚pk , t˚

k`ms,
for k “ 0, . . . , q ´ 1, each of which is invariant under Ψ “ Φq. Moreover, by our
labeling system, we have for each k,

ΦJ 1
k “ J 1

k`1 and ΦJ2
k “ J2

k`1. (23)

For the purpose of estimating the inverse, it suffices, as in [16], to assume, without
loss of generality, that Ψ1t˚

k ą 1 and Ψ1t˚pk ă 1, the case when each fixed point t˚
k is

unstable and each t˚pk stable.

3.2. Inverting ΔΦ. Although the shift Φ has no fixed points, because we assume
here the rotation number ρ is rational, we’ve seen that Φ has periodic orbits of period
q, so that its q’th iterate Ψ “ Φq has fixed points, which cut the circle S1 into 2q
non-overlapping intervals J 1

k, J2
k . We now invert SΨ ´ I on each of these intervals,
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and combine these to get the full inverse of SΦ´I. Recall the partial Neumann series
(19) and write `SΦ ´ I˘´1 “ `SΨ ´ I˘´1`I ` SΦ ` ¨ ¨ ¨ ` SΦq´1

˘
. (24)

Our strategy is to obtain uniform estimates based on this factorization.
Recall that in inverting the difference SΦ ´ I, we are solving the equation`SΦ ´ I˘

v “ w

for v given w, and so referring to (19), this is equivalent to solving

`SΨ ´ I˘
v “ pw, where pw “ q´1ÿ

�“0
SΦ� w. (25)

Here pw represents the target function w summed across the intervals Jk.
We now apply Theorem 2 to the function Ψ on each of the intervals J 1

k and J2
k .

In order to do so, we must first apply the solvability conditions (13) and second,
understand the size of the bound which is O

´
1

δΨ

¯
, where δΨ is the amplitude, defined

in (21). Applying (13), (14) to each subinterval, we get, for each t1 P J 1
k

o, t2 P J2
k

o,ÿ
jPZ

pwpΨjt1q “ B1
k “ vpt˚pkq ´ vpt˚

kq, (26)

ÿ
jPZ

pwpΨjt2q “ B2
k “ vpt˚pkq ´ vpt˚

k`mq, (27)

since each fixed point t˚
k of Ψ is unstable. Lipshitz continuity of pw, together withpwpt˚q “ 0 implies convergence of the sums.

We now use (25) to express these conditions in w, namely

B1
k “

ÿ
jPZ

SΨj pwpt1q “
ÿ
jPZ

q´1ÿ
�“0

SΨj SΦ�wpt1q “
ÿ
nPZ

SΦnwpt1q,

where we have set n “ qj ` �. Thus for all t1 P J 1
k

o, and similarly t2 P J2
k

o, we have

B1
k “

ÿ
nPZ

wpΦnt1q and B2
k “

ÿ
nPZ

wpΦnt2q.

Since each tk P Jk can be written as Φkt0 with t0 P J0, the sum
ř

wpΦntq is indepen-
dent of k, so that we have B1

k “ B1
0 and B2

k “ B2
0 for each k. Also, adding equations

(26) and relabelling gives

q´1ÿ
k“0

B1
k “

q´1ÿ
k“0

B2
k ,

and we conclude that for each k, B1
k “ B2

k “ B, and our solvability condition is the
same as our previous one in [16], namelyÿ

nPZ
wpΦntq “ B, t ‰ t˚, and wpt˚q “ 0, (28)
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where B is a fixed constant, and t˚ are the periodic points of Φ, which is also the limit
set of the discrete dynamical system induced by Φ. With a slight abuse of notation,
we call the periodic points of Φ, which are the fixed points of Ψ, the limit set of Φ.
We call the expression

ř
nPZ wpΦntq the orbital sum of w, so our solvability condition

is simply that w vanish on the limit set of Φ, and all orbital sums are constant.
The solvability condition establishes the range of the operator ΔΦ, and assuming

this, we now have an explicit solution vptq of (1), unique up to constant. Namely,
from (15), we have for t P J 1

k
o Y J2

k
o,

vptq “ v´8 `
ÿ
ką0

pwpΨ´ktq “ v´8 `
ÿ
ką0

SΨ´k

q´1ÿ
j“0

wpΦjtq

“ v´8 `
ÿ

ną0
SΦ´nwptq “ v´8 `

ÿ
ną0

wpΦ´ntq.

Again this expression is independent of k, so it holds for all t not in the limit set of
Φ. The solution takes on the value v´8 on the backward ω-limit set ωpΦ´1q, and
v´8 ` B on the forward ω-limit set ωpΦq. The following theorem now characterizes
the solutions of (1) for continuous w.

Theorem 3. Assume that Φ has rotation number ρpΦq “ 2πp{q in lowest terms.
Suppose that w is continuous and satisfies the solvability condition (28), namely, w
vanishes on the limit set of Φ, and all non-degenerate orbital sums of w are constant.
Then the equation `SΦ ´ I˘

v “ w

has a continuous solution, given uniquely up to constant v´8 by

vpt´8q “ v´8, t´8 P αpΦq,
vpt`8q “ v´8 `B, t`8 P ωpΦq,

vptq “ v´8 `
ÿ

ną0
wpΦ´ntq, otherwise.

(29)

On the other hand, if the solvability condition (28) fails, i.e., any two orbital sums
are distinct, then there is no continuous solution for that w.

3.3. Estimate for Δ´1
Φ in the resonant case. Theorem 3 shows that the

inverse Δ´1
Φ is well defined on its range, namely the set of Lipshitz continuous w

which meet the solvability condition (28). We now obtain an estimate for the solution
operator Δ´1

Φ on its range. So assume a fixed rational rotation number ρpΦq “ 2πp{q
in lowest terms, let φ be a given smooth function, and consider α a small perturbation
and θ a controllable parameter, respectively. We show that for each each α ą 0 small,
and each rotation number ρ “ 2πp{q, there is an open interval of θ for which the
map Φ has periodic points of order q, and the same rotation number ρ. This is the
so-called Arnold tongue, and Arnold’s conjecture is that the size of this open interval
is big Opαqq, [2, 9, 5, 7]. To clarify the issues, we assume φ is an analytic function.
In this case we prove that the width of the Arnold tongue is OpδΨq. Here δΨ is the
amplitude defined above in (21), corresponding to the value of θ at the “middle” of the
Arnold tongue when ρ “ 2πp{q. We begin with the following corollary of Theorems
2, 3:
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Corollary 3. The norm of Δ´1
Φ is given by

}Δ´1
Φ }Lip ď Op1q q

δΨ
. (30)

Proof. By (17), (18) with δΨ given by (21) in place of α, we have

}Δ´1
Ψ } ď

Op1q
δΨ

.

Also, SΦ is bounded, so each SΦk is bounded, k ě 1, and we have

}Δ´1
Φ } ď }Δ´1

Ψ } p}I} ` ¨ ¨ ¨ ` }SΦk´1}q ď Op1q q

δΨ
,

after using (24).

In order to estimate δΨ, we need to develop an expansion of Ψ in terms of our
original parameter α and perturbation φptq. To do this we make simplifying assump-
tions which allow us to develop the asymptotic expansion. This will in turn allow
us show that δΨ is of the order of the width of the Arnold tongue corresponding to
rotation number ρ.

Assuming now that φ is analytic, the k-th Fourier mode exists and decays like αk.
This means that after incorporating the 0-mode into the constant shift θ, the leading
order term of φptq is a 1-mode. By rescaling α and translating around the circle, we
can thus take

φptq “ sin t` α ϕptq, (31)

without loss of generality, and as above, we set

Φt “ t` θ ` α φptq. (32)

Denote the constant term of ϕptq by

ϕ0 “ 1
2π

ż 2π

0
ϕptq dt.

With these assumptions, we develop an asymptotic expression for the iteration Ψ “ Φq

and use this to identify the values of θ for which the rotation number is 2πp{q.
Lemma 2. For the shift Φ given by (32), with

θ0 :“ 2πp{q, and |θ ´ θ0| ď K α2,

the q-th iterate of Φ has the expansion

Ψt “ Φqt “ t` q θ ` α2q
´

ϕ0 ´ 1
4 tanpθ{2q

¯
` α3 F pt, α, θq, (33)

with F pt, α, θq “ Op1q depending on K and φ. In order for Φ to have rotation number
ρpΦq “ θ0, it is necessary and sufficient that Φ has a periodic point t˚ of period q.
This holds if and only if Φqt˚ “ t˚, and evaluating (33) at t˚, we have

q θ ` α2 q
´

ϕ0 ´ 1
4 tanpθ{2q

¯
` α3 F pt˚, α, θq “ 2πp. (34)
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We postpone the proof of Lemma 2 to the end of the section.
According to the lemma, Φ has rotation number ρpΦq “ θ0 “ 2πp{q if and only

if (34) holds for some t˚ P S1. For given φptq and fixed θ0, this condition generates
a closed set in the pα, θq-plane, which is an interval for each fixed α, known as the
Arnold tongue corresponding to ρ “ 2πp{q. Arnold’s conjecture is that the width of
this Arnold tongue is Opαqq, so without loss of generality it suffices to take K “ 1 in
Lemma 2, so that F is bounded in terms of φ alone.

In order to ensure (34) holds for some t˚, we now average it to find the “middle”
θ of the Arnold tongue. In (34), the only t dependence is in F , so we define the
function θpαq implicitly by setting

q θ ` α2 q
´

ϕ0 ´ 1
4 tanpθ{2q

¯
` α3 xF pα, θqy “ 2πp, (35)

where xF y is given by

xF pα, θqy :“ 1
2π

ż 2π

0
F pt, α, θq dt,

and we can express (35) in the equivalent form

xΨt´ ty “ 2πp.

The mean value theorem immediately implies the existence of some t˚ satisfying (34)
for θ “ θpαq, so that θpαq is indeed in the interior of the tongue.

In the following theorem we show that the width of the tongue is of the order
of Op1qδΨ{q for α small enough, where δΨ is defined by (21) for θ “ θpαq. Taken
together with (30) of Corollary 3, this means that our bound on }Δ´1

Φ } is Op1q times
the width of the Arnold tongue. In particular, if Arnold’s conjecture were shown to
hold, our estimate would be

}Δ´1
Φ } “ Op1qα´q,

for α small enough.

Theorem 4. For fixed rotation number θ0 “ 2πp{q, let θpαq be the middle of the
Arnold tongue and define δΨ according to (21). Then for α small enough, the Arnold
tongue has radius between δΨ{2q and 2δΨ{q.

Proof. For fixed α, let Ψ denote the function Ψ “ Φq obtained by setting θ “ θpαq,
so that

xΨptq ´ ty “ 2πp,

and let Ψ denote the function obtained for θ “ θpαq ` ε. Using the expansion (33),
we then get

Ψptq ´ t “ Ψptq ´ t` q ε`Opα2q,
and in particular,

BpΨ´ tq
Bε

ˇ̌̌
ˇ
ε,α“0

“ q.



280 B. TEMPLE AND R. YOUNG

It follows that provided α is small enough, and if |ε| ă δΨ{2q, then Ψ ´ t has the
same number of zeroes as Ψ´ t, while if |ε| ą 2 δΨ{q, Ψ´ t has a different number of
zeroes. Since the rotation number is characterizes by the number of zeroes, it follows
that while |ε| ă δΨ{2q, θ “ θpαq` ε remains in the tongue, while if |ε| ą 2 δΨ{q, θ has
left the tongue. The result now follows by monotonicity of Ψ as a function of θ for α
small enough.

We can obtain a picture of the Arnold tongues numerically, as follows. First, for
fixed α, solve (35) to get θ. This is easily accomplished by using a secant method, in
which the initial guesses for the iteration are

θ0 “ 2πp

q
and θ1 “ θ0 ` α2

´ 1
4 tanpθ0{2q ´ ϕ0

¯
.

Having found θ, we perturb this by ε ą 0 to find the bifurcation point, at which the
number of zeroes of Ψptq changes; this is one edge of the tongue. Similarly perturbing
by ε ă 0 locates the other edge of the tongue. Figure 3 shows a picture of the first
tongues, computed for the beginning of the Farey sequence of rationals,

1,
1
2

,
1
3

,
2
3

,
1
4

,
3
4

,
1
5

, . . . ,

which approximately orders the tongues by width. The left panel shows the tongues
only, while the right also shows the middles θpαq drawn as curves of fixed width.1
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Fig. 3. Arnold tongues: uncentered and centered

We end this section with the proof of Lemma 2. Our strategy is to assume (32),
(31), namely

Φt “ t` θ ` α φptq, where
φptq “ sin t` α ϕptq,

1This picture was generated by Becca Rosenblum as part of an REU project at UMass with the
second author.
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and bootstrap to get the leading order asymptotic expansion of powers of the shift
Φ. Here we regard ϕptq as encoding higher order interaction effects in the nonlinear
evolution operator, consistent with [11, 14]. We proceed with the details.

Proof of Lemma 2. Using (32), we write

Φ2t “ Φt` θ ` αφpΦtq “ t` 2θ ` α
`
φptq ` φpΦtq˘,

and inductively,

Φkt “ t` kθ ` α
k´1ÿ
j“0

φ
`
Φjt

˘
, (36)

and so in particular,

Φqt “ t` qθ ` α
q´1ÿ
j“0

φ
`
Φjt

˘
, with qθ « 2πp.

We will see that this last sum vanishes to order Opαq, as seen in Figure 2.
Assuming differentiability of ϕ, we bootstrap to get the leading terms of the k-th

iteration Φkt. First, we write (36) as

Φjt “ t` jθ `Opαq,
which in turn yields

Φkt “ t` kθ ` α
ÿ
jăk

φpt` jθq `Opα2q,

and substituting this back into (36) yields

Φkt “ t` kθ ` α
ÿ
jăk

φ
´

t` jθ ` α
ř

�ăjφpt` �θq
¯
`Opα3q

“ t` kθ ` α
ÿ
jăk

φpt` jθ ` αSjq `Opα3q

“ t` kθ ` α
ÿ
jăk

sinpt` jθ ` αSjq ` α2
ÿ
jăk

ϕpt` jθq `Opα3q,

where we have used (31) and written

Sj “ Sjpθq :“
ÿ
�ăj

sinpt` �θq for j “ 0, . . . q. (37)

One final expansion now yields

Φkt “ t` kθ ` α Skpθq
` α2

ÿ
jăk

“
cospt` jθqSj ` ϕpt` jθq

ı
`Opα3q. (38)

Considering the nonlinear evolution, the terms in (38) respectively represent transla-
tion, compression and rarefaction, and second order self-interaction effects. We note
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that the translation is by a zeroth order constant, compression is first order and a
1-mode, and the leading interaction term is quadratic, as expected.

We now calculate

Skpθq “
ÿ
jăk

sinpt` jθq “
ÿ
jăk

Im
`
eipt`jθq˘

“ Im
´

eit
ÿ
jăk

peiθqj
¯
“ Im

´
eit 1´ eikθ

1´ eiθ

¯
,

(39)

and similarly for
ř

jăq cospt ` jθq. In particular, when θ “ θ0 “ 2πp{q, we have
Sqpθ0q “ 0 and the Opαq part of Ψ “ Φq vanishes. That is, if we write

θ “ θ0 ` αθ1 ` α2θ2 ` . . . ,

then

Φqt “ t` 2πp` α
`
qθ1 ` Sqpθ0q

˘`Opα2q,
so we must take θ1 “ 0, which in turn yields θ “ θ0 `Opα2q.

We compute the next term in (38) similarly:

ÿ
jăk

cospt` jθqSjpθq “ 1
2

ÿ
jăk

ÿ
�ăj

`
sinp2t` jθ ` �θq ´ sinpjθ ´ �θq˘

“ 1
2
Im

” ÿ
jăk

eijθ
ÿ
�ăj

`
e2itei�θ ´ e´i�θ

˘ı

“ 1
2
Im

” ÿ
jăk

eijθ
´

e2it 1´ eijθ

1´ eiθ
´ 1´ e´ijθ

1´ e´iθ

¯ı

“ 1
2
Im

”
e2it

´ 1´ eikθ

p1´ eiθq2 ´
1´ e2ikθ

p1´ eiθqp1´ e2iθq
¯

´ 1´ eikθ

p1´ e´iθqp1´ eiθq `
k

1´ e´iθ

ı
,

and note again that all but the last term vanish for k “ q if θ “ θ0 “ 2πp{q. The last
term simplifies as

k

2
Im

1
1´ e´iθ

“ k

2
´ sin θ

p1´ e´iθqp1´ eiθq “
´k sin θ

4p1´ cos θq “
´k

4 tanpθ{2q .

Finally, suppose that ϕptq can be expressed as a sum of Fourier modes,

ϕptq “ ϕ0 `
ÿ
�ě1

a� cosp�tq ` b� sinp�tq.

Then, exactly as in (39), the last sum in (38) degenerates, namelyÿ
jăq

ϕpt` jθq “ qϕ0.

Putting all these sums together yields (33), thus completing the proof of the lemma.
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Although we have assumed analyticity for convenience, this argument applies
under the assumption that φ has a Fourier series expansion of order q.

In view of these computations and Arnold’s conjecture, we expect that if we were
to assume analyticity and continue this bootstrap and expand technique, then any
expansion in powers αk for k ď q´ 1 will similarly yield only 0-th order terms. These
in turn affect the location of the middle of the tongue but not the width. In general
we expect that the first non-cancelling term will appear in the Opαqq term. Thus our
expectation is that the width of the tongue will be at most Opαqq, although it may
prove to be a higher power of α in general.

We have obtained a bound on the inverse Δ´1
Φ for an open set of θ with fixed

rational rotation number ρ “ 2πp{q. At first sight it appears that we could now apply
these estimates in Nash-Moser, but it remains to address the following issues. First,
despite Arnold’s conjecture, we do not know of a uniform bound away from zero for the
width δΨ of the tongue in terms of powers of α. More troubling is that we do not have
a clear understanding of the solvability condition (28) beyond its abstract statement.
Specifically, in order to effectively check this solvability condition, it appears that we
need an a priori description of each of the orbits of Φ. For these reasons we now
consider the non-resonant case of irrational rotation number, where the results are
definitive.

4. Non-resonant case. We now condsider the non-resonant case, which occurs
when the rotation number ρpΦq is irrational. In this case Φ : S1 Ñ S1 has no periodic
orbits, and indeed all orbits ttk | tk :“ Φkt0, k P Zu are dense. We are only interested
in continuous solutions. To construct these, fix an arbitrary t0, and solve the difference
equation (1) directly, so that

vptkq “ vpt0q `
k´1ÿ
j“0

wptjq, k ě 1, (40)

and similarly for k ă 0. Having thus defined v on one orbit, the strategy of this
section is to extend it to all of S1 by continuity. This defines v only up to arbitrary
constant vpt0q, a constant which can be fixed by fixing a particular value vpt˚q or
choosing an average value of v.

In order to ensure that the solution so defined be Lipschitz continuous, we impose
the solvability conditionˇ̌̌

ˇ̌ k´1ÿ
j“0

wptjq
ˇ̌̌
ˇ̌ ď K

ˇ̌
tk ´ t0

ˇ̌
, for all k P Z, t0 P S1, (41)

on the data w, where K is a fixed constant. For each such w, we use (40) to define a
Lipschitz continuous solution v, and we seek bounds on the solution operator.

Our first task then is to show that (40) yields a well-defined solution which is
Lipschitz continuous. Thus, for fixed t0, which determines all tk, and given any t and
subsequence tjn Ñ t, inequality (41) implies

ˇ̌
vptjn

q ´ vptjm
qˇ̌ “

ˇ̌̌
ˇ̌ jn´1ÿ
k“jm

wptkq
ˇ̌̌
ˇ̌ ď K

ˇ̌
tjn
´ tjm

ˇ̌
.

Thus the subsequence tvptjnqu is Cauchy, so has a unique limit, and vptq is indeed
well-defined. To verify continuity of v, if t “ lim tjn

and τ “ lim tlm
are sequences
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converging to different limits, then for ε, δ small, and for n and m sufficiently large,ˇ̌̌
vptq ´ vpτq

ˇ̌̌
ď

ˇ̌̌
vptq ´ vptjnq

ˇ̌̌
`

ˇ̌̌
vptjnq ´ vptlmq

ˇ̌̌
`

ˇ̌̌
vptlmq ´ vpτq

ˇ̌̌
ď 2 ε`K

´
|t´ τ | ` 2 δ

¯
,

implying that the solution v is Lipschitz continuous with constant K. To show that
the solution v so constructed is independent of t0, note that since all orbits are dense,
by linearity the only continuous solution to`SΦ ´ I˘

vptq “ vpΦtq ´ vptq “ 0

is vptq “ v0 , for some constant v0 which is independent of t0. Thus v is well defined
and uniquely determined to within a constant.

Having shown the existence of a unique continuous solution up to arbitrary con-
stant, we now wish to find a bound for the solution operator w ÞÑ v. We first show
that the domain of this solution operator is the set of Lipshitz continuous functions
twu satisfying (41), and the range is the set of Lipshitz continuous tvu of zero ergodic
mean satisfying (7). Because we are solving the equation explicitly, this Lipschitz
estimate is the strongest possible, and we will see that this implies a hierarchy of
estimates in Sobolev spaces.

To establish norms, let V denote the set of Lipschitz continuous functions on the
circle,

V :“
!

v : S1 Ñ R | }v}Lip ă 8
)

, }v}Lip :“ sup
t‰τ

|vptq ´ vpτq|
|t´ τ | , (42)

and regard SΦ : V Ñ V, which is bounded in the operator norm by }Φ}Lip, so we take
the domain of ΔΦ to be V. Note that } ¨ }Lip is not a norm because it vanishes on the
set of constant functions, which is exactly the (continuous) kernel of ΔΦ “ SΦ ´ I.
Thus we let V0 denote the set V{„, where v1 „ v2 iff }v1 ´ v2}Lip “ 0, and without
confusion we equivalently let

V0 “
�
v P V | vpt0q “ v0

(
, (43)

for arbitrary fixed t0 and v0.
For the range, we use the solvability condition (41) to define the norm on the

range of ΔΦ directly. That is, set

~w~ :“ sup
t0,k

ˇ̌̌ řk´1
j“0 wptjq

ˇ̌̌
|tk ´ t0| , and W :“

!
w P V | ~w~ ă 8

)
,

where again tj :“ Φjt0. Evidently ~ ¨ ~ satisfies the triangle inequality, and since
in addition it scales with and dominates a multiple of the sup-norm, }w}8 ď
~w~{ inf |Φt ´ t| (by taking k “ 1), so ~w~ “ 0 implies w “ 0, and it follows
that ~ ¨ ~ is a norm. The completeness of ~ ¨ ~ follows from the explicit formula (40),
as follows: given a sequence wpnq which is Cauchy in ~ ¨~, define vpnq P V0 by (40). It
then follows that vpnq is Cauchy in V0, so converges to some v. Setting w :“ pSΦ´Iqv
gives the limit of wpnq.

Note that the condition (41) is mainly a restriction on w for values tk « t0, and
can be interpreted as a “zero average” condition on w. Moreover, by construction, the
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difference ΔΦ “ SΦ ´ I is a bounded operator V0 Ñ W, but the individual operators
SΦ and I are unbounded from V0 Ñ W Ă V because ~ ¨ ~ is not bounded by } ¨ }Lip.

We have built the spaces V0 and W so that the operator ΔΦ : V0 Ñ W is bounded
and invertible with bounded inverse, by solving the equation (1) explicitly via formula
(40). Recall that this construction is only possible if the shift Φ has irrational rotation
number, the case when there are no periodic orbits and all orbits are dense. We are
able to do this essentially because the target norm ~ ¨ ~ is based on the structure of
the shift Φ through the iterates tk. We summarize the foregoing in a lemma.

Lemma 3. The difference operator ΔΦ “ SΦ ´ I : V0 Ñ V0 is invertible on
the subset W Ă V0, in the following sense: given w P W, there is a unique v P V0,
denoted Δ´1

Φ w, such that ΔΦv “ w, and moreover, this inverse is bounded in the
operator norm,

}Δ´1
Φ }WÑV0 “ sup

wPW

}Δ´1
Φ w}Lip

~w~ “ 1.

We have exhibited spaces and norms on which the operator is an isometry from
pV0, } ¨ }Lipq to pW,~ ¨ ~q. It remains to estimate the norm ~ ¨ ~ in terms of classical
norms, such as Ck norms, in order to quantify the loss of smoothness in the inversion
process. Note that the sums

ř
wptjq resemble ergodic averages, so we look to apply

ergodic techniques [9, 17].
According to ergodic theory, the shift map Φ has an invariant measure, that is a

measure μ such that for each interval E, we have μpΦEq “ μpEq. This is obtained by
conjugating Φ to a pure rotation,

h ˝ Φ “ Rρ ˝ h, (44)

where Rρ is translation by the rotation number ρ of Φ, assumed here to be irrational.
According to [8], we can assume the conjugation h is C1 or higher by assuming Φ is
sufficiently smooth (at least C3). Since Lebesgue measure λ is invariant for Rρ, the
invariant measure μ is obtained by pulling back Lebesgue measure: that is, define
μpEq :“ λph Eq, so that

μpΦEq “ λphΦEq “ λpRρ h Eq “ λph Eq “ μpEq.
Recall the ergodic theorem states that

lim
nÑ8

1
n

n´1ÿ
j“1

wpΦjt0q “ 1
2π

ż 2π

0
w dμ. (45)

The following lemma shows that a necessary condition for solvability of (1) is that
this ergodic average vanish.

Lemma 4. Assume ρ is irrational. If ~w~ ă 8, then equation (7) holds, namelyż 2π

0
w dμ “

ż 2π

0

`
vpΦtq ´ vptq˘ dμ “ 0.

Proof. The condition ~w~ ă 8 implies existence of a function v such that wptq “
vpΦtq ´ vptq, so the lemma follows by invariance of μ.
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Our goal is now to show that
ş2π

0 w dμ “ 0, together with smoothness conditions
on w, are sufficient to imply ~w~ ă 8, which in turn implies invertibility of ΔΦ. To
do this, we bound the norm ~w~ in terms of Cr or Hs norms, allowing for a loss of
derivatives. This is accomplished in the following theorem.

Theorem 5. Suppose that the shift Φ has rotation number ρ satisfying the dio-
phantine condition ˇ̌̌

ˇ ρ

2π
´ p

q

ˇ̌̌
ˇ ě Cpρq

qr
, (46)

for all integers p and q ą 0, and assume Φ is smooth enough that the conjugation h
in (44) is Cr,ν or Hr`ν , respectively, for 1{2 ă ν ď 1. Assume further that w P Cr,ν

or Hr`ν , respectively, with
ş2π

0 w dμ “ 0. Then ~w~ is finite, with

~w~ ď K }w}Cr,ν or ~w~ ď K }w}Hr`ν , (47)

respectively, and in particular, the solution v “ Δ´1
Φ w exists and is Lipschitz, with

}v}Lip “ ~w~.
Proof. We begin by using the conjugation above to transfer the nonlinearity in Φ

over to h, effectively reducing the shift to the case of pure irrational rotation. That is,
given Φ, there is an h such that (44) holds, namely h˝Φ “ Rρ ˝h, and assume that Φ
is smooth enough that both h and h´1 are at least C1. Then, using the conjugation,
write τ “ hptq, so that t “ h´1τ , and

tj “ Φj t0 “ Φj h´1τ0 “ h´1Rj
ρτ0 “ h´1`τ0 ` jρ

˘
, (48)

so that in the variable τ , the shift is pure rotation: τj “ τ0 ` j ρ. We transfer this to
w, by setting W “ w ˝ h´1, yielding

wptjq “ W pτjq “ W pτ0 ` jρq, and w “ W ˝ h.

Since h is bi-Lipshitz, we have

|τ ´ τ 1| ď }h}Lip |t´ t1| and |t´ t1| ď }h´1}Lip |τ ´ τ 1|,
so

1
}h}Lip

ˇ̌̌ řk´1
j“0 wptjq

ˇ̌̌
|tk ´ t0| ď

ˇ̌̌ řk´1
j“0 W pτjq

ˇ̌̌
|τk ´ τ0| ď }h´1}Lip

ˇ̌̌ řk´1
j“0 wptjq

ˇ̌̌
|tk ´ t0| . (49)

It follows that the quantity sup | ř
W pτj q|

|τk´τ0| is equivalent to the norm ~w~, where the
denominator is measured on the circle,

|τk ´ τ0| “ |k ρ| mod 2π “ min
mPZ |k ρ´ 2πm|.

Now for integer q ‰ 0 and k ą 1, we estimate the sum (49) for a single q-mode,
Wqpτq “ ei q τ . For this Wq, we haveˇ̌̌ řk´1

j“0 Wqpτjq
ˇ̌̌

|τk ´ τ0| “
ˇ̌̌
ei q τ0

řk´1
j“0 ei q j ρ

ˇ̌̌
|k ρ| mod 2π

“
ˇ̌̌
ˇ1´ ei q k ρ

1´ ei q ρ

ˇ̌̌
ˇ 1
minmPZ |k ρ´ 2πm| .
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If mk denotes the integer closest to k ρ{2π, writeˇ̌
1´ ei q k ρ

ˇ̌
minmPZ |k ρ´ 2πm| “

ˇ̌̌
ˇei 2π q mk ´ ei q k ρ

k ρ´ 2π mk

ˇ̌̌
ˇ “ |i q ei q ξ| “ |q|,

by the mean value theorem. Thusˇ̌̌ řk´1
j“0 Wqpτjq

ˇ̌̌
|τk ´ τ0| “ |q|

|1´ ei q ρ| , (50)

which is independent of k. We now impose the diophantine condition (46) on the
(scaled) irrational rotation number ρ{2π: namely, ρ{2π is diophantine of order r if
there is some constant C “ Cpρq, such that, for any integers p and q ą 0,ˇ̌̌

ˇ ρ

2π
´ p

q

ˇ̌̌
ˇ ě C

qr
.

Since m1 is the integer closest to ρ{2π, again using the mean value theorem, it follows
that

|1´ ei q ρ|
|q| “ |ei 2π m1 ´ ei q ρ|

|q|
“ |2π i ei 2π ξpm1 ´ q ρ{2πq|

|q|
“ 2π

ˇ̌̌
ˇm1

q
´ ρ

2π

ˇ̌̌
ˇ ě 2πC

|q|r ,

(51)

so that the q-mode Wq satisfiesˇ̌̌ řk´1
j“0 Wqpτjq

ˇ̌̌
|τk ´ τ0| ď |q|r

2π Cpρq .

Assuming W is Cr, it can be written as a Fourier series,

W pτq “
ÿ
q‰0

γq ei q τ “
ÿ
q‰0

γq Wqpτq.

It follows that ˇ̌̌ řk´1
j“0 W pτjq

ˇ̌̌
|τk ´ τ0| ď 1

2π Cpρq
ÿ
q‰0

|γq| |q|r,

which together with (49) provides a bound for ~w~, namely

~w~ ď }h}Lip sup
τ0,k

ˇ̌̌ řk´1
j“0 W pτjq

ˇ̌̌
|τk ´ τ0| ď }h}Lip

2π Cpρq
ÿ
q‰0

|γq| |q|r. (52)

In particular, if w is in Cr,ν or Hr`ν for ν ą 1{2, then the right hand side of (52)
is bounded by a constant times }w}Cr,ν or }w}Hr`ν , respectively. This completes the
proof of the theorem.
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As an immediate consequence of Lemma 4 and the theorem, we have the following
interpretation. The norm ~ ¨~ quantifies the (effective) rate of convergence of ergodic
sums to the spatial average, providing an error estimate for the ergodic theorem.

Corollary 4. If ~w~ ă 8, then for every k P Z, we haveˇ̌̌
ˇ̌1
k

k´1ÿ
j“0

wptjq ´ 1
2π

ż
w dμ

ˇ̌̌
ˇ̌ ď ~w~

ˇ̌̌
ˇ1k ptk ´ t0q

ˇ̌̌
ˇ .

Theorem 5 shows that in solving equation (1), the inverse loses a finite amount
of smoothness, depending on the diophantine condition (46). We now show that, for
arbitrary rotation number, we cannot limit the amount of smoothness that is lost. To
this end, suppose that ρ{2π is a Liouville number, which is a number that does not
satisfy any diophantine condition (46). In other words, for each n, there exist pn and
qn such that ˇ̌̌

ˇ ρ

2π
´ pn

qn

ˇ̌̌
ˇ ď 1

qn
n

. (53)

We can generate one such by fixing a base b and setting

ρ “ 2π
8ÿ

k“0

dk

bk! , with dk P
�
0, 1, . . . b´ 1

(
,

which is clearly irrational. Indeed, setting

qn :“ bn! and pn :“ qn

nÿ
k“0

dk

bk! P Z,

we calculate

ρ

2π
´ pn

qn
ď pb´ 1q

8ÿ
k“n`1

1
bk! ă

b´ 1
bpn`1q!

8ÿ
j“0

1
bj
“ b

bpn`1q! “
1

pbn!qn “
1
qn

n

.

The following corollary provides the counterexample.

Corollary 5. Suppose the rotation number of Φ is Liouville, so that (53) holds.
Then for any N , we can find a function w so that w P CN but w R W; that is
~w~ “ 8.

Proof. According to (50), (51), we have for each q, with Wq “ ei q ρ,ˇ̌̌ řk´1
j“0 Wqpτjq

ˇ̌̌
|τk ´ τ0| “ |q|

|1´ ei q ρ| “
ˆ
2π min

m

ˇ̌̌
ˇmq ´ ρ

2π

ˇ̌̌
ˇ
˙´1

.

Thus for ρ satisfying (53) and each n, we haveˇ̌̌ řk´1
j“0 W˘qn

pτjq
ˇ̌̌

|τk ´ τ0| ě qn
n

2π
. (54)
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Thus, setting W “ ř
γq Wq, and w “ W ˝ h, with h bi-Lipschitz, by (49) it follows

that if ~w~ ă 8, the Fourier coefficients γqn of W must decay faster than q´n
n , and

we cannot bound the exponent. On the other hand, we have

W “
ÿ

γq Wq P Hs iff
ÿ
|γq|2 q2s ă 8,

so Fourier coefficients decay like opq´sq, where s is a fixed finite number. Thus, given
the sequence qn satisfying (53), we choose s ą N ` 1{2 and set

W˚pτq :“
8ÿ

n“1
q´ps`1q

n W˘qn
pτq, (55)

so that W˚ P Hs Ă CN . To show that ~w~ “ 8, we set τ0 “ 0, fix k ą 1 and
introduce θ˘n P C by

θ˘n :“ 1
qn

n

řk´1
j“0 W˘qn

pτjq
τk ´ τ0

,

so that (54) can be written as

řk´1
j“0 W˘qn

pτjq
τk ´ τ0

“ θ˘n qn
n , with |θ˘n| ě 1

2π
.

Then, with W˚ given by (55), we haveˇ̌̌ řk´1
j“0 W˚pτjq

ˇ̌̌
|τk ´ τ0| “

ˇ̌̌ 8ÿ
n“1

qn´ps`1q
n θ˘n

ˇ̌̌
,

which cannot converge because the terms of the sum don’t converge to zero. This
implies that ~w~ “ 8.

Having obtained Lipshitz bounds for the solution v of (1), we now bootstrap to
obtain bounds on higher derivatives of v. Recall the equivalence of norms } ¨ }Lip “
} ¨ }C0,1 “ } ¨ }W 1,8 .

Corollary 6. Suppose that the rotation number ρ “ ρpΦq of the shift Φ is
diophantine of order r as in (46), and that the conjugation h in (44) is smooth enough.
Let constants 1{2 ă ν ď 1, 2 ď p ď 8 and integer � ě 1 be given. If the input w
of (1) satisfies

ş
w dμ “ 0 and w P C�`r,ν or w P H�`r`ν , then the solution v has �

Lipshitz derivatives, with bounds

}v}C�,1 ď K }w}C�`r,ν or }v}W �`1,8 ď K }w}H�`r`ν , (56)

respectively. Moreover, the regularity of the solution can be quantified by a simple loss
of r derivatives in Hölder and/or Sobolev spaces, via the estimates

}v}C�,ν ď K }w}C�`r,ν , or }v}W �1,p ď K }w}W �1`r,p , (57)

respectively, with �1 “ �`1. Here the constants K depend on Φ through its dependence
on ρ and h.
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Proof. We translate the original equation (1) with shift Φ to an equation with
pure rotation: that is, we use the conjugation to directly rewrite the equation. Using
(48), define W “ w˝h´1 and V “ v˝h´1, so that the difference equation (1) becomes

V pτ ` ρq ´ V pτq “ W pτq, (58)

with solution

V pτ ` k ρq “ V pτq `
k´1ÿ
j“0

W pτ ` j ρq,

as above. Since (58) is linear with constant shift, differentiation shows that deriva-
tives solve the same equation. Thus the results of the theorem apply directly to the
derivatives W p�q and V p�q, and by assuming Φ (and thus h) is smooth enough, the
norms on v, w can be taken as equivalent to the corresponding norms on V and W
as in (49). Thus applying the theorem after differentiating, we have

}V p�q}C0,1 ď K }W p�q}Cr,ν , or }V p�q}W 1,8 ď K }W p�q}W r`ν,2 ,

respectively, and the equivalence of norms immediately implies (56). Since } ¨ }C�,ν ď
K } ¨ }C�,1 , while also

} ¨ }W �1,p ď K } ¨ }W �`1,8 and } ¨ }W �`r`ν,2 ď K } ¨ }W �1`r,p .

the inequalities (57) now follow.

5. Strategy for Nash-Moser Iteration. The philosophy of the Nash-Moser
iteration is that a finite number of derivatives can be lost at each step in the ap-
proximations generated by Newton’s method. The Nash-Moser method proceeds by
smoothing the approximation at each step. The amount of required smoothing de-
creases rapidly as the iteration continues because of the fast (quadratic) convergence
of Newton’s method [10, 15, 1].

In Nash-Moser problems, the linearized operator in the Newton step is typically
not uniformly invertible except possibly off complicated sets of small measure of a
controllable parameter. In such cases, an extra step is required, namely, the expunging
of a small set of “bad” values of this parameter. Off this bad set, the inverse exists
with bounds sufficient to complete the Newton step. Convergence then requires that
the measure of the union of expunged sets be smaller than the total measure of
the set allowable parameters, so the Nash-Moser method then converges on a set of
positive measure. This expunging process is generally technical, and requires removal
of increasingly small sets at each step of the Newton iteration, and the measure of
such expunged sets must be carefully estimated.

In the current work we invert the simplest case of a linearized difference operator
which arises when imposing a periodicity condition in a quasilinear problem. We
have shown that this operator is invertible with a uniform loss of derivatives on an
appropriate set of rotation numbers ρpΦq, any one of which which can be imposed by
solving for the drift angle θ.

Even though our difference operator is based on a nonlinear Burgers model which
has no non-trivial kernel, we believe that the essential difficulties dealt with in invert-
ing the linearized operators here, accurately reflect essential structural issues which
apply to the problem of inverting the linearized operators in authors’ Nash-Moser
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approach to constructing periodic solutions of the compressible Euler equations – the
case when there is a nontrivial kernel in the nonlinear problem. The free parameter
in the Euler problem is a pair of analogous drift angles pθ, θq, which are determined
by the underlying constant state. In our previous attempts to apply Nash-Moser to
the problem of finding periodic solutions of the compressible Euler equations [15], we
have been faced with the problem of having to expunge a finite measure set of the
drift angles at each step. This fails to provide convergence because there are infinitely
many steps.

The results of the present paper suggest a new proposal for implementing Nash-
Moser for Euler that overcomes this problem. Because the nonlinear Euler problem is
quasilinear, the constant states (0-modes) automatically satisfy the linearized equa-
tion, and we can thus regard the constant state as the free parameter for fixing the
drift angle. The new idea here is to obtain a desired (fixed) rotation number ρpΦq
by solving for θ (or equivalently the 0-mode v0). By this proposal, we can take the
rotation number ρ as fixed a priori, making our linearized operator invertible with
uniform loss of derivatives, for the appropriate values of the parameter θ which gen-
erate that rotation number ρ. Based on our theory here, we need only expunge at
the beginning of the iteration when we choose the fixed rotation number ρ. For a
given loss of derivatives r, we choose ρ to meet the diophantine condition (46), thus
bounding the measure of the set of excluded ρ. Therefore in essence, based on our
theory here, the expunging in the Newton method can be implemented by solving
for our free parameter θ, or equivalently v0, so that the correct rotation number is
achieved at each step. Indeed, the map θ ÞÑ Φ ÞÑ ρ is a continuous Cantor function
which cannot be inverted directly, but we can solve for θ in terms of ρ at each step
because the map θ ÞÑ ρ is continuous and monotone. In this way the expunging of θ
is done in terms of ρ, implicitly at each step, rather than explicitly.

By this procedure, a new constant state is selected at each step of the Newton
iteration, to obtain a sequence of constant states uniformly bounded by the amplitude
parameter α. From this sequence we can extract a convergent subsequence of constant
states to obtain the limiting constant state of the nonlinear solution. The cost of
implicitly expunging at each step is then the extraction of a convergent subsequence
of constant states, but the Nash-Moser iteration would proceed and converge as usual
for the other modes.

From the beginning [11, 14, 13], authors recognized the difficulty of inverting the
linearized operators which arise in the Newton step for periodic solutions of quasilinear
problems. In these cases, the nonlinear operator has a kernel because the linearized
operators have a similar form to the nonlinear operator. Namely, the linearized opera-
tors are inhomogeneous difference operators expressed in terms of shift operators, the
simplest case of which is the setting in this paper. We earlier identified the Liapunov-
Schmidt decomposition as a standard way of projecting orthogonally off the kernel of
the linearized operator, in an attempt to make the linearized operators invertible on
the complement of the kernel [13]. In light of the results of this paper, this standard
Liapunov-Schmidt method fails because the projection cannot be uniformly defined
in θ due to the singularity of the mapping θ ÞÑ ρ. This new proposed strategy to
expunge constant states can thus be regarded as bypassing a Liapunov-Schmidt de-
composition. That is, for a positive measure set of rotation numbers ρ, rather than
drift parameter θ, the linearized operator is actually invertible with a uniform loss of
derivatives.

What still needs to be accomplished to apply this program of constructing periodic
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solutions of the compressible Euler equations, is to establish a vectorized version of
the results here. That is, we need a theory for inverting linearized shift operators
which impose periodicity, appropriately vectorized to account for the fact that the
3ˆ 3 Euler problem has two nonlinear characteristic fields and a linearly degenerate
field, which we view as a coupling of scalar nonlinear characteristic fields like those
addressed here.

6. Appendix: Relevant Theorems for Circle Maps. For completeness we
record the following theorems from Herman’s fundamental paper [8], which we rely
on in the proof of Theorem 52. This provides the bridge between the subject of circle
maps and our problem of inverting shift operators on the circle.

To help the reader, note that Herman uses the following notation: DrpS1q denotes
the space of functions f which are Cr diffeomorphisms of the circle S1, and which can
be written f “ id ` φ, where φ : S1 Ñ R1 is a Cr map on the circle. The derivative
of f is denoted Df , and Herman introduces the seminorms

H1pfq “ sup
nPZ

}Dpfnq}0, Hrpfq “ sup
nPZ

}Dpfnq}Cr´1 ,

where } ¨ }0 denotes the supnorm. This removes the constant term from the Cr norm,
in analogy with our treatment of the Lipshitz norm in (42), (43).

Theorem IV.6.1.1 (page 48): A necessary and sufficient condition for f P D1pS1q to
be C1 conjugate to a rotation Rρ with rotation number ρ “ ρpfq is that H1pfq ă 8.
Proposition IV.6.2 (page 50): Let f “ g´1 ˝Rρ ˝ g with g P DrpS1q, and ρ P RzQ,
1 ă r ă 8. Then we have

}Dg}Cr´1 ` }Dg´1}0 ď pr ` 1qHrpfq.

Corollary IV.6.3.2 (Page 51): Let f P DrpS1q with r ě 1, such that ρpfq “ ρ P RzQ,
and Hrpfq ă 8; then

f “ h´1 ˝Rρ ˝ h,

where h P Dr´1pS1q and Dr´1phq is Lipschitz. This implies Dr´1ph´1q is Lipschitz.
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