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ON THE OPTIMAL REGULARITY IMPLIED BY THE
ASSUMPTIONS OF GEOMETRY I: CONNECTIONS ON TANGENT

BUNDLES∗

MORITZ REINTJES† AND BLAKE TEMPLE‡

Abstract. We resolve the problem of optimal regularity and Uhlenbeck compactness for affine
connections in General Relativity and Mathematical Physics. First, we prove that any affine connec-
tion Γ, with components Γ ∈ L2p and components of its Riemann curvature Riem(Γ) in Lp, in some
coordinate system, can be smoothed by coordinate transformation to optimal regularity, Γ ∈ W 1,p

(one derivative smoother than the curvature), p > max{n/2, 2}, dimension n ≥ 2. For Lorentzian
metrics in General Relativity this implies that shock wave solutions of the Einstein-Euler equations
are non-singular—geodesic curves, locally inertial coordinates and the Newtonian limit, all exist in
a classical sense, and the Einstein equations hold in the strong sense. The proof is based on an
Lp existence theory for the Regularity Transformation (RT) equations, a system of elliptic partial
differential equations (introduced by the authors) which determine the Jacobians of the regularizing
coordinate transformations. Secondly, this existence theory gives the first extension of Uhlenbeck
compactness from Riemannian metrics, to general affine connections bounded in L∞, with curvature
in Lp, p > n, including semi-Riemannian metrics, and Lorentzian metric connections of relativistic
Physics. We interpret this as a “geometric” improvement of the generalized Div-Curl Lemma. Our
theory shows that Uhlenbeck compactness and optimal regularity are pure logical consequences of
the rule which defines how connections transform from one coordinate system to another—what one
could take to be the “starting assumption of geometry”.
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apparent singularities, div-curl lemma, nonlinear elliptic partial differential equations.
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1. Introduction. In this paper we resolve two problems in Mathematical
Physics by extending the multi-dimensional existence theory for the Regularity Trans-
formation (RT) equations1 in [25] to affine connections at the low level of Lp curvature
regularity; specifically, to connections with components in L2p and with Riemann cur-
vature Riem(Γ) bounded component-wise in Lp, p > max{n/2, 2}, in dimension n ≥ 2,
(or equivalently Γ ∈ L2p, dΓ ∈ Lp).2 First, this existence theory establishes that any
such connection, defined on an arbitrary manifold, including the Lorentzian metric
connections of General Relativity (GR), can always be smoothed to optimal regularity
W 1,p by local coordinate transformations, any p < ∞. This extends the optimal regu-
larity result of Kazdan and DeTurck [8] from (positive definite) Riemannian metrics to
general affine connections, including Lorentzian and semi-Riemannian metrics.3 Our
optimal regularity result settles in the affirmative that spacetime singularities in the
Lorentzian metrics of GR shock waves are removable. In particular, this establishes
for the first time that (weak) shock wave solutions of the Einstein-Euler equations
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1The RT-equations, introduced in [24], are referred to as the Reintjes-Temple equations in [26].
2In this paper, all Lp norms of tensors and connections are taken component-wise, local and

coordinate dependent. That is, Lp norms are taken on tensor components represented in coordinate
systems on open and bounded neighborhoods of points. We choose Γ ∈ L2p and dΓ ∈ Lp to place
both terms in Riem(Γ) = dΓ+Γ∧Γ in Lp. For Γ ∈ L2p, Riem(Γ) is in Lp if and only if dΓ is in Lp.

3To emphasize this generality, we chose our title to conjure up Riemann’s celebrated habilitation
of 1854: “On the hypotheses which lie at the foundations of geometry”.
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constructed by the Glimm scheme are one order more regular than previously known
[14]. More generally, it implies that all multi-dimensional weak shock wave solutions of
the Einstein equations G = κT with Lipschitz continuous gravitational metric and L∞

curvature are non-singular in the sense that they solve G = κT in the strong Lp-sense
under coordinate transformation; and geodesic curves,4 locally inertial coordinates
and the Newtonian limit all exist in a classical sense.

Secondly, our existence theory for the RT-equations suffices to extend Uhlenbeck
compactness5 from Riemannian to Lorentzian geometry. To be precise, our theory
extends Uhlenbeck compactness from the case of connections on vector bundles over
fixed Riemannian manifolds, with optimal regularity W 1,p and uniform Lp curvature
bounds (p ≥ n/2) [36], to the case of affine connections on tangent bundles over ar-
bitrary manifolds (not endowed with any metric), uniformly bounded in L∞ with Lp

curvature bounds (p > n), allowing for non-optimal connection regularity at the start.
That is, in [36] the part of the connection acting on the tangent bundle, its affine part,
is assumed to be the Christoffel symbol of a fixed positive definite metric, and com-
pactness is established for the part of the connection acting on the non-tangential
fibre only, while our result addresses general affine connections, (not necessarily of
a metric, but including Lorentzian and semi-Riemannian metric connections), acting
on the tangent bundle without non-tangential fibres. In [27], we extend our results
to connections on vector bundles (acting on tangent bundles and on non-tangential
fibres), allowing again for a general affine part. Uhlenbeck compactness establishes
existence of a convergent subsequence of connections, weakly in W 1,p, from uniform
bounds on the curvature alone, without the need to bound all connection derivatives,
and the convergence is strong enough to pass limits through non-linear products.6

We interpret Uhlenbeck compactness as a “geometric” improvement of the gener-
alized Div-Curl Lemma applicable to sequences of connections, (c.f. Section 2.3).
With the same assumptions, Uhlenbeck compactness provides strong convergence of
a subsequence in transformed coordinates determined by the RT-equations, when
the Div-Curl Lemma implies only weak continuity of wedge products in the original
coordinates.

The RT-equations are a system of nonlinear elliptic partial differential equations in
matrix valued differential forms (Γ̃, J, A). These equations determine the Jacobians
J of coordinate transformations which transform a given connection Γ to optimal
regularity. The unknown Γ̃ represents the regularized connection components, A is
an auxiliary variable introduced to impose the integrability condition dJ = 0, and
Γ, the connection components of an arbitrary given connection, appears as a source
term on the right hand side of the RT-equations, along with a vector valued 0-form
v free to be chosen. Our theory starts with no more than the component functions
Γ ≡ (Γk

ij) defined on some open set Ω ⊂ R
n, and we view Γ as the components of a

connection in some given but arbitrary coordinate system x on Ω. The RT-equations,
derived in [24] from the connection transformation law and first analyzed in [25], are

4For Lp as well as L∞ connections, the basic local existence theorem for ODE’s at low regularities
(Peano’s Theorem) does not apply to construct geodesic curves or particle trajectories.

5By Uhlenbeck compactness we mean compactness of a sequence of connections Γi derived from
a uniform bound on the un-differentiated connection and curvature components alone.

6Uhlenbeck’s compactness theorem in [36] for Riemannian geometry was a topic of the 2019 Abel
Prize and 2007 Steele Prize, and was a crucial step in the proof of fundamental results in geometry,
including Donaldson’s work in [10]. See [35, 39] for a summary of the important applications of
Uhlenbeck compactness.
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given by

ΔΓ̃ = δdΓ− δ
(
dJ−1 ∧ dJ

)
+ d(J−1A), (1.1)

ΔJ = δ(J ·Γ)− 〈dJ ; Γ̃〉 −A, (1.2)

d �A =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
− d

(−−−−→
〈dJ ; Γ̃〉

)
, (1.3)

δ �A = v, (1.4)

with boundary data d �J = 0 on ∂Ω. The unknowns (Γ̃, J, A) in the RT-equations,
together with the given connection components Γ, are defined by their components
in x-coordinates on Ω.7 The operations on the right hand side are defined in Sec-
tion 5 in terms of the Cartan Algebra of differential forms in x-coordinates, and the
RT-equations are introduced in detail in Section 6. The vector field v, free to be
chosen, constitutes the gauge freedom inherent to the RT-equations, (reflecting the
multiplicity of coordinate maps to optimal connection regularity). The RT-equations
admit a weak formulation, which is required for the low regularity of Lp connections
and curvature addressed here.8

The RT-equations are elliptic regardless of metric signature, because Δ is the
Laplacian of the Euclidean metric in x-coordinates. They determine the Jacobians
of coordinate transformations to optimal regularity. Thus the problem of optimal
regularity and Uhlenbeck compactness is reduced to an existence theory for the RT-
equations, c.f. [24, 26]. The RT-equations, and hence both Uhlenbeck compactness
and optimal regularity, are mathematical consequences of just the rule which defines
how connections transform from one coordinate system to another, logically inde-
pendent of any additional structure on the geometry, like positive definiteness of the
metric, or the Einstein equations.

Although the original formulation of the RT-equation (1.1) - (1.4) is amenable
to a rigorous existence theory at the higher non-optimal regularity of connection and
curvature in W 1,p, (we accomplished this existence theory in [25], proving optimal
connection regularity W 2,p), the non-linearities in the RT-equations as formulated in
(1.1) - (1.4) are too fierce to extend the method of proof in [25] to the low regularity of
non-optimal Lp connections. In this paper we extend the existence theory for the RT-
equations to the level of Lp connections. For this we use the gauge freedom inherent in
system (1.1) - (1.4) to introduce what we call the reduced RT-equations, (system (1.5)
- (1.7) below), an elliptic system of equations equivalent to the original RT-equations
(1.1) - (1.4). The reduced RT-equations simplify the nonlinearities in the problem of
optimal regularity to a degree sufficient to extend our analysis of the RT-equations
by one order, from the level of connection components Γ ∈ W 1,p achieved in [25], to
Lp connections, including the L∞ connections of GR shock waves.

Our first main result, which follows from this existence theory, establishes that
if in a given coordinate system the components of Γ are in L2p and those of its Rie-

7Here Γ ≡ Γμ
νidx

i and Γ̃ ≡ Γ̃μ
νidx

i are matrix valued 1-forms, J ≡ Jμ
ν and A ≡ Aμ

ν are matrix

valued 0-forms, and �A ≡ �Aμ
i dx

i is a vector valued 1-form.
8It is well known that weak formulations of equations which are equivalent for smooth solutions,

are not always equivalent for weak solutions. (For example, in conservation laws, different choices
of conserved quantities lead to different weak formulations, and even Riemann entertained such
confusions [32].) Our choice of the weak formulation is based on the geometric operators d, δ and−→
div on vector and matrix valued differential forms, by introducing suitable L2 adjoints for these
differential operators. Our idea to base the weak formulation on these geometric operators is guided
in part by the requirement that Jacobians J , which solve the reduced RT-equations in this weak
sense, are automatically integrable to coordinates, c.f. Sections 8 and 11.
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mann tensor are in Lp, p > max{n/2, 2}, n ≥ 2, then in a neighborhood of every
point there exists a W 2,2p coordinate transformation, such that in the transformed
coordinates the components of Γ exhibit optimal regularity, Γ ∈ W 1,p, (i.e., the com-
ponents of Γ are one derivative more regular than the components of its Riemann
curvature tensor, Riem(Γ) ∈ Lp), c.f. Theorem 3.1 below. This new existence theory
for the reduced RT-equations provides uniform W 1,p estimates for the connection in
the transformed coordinates, and this directly implies our new Uhlenbeck compact-
ness theorem, stated in Theorem 3.2 below, which does not rely on any underlying
Riemannian or Lorentzian metric.

In [27] we extend our results on Uhlenbeck compactness and optimal regularity to
connections on vector bundles, including Yang-Mills gauge theories over Lorentzian
and semi-Riemannian manifolds, allowing for both compact and non-compact Lie
groups. Our proofs are based on introducing the RT-equations for vector bundles.
This further illuminates the generality of the new mathematical principle developed
in this paper. A conclusive summary of our results here, combined with the results
in [27], is provided in our forthcoming RSPA publication [28].9

The reduced RT-equations. The reduced RT-equations, which are central to
the proof of our main results in this paper, are given by the following system,

ΔJ = δ(J ·Γ)−B, (1.5)

d �B =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
, (1.6)

δ �B = w, (1.7)

where J is the Jacobian of the transformation to optimal regularity, B is an auxiliary
matrix valued differential form introduced to impose the integrability of J to coordi-
nates, and the new gauge freedom is the freedom to choose the vector valued function
w. The vectorization of B, ( �B ≡ �Bμ

i dx
i), is required to incorporate into the reduced

RT-equations the condition that J be integrable to coordinates, expressed in terms of
the vectorization �J = Jμ

i dx
i through d �J ≡ Curl(J) = 0. The operations on the right

hand side of (1.5) - (1.7) are defined in Section 5.
The reduced RT-equations are derived from the original RT-equations (1.1) - (1.4)

in Section 6, by using the gauge freedom v in (1.1) - (1.4) to uncouple the equations
for the Jacobian J of the smoothing transformation from (1.1), the equation for Γ̃.
This isolates the non-linearities in the Γ̃-equation (1.1), and thereby eliminates them
from the iteration scheme for J on which our existence theory in Section 10 is based.
The reduced RT-equations consist of the resulting uncoupled system of equations
(1.5) - (1.7) in J , a linear elliptic system in (J,B) which is solvable at the level
of Lp connections. The proof of our optimal regularity result, Theorem 3.1, is then
completed by using the Γ̃-equation (1.1) to show directly that the Jacobian determined
by a solution J of the reduced RT-equations, does indeed lift the original connection
Γ to optimal regularity Γ ∈ W 1,p, by proving this J determines a Γ̃ such that (J, Γ̃)
solves the original RT-equations, c.f. Theorem 6.1.

Although the derivation of the reduced RT-equations begins with the original
RT-equations (we know of no independent derivation), the reduced RT-equations
introduced in this paper represent a new starting point, and the subsequent proofs are
self-contained and stand logically independent of arguments we gave for the original
RT-equations.

9Our exposition in [26] summarizes the earlier developments of the RT-equations in [24, 25].
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Outline of the paper. In Section 2 mathematical context is provided for our
results. In Section 3 we state our main results, Theorems 3.1 and 3.2. In Section 4
we give three applications of Theorems 3.1 and 3.2: A new compactness result for the
vacuum Einstein equations in GR at low regularities as an application of Uhlenbeck
compactness, a proof of optimal regularity for GR shock waves constructed by Glimm’s
theorem, and a construction of locally inertial frames for general L∞ connections. In
particular, the existence of locally inertial frames rules out regularity singularities
at GR shock waves by establishing that shock wave solutions of the Einstein-Euler
equations are locally inertial. In Section 5 we introduce the Cartan calculus for
matrix and vector valued differential forms required in this paper. Section 6 contains
the main idea of proof of our optimal regularity result, in particular we show that
solutions of the reduced RT-equations determine solutions of the full RT-equations,
Theorem 6.1, and we state our main existence theorem for the reduced RT-equations,
Theorem 6.3. The proof of Theorem 6.1 is given in Sections 7 and 9. In Section 8 we
introduce the weak formulation of the RT-equations required at the level of regularity
addressed in this paper. In Sections 10 - 11 we give a self-contained presentation of
the existence theory for weak solutions of the reduced RT-equations, (based only on
two basic theorems from linear elliptic PDE theory, Theorems B.1 and C.2 recorded
in the appendix), and we prove existence of solutions to the reduced RT-equations
in the case of connection regularity Γ, dΓ ∈ L∞. We extend this proof to the sought
after regularity Γ ∈ L2p, dΓ ∈ Lp in Section 12, thereby completing the proof of our
existence result Theorem 6.3. The proof of our main results, Theorems 3.1 and 3.2,
is completed in Section 13.

2. The mathematical landscape. In the following subsections we place our
results within a mathematical landscape, including the theory of GR shock waves.
The reader interested in focusing in the mathematical development may skip these
subsections and continue with Section 3, where we state our main results, and Section
6, where we describe the main ideas of the method of proof.

2.1. The problem of optimal regularity. The existence of coordinates in
which connections are non-optimal is a fundamental feature of Riemann’s curvature
tensor, following directly from the fact that the Riemann curvature transforms as a
tensor by contraction with undifferentiated Jacobians, while the transformation of a
connection involves derivatives of the Jacobian. So any transformation by a Jacobian
which has the same regularity as a given connection, will lower the regularity of a
connection of optimal regularity (one derivative more regular than its curvature) by
one order due to the terms containing derivatives of the Jacobian in the transforma-
tion law for connections.10 The result is a transformed connection with components
one order less regular, and in the same regularity class as the curvature, because the
Riemann curvature tensor would preserve its regularity under tensor transformation.
This holds for classical spaces of regularity like Ck, as well as weak regularity mea-
sured by Sobolev spaces Wm,p, and Hölder regularity Cm,α. To prove the reverse
direction, that non-optimal connections can always be smoothed to optimal regu-
larity by coordinate transformation, one needs to undo the above process, and this
requires constructing a singular transformation given only the information about the
non-optimal connection and its curvature. For example, at the level of L∞ connec-
tions, such a coordinate transformation must be singular in the sense that jumps in

10Note, this principle directly carries over to metric tensors which, by Christoffel’s formula, are
always exactly one derivative more regular than their connections.
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derivatives of the Jacobian must be tuned to precisely cancel out the discontinuities
in the given non-optimal connection in the transformation law for connections.

The existence of coordinate transformations which smooth connections to opti-
mal regularity, one derivative more regular than the curvature, is surprising in light
of the fact that the curvature, being a “curl” plus a “commutator”, does not directly
control every derivative of Γ, only dΓ ≡ Curl(Γ). That is, the complementary deriva-
tives, δΓ ≡ div(Γ), are not controlled directly by assuming a given regularity of the
curvature. Since the basic compactness theorems for Sobolev spaces are based on
controlling every derivative, it follows that optimal regularity is intimately connected
to compactness. This principle, as expressed through the exterior derivative d and the
co-derivative δ of the Cartan algebra of differential forms associated with an assumed
positive definite metric, underlies Uhlenbeck’s celebrated compactness result.

We note that the regularity of metric, connection and curvature is not altered
by sufficiently smooth coordinate transformations, so in this sense regularity is a
geometric property of the manifold when one takes the smooth atlas. Thus one
can view the RT-equations as providing a low regularity transformation which lifts
regularity, but that regularity then becomes a geometric property of the resulting
manifold when again the atlas of smooth coordinate transformations is taken, c.f. the
discussion in [26].

2.2. Uhlenbeck compactness. Uhlenbeck’s compactness theorem, Theorem
1.5 of [36], applies to Riemannian metrics, and is based on establishing a uniform
bound on the components of a connection in Coulomb gauge, the Coulomb gauge
providing a coordinate system arranged to satisfy δΓ = 0 to bound the derivatives
uncontrolled by the curvature through dΓ. Compactness in Coulomb gauge then
follows from a uniform bound on the curvature. To illustrate the heart of the issue
in [36], taking δ of Riem(Γ) = dΓ + Γ ∧ Γ, when δΓ = 0, results in an equation of
(essentially) the form ΔΓ = δRiem(Γ), where Δ = dδ + δd is the Laplacian of the
underlying Riemannian metric; so by elliptic regularity, a sequence of connections
Γi ∈ W 1,p with Riem(Γi) uniformly bounded in Lp, will be uniformly bounded in
W 1,p in Coulomb gauge, for p < ∞. Sobolev compactness then implies a subsequence
converges weakly in W 1,p and strongly in Lp in Coulomb gauge.

In the case of Lorentzian metrics, dδ + δd is the hyperbolic D’Alembert (wave)
operator, and since hyperbolic operators propagate irregularities from initial data
surfaces along characteristics, deducing optimal regularity for Lorentzian metrics in
Coulomb gauge is at best problematic, c.f. [26, Ch. 9]. Our incoming point of view
is that the Coulomb gauge condition δΓ = 0 is too restrictive for general connections,
and instead of trying to eliminate the uncontrolled δ derivatives of Γ altogether, our
idea is to bound them in the right space by the RT-equations, elliptic equations in
Γ̃ and J . Different from Uhlenbeck’s argument, the RT-equations are formulated in
terms of the Cartan algebra of differential forms associated with the Euclidean metric
of an arbitrary coordinate system x in which the components Γk

ij of Γ are given, not
the invariant Cartan algebra of any underlying metric. Because they are based on the
auxiliary Riemannian structure provided by the coordinate Euclidean metric, the RT-
equations are elliptic regardless of any invariant metric structure for Γ. This allows
us to obtain optimal regularity and Uhlenbeck compactness for arbitrary connections
on the tangent bundle of arbitrary manifolds, without recourse to metric signature or
even any underlying metric structure. Note that the RT-equations are not invariant
in a tensorial sense, but a different version of them is given in each coordinate system.
As a consequence the RT-equations have the same simple elliptic structure in every
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coordinate system, and this makes them inherently useful for analysis.11

We now compare our compactness theorem to Uhlenbeck’s result in [36]. Theo-
rem 1.5 of [36] assumes a sequence of connections Γi ∈ W 1,p, with curvature Riem(Γi)
uniformly bounded in Lp, and from this concludes that in Coulomb gauge, the con-
nection coefficients are uniformly bounded in W 1,p, with uniform bound provided by
the original bound on the curvature in Lp. The uniform bound on the extra derivative
in W 1,p then implies Uhlenbeck compactness, i.e., the convergence of a subsequence
of Γi weakly in W 1,p, and hence strongly in Lp, in Coulomb gauge. In contrast, our
Theorem 3.2 stated below, assumes a sequence of connections Γi ∈ L∞, which need
not lie in W 1,p at the start, but assumes uniform bounds on Γi in L∞ and Riem(Γi)
in Lp, n < p < ∞, (or equivalently on Γi in L∞ and dΓi in Lp). From this, Theorem
3.2 concludes the existence of coordinate transformations x → yi(x), (which play the
role of Coulomb gauge), with Jacobians uniformly bounded in W 1,2p, such that in the
new coordinates, the sequence of connection components Γyi

are uniformly bounded
in W 1,p, with bound given by our original L∞ bounds on Γi and dΓi. From this
we again conclude Uhlenbeck compactness, i.e., weak convergence of a subsequence
of Γyi

in W 1,p, hence converging strongly in Lp, with yi converging in W 1,2p. Thus
our theorem replaces the assumption Γi ∈ W 1,p, (which for us is the assumption of
optimal regularity at the start), with the assumption that the components of Γi are
uniformly bounded in L∞. We view, our assumption of a uniform L∞ bound on Γi

as a small concession considering that it just addresses the undifferentiated terms in
the Riemann curvature tensor.

2.3. A refinement of the Div-Curl Lemma. Our version of Uhlenbeck com-
pactness gives a “geometric” improvement of the generalized Div-Curl Lemma for
sequences of connections Γi. To see this, recall the generalized Div-Curl Lemma
states that wedge products are weakly continuous when differential constraints take
the form of exterior derivatives, [29]. So consider the case when the components of
a sequence of affine connections Γi satisfy the constraint Γi, dΓi uniformly bounded
in, say, L∞, in a given coordinate system, c.f. [34]. The Banach-Alaoglu Theo-
rem implies a subsequence of the connection components converges weakly in Lp,
and the generalized Div-Curl Lemma then implies that the components of curvature
Riem(Γi) = dΓi + Γi ∧ Γi are weakly continuous on this limit, that is, one can pass
weak limits through both terms in Riem(Γ). Uhlenbeck compactness assumes, in ad-
dition, “geometry” in the form of the transformation law for connections, and implies
that connection components actually lie in W 1,p, (i.e., have one more derivative),
and that a subsequence converges weakly in W 1,p, and hence strongly in Lp. But
this improved convergence occurs in a different coordinate system, a coordinate sys-
tem obtained by solving the RT-equations. One cannot overstate the importance of
strong over weak convergence. Compactness theorems giving strong convergence are
the starting point for validating approximation schemes in nonlinear problems. For
example, in Diperna’s well known proof of the zero viscosity limit for 2 × 2 systems
of conservation laws, an infinite family of entropy fields was required to bootstrap
the weak convergence to strong convergence. Uhlenbeck compactness extracts strong
convergence from weak convergence from the theory of curvature, without need of any
auxiliary estimates [9, 34].

11In contrast, the Einstein equations only take simpler forms in canonical coordinates like Standard
Schwarzschild Coordinates [14] or wave coordinates [5].
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2.4. GR shock waves. The authors’ present multi-dimensional theory of opti-
mal regularity began with the special case of shock wave solutions of the Einstein-Euler
equations constructed by Glimm’s random choice method in [14], (see also [3]). The
Lorentzian metrics associated with these shock wave solutions are only Lipschitz con-
tinuous (C0,1), a regularity too low to construct geodesic curves and locally inertial
coordinates directly by classical ODE methods. This motivated the question as to
whether one can raise the metric regularity by coordinate transformation, to recover
these basic objects of geometry, or whether the Lorentzian metrics of GR shock waves
are exhibiting essential non-removable spacetime singularities. A coordinate transfor-
mation to optimal regularity would remove these singularities.12 Thus, since shock
waves form generically in the compressible Euler equations and correctly model gas
dynamics, resolving the question whether these singularities can be removed, directly
addresses the basic consistency of the Einstein-Euler system.13

In his classic 1966 paper [16] Israel introduced the multi-dimensional theory of
junction conditions and used it to prove that a metric C0,1 across a single smooth
shock surface can be locally smoothed to optimal regularity C1,1 by coordinate trans-
formation to Gaussian normal coordinates. But the optimal regularity results in [16]
do not apply to shock wave interactions, and thus not to the C0,1 metrics in [14], be-
cause the underlying Gaussian normal coordinate construction cannot be associated
to intersecting shock surfaces. The only extension of Israel’s result to shock wave
interactions (before this paper) was accomplished for the special case of spherically
symmetric shock wave interactions in [20, 21]. But it remained out of reach how to
address these apparent singularities in shock wave solutions constructed in [14], (or
constructed in multi-dimensions by the junction conditions), when they contain more
complex shock wave interactions.

Authors’ paper [23] was a first step for the general problem of smoothing metrics
and connections. In [23], we introduced a necessary and sufficient condition for the
general problem of smoothing metrics with connection and Riemann curvature tensor
in L∞, the so-called Riemann-flat condition, which is the condition that there should
exist a tensor Γ̃ ∈ C0,1 such that Riem(Γ − Γ̃) = 0. Our main theorem in [23]
then states that there exists a C1,1 coordinate transformation which smooths an L∞

connection Γ by one order to Lipschitz continuous C0,1 =W 1,∞ (hence optimal) if and
only if the Riemann-flat condition holds.14 The tensor Γ̃ gives rise to a coordinate
system y in which Γ exhibits optimal regularity, and the components of Γ̃ and Γ
agree in y-coordinates. However, even though the Riemann-flat condition gives a
new geometric point of view on the problem of optimal regularity, it was entirely
unclear how to construct such a tensor Γ̃, or whether this is always possible. The
breakthrough in our research program came about in [24], when we derived, from
two equivalent forms of the Riemann-flat condition, the RT-equations (1.1) - (1.4), a
system of solvable elliptic equations in the sought after tensor Γ̃ and Jacobian J .

In this paper we extend our current existence theory for the RT-equations in

12This is a perspicatious warm-up problem for the multi-dimensional theory of GR shock waves
because the role played by non-optimal coordinates in spherically symmetric spacetimes is no different
than the role they play in general multi-dimensional spacetimes: They exist simply because the
Riemann curvature tensor involves second derivatives of the metric, but transforms as a tensor by
first derivative Jacobians.

13Interestingly, metrics of a similar low regularity arise in the recent study of “wild” solutions of
the non-relativistic Euler equations in [2]; and the problem of optimal metric regularity is also of
interest in Conformal Geometry [18].

14This equivalence extends easily to Γ ∈ L∞ and Γ̃ ∈ W 1,p, the case address in this paper.
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[25] by one order of regularity to Γ ∈ L2p, Riem(Γ) ∈ Lp, (or equivalently Γ ∈ L2p,
dΓ ∈ Lp), and prove that any such connection can be locally smoothed to optimal
regularity Γ ∈ W 1,p. This resolves the problem of optimal regularity at GR shock
waves by establishing that for any weak solution of the Einstein equations satisfying
Γ, dΓ ∈ L∞ in x-coordinates, there always exist local coordinate transformations
x → y with Jacobian J ∈ W 1,2p, such that Γ ∈ W 1,p in y coordinates, for any
n/2 < p < ∞. Here p > n/2 can be taken to be arbitrarily large, but not yet p =∞.
So we do not obtain Γ ∈ C0,1, g ∈ C1,1 as Israel did for smooth shock surfaces,
but we are arbitrarily close in the sense that p can be arbitrarily large. For p > n,
any Γ ∈ W 1,p is Hölder continuous by Morrey’s inequality, a regularity sufficient for
geodesic curves to exist (by Peano’s Theorem), for spacetime to admit locally inertial
frames, and hence for the Newtonian limit to exist at each point in spacetime. An
explicit construction of locally inertial frames is given in Corollary 4.4 below.

2.5. Prior results. It was shown by DeTurck and Kazdan in [8] that for (posi-
tive definite) Riemannian metrics, optimal regularity can always be achieved in har-
monic coordinates. The first optimal regularity result in Lorentzian geometry is due
to Anderson [1]. Anderson’s results are based on using harmonic coordinates on the
Riemannian hypersurfaces of a given foliation of spacetime, and establish curvature
bounds for vacuum spacetimes and certain matter fields when the Riemann curvature
is in L∞, under some technical assumptions. A similar result for vacuum spacetimes
was proven in [4]. As far as we can tell, these results do not apply to GR shock
waves, and our result cannot be obtained from these prior methods, free of additional
assumptions, even in the special case of vacuum spacetimes. (Keep in mind that
the setting of vacuum excludes fluid dynamical shock waves, and so is a warm-up
problem from the point of view of shock wave theory. Historically shock waves are
one of the main motivations for the study of low regularity solutions.) The results
in [1, 4] require applying sophisticated analytical and geometric machinery on top of
the classical harmonic coordinate construction in [8], and suggest strongly that met-
ric signature is a central issue. Our results show that optimal regularity is entirely
independent of metric and metric signature.15

3. Statement of our main results.

3.1. Optimal Regularity. Let Γ denote a connection on the tangent bundle
TM of an arbitrary n-dimensional differentiable manifold M, n ≥ 2. Since the
problem of optimal regularity is local, we assume at the start a given coordinate
system x defined on an open set Ω ⊂ M, such that Ωx ≡ x(Ω) ⊂ R

n is bounded.
That is, we work in a fixed chart (x,Ω) on M. Without loss of generality we assume
Ωx has a smooth boundary. We use the notation Γx to denote the components of
Γ in x-coordinates, Γx ≡ Γk

ij(x). We say Γx ∈ Lp(Ωx), and likewise dΓx ∈ Lp(Ωx),
if all component functions are in Lp(Ωx) in x-coordinates. Here dΓx denotes the
exterior derivative of Γx viewed as a matrix valued 1-form in x-coordinates, a non-
invariant object in the sense that it transforms neither as a tensor nor as a connection.
Given a coordinate transformation x → y, we let Γy ≡ Γγ

αβ(y) denote the connection
components in y-coordinates defined on Ωy ≡ y(Ω).

15We note that the recent resolution of the bounded L2 curvature conjecture for vacuum space-
times, (c.f. Theorem 1.6 of [17]), does not address the issue of optimal regularity, essentially because
initial data taken from non-optimal connections is one order less regular than the data assumed in
[17], see the discussion in [26].
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In this paper we assume Γx ∈ L2p(Ωx) and dΓx ∈ Lp(Ωx) for p > max{n/2, 2},
a balance of Lp spaces consistent with solutions J ∈ W 1,2p(Ωx) of the RT-equations
(1.1) - (1.4). The two theorem which direct our choice of norms and solution spaces
are, first, the product of two functions in L2p is always in Lp by Hölder’s inequality,
and second, a function in W 1,2p is Hölder continuous by Morrey’s inequality when
p > n/2. (The norms we use in this paper are recorded in Appendix A.) Note, since
the Riemann curvature tensor can be written as

Riem(Γx) = dΓx + Γx ∧ Γx, (3.1)

(c.f. (5.5) below), assuming Γx ∈ L2p(Ωx) and dΓx ∈ Lp(Ωx) is equivalent to assuming
Γx ∈ L2p(Ωx) and Riem(Γx) ∈ Lp(Ωx). For coordinate transformations with Jaco-
bians J ∈ W 1,2p(Ωx), p > n/2, (always assumed here), the assumption Γx ∈ L2p(Ωx)
with dΓx ∈ Lp(Ωx) is an invariant statement,16 so one can omit the subscript x on
Γ and dΓ without confusion. Note, the statement that Γx is in W 1,p, (i.e., Γx has
optimal regularity), is not an invariant statement for Jacobians at the low regularity
J ∈ W 1,2p(Ωx).

The main norm on which our estimates are based is the following coordinate
dependent norm,

‖(Γ, dΓ)‖Lq,p(Ω) ≡ ‖Γx‖Lq(Ωx) + ‖dΓx‖Lp(Ωx), (3.2)

which we used for either q = 2p or q = ∞ with p > n/2, where we always base
Lp-norms on a coordinate system (c.f. Appendix A). Note that, for the purpose of
this paper, we use ‖dΓ‖Lp in the definition of the norm in (3.2), but we would get an
equivalent norm using ‖Riem(Γ)‖Lp in its place, because (3.1) implies

‖dΓ‖Lp ≤ ‖Riem(Γ)‖Lp + 2‖Γ‖2L2p ≤ ‖dΓ‖Lp + 4‖Γ‖2L2p (3.3)

by application of the Hölder inequality, c.f. (A.7). From now on we always use Ω and
Γ to denote Ωx and Γx respectively, so without loss of generality Ω ≡ Ωx ⊂ R

n and
Γ ≡ Γx denotes a collection of functions defined on Ω ⊂ R

n.
Our main theorem regarding optimal regularity at GR shock waves is the follow-

ing:

Theorem 3.1
′
. Assume Γ, dΓ ∈ L∞(Ω) in x-coordinates and let M > 0 be a

constant such that

‖(Γ, dΓ)‖L∞(Ω) ≡ ‖Γx‖L∞(Ωx) + ‖dΓx‖L∞(Ωx) ≤ M. (3.4)

Then for any n < p < ∞ and any point q ∈ Ω there exists a neighborhood Ω′ ⊂ Ω of
q and a coordinate transformation x → y with Jacobian J = ∂y

∂x ∈ W 1,2p(Ω′
x), such

that

‖Γy‖W 1,p(Ω′
y)

≤ C ‖(Γ, dΓ)‖L∞(Ω), (3.5)

for some constant C > 0 depending only on Ωx, p, n, q and M . That is, the connection
components Γy in y-coordinates exhibit optimal regularity, (i.e., one derivative above
its curvature), in the sense that Γy ∈ W 1,p(Ω′

y).

16This holds since for such coordinate transformations Riem(Γ) transforms as a tensor, and con-
traction by Hölder continuous Jacobians does not lower the Lp regularity. The Lp regularity of dΓy

then follows from the regularity of Riem(Γy).
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Theorem 3.1′ tells us that we can raise the connection regularity by essentially
one derivative to Γy ∈ W 1,p, arbitrarily close to W 1,∞ as p → ∞.17 Note, since Γ
and dΓ are assumed in L∞(Ω), the statement of the theorem is sharper the larger
p is (and extends trivially to 1 ≤ p < ∞ since Ω is bounded), and we can choose
any p < ∞ but not yet p = ∞, a singular case in elliptic regularity theory, c.f. the
discussion in [24]. By Morrey’s inequality, Γy is Hölder continuous when p > n, and
this is sufficient regularity to construct classical geodesic curves and locally inertial
coordinates, as we prove in Corollary 4.4 below. Taken together, this resolves the open
problem as to whether the spacetime singularities at GR shock waves are removable
in the positive, establishing that every Lipschitz continuous metric of GR shock wave
theory is regular enough to meet the physical requirements of spacetime.

Theorem 3.1′ is the simplest statement of our optimal regularity result, because
Γ and dΓ and Γ ∧ Γ all lie in the same space. Theorem 3.1′ follows directly from the
following more refined theorem for Lp connections—our main result—, establishing
the improved version (3.7) of estimate (3.5).

Theorem 3.1. Assume Γ ∈ L2p(Ω) and dΓ ∈ Lp(Ω) in x-coordinates, for some
p > max{n/2, 2},18 n ≥ 2, and let M > 0 be a constant such that

‖(Γ, dΓ)‖L2p,p(Ω) ≡ ‖Γx‖L2p(Ωx) + ‖dΓx‖Lp(Ωx) ≤ M. (3.6)

Then for any point q ∈ Ω there exists a neighborhood Ω′ ⊂ Ω of q and a coordinate
transformation x → y with Jacobian J = ∂y

∂x ∈ W 1,2p(Ω′
x), such that the connection

components Γy in y-coordinates exhibit optimal regularity Γy ∈ W 1,p(Ω′′
y), (connection

one derivative above its curvature), on every open set Ω′′ compactly contained in Ω′,
where Ω′′

y ≡ y(Ω′′). Moreover, for each Ω′′ compactly contained in Ω′, Γy satisfies the
uniform bound

‖Γy‖W 1,p(Ω′′
y )

≤ C1(M) ‖(Γ, dΓ)‖L2p,p(Ω′), (3.7)

and the Jacobian J satisfies

‖J‖W 1,2p(Ω′′
x )
+ ‖J−1‖W 1,2p(Ω′′

x )
≤ C1(M) ‖(Γ, dΓ)‖L2p,p(Ω′), (3.8)

for some constant C1(M) > 0 depending only on Ω′′
x,Ω

′
x, p, n, q and M . The neighbor-

hood Ω′ can be taken as Ω′
x = Ωx∩Br(q), for Br(q) the Euclidean ball of radius r in x-

coordinates, where r depends only on Ωx, p, n and Γ near q; if ‖(Γ, dΓ)‖L∞,2p(Ω) ≤ M ,
then r depends only on Ωx, p, n and M .

The refinement (3.7) of estimate (3.5) provides the extension to Lp connections. The
proofs of Theorems 3.1′ and 3.1 are based on developing an existence theory for the
RT-equations, as summarized in Section 13. The strategy of our proof is to first prove
existence to the RT-equations in the simpler L∞ case addressed in Theorem 3.1′ (in
Sections 10 - 11), where the analysis is cleanest, and then extend this proof to the Lp

case of Theorem 3.1 in Section 12.

17Recall that the Sobolev space W 1,∞ can be identified with the space of Lipschitz continuous
functions, and W 1,p can be identified with the space of Hölder continuous functions with Hölder
coefficient α = n

p
as long that p > n, [12].

18The assumption p > 2 takes effect only in dimensions n = 2 and n = 3, and is only required by
our use of the Sobolev embedding Theorem in Section 9.2.
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3.2. Uhlenbeck compactness. To introduce our compactness theorem, let us
recall briefly the relation between weak and strong convergence in Banach spaces Lp.
Recall that whenever we have a uniform bound on a sequence of functions in Lp,
there always exists a weakly convergent subsequence whose limit satisfies the same
uniform bound Lp as the original sequence. (By the Banach-Alaoglu Theorem, the
closed unit ball is weakly compact in Lp [12].) But the compactness we seek here is
the statement that this weak limit is actually a strong limit in Lp. For this it suffices
to have a uniform bound on the sequence of functions in W 1,p, the resulting weak
convergence in W 1,p then implies also strong convergence in Lp. Weak convergence
is generally not sufficient for non-linear problems because products are generally not
continuous under weak limits, but are always continuous under strong limits, and
weak limits cannot be estimated as close to the weakly convergent subsequence in the
norms in which the global bounds are obtained.

We now develop some notation required to state our extension of Uhlenbeck’s
compactness result, Theorem 1.5 in [36]. Let {Γi}i∈N be a sequence of connections Γi

defined on the tangent bundle TM, and let (Γi)x denote their components in fixed
x-coordinates defined on Ωx ⊂ R

n, bounded and open. Assume dΓi ∈ Lp(Ωx) for
some p > n, and assume Γi ∈ L∞(Ωx), in fixed x-coordinates.19 Again, from now on
we use Ω and Γi to denote Ωx and (Γi)x respectively. Our compactness theorem states
the existence of a strongly convergent subsequence of {Γi}i∈N in Lp under coordinate
transformation, assuming only the bound

‖(Γi, dΓi)‖L∞,p(Ωx) ≤ M, (3.9)

for some constantM > 0 independent of Γi. More precisely, assuming (3.9), Theorem
3.1 implies that for each i ∈ N, there exists a coordinate transformation x → yi(x),
such that the connection components (Γi)yi ≡ Γyi in yi-coordinates are one order
more regular and satisfy the uniform bound ‖Γyi

‖W 1,p(Ω′
yi

) ≤ C(M) for some constant

C(M) > 0 and some open set Ω′, both depending only onM , independent of i, (taking
p, n and Ω to be fixed). To establish the existence of a convergent subsequence of
{Γyi}i∈N, we express the components of each Γyi ≡ Γyi(yi) as functions of the original
x-coordinates Γyi

(x) ≡ Γyi
(yi(x)), so that Γyi

(x) has the same (optimal) regularity
as Γyi

, since the mapping from x → yi(x) is one derivative more regular than Γyi
.

(That is, we transform the y-components back to x-components as scalars, in contrast
to the connection transformation from Γyi to (Γi)x which looses one derivative of
regularity.) Our proof of Uhlenbeck compactness establishes by use of the uniform
estimate (3.8) on J that the resulting components Γyi

(x) ≡ Γyi
(yi(x)) will again meet

the uniform W 1,p-bound ‖Γyi
‖W 1,p(Ω′

x)
≤ C(M), but over the fixed region Ω′

x in x-
coordinates and for a different constant C(M) > 0 which accounts for the Jacobian of
the transformation from x to yi. By the Banach-Alaoglu Theorem, we then conclude
the existence of a subsequence of Γyi(x) which converges weakly in W 1,p(Ω′

x) and
hence strongly in Lp(Ω′

x).
20 This is our compactness theorem. The proof is given in

Section 13.

Theorem 3.2. Assume {(Γi)x}i∈N are the x-components of a sequence of con-

19The assumption Γi ∈ L2p(Ωx) for p < ∞, as well as dΓi ∈ Lp(Ωx) for n/2 < p ≤ n, would
currently not suffice, because of our ε-scaling argument for the existence theory in Section 10.

20The implication that weak W 1,p convergence implies strong Lp convergence can be found in
[12, Chapter 5.7]. In fact, our assumption p > n implies that even strong convergence in L∞ and the
supremums norm holds, c.f. the Rellich Kondrashov Theorem [19, Theorem 8.9(iii)], but for sake of
presentation we only state strong Lp convergence in Theorem 3.2.
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nections Γi on the tangent bundle TM of an n-dimensional manifold M in a fixed
coordinate system x on Ω. Assume Γi ∈ L∞(Ω) and dΓi ∈ Lp(Ω) in x-coordinates,
n < p < ∞, and assume the uniform bound

‖(Γi, dΓi)‖L∞,p(Ωx) ≡ ‖(Γi)x‖L∞(Ωx) + ‖(dΓi)x‖Lp(Ωx) ≤ M (3.10)

holds for some constant M > 0 independent of i ∈ N. Then for any q ∈ Ω there exists
a neighborhood Ω′ ⊂ Ω of q, and a subsequence of Γi, (also denoted by Γi), for which
the following holds:

(i) There exists for each (Γi)x a coordinate transformation x → yi(x) taking Ω
′
x

to Ω′
yi
, such that the components (Γi)yi

≡ Γyi
of Γi in yi-coordinates exhibit

optimal regularity Γyi
∈ W 1,p(Ω′

yi
), with uniform bound (3.5) in W 1,p(Ω′

yi
).

(ii) The yi-components Γyi , taken as functions of x, also exhibit optimal regularity
Γyi(x) ≡ Γyi(yi(x)) ∈ W 1,p(Ω′

x), with uniform bound (3.7) in W 1,p(Ω′
x).

(iii) The transformations x → yi(x) are uniformly bounded in W 2,2p(Ω′
x) in light

of (3.8), and converge to a transformation x → y(x), weakly in W 2,2p(Ω′
x)

and strongly in W 1,2p(Ω′
x).

(iv) Main Conclusion: There is a subsequence on which the yi-components Γyi
(x)

converge to some Γy(x), weakly in W 1,p(Ω′
x), strongly in Lp(Ω′

x), and Γy ≡
Γy(x

−1(y)) are the connection coefficients of Γx in y-coordinates, where Γx

is the weak limit of (Γi)x in Lp(Ω′
x).

Theorem 3.2 extends Uhlenbeck’s compactness result, Theorem 1.5 of [36], to
Lorentzian geometry and beyond as follows: Theorem 1.5 of [36] applies to connections
on vector bundles (with compact gauge groups) over Riemannian manifolds, and our
Theorem 3.2 applies to connections on tangent bundles, but for arbitrary manifolds,
including Lorentzian manifolds of General Relativity. The extension of our results
in this paper to connections on vector bundles over arbitrary base manifolds with
compact and non-compact gauge groups is accomplished in [27]. As we mentioned in
Section 1, our extension to general affine connections requires a small modification
in the regularity assumptions for the connection and curvature. Namely, Theorem
1.5 of [36] assumes a sequence of connections (Γx)i ∈ W 1,p, with curvature Riem(Γi)
uniformly bounded in Lp, p > n, and from this concludes with a uniform W 1,p

bound on connection coefficients in Coulomb gauge (where δΓ = 0), with resulting
compactness in Lp. In contrast, our Theorem 3.2 assumes a sequence of connections
(Γx)i which need not lie in W 1,p at the start, but assumes the same uniform bound
on the curvature in Lp, replacing only the assumption Γi ∈ W 1,p with the assumption
of a uniform bound on Γi in L∞. That is, we need not assume differentiability of
the sequence of connections, but require a uniform bound in the less regular space
L∞. Since the assumption of Lp regularity of the curvature is the essential part, we
view our assumptions as being essentially equivalent to the assumptions of Uhlenbeck.
Our assumptions Γi in L∞ and Riem(Γi) ∈ Lp, (p > n), are natural for the setting
of the RT-equations, as we now discuss (setting for simplicity p = ∞ as in Theorem
3.1′). First note that a uniform bound on ‖Riem(Γi)‖L∞ is implied by, but does not
imply a uniform bound on ‖(Γi, dΓi)‖L∞ = ‖Γi‖L∞ + ‖dΓ‖L∞ , since uncontrolled
terms in Γ could cancel in the wedge-product in Riem(Γ) = dΓ + Γ ∧ Γ. In light
of (3.3), for the bound on ‖(Γi, dΓi)‖L∞ to imply a bound on the curvature tensor
would require starting in a coordinate system x in which ‖Γi‖L∞ is bounded by
‖dΓi‖L∞ , or alternatively by ‖Riem(Γi)‖L∞ . For this one could take the locally
inertial coordinate frames proven in Corollary 4.4 to exist for W 1,p connections. This
shows that our assumption of a uniform bound on ‖Γi‖L∞ is implied by an L∞ bound
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on the curvature alone, in natural coordinates, but not necessarily in all coordinate
systems, which could involve transformations with arbitrarily large Jacobians.

Theorems 3.1 and 3.2 are based on extending the existence theory for the RT-
equations to the setting of weak (distributional) solutions. The RT-equations, intro-
duced by the authors in [24], are a system of elliptic partial differential equations
which determine whether coordinate systems exist in which the connection exhibits
optimal regularity. The RT-equations are elliptic independent of any underlying met-
ric structure on the tangent bundle, hence our methods do not require the ellipticity
of the Laplace-Beltrami operator of a metric, and by this we can extend Uhlenbeck’s
results to tangent bundles of arbitrary manifolds. (Again, using the Coulomb gauge
method in the case of Lorentzian metrics would entail hyperbolic estimates, which
are problematic, c.f. [26].) To formulate the RT-equations, we require an Euclidean
Cartan algebra for matrix valued differential forms, the topic of Section 5.

4. Applications of the main results. We now present some applications of
Theorems 3.1 and 3.2. In particular, we show that the GR shock waves solutions con-
structed in [14] can be regularized, and we formulate a version of Uhlenbeck compact-
ness aimed at constructing low regularity solutions of the vacuum Einstein equations.
The reader interested only in the proof of Theorems 3.1 and 3.2 and the RT-equations
may skip this section.

4.1. Application of Uhlenbeck compactness to the vacuum Einstein
equations. As an application of Uhlenbeck compactness, we prove the following
corollary of Theorem 3.2 which provides a new compactness theorem applicable to
vacuum solutions of the Einstein equations. The main difficulty in a convergence
proof for a PDE in an existence theory, is typically the problem of establishing a uni-
form bound on the highest order derivatives, suitable to apply Sobolev compactness.
Uhlenbeck compactness tells us that it suffices to establish a bound on just the Rie-
mann curvature, not all highest order derivatives of a connection, in order to imply
subsequential convergence of connection and metric.

Corollary 4.1. Let gi be a sequence of Lipschitz continuous metrics given on a
manifold M, and let Γi denote the Christoffel symbols of gi for each i ∈ N. Assume
that (gi)i∈N is a sequence of approximate solutions of the vacuum Einstein equations
such that, in a neighborhood of each point, there exists a coordinate system x in which
Ric(gi)→ 0 weakly in Lp, for n < p < ∞, and gi satisfies the uniform bound

‖gi‖L∞ + ‖Γi‖L∞ + ‖Weyl(gi)‖Lp ≤ M (4.1)

for some constant M > 0, together with the non-degeneracy condition that | det(gi)|
is uniformly bounded away from zero. (Norms are taken in coordinate systems and
Weyl(gi) denotes the Weyl curvature of gi.) Then, in each such coordinate system,
there exists a subsequence of (gi)i∈N which converges component-wise and weakly in
W 1,p(Ω) to some metric g which satisfies (4.1) and solves the vacuum Einstein equa-
tions Ric(g) = 0. Furthermore, according to Theorem 3.1, there exists locally, (i.e.,
in a neighborhood of each point), a W 2,2p coordinate transformation x → y which lifts
the components of g to W 2,p and these are the W 2,p-limits of gyi

, the components of
gi in optimal coordinates yi, as in (ii) of Theorem 3.2.

Note that if M is a compact manifold, one can cover M with a finite number of
such optimal coordinate patches, and by a diagonal argument, extract a subsequence
which converges to a solution of the vacuum Einstein equations in each coordinate
system of the finite covering, and hence in all of M.
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Proof. To begin, note that the L∞ bound on Γi provides an L∞ bound on the
derivatives of gi, so the sequence (gi)i∈N is uniformly bounded inW 1,p, any p ∈ (1,∞).
Thus the weak W 1,p convergence of a subsequence of (gi)i∈N to some metric g ∈ W 1,p

in x-coordinates follows by the Banach Alaoglu Theorem for any p ≤ ∞; (that g is a
metric follows by our non-degeneracy assumption). But this is not enough to conclude
that Ric(g) = 0, because the convergence is not strong enough to pass weak limits
through Ric(gi). To prove that Ric(g) = 0 we apply now Uhlenbeck compactness
of Theorem 3.2. Since Ric(g) = 0 is a point-wise condition, we assume without loss
of generality that the coordinate transformations to optimal regularity (x → yi),
asserted to exist by Theorem 3.2, are defined on the entire coordinate patch in which
each gi is given.

Note first that a uniform Lp bound on Ric(gi) and Weyl(gi) implies that Riem(gi)
is uniformly bounded in Lp, since the Ricci tensor together with the Weyl tensor
comprise the Riemann curvature tensor [5]. Moreover, by assumption Ric(gi) → 0
weakly in Lp, which implies that Ric(gi) is uniformly bounded in Lp. Thus, also taking
into account the bound on the metric and connection in (4.1), Theorem 3.2 applies
and yields the existence of a convergent subsequence of (gi)i∈N, asserting weak W 2,p

and strong W 1,p convergence, (n < p < ∞). Namely, let yi be a coordinate system
in which Γi and hence gi has optimal regularity, and denote by gyi

the metric gi(x)
in yi coordinates but with its components expressed as functions over x-coordinates,
c.f. (ii) of Theorem 3.2. Then gyi ∈ W 2,p in x-coordinates and

‖gyi
‖W 2,p ≤ ‖gyi

‖Lp + ‖Γyi
‖W 1,p

is bounded uniformly by some constant C(M) > 0, since ‖Γyi
‖W 1,p and the Jacobians∥∥∂yi

∂x

∥∥
W 1,p are both uniformly bounded, c.f. (3.7) and (3.8). The asserted convergence

of a subsequence now follows by the Banach Alaoglu Theorem. We denote this con-
vergent subsequence by (gyi)i∈N, where gyi ≡ gyi(x) is to be understood as the metric
in yi-coordinates with components expressed in x-coordinates.

The main point then is that the curvature is linear in derivatives, and one can
pass weak limits through such derivatives. That is, by assumption Ric(gi)→ 0 weakly
in Lp for some p ∈ (n,∞) as i → ∞, and to prove that the limit metric g ≡ lim

i→∞
gi

solves the vacuum Einstein equations, we need only show that Ric(gi) converges to
Ric(g) weakly in Lp as i → ∞. For this, observe that the weak W 1,p convergence of
Γi implies weak Lp convergence of dΓi to dΓ, where Γ denotes the connection of g.
Moreover, the strong Lp convergence of Γi implies strong convergence of Γi ∧ Γi to
Γ ∧ Γ in L

p
2 . This implies weak convergence of the Riemann curvature, namely for

any matrix valued 2-form Ψ ∈ W
1,(p/2)∗

0 ⊂ W 1,p∗
0 we have

〈Riem(Γi),Ψ〉L2 = −〈Γi, δΨ〉L2 + 〈Γi ∧ Γi,Ψ〉L2

i→∞−→ −〈Γ, δΨ〉L2 + 〈Γ ∧ Γ,Ψ〉L2 = 〈Riem(Γ),Ψ〉L2 ,

which implies weak convergence in L
p
2 by denseness of W

1,(p/2)∗

0 in Lp∗
. Since this

applies to any p > n, we conclude that Riem(Γi) converges weakly to Riem(Γ) in
Lp which implies the sought after convergence, Ric(gi) → Ric(g) weakly in Lp. This
proves g solves the vacuum Einstein equations Ric(g) = 0 and this holds in any
coordinate system by tensor transformation.

Note that without Uhlenbeck compactness Theorem 3.2, the uniform L∞ bound
on a sequence of metric connections and their curvatures would not in general imply
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that the limit metric solves the vacuum Einstein equations. Indeed, weak Lp conver-
gence of a subsequence of the metric connections is not in general sufficient to pass
weak limits through nonlinear functions like products [7, Chapter 16]. As a result,
even though the Ricci tensor would correctly converge to zero, the limit Ricci tensor
would in general fail to be the Ricci tensor of the limit connection.

4.2. A generalization of the Israel junction conditions. As a corollary
of Theorem 3.1′, in the spirit of Uhlenbeck’s earlier paper [37] for positive definite
metrics, we immediately obtain that dΓ ∈ L∞ implies that singularities on sets of
measure zero in non-optimal connections are always removable. The condition dΓ ∈
L∞ plays the role of a generalized Rankine Hugoniot jump condition [32], or “Junction
Condition” [16], and it gives general expression to the condition that the curvature
be free of “delta function sources”, necessary and sufficient conditions introduced by
Israel for smoothing discontinuous connections across single shock surfaces [16].

Corollary 4.2. Assume Γ, dΓ are bounded and continuous off a set of measure
zero in some open set Ω in x-coordinates. Then the additional condition that the L∞

extension of Γ to Ω satisfies dΓ ∈ L∞(Ω), is sufficient to imply that for any point
q ∈ Ω, there exists a neighborhood Ω′ ⊂ Ω of q, and a coordinate transformation x → y
on Ω′, such that the connection components Γy in y-coordinates can be extended as
Hölder continuous functions to Ω′

y with Γy ∈ W 1,p(Ω′
y).

This is a direct consequence of Theorem 3.1′, keeping in mind that W 1,p is embedded
in the space of Hölder continuous functions for p > n by Morrey’s inequality, c.f.
(A.4).

4.3. Optimal regularity in spherically symmetric spacetimes. The fol-
lowing corollary of Theorem 3.1 establishes for the first time that solutions of the Ein-
stein equations constructed in Standard Schwarzschild Coordinates, including the Lip-
schitz continuous metrics associated with shock waves in [14], can always be smoothed
to optimal regularity by coordinate transformation. Solutions of the Einstein equa-
tions in SSC have a long history in General Relativity going back to Schwarzschild
and Birkhoff. The existence theory in [14] establishes (weak) shock wave solutions of
the Einstein-Euler equations by Glimm’s method, (see also [3]). The Einstein-Euler
system couples the unknown metric gij to the unknown density ρ, pressure p and
velocity u of a perfect fluid via T ij = (ρ + p)uiuj + pgij in G = κT . The spacetime
metrics of these solutions are non-optimal with curvature in L∞, but optimal metric
regularity would be required to introduce locally inertial frames and geodesic curves
by standard methods.

For this consider a metric in Standard Schwarzschild Coordinates (SSC)

ds2 = −B(t, r)dt2 +
dr2

A(t, r)
+ r2dΩ2. (4.2)

This represents the coordinates in which the Einstein equations for a spherically sym-
metric spacetime metric (arguably) take their simplest form. Since the first three
Einstein equations in SSC are

−rAr + (1−A) = κBT 00r2 (4.3)

At = κBT 01r (4.4)

r
Br

B
− 1−A

A
=

κ

A2
T 11r2 (4.5)
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the metric can generically be only one level more regular than the curvature tensor,
at every level of regularity, and is hence non-optimal. (See [14] for the full system
of equations.) As an application of Theorem 3.1, we have the following result which
establishes that shock wave solutions of the Einstein equations constructed by the
Glimm scheme are one order more regular than previously known [14]. (The result
here extends to every level of regularity, c.f. [26].)

Corollary 4.3. Let T ∈ L∞ and assume g ≡ (A,B) is a (weak) solution of the
Einstein equations in SSC satisfying g ∈ C0,1 and hence Γ ∈ L∞ in an open set Ω.
Then for any p > 4 and any q ∈ Ω there exists a coordinate transformation x → y
defined in a neighborhood of q, such that, in y-coordinates, g ∈ W 2,p, Γ ∈ W 1,p.

Proof. In Standard Schwarzschild coordinates the Ricci and Riemann curvature
tensor have the same regularity (as can be verified using Mathematica). So assuming
T in L∞ implies dΓ in L∞, and Theorem 3.1 implies the corollary.

4.4. Construction of locally inertial coordinates. The standard method for
constructing locally inertial frames does not apply to connections Γ ∈ L∞(Ω) because
the classical Riemann normal coordinate construction requires Lipschitz continuity
for a connection, and regularity C1,1 for a metric, [21]. The following corollary of
Theorem 3.1 establishes that locally inertial coordinates always exist in a Hölder
sense, for any L∞ connection with Riem(Γ) ∈ L∞(Ω).

Corollary 4.4. Assume Γ,Riem(Γ) ∈ L∞(Ω) on a bounded spacetime domain
Ω ⊂ R

n. Then for any p ≥ 1 and any point q ∈ Ω there exists a neighborhood
Ω′ ⊂ Ω of q and a coordinate transformation with Jacobian J ∈ W 1,2p(Ω′) such that
the connection in the resulting coordinates z has regularity Γ ∈ W 1,p(Ω′) and satisfies

Γγ
αβ(q) = 0 (4.6)∣∣Γγ
αβ(q̂)

∣∣ ≤ C |q − q̂|α, (4.7)

where α ∈ (0, 1) is the Hölder coefficient associated with 2p > n by Morrey’s inequality
and | · | is the Euclidean norm on R

n applied to q − q̂ in z-coordinates.

We call a coordinate system y in which the connection is in W 1,p for p > n and
satisfies (4.6) and (4.7), a locally inertial coordinate system with Hölder corrections
to the gravitational field. The case α = 1 in (4.7) would give the standard second
order correction due to the gravitational field. For Lorentz metrics one can in ad-
dition arrange for the metric to be equal to the Minkowski metric at q by suitable
multiplication with a constant Jacobian.21

Proof of Corollary 4.4. The assumptions of Corollary 4.4 are identical to those of
Theorem 3.1. Applying Theorem 3.1 gives us a Jacobian J ∈ W 1,2p(Ω′), as determined
by the RT-equations, defined in some neighborhood Ω′ ⊂ Ω of q, such that the
connection in the resulting coordinates yα has regularity Γ ∈ W 1,p(Ω′). Without loss
of generality, we assume that y(q) = 0.

To arrange for condition (4.6), following the development in Chapter 8 of [23],
we introduce a smooth coordinate transformation y → z, (hence preserving the reg-
ularity W 1,p of Γ), such that Γ satisfied the sought after properties (4.6) - (4.7) in

21This Jacobian is the unique composition of the orthogonal matrix diagonalizing the metric at
q multiplied with the diagonal matrix that has the inverse of the square root of each eigenvalue of
the metric on its diagonal. See the construction in [23] for details. Since the Jacobian is constant,
properties (4.6) - (4.7) are preserved.
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z-coordinates. The Hölder continuity of Γ, (implied by Morrey’s inequality (A.4)),
allows us to evaluate the connection in y-coordinates at the point q, Γα

βγ

∣∣
q
, and hence

introduce the coordinate transformation

zμ(y) ≡ δμαΓ
α
βγ

∣∣
q
yβyγ + δμα yα, (4.8)

where δμα denotes the Kronecker symbol. Clearly (4.8) defines a smooth coordinate
transformation and, by our incoming assumption y(q) = 0, it follows that

z(y(q)) = 0 and
∂zμ

∂yα

∣∣∣
q
= δμα. (4.9)

Moreover, and this is the main point of definition (4.8), we have

∂2zμ

∂yβ∂yγ

∣∣∣
q
= δμαΓ

α
βγ

∣∣
q
, (4.10)

which implies that the connection Γσ
μν in z-coordinates vanishes at q. Indeed, from

the transformation law of connections we find that

∂zσ

∂yα
Γα
βγ =

∂2zσ

∂yβ∂yγ
+ Γσ

μν

∂zμ

∂yβ
∂zν

∂yγ
,

so using (4.9) and (4.10) to evaluate Γσ
μν at q gives

δσαΓ
α
βγ

∣∣
q
= δσαΓ

α
βγ

∣∣
q
+ Γσ

μν

∣∣
q
δμβδ

ν
γ

and this implies that in z-coordinates Γσ
μν

∣∣
q
= 0 for all σ, μ, ν ∈ {1, ..., n}. This proves

property (4.6) of Corollary 4.4.
Now property (4.7) follows directly from (4.6) together with the Hölder continuity

of Γ in z-coordinates. Namely, since the coordinate transformation y → z is in
C∞(Ω′), we again have Γ ∈ W 1,p(Ω′) in z-coordinates, so Morrey’s inequality implies
that Γ ∈ C0,α for α = 1− n

p . This completes the proof of Corollary 4.4.

5. Preliminaries - The Euclidean Cartan algebra. We now summarize the
Cartan Calculus which we require to formulate the RT-equations and refer the reader
to Section 2 in [24] for further detail and proofs. We work again in fixed x-coordinates
defined on a open set Ω ≡ Ωx ⊂ R

n. By a matrix valued differential k-form ω we
mean an (n× n)-matrix whose components are k-forms, and we write

ω = ω[i1...ik]dx
i1 ∧ ... ∧ dxik ≡

∑
i1<...<ik

ωi1...ikdx
i1 ∧ ... ∧ dxik , (5.1)

for (n × n)-matrices ωi1...ik such that total anti-symmetry holds in the indices
i1, ..., ik ∈ {1, ..., n}. (We always sum over repeated indices, following Einstein’s
convention, but we never “raise” or “lower” indices.) We define the wedge product of
a matrix valued k-form ω with a matrix valued l-form u = uj1...jldx

j1 ∧ ... ∧ dxjl as

ω ∧ u ≡ 1

l!k!
ωi1...ik · uj1...jl dx

i1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl , (5.2)

where “·” denotes standard matrix multiplication. In contrast to scalar valued dif-
ferential forms, ω ∧ ω can be non-zero, because matrices do in general not commute.
The exterior derivative d is defined component wise on matrix-components,

dω ≡ ∂lω[i1...ik]dx
l ∧ dxi1 ∧ ... ∧ dxik , (5.3)
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and we define the co-derivative δ on a matrix valued k-form ω as

δω ≡ (−1)(k+1)(n−k) ∗ d ∗ ω,

where ∗ is the Hodge star introduced in terms of the Euclidean metric in x-coordinates.
That is, ∗ satisfies the orthogonality condition

dx[i1 ∧ ... ∧ dxik] ∧ ∗
(
dx[j1 ∧ ... ∧ dxjk]

)
=

{
dx1 ∧ ... ∧ dxn, if i1 = j1, ..., ik = jk,

0 otherwise,
(5.4)

where indices are taken to be increasing. So δ is defined via the Euclidean metric
in x-coordinates, while d requires no metric. Both d and δ act component wise on
matrix components, so all properties of d and δ for scalar valued differential forms
carry over to matrix valued forms. The Laplacian Δ ≡ dδ+δd acts component wise on
matrix-components and also on differential form components. By (5.4), one can show
that Δ is in fact identical to the Laplacian of the Euclidean metric in x-coordinates,

Δ = ∂2
x1 + ...+ ∂2

xn ,

c.f. [6, 24] for more detail.
By (5.2) and (5.3), the Riemann curvature tensor can be written as

Riem(Γx) = dΓx + Γx ∧ Γx, (5.5)

in x-coordinates. The exterior derivative satisfies the product rule

d(ω ∧ u) = dω ∧ u+ (−1)kω ∧ du, (5.6)

where ω ∈ W 1,p(Ω) is a matrix valued k-form and u ∈ W 1,p(Ω) is a matrix valued
j-form, (c.f. Lemma 3.3 of [24]). Since the wedge product (5.2) for matrix valued
0-forms J is identical to matrix multiplication, and since dJ−1 = −J−1 · dJ ·J−1, the
Leibniz rule (5.6) implies that

d
(
J−1 · dJ

)
= d(J−1) ∧ dJ = −J−1dJ ∧ J−1dJ, (5.7)

c.f. Lemma 4.3 in [24]. Regarding the co-derivative δ, we require the following product
rule

δ(J ·w) = J ·δw + 〈dJ ;w〉 (5.8)

where J ∈ W 1,p(Ω) is a matrix valued 0-form, w ∈ W 1,p(Ω) a matrix valued 1-form,
and where 〈· ; ·〉 is the matrix valued inner product defined on matrix valued k-forms
ω and u by

〈ω ;u〉μν ≡
n∑

σ=1

∑
i1<...<ik

ωμ
σ i1...ik

uσ
ν i1...ik

. (5.9)

So 〈ω ;u〉 converts two matrix valued k-forms into a matrix valued 0-form. For mul-
tiplication by a matrix valued 0-form J we have the following multiplication property

J · 〈ω ;u〉 = 〈J · ω ;u〉, 〈ω · J ;u〉 = 〈ω ; J · u〉, 〈ω ;u · J〉 = 〈ω ;u〉 · J. (5.10)
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We also need to interpret matrix valued forms as vector valued differential forms.
The two operations which convert matrix valued differential forms to vector valued

forms on the right hand side of the RT-equations are �· and −→
div(·). First, �· converts

matrix valued k-forms ω into vector valued (k + 1)-forms �ω by

�ωμ ≡ ωμ
ν i1...ik

dxν ∧ dxi1 ∧ ... ∧ dxik , (5.11)

with ω taken as in (5.1), c.f. (2.20) in [24] for the case k = 0, most relevant to us.

Secondly, the operation
−→
div(·) converts matrix valued k-forms ω into vector valued

k-forms
−→
div(ω) by the operation

−→
div(ω)α ≡

n∑
l=1

∂l
(
(ωα

l )i1...ik
)
dxi1 ∧ ... ∧ dxik .

Finally, for a matrix valued 1-form w and a matrix valued 0-form J , Lemma 2.4 of
[24] gives the important identity

d
(−−−−→
δ(J ·w)

)
=

−→
div

(
d(J · w)

)
=

−→
div

(
dJ ∧ w

)
+
−→
div

(
J ·dw

)
, (5.12)

which is crucial for the regularity to close in the RT-equations.

6. The reduced RT-equations and resulting optimal regularity. In this
section we derive the reduced RT-equations from the RT-equations, the system of
elliptic PDE’s introduced in [24] which determines whether a connection Γ can be
mapped to optimal regularity, and prove their equivalence. We then state the main
theorems concerning the existence of solutions of the reduced RT-equations and result-
ing optimal regularity for Lp connections, Theorems 6.3 and 6.1 respectively, which
are proven in Sections 8 - 11. In Section 13 we apply Theorems 6.1 and 6.3 to give
the proof of our main results, Theorems 3.1 and 3.2.

We begin by reviewing the RT-equations derived in [24]. The RT-equations consist
of the following nonlinear elliptic system of PDE’s

ΔΓ̃ = δdΓ− δ
(
dJ−1 ∧ dJ

)
+ d(J−1A), (6.1)

ΔJ = δ(J ·Γ)− 〈dJ ; Γ̃〉 −A, (6.2)

d �A =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
− d

(−−−−→
〈dJ ; Γ̃〉

)
, (6.3)

δ �A = v, (6.4)

together with boundary data

d �J = 0 on ∂Ω. (6.5)

The connection Γ ≡ Γμ
νkdx

k is given and interpreted as a matrix valued 1-form,
and Γ on the right hand side of (6.1) - (6.4) always denotes the components Γx in x-
coordinates. The unknowns in the RT-equations are (Γ̃, J, A) which are matrix valued
differential forms as follows: J ≡ Jμ

ν is the Jacobian of the sought after coordinate
transformation which smooths the connection, viewed as a matrix-valued 0-form; Γ̃ ≡
Γ̃μ
νkdx

k represents the unknown tensor one order smoother than Γ such that Riem(Γ−
Γ̃) = 0, viewed as a matrix-valued 1-form; and A ≡ Aμ

ν is an auxiliary matrix valued

0-form introduced together with boundary data (6.5) to impose d �J ≡ Curl(J) = 0, the
condition for the Jacobian J that guarantees it is integrable to a coordinate system,
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c.f. Theorem C.2 and [24]. See Section 5 for definitions of the remaining operations
in (6.1) - (6.4).

The RT-equations (6.1) and (6.2) were derived by constructing Laplacians out
of two equivalent forms of the Riemann-flat condition, a condition introduced in [23]
equivalent to the existence of coordinates in which the connection has optimal regu-
larity. These two starting conditions were that Riem(Γ− Γ̃) = 0, or alternatively, that
Γ̃ = Γ− J−1dJ for some tensor Γ̃ one order smoother than Γ. If Γx can be smoothed
to optimal regularity by the transformation x → y with Jacobian J , then, defining

Γ̃J ≡ Γ− J−1dJ, (6.6)

the connection components Γy of optimal regularity are given by the tensor transfor-
mation rule

(Γ̃J)
k
ij = (J−1)kγJ

α
i J

β
j (Γy)

γ
αβ , (6.7)

and Γ̃J will solve the RT-equations (6.1) - (6.4) as well as the Riemann-flat condition
Riem(Γ − Γ̃J) = 0. That is, Γ̃J , the tensor transformation by J of the components
of the connection Γy in y-coordinates, will solve the RT-equations for some (A, v),

when J is paired with Γ̃J . Conversely, one can recover the connection of optimal
regularity Γy via equation (6.7) from a general solution Γ̃, J of the RT-equations,
but this requires an existence theory which establishes the relationship between the
solution Γ̃ and Γ̃J , as we now explain.

In [24] we prove that if Γx, dΓx ∈ Wm,p, for m ≥ 1, p > n, then there exists a
coordinate transformation x → y which raises the regularity by one order to Γy ∈
Wm+1,p if and only if there exists a solution (J, Γ̃, A) of the RT-equations (6.1) - (6.4),
(taking Γ = Γx on the right hand side), with boundary data (6.5), and regularity
J, Γ̃ ∈ Wm+1,p, A ∈ Wm,p. In [25] we proved that such a solution (J, Γ̃, A) exists for
any such connection Γ ∈ Wm,p with dΓ ∈ Wm,p, when m ≥ 1, p > n. Extending this
theory to the case of Γ, dΓ ∈ L∞ as well as the case Γ ∈ L2p, dΓ ∈ Lp, (p > n/2), when
the RT-equations only have meaning in a weak sense, is accomplished in the present
paper. This was not possible with the methods used in our previous paper [25]. The
main obstacle is proving an existence theory for the RT-equations with J ∈ W 1,2p at
the low level of regularity Γ, dΓ ∈ L∞ (or Γ ∈ L2p, dΓ ∈ Lp). The problem is that
the iteration scheme in [25] does not close because the gradient product dJ−1∧dJ on
the right hand side of equation (6.1) fails to stay in a fixed Lp space under iteration.
Alternatively, trying to construct solutions J ∈ W 1,∞ is problematic as well, because
p =∞ is a singular case in elliptic regularity theory, and our iteration scheme in [25]
would not close in L∞ for this different reason. We here extend the existence theory
and consequent optimal regularity theory first to the case Γ, dΓ ∈ L∞, (in Sections
10 - 11), and then to the case Γ ∈ L2p, dΓ ∈ Lp, (in Section 12), by a serendipitous
modification of the RT-equations.

In this paper we employ the gauge freedom of the RT-equations to circumvent the
problem of incorporating the nonlinear product dJ−1 ∧ dJ in (6.1) into an iteration
scheme which closes in Lp spaces. The idea is to separate this term from the iteration
scheme by using the gauge freedom v in the A equation (6.4) to consolidate Γ̃ and
A into a single variable B, and thereby uncouple equations (6.2) - (6.4) for J from
equation (6.1) for Γ̃. Defining

B ≡ A+ 〈dJ ; Γ̃〉, (6.8)

w ≡ v + δ
−−−−→
〈dJ ; Γ̃〉, (6.9)
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observe now that we can write (6.2) - (6.4) as

ΔJ = δ(J ·Γ)−B, (6.10)

d �B =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
, (6.11)

δ �B = w. (6.12)

Equations (6.10) - (6.12) are the reduced RT-equations, c.f. (1.5) - (1.7). Since
the transformation from v to w can be viewed as a gauge transformation, the gauge
freedom of the RT-equations implies that we can ignore the dependence of Γ̃ on w, and
view w as the independent gauge freedom in the RT-equations; (this is made rigorous
in Theorem 6.1 below). Therefore equations (6.10) - (6.12) decouple the equations
for J and B from Γ̃, and hence from the first RT-equation (6.1), which in terms of B
becomes

ΔΓ̃ = δdΓ− δ
(
dJ−1 ∧ dJ

)
+ d

(
J−1(B − 〈dJ ; Γ̃〉)

)
. (6.13)

By this decoupling the Jacobians J which map Γ to optimal regularity can be con-
structed independently of Γ̃, (which we can now discard), by solving the reduced
RT-equations (6.10) - (6.12) alone.

So, discard the original Γ̃, and assume (J,B) is a solution of the reduced RT-
equations (6.10) - (6.12) with J ∈ W 1,2p(Ω′

x) and B ∈ Lp(Ω′
x). The goal now is

to use the solutions J,B of the reduced RT-equations to establish optimal regularity
without reference to the original Γ̃. To show such a Jacobian J indeed maps Γ
to optimal regularity, it suffices to prove that Γ̃ = Γ̃J provides another solution of
(6.13). In our next theorem we show that, incredibly enough, this is true: Γ̃ = Γ̃J is
an exact solution of the elliptic equation (6.13), an equation we could not solve by our
previous methods at the low regularity Γ, dΓ ∈ L∞. Equation (6.13) then establishes
the requisite smoothness Γ̃J ∈ W 1,p.

To complete the circle, we now explain how to recover a solution of the full RT-
equations form (6.10) - (6.12), when Γ̃ is replaced by Γ̃J . For this, we need only
show that J, Γ̃J solve the original RT-equations with a different choice of gauge A

′, v′.
Reversing the above steps using Γ̃J in place of Γ̃, it follows that the back change of
gauge

A′ ≡ B − 〈dJ ; Γ̃J〉, (6.14)

v′ ≡ w − δ
−−−−−→
〈dJ ; Γ̃J〉, (6.15)

takes a solution (J,B) of the reduced RT-equations back to a solution of the original
RT-equations with the same J , but with Γ̃ replaced by Γ̃J . These are recorded in parts
(i) and (ii) of Theorem 6.1 below, which states that (J, Γ̃J , A

′) defined in (6.6) - (6.14)
indeed solves the full RT-equations (6.1) - (6.4), and, by this, Γ̃J has the requisite
smoothness Γ̃J ∈ W 1,p(Ω). Part (iii) of Theorem 6.1 establishes an estimate for
Γ̃J from which we deduce the uniform W 1,p-bound (3.7) on Γy in Theorem 3.1, the
bound that underlies Uhlenbeck compactness. The existence of solutions (J,B) of
the reduced RT-equations, satisfying estimate (6.16), which are assumed in Theorem
6.1, are shown to exist in Theorem 6.3 below. For the low regularities considered in
this paper, we need to establish the above equivalence and existence theory in a weak
sense, accomplished in Sections 9 - 12. Serendipitously, the RT-equations allow for
a weak formulation because all lowest regularity terms on the right hand side have
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derivatives δ or d on them, making them amenable to integration by parts, (as in the
theory of conservation laws [32]), c.f. Section 8.

Theorem 6.1. Assume Γ ∈ L2p(Ωx) and dΓ ∈ Lp(Ωx), in x-coordinates, where
p > max{n/2, 2}, p < ∞, n ≥ 2. Assume (J,B) solves the reduced RT-equations
(6.10) - (6.12) weakly for some w on an open set Ω′ ⊂ Ω, such that J, J−1 ∈ W 1,2p(Ω′

x)
and B ∈ Lp(Ω′

x). Then the following holds:
(i) Γ̃J solves (6.13), where Γ̃J is defined in (6.6). The tuple (J, Γ̃J , A

′) solves the
full RT-equations (6.1) - (6.4) in Ω′ for v = v′, where A′ and v′ are defined
in (6.14) and (6.15).

(ii) Γ̃J is one derivative more regular than the terms constituting Γ̃J in its defining
equation (6.6) are separately, that is, Γ̃J ∈ W 1,p(Ω′′

x) for any open set Ω′′

compactly contained in Ω′.
(iii) Assume the initial bound (3.6) of Theorem 3.1 holds, i.e.,

‖(Γ, dΓ)‖L2p,p(Ω) ≡ ‖Γx‖L2p(Ωx) + ‖dΓx‖Lp(Ωx) ≤ M

for some constant M > 0, and assume that (J,B) satisfies the estimate

‖I − J‖W 1,2p(Ω′
x)
+ ‖I − J−1‖W 1,2p(Ω′

x)
+ ‖B‖Lp(Ω′

x)

≤ C2(M) ‖(Γ, dΓ)‖L2p,p(Ω′), (6.16)

for some constant C2(M) > 0 depending only on Ω′
x, n, p and M .22 Then, on

any open set Ω′′ compactly contained in Ω′, Γ̃ satisfies the uniform bound

‖Γ̃J‖W 1,p(Ω′′
x )

≤ C3(M) ‖(Γ, dΓ)‖L2p,p(Ω′) (6.17)

where C3(M) > 0 is some constant depending only on Ω′′
x,Ω

′
x, n, p and M .23

The key step in the proof of Theorem 6.1 is establish in Lemma 7.2 below, by
proving that (6.6) is an exact formula for the solution Γ̃ = Γ̃J of the first RT-equation
(6.1), from which the regularity gain of Γ̃J in (ii) can be deduced. To give the
argument in its essence, we assume one more level of smoothness in Lemma 7.2.
More care is required to extend the argument of Lemma 7.2 to the low regularities
of Theorem 6.1 and prove the theorem rigorously, which is the subject of Section 9.
Assuming only that (ii) of Theorem 6.1 holds, the equivalence of optimal regularity
and the reduced RT-equations, in the spirit of our previous paper [24], can now be
established as a corollary. This reduces the problem of optimal regularity to an
existence theorem for the reduced RT-equations. 24

Corollary 6.2. Assume Γ ∈ L2p(Ωx) and dΓ ∈ Lp(Ωx) in x-coordinates, p >
max{n/2, 2}, p < ∞, n ≥ 2. Then for any q ∈ Ω there exists a neighborhood Ω̃ ⊂ Ω
of q and a coordinate transformation x → y such that the connection components
Γy in y-coordinates have optimal regularity Γy ∈ W 1,p(Ω̃y) if and only if there exists

22Estimate (6.16) bounds J and J−1, but is expressed in terms of I − J and I − J−1 to reflect
the fact that J typically tends to the identity as M tends to zero.

23Theorem 6.1 also hold for ‖(Γ, dΓ)‖L2p,p replaced everywhere by ‖(Γ, dΓ)‖L∞ , essentially since
Γ, dΓ ∈ L∞ implies Γ ∈ L2p and dΓ ∈ Lp for any p < ∞ by boundedness of Ω.

24Although equation (6.1) can be bypassed for constructing solutions, equation (6.1) is required
to prove optimal connection regularity in the coordinate system introduced by J and is therefore
a vital part of the RT-equations. Note also that one can use an underlying Cauchy-Riemann-type
equation for Γ̃ instead of (6.1) and establish optimal regularity by applying Gaffney’s inequality, but
we prefer the Poisson type equation (6.1).
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a weak solution (J,B) of the reduced RT-equations (6.10) - (6.12), defined on some

neighborhood Ω′ of q, with J, J−1 ∈ W 1,2p(Ω′
x), B ∈ Lp(Ω′

x) and d �J = 0 in Ω′
x. The

Jacobian of the coordinate transformation x → y is dy = J ∈ W 1,2p(Ω′
x).

Proof. The forward implication of Corollary 6.2 is straightforward because the re-
duced RT-equations are derived from the full RT-equations which are in turn deduced
from the Riemann-flat condition, a condition equivalent to optimal regularity, c.f. [24].
That is, given the Jacobian J and resulting connection Γy of optimal regularity, and
defining

Γ̃k
ij = (J−1)kγJ

α
i J

β
j (Γy)

γ
αβ ,

then Γ̃ satisfies the Riemann-flat condition. It is now straightforward to check that
(Γ̃, J) solves the RT-equation for some A, and, defining B by (6.8), that (J,B) solves

the reduced RT-equations (6.10) - (6.12). Recall that d �J = 0 is equivalent to J being
the Jacobian of a coordinate transformation, c.f. Theorem C.2.

To prove the reverse implication we apply Theorem 6.1, which we assume to be
valid here. By part (ii) of Theorem 6.1, Γ̃J defined by (6.6) is in W 1,p(Ω′

x) and Γ̃J

solves the first RT-equation (6.13) in terms of the solution (J,B) of the reduced RT-
equations (6.10) - (6.12). Let x → y be a coordinate transformation with Jacobian

dy = J , which exists since we assumed that d �J = 0 in Ω′
x. Now define the connection

Γy in terms of Γ̃J in x-coordinates by (6.7), that is,

(Γy)
γ
αβ = Jγ

k (J
−1)iα(J

−1)jβ(Γ̃J)
k
ij . (6.18)

Since Γ̃J ∈ W 1,p(Ω′
x) and J, J−1 ∈ W 1,2p(Ω′

x), p > n/2, it follows that Γy(x) ∈
W 1,p(Ω′

x) in x-coordinates, and therefore also when expressed in y-coordinates Γy ∈
W 1,p(Ω′

y), as can be shown using Morrey’s and Hölder’s inequalities in combination
with Sobolev embedding, (see Section 13 for details). Substituting the definition of
Γ̃J in (6.6) into (6.18) implies that

(Γy)
γ
αβ = Jγ

k (J
−1)iα(J

−1)jβ
(
Γx − J−1dJ

)k
ij

= Jγ
k (J

−1)iα(J
−1)jβ(Γx)

k
ij − (J−1)iα(J

−1)jβ∂iJ
γ
j ,

from which we conclude that Γy are the connection components Γx transformed to
a coordinate system y in which Γ exhibits optimal regularity, Γy ∈ W 1,p(Ω). This
completes the proof.

Finally, to obtain the optimal regularity result stated in Theorem 3.1, together
with the uniform estimate (3.7), we require the following theorem which establishes
the existence of solutions to the reduced RT-equations satisfying the assumptions J,∈
W 1,2p(Ω′

x), B ∈ Lp(Ω′
x) of Theorem 6.1, together with the additional estimate (6.16).

(The existence theory is worked out in fixed x-coordinates, so we omit subscript x on
Γ and Ω.)

Theorem 6.3. Assume Γ ∈ L2p(Ω) and dΓ ∈ Lp(Ω) in x-coordinates, where
n/2 < p < ∞, n ≥ 2, and assume the initial bound (3.6) holds for some constant
M > 0. Then for any q ∈ Ω there exists a neighborhood Ω′ ⊂ Ω of q, and there exists
J ∈ W 1,2p(Ω′) and B ∈ Lp(Ω′) such that (J,B) solves the reduced RT-equations
(6.10) - (6.12) in a weak sense and satisfies the uniform bound (6.16). Moreover, J

is invertible with J−1 ∈ W 1,2p(Ω′) and integrable to coordinates (d �J = 0 in Ω′). One
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can take Ω′
x = Ωx ∩ Br(q), for Br(q) the Euclidean ball of radius r in x-coordinates,

where r depends only on Ωx, p, n and Γ near q; if ‖(Γ, dΓ)‖L∞,2p(Ω) ≤ M , then r
depends only on Ωx, p, n and M .

Theorem 3.1, our main result on optimal regularity, is now a rather direct con-
sequence of Theorem 6.3 in combination with Corollary 6.2 and estimate (6.17) of
Theorem 6.1. This is shown in detail in Section 13 below. The proof of Theorems
6.1 and 6.3 is the main technical effort in this paper. The proof of Theorem 6.1 is
given in Sections 7 and 9. The proof of Theorem 6.3 is established for connections
Γ, dΓ ∈ L∞(Ω) in Sections 10 and 11, and extended to connections Γ ∈ L2p(Ω),
dΓ ∈ Lp(Ω) in Section 12. Note that the boundary data (6.5) is ill-defined at the low
regularity J ∈ W 1,2p. So to make sense of this, we augment the reduced RT-equations
with auxiliary elliptic PDE’s for y, which allows us to replace (6.5) by Dirichlet data for
J = dy, data one degree more regular than (6.5) and thus well-defined. To summarize,
the RT-equations reduce the nonlinear problem of regularizing connections to a linear
existence problem for constructing the Jacobian J via the reduced RT-equations, fol-
lowed by a regularity boost for Γ̃J provided by the non-linear first RT-equation (6.1).
So for applications it suffices to solve the linear reduced RT-equations for J to obtain
the regularizing coordinate transformation, and our iteration scheme in Section 10
provides an algorithm for doing this.

7. How to recover the full from the reduced RT-equations by gauge
transformation.

7.1. Conceptual overview. We start by describing, more carefully, the logical
connection between the full RT-equations (6.1) - (6.4) and the reduced RT-equations
(6.10) - (6.12). Recall from Section 6 that the original RT-equations were derived by
constructing the Laplacian dδ + δd starting from two equivalent formulations of the
Riemann-flat condition, one involving dJ and one involving dΓ̃; and the first order
A equation came by replacing A = JδΓ̃ in the J equation, setting d of the right
hand side equal to zero, and imposing dJ = 0 on the boundary in (6.5). Now in
the existence theory set out in [25] for the case Γ, dΓ ∈ W 1,p, we saw that not every
solution of the original RT-equations determines a solution in which J is paired with
Γ̃ = Γ̃J ≡ Γ− J−1dJ given in (6.6). Here Γ̃J is the tensor transformation (6.7) of the
connection coefficients obtained by transforming the original Γ by J . To complete the
argument in [24], we proved that given a solution (Γ̃, J, A, v) of the full RT-equations,
Γ̃J will solve a modified version of the first RT-equation (6.1). In [24], the role of this
modified elliptic equation was to establish that Γ̃J , (and hence also Γy by (6.7)), is
of optimal regularity. This was established rigorously in [25] at the smoothness level
Γ, dΓ ∈ W 1,p.

We now understand this more conceptually as follows. The variables for the
original RT-equations are (Γ̃, J, A, v). The transformation (Γ̃, J, A, v) → (Γ̃, J, B,w)
effected by the change of variables (6.8) - (6.9) given by

B = A− 〈dJ ; Γ̃〉,
w = v − δ〈dJ ; Γ̃J〉,

transforms the last three RT-equations (6.2)-(6.4) into the reduced RT-equations
(6.10)-(6.12), and transforms the first RT-equation (6.1) into equation (6.13), an
elliptic equation for Γ̃ involving (Γ̃, J, B) on the right hand side. Thus the original
four RT-equations (6.1)-(6.4) are equivalent to the three reduced RT-equations (6.10)-
(6.12) together with (6.13). Now the rather remarkable discovery, which is the basis
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for the present paper, is that Γ̃ = Γ̃J turns out to exactly solve equation (6.13), but
only on solutions (J,B) of the reduced RT-equations. That is, Γ̃J does not in general
solve the first RT-equation (6.1), but the transformation (6.8) - (6.9), which uncouples
Γ̃ from the last three equations, also produces the elliptic equation (6.13) satisfied by
Γ̃J . The result then, is that we no longer need the original RT-equations, because opti-
mal regularity is determined entirely from the reduced RT-equations (6.10) - (6.12) for
(J,B), together with the elliptic equation (6.13) for the gain in regularity of Γ̃J . At the
end, the original Γ̃ is out of the picture. To borrow words from Ludwig Wittgenstein
(regarding his private language argument), the original RT-equations are a “ladder we
climb” to obtain the reduced RT-equations within the gauge freedom of the original
RT-equations, but that ladder can then be thrown away once we find them. But still,
to complete the picture, it is interesting to understand the sense in which solutions
(Γ̃J , J, B,w) of the reduced RT-equations correspond to solutions (Γ̃, J, A, v) of the
original RT-equations.

To clarify this, recall that if we are given a coordinate transformation x → y
and J is its Jacobian, applying the tensor transformation law (6.7) to Γ̃J produces
the coefficients of the connection Γy in y coordinates. Now we know from [25] that
the solution space of the original RT-equations (6.1)-(6.5) is larger than we want,
because it contains solutions (Γ̃, J, A, v) for which Γ̃ �= Γ̃J . That is, Γ̃ need not have
anything to do with the transformation of our starting non-optimal connection Γ. In
fact, we have discovered that there exist solutions of the RT-equations with the same
J , but different (Γ̃, A, v). Define then the equivalence class E(J) of all solutions of the
original RT-equations (6.1)-(6.5) which share the same Jacobian field J . (It could
be empty). Recall that only the J-equation (6.2) comes with a boundary condition
(6.5), so the “gauge freedom” in the RT-equations is the freedom to choose the free
function v, and the freedom to impose boundary conditions for Γ̃ and A in equations
(6.1) and (6.3), (6.4), respectively. Thus the equivalence class E(J) associated with
a given Jacobian J is the set of all solutions (Γ̃, J, A, v) of the RT-equations (6.1)-
(6.5), solutions determined by v and all the possible boundary conditions we might
impose to determine Γ̃ and A from equations (6.1) and (6.3), (6.4). Now once we
have established that Γ̃J solves (6.13), reversing the argument leading to (6.8) - (6.9)
in Section 6, (which entails simply replacing Γ̃ by Γ̃J in the formulas for B and
w), shows directly that (Γ̃J , J, A

′, v′) will solve the original original RT-equations
whenever (Γ̃, J, A, v) does, where

A′ = B − 〈dJ ; Γ̃J〉,
v′ = w − δ〈dJ ; Γ̃J〉.

Thus conceptually, starting with a solution (Γ̃, J, A, v) of the original RT-equations,
(J,B) will solve the reduced RT-equations, Γ̃J will solve the modified first RT-equation
(6.13), and the back transformation (6.14), (6.15) determines a new solution of the
original RT-equations within the equivalence class E(J), this new solution having as
its first component Γ̃ = Γ̃J . That is, through a change of gauge, we can substitute
Γ̃ for Γ̃J in any solution of the original RT-equations. This gives expression to the
content of what is claimed in (i),(ii) of Theorem 6.1. In summary, we write this as a
direct corollary of Theorem 6.1:

Corollary 7.1. If (Γ̃, J, A, v) lies within the equivalence class E(J) of the RT-
equations, then (Γ̃J , J, A

′, v′) ∈ E(J) as well.

That Γ̃J given by (6.6) actually solves (6.13), the first RT-equation (6.1) modified
by the substitution (6.8)), on solutions of the reduced RT-equations, is crucial because
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it is this equation which gives the requisite optimal regularity of Γ̃J , the connection
coefficients of Γ transformed by J . As laid out above, it really is quite remarkable
that a change of gauge simultaneously eliminates Γ̃ from the last three RT-equations,
and then on top of that, transforms the first RT-equations into a new elliptic equation
satisfied by Γ̃J . So as a preliminary to the proof of Theorem 6.1, we now go through
the key idea in the proof of parts (i) and (ii) leading to ΓJ being a solution of (6.13), in
the case when Γ is smooth, thereby displaying how it works without being distracted
by the weak formulation of the equations.

7.2. Recovering solutions of the RT-equations from the reduced RT-
equations. A complete proof of Theorem 6.1 is the subject of Section 9. As a
preliminary, we explain in this section the key step in the equivalence between the
reduced and full RT-equations in its simplest setting, when Γ is a smooth connection.
That is, we explain why Γ̃ = Γ̃J ≡ Γ − J−1dJ automatically solves the first RT-
equation when defined in terms of a solution (J,B) of the reduced RT-equations.
On the face of it, this is quite remarkable, because the J-equation appears to have
lost all knowledge of Γ̃ once we gauge transform from A to B. The point, which we
establish here, is that when we take the B gauge, the formula (6.6) for Γ̃J in terms
of J and Γ alone gives an exact solution of the first RT-equation (6.1), provided J
solves the reduced RT-equations. Thus the regularity of Γ̃J is determined by the first
RT-equation, but is ultimately encoded in the reduced RT-equations.

Lemma 7.2. Let Γ be smooth and assume (J,B) is a smooth solution of the
reduced RT-equations (6.10) - (6.12) for some given w, such that J is invertible.
Then Γ̃ = Γ̃J and A = A′, defined in (6.6) and (6.14), satisfy the first RT-equation
(6.1).

Proof. To prove Lemma 7.2, we first take the exterior derivative d of equation
Γ̃J = Γ− J−1dJ , c.f. (6.6), to obtain

dΓ̃J = dΓ− d
(
J−1dJ

)
= dΓ− d

(
J−1

)
∧ dJ, (7.1)

where we use d
(
J−1dJ

)
= d

(
J−1

)
∧ dJ by the Leibniz rule (5.7). Taking now the

co-derivative δ of (7.1) gives

δdΓ̃J = δdΓ− δ
(
dJ−1 ∧ dJ

)
, (7.2)

thus giving the first term of the Laplacian ΔΓ̃J ≡ δdΓ̃J + dδΓ̃J .
To determine the second term of ΔΓ̃J , we take δ of equation Γ̃J = Γ − J−1dJ ,

c.f. (6.6), to compute

δΓ̃J = δΓ− δ
(
J−1dJ

)
. (7.3)

Using now the Leibniz rule for co-derivatives (5.8) we have

δΓ̃J = δΓ− 〈d(J−1); dJ〉 − J−1δdJ
= δΓ− 〈d(J−1); dJ〉 − J−1ΔJ, (7.4)

since ΔJ = δdJ by δJ = 0, because the co-derivative δ vanishes on 0-forms. Substi-
tuting now the reduced RT-equation (6.10) for ΔJ into (7.4) gives

δΓ̃J = δΓ− 〈d(J−1); dJ〉 − J−1
(
δ(J ·Γ)−B

)
, (7.5)
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and since δ(J ·Γ) = JδΓ + 〈dJ ; Γ〉 by (5.8), we obtain that

δΓ̃J = J−1B − 〈d(J−1); dJ〉 − J−1〈dJ ; Γ〉. (7.6)

The cancellation of the lowest regularity term δΓ in the step from (7.5) to (7.6) is the
essence of the gain of regularity implied by the RT-equations, c.f. Theorem 6.1. (To
establish this cancellation for weak solutions takes some work, see Section 9.2.) Now
the right hand side of (7.6) is equal to J−1A as a consequence of the definition of A
in (6.14), as proven in Lemma 7.3 below. So assuming Lemma 7.3 to be true for the
moment, we find equation (7.6) to be identical to

δΓ̃ = J−1A. (7.7)

Taking now the exterior derivative d of (7.7) and adding the resulting equation to
(7.2) gives us

ΔΓ̃J = δdΓ− δ
(
dJ−1 ∧ dJ

)
+ d

(
J−1A

)
(7.8)

which proves that Γ̃J solves the sought after equation (6.1).

To complete the proof of Lemma 7.2, it remains to prove Lemma 7.3.

Lemma 7.3. For A defined in (6.14), we have

A = B − J〈d(J−1); dJ〉 − 〈dJ ; Γ〉, (7.9)

so the right hand side of (7.6) is equal to J−1A.

Proof. To verify (7.9), we substitute Γ̃J = Γ−J−1dJ , c.f. (6.6), into the definition
A = B −

〈
dJ ; Γ̃J

〉
, c.f. (6.14), to compute

A = B −
〈
dJ ; (Γ− J−1dJ)

〉
= B + 〈dJ ; J−1dJ〉 − 〈dJ ; Γ〉. (7.10)

We now use the multiplication property (5.10) of the matrix valued inner product
〈· ; ·〉 twice, to write the second term in (7.10) as

〈dJ ; J−1dJ〉 = 〈dJ ·J−1; dJ〉
= J〈J−1dJ ·J−1; dJ〉
= −J〈d(J−1); dJ〉, (7.11)

where the last equality holds since d(J−1) = −J−1 dJ · J−1 by the Leibniz rule for
gradients, (since J is a 0-form so d is the gradient). Substituting (7.11) into (7.10)
gives the sought after identity (7.9) and proves Lemma 7.3.

This completes the proof of Lemma 7.2, the case of smooth solutions. Accomplishing
this for weak solutions is subject of Section 9.

8. Weak formulation of the RT-equations. We now begin the existence the-
ory for weak solutions of the reduced RT-equations (6.10)-(6.12) on bounded domains
Ω ⊂ R

n. This provides an existence theory for weak solutions of the full RT-equations
(6.1)-(6.5) by using the change of gauge (B,w)→ (A′, v′) given in (6.14) - (6.15).

The RT-equations are a nonlinear elliptic system of equations in unknowns J,A
and Γ̃ determined by the assumed given connection Γ, and they allow for the free-
dom to choose the arbitrary function v in the second A-equation (6.4), together with
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boundary conditions for Γ̃ and A in (6.1) and (6.3), (6.4), within the appropriate
regularity class. We refer to this as the gauge freedom in the full RT-equations, and
loosely refer to v or A as the choice of gauge. Note first that because the right hand
sides involve the derivatives DΓ of Γ, the RT-equations are consistent with the regu-
larity J, Γ̃ being one order more regular than Γ, dΓ because this puts the right hand
sides of the Γ̃ and J equations (6.2) and (6.1) at the same regularity as DΓ, so long as
A has the same regularity as Γ; and this is consistent with the regularity of the right
hand side of the A equations (6.3) - (6.4) being one order less regular than Γ. Thus,
the RT-equations are consistent with elliptic PDE theory in the sense that Laplacians
in (6.1) - (6.2) should raise the regularity of Γ̃ and J two orders above the right hand
side, which is one order above the regularity of Γ; and the first order Cauchy Riemann
system (6.3) - (6.4) should raise the regularity of A to the same regularity as Γ. In
[25] authors proved that this consistency of the RT-equations is correct in the classical
sense by giving an existence theory for the full RT-equations in the case Γ, dΓ ∈ W 1,p,
and in Sections 9 - 12 we extend this classical theory to the case of weak solutions,
when Γ, dΓ ∈ L∞. We assume Γ ∈ L2p with dΓ ∈ Lp, for p > n/2, p < ∞, and our
goal is to establish existence of weak solutions J, Γ̃ ∈ W 1,p, A ∈ Lp, on sufficiently
small domains.25 Note that in this case, the right hand sides of the RT-equations
(6.1) - (6.4) are at the regularity W−1,p, a regularity too weak for classical solutions.
So an existence theory requires a weak formulation of the RT-equations.

The RT-equations do indeed admit a weak formulation because all of the lowest
order terms on the right hand side of (6.1)-(6.4) are matrix valued differential forms

with “geometric” total derivatives (d, δ or
−→
div) operating on them, so integration

by parts will raise the regularities by one order. To accomplish the integration by
parts and express a rigorous weak formulation, we need to introduce a suitable inner

product together with adjoint operators associated with d, δ or
−→
div on the right hand

side of the RT-equations. This is all accomplished in this section. It is interesting at
this point to comment that it is well known that weak formulations are not always
equivalent. Our choice of the weak formulation is based on the geometric operators

d, δ and
−→
div which appear on the right hand side of our formulation of the reduced

RT-equations. The idea to base the RT-equation and their weak formulation on these
geometric operators instead of on pure partial derivatives separately, is guided by
the requirement that Jacobians J which solve the reduced RT-equations in this weak
sense are indeed integrable to coordinates.

The existence theory for weak solutions of the RT-equations is accomplished in
Sections 9 - 12. A few preliminary comments are in order. First, the iteration scheme
used in [25] only closes in Lp spaces for classical solutions, because of the bad nonlinear
term dJ−1 ∧ dJ on the right hand side of the Γ̃ equation (6.1). The problem is that
products of functions in Lp are not in Lp, so the iteration scheme does not close
in any Lp space, (working alternatively with L∞ is of no use, since the Laplacian
does not lift L∞ to C1,1). We overcome this problem by showing that for solutions
(Γ̃, J, A, v) with v ∈ W−1,p, the change of gauge (A, v) → (B,w), given in (6.8)
- (6.9), uncouples the (J,B) equation from the Γ̃ equation which contains the bad
nonlinear term. We named the resulting system (6.10) - (6.12) in (J,B) the reduced
RT-equations, a system of linear elliptic equations. We prove in Section 10 that our
iteration scheme, modified to the weak formulation of the equations, does converge

25Recall that L∞(Ω) ⊂ Lp(Ω) for any p ≤ ∞, since Ω is be bounded here, but standard elliptic
theory does not suffice to give optimal regularity in W 1,∞ even when assuming Γ, dΓ ∈ L∞, c.f.
Theorem 3.1’.
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when Γ, dΓ ∈ L∞, for sufficiently small bounded sets Ω, and in Section 12 we extend
this result to the low regularity Γ ∈ L2p with dΓ ∈ Lp, p > n/2. Even though the
reduced RT-equations are linear, it is a system and the coefficients are at critical low
regularity, so an iteration scheme is still required to handle the lower order terms. The
smallness of the neighborhood Ω is used to rule out complications with the Fredholm
alternative. Once we obtain a solution (J,B) of the reduced RT-equations, we then
prove that (6.6) provides an exact solution Γ̃ = Γ̃J of the first RT-equation (6.1) (with
B substituted for A), and by this we obtain the desired regularity of the transformed
connection coefficients Γ̃J from the now classical linear Lp theory of the Laplacian. In
this way the bad nonlinear product in (6.1) can be handled by simply using solutions
of the reduced RT-equations with larger p, J ∈ W 1,2p), so the bad nonlinear term
dJ−1 ∧ dJ on the right hand side of (6.1) is in W−1,p, thereby placing the solution
Γ̃ = Γ̃J ∈ W 1,p. Once we have a solution to the RT-equation in the (B,w) gauge, we
no longer require a solution of the original RT-equations, but to complete the circle
we show in Section 9 that the transformation back to (A′, v′) in (6.14), (6.15) provides
a weak solution in the original gauge, thereby demonstrating the consistency of the
whole theory for every gauge.

We finish this introduction of the existence theory to follow, by pointing out some
of the obstacles our theory faces in the weak formulation required for the regularities
here. One central step in the argument is to prove that a weak solution of the B
equation really does impose the integrability equation dJ = 0. That is, the boundary
condition dJ = 0 (6.5), is not a classical Dirichlet boundary condition, and when
J ∈ W 1,p, dJ = 0 is too weak to impose on a boundary. Fortunately, the way we
handled this boundary condition in the iteration scheme introduced in [25], can be
modified to the weak setting. The idea is to introduce an auxiliary elliptic equation for
y satisfying dy = J in the iteration. Then we can use Dirichlet boundary conditions
for J which make sense at this low regularity, and thereby obtain the integrability from
dy = J which implies dJ = 0. This provides a very clean way to handle the boundary
condition since we can then apply classical linear Lp-elliptic theory for the Dirichlet
problem at each stage of the iteration. However, for the low regularity considered
here, this procedure is more technical because it involves two different version of the
weak Laplacian combined with operations on the Cartan algebra of differential forms.
This is accomplished in Sections 10 - 11. Finally, the proof that Γ̃J solves the first
RT-equation in a weak sense is more involved, because the weak reduced RT-equation
for J cannot be used in a straightforward way to achieve the cancellation of the lowest
regularity term δΓ in equation (7.6). This is achieved in Section 9.2.

8.1. Integration by parts for matrix valued differential forms. To intro-
duce the weak formulation of the RT-equations, we first define the following inner
products over matrix and vector valued differential forms. On matrix valued k-forms
A and B, we define the point-wise inner product

〈A,B〉 ≡ tr〈A;BT 〉
(5.9)
=

n∑
ν,σ=1

∑
i1<...<ik

Aν
σ i1...ik

Bν
σ i1...ik

, (8.1)

where the matrix valued inner product 〈A;B〉 is defined in (5.9). We further introduce
the L2-inner product

〈A,B〉L2 ≡
∫
Ω

〈A,B〉dx (8.2)
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where dx denotes the Lebesgue measure in R
n. For vector valued k-forms v and w

we define the point-wise inner product

〈v, w〉 ≡
n∑

α=1

∑
i1<...<ik

vαi1...ikw
α
i1...ik

, (8.3)

in terms of the Euclidean inner product, and we introduce the L2-inner product by

〈v, w〉L2 ≡
∫
Ω

〈v, w〉dx. (8.4)

The inner products on matrix valued 0-forms and vector valued 1-forms are in fact
identical,

〈A,B〉 = 〈 �A, �B〉, (8.5)

where A and B are matrix valued 0-forms. For k ≥ 1, vectorization of matrix valued
k-forms generally results in a loss of information due to cancellation of symmetries,
and one can not expect (8.5) to be valid.

To introduce the weak formalism of the RT-equations below, we further require the
following well-known partial integration formula for scalar valued differential forms,

〈dα, β〉L2 + 〈α, δβ〉L2 = 0, (8.6)

where α is a k-form and β a (k + 1)-form, such that either α|∂Ω = 0 or β|∂Ω =
0, c.f. Theorem 1.11 in [6]. Equation (8.6) holds for regularity α ∈ W 1,p(Ω) and
β ∈ W 1,p∗

(Ω), (where p, p∗ are conjugate exponents, 1
p +

1
p∗ = 1), and the condition

α|∂Ω = 0 or β|∂Ω = 0 is understood in the sense that α ∈ W 1,p
0 (Ω) or β ∈ W 1,p∗

0 (Ω).
Here W 1,p

0 (Ω) is the closure of the space of smooth functions C∞
0 with respect to the

W 1,p-norm, so for p > n functions inW 1,p
0 (Ω) vanish on ∂Ω in the sense of continuous

functions. In our first lemma, we extend (8.6) to matrix and vector valued differential
forms.

Lemma 8.1. Let u be a matrix valued k-form and ω be a matrix valued (k + 1)-

form, k ≥ 0, such that u ∈ W 1,p
0 (Ω) and ω ∈ W 1,p∗

0 (Ω), where 1
p +

1
p∗ = 1, then

〈du, ω〉L2 + 〈u, δω〉L2 = 0, (8.7)

and (8.7) continues to hold if only one of the forms u and ω vanishes on the boundary,

i.e., only u ∈ W 1,p
0 (Ω) or ω ∈ W 1,p∗

0 (Ω). Moreover, (8.7) holds as well when u ∈
W 1,p

0 (Ω) is a vector valued k-form and ω ∈ W 1,p∗
0 (Ω) a vector valued (k + 1)-form,

(or if either ω|∂Ω = 0 or u|∂Ω = 0 in the above sense).

Proof. The Lemma follows directly from (8.6) together with the fact that the
exterior derivative and co-derivative act on matrix-components separately, c.f. [24].
Namely, assuming the case that u and v are matrix valued differential forms, we find
from definition (8.2) that

〈du, ω〉L2 =

n∑
ν,σ=1

∫
Ω

∑
i1<...<ik+1

(du)νσ i1...ik+1
ων
σ i1...ik+1

dx.
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Applying now the partial integration formula for scalar valued forms (8.6) to the above
right hand side for fixed ν and σ, we obtain that

〈du, ω〉L2 = −
n∑

ν,σ=1

∫
Ω

∑
i1<...<ik

uν
σ i1...ik

(δω)νσ i1...ik
dx

= −〈u, δω〉L2 .

This is the sought after identity (8.7) for matrix valued forms. The case for vector
valued forms follows analogously.

Before we define the weak formulation of the RT-equations, we first introduce the
weak formulations of Cauchy Riemann type and Poisson equations. So consider an
equation of Cauchy Riemann type, {

du = f

δu = g,
(8.8)

where u, f and g are vector valued differential forms. In light of (8.7), we say that a
vector valued k-form u ∈ W 1,p(Ω) solves (8.8) weakly, if{

〈u, δψ〉L2 = −f(ψ)

〈u, dϕ〉L2 = −g(ϕ),
(8.9)

for any vector valued (k + 1)-form ψ ∈ W 1,p∗
0 (Ω) and any vector valued (k − 1)-form

ϕ ∈ W 1,p∗
0 (Ω) both vanishing on ∂Ω, where we assume that f is a scalar valued linear

functional on the space of vector valued (k + 1)-forms in W 1,p∗
0 (Ω) and g is a scalar

valued linear functional on the space of vector valued (k − 1)-forms in W 1,p∗
0 (Ω).

(See Section C for a complete list of consistency conditions on f and g required for
existence of solutions.) Weak solutions of (8.8) for matrix valued differential forms
can be introduced in a similar way, but are not required in this paper since the first
order system of the RT-equations (6.3) - (6.4) is vector valued.

Now consider the Poisson equation

Δu = f. (8.10)

We say that a matrix valued k-form u ∈ W 1,p(Ω) solves (8.10) weakly, if

Δu[φ] = f(φ), (8.11)

for any matrix valued k-form φ ∈ W 1,p∗
0 (Ω), where

Δu[φ] ≡ −〈du, dφ〉L2 − 〈δu, δφ〉L2 (8.12)

and f is a scalar valued linear functional on the space of matrix valued k-forms

φ ∈ W 1,p∗
0 (Ω). To extend the notion of weak solutions of the Poisson equation (8.10)

to vector valued differential forms, simply use vector valued test k-forms φ ∈ W 1,p∗
0 (Ω)

and the corresponding inner product (8.4), which suffices since the exterior derivative
d and the co-derivative δ act only on form-indices, but not on matrix or vector indices.

The following lemma clarifies that the weak formulation of the Laplacian in (8.12)
for differential forms is identical to the standard weak form of the Laplacian, taken



OPTIMAL REGULARITY FOR CONNECTIONS ON TANGENT BUNDLES 335

component wise by restricting to single matrix component of the test functions (an
orthogonal decomposition of the space of test functions with respect to the Hilbert-
Schmidt inner product). As a consequence, it is possible to employ standard theorems
of elliptic regularity theory for the analysis in this paper, c.f. Section B.

Lemma 8.2. Let u ∈ W 1,p(Ω) be a matrix (or vector) valued k-form, then

Δu[φ] = −〈∇u,∇φ〉L2 , (8.13)

for any matrix (or vector) k-form φ ∈ W 1,p∗
0 (Ω), where Δu[φ] is the weak Lapla-

cian defined in (8.12), ∇ is the Euclidean gradient in x-coordinates taken on each
component26, and we set

〈∇u,∇φ〉L2 ≡
n∑

j=1

∫
Ω

〈∂ju, ∂jφ〉dx. (8.14)

Moreover, (8.13) holds assuming only u ∈ Lp(Ω) with du, δu ∈ Lp(Ω), (the low regu-
larity we encounter in the proof of Theorem 6.1).

Proof. By compactness of C∞
0 (Ω) in W 1,p∗

0 (Ω) it suffices to prove (8.13) for
φ ∈ C∞

0 (Ω). So let φ ∈ C∞
0 (Ω) and use partial integration component wise to

compute

〈∇u,∇φ〉L2 = −〈u,∇ · (∇φ)〉L2 .

Substituting now that ∇ · (∇φ) = Δφ = dδφ + δdφ and using partial integration for
differential forms (8.7), we obtain that

〈∇u,∇φ〉L2 = −〈u, dδφ〉L2 − 〈u, δdφ〉L2

= 〈δu, δφ〉L2 + 〈du, dφ〉L2

= −Δu[φ]. (8.15)

This proves (8.13) in the case u ∈ W 1,p(Ω).
To prove the supplement, assume that u ∈ Lp(Ω) with du, δu ∈ Lp(Ω). For this

regularity the weak Laplacian (8.12) is well-defined, i.e.,

Δu[φ] ≡ −〈du, dφ〉L2 − 〈δu, δφ〉L2 , (8.16)

exists for any matrix valued k-form φ ∈ W 1,p∗
0 (Ω). Again, considering φ in the dense

subspace C∞
0 (Ω), Δφ = δdφ+ dδφ is well-defined. We now apply partial integration

(8.7) to write (8.16) as

Δu[φ] = 〈u,Δφ〉L2 = lim
h→0

〈u,∇h · ∇φ〉L2 , (8.17)

where the last equality holds by convergence of the difference quotient ∇hφ to ∇φ,
so that we have ∇h · ∇φ → Δφ as h → 0. By partial integration for ∇h, we find that

−〈∇hu,∇φ〉L2 = 〈u,∇h · ∇φ〉L2 . (8.18)

26So ∇ is taken on each matrix, vector or differential form component separately, e.g., ∇u =
(∇u)i1...ikdx

i1 ∧ ... ∧ dxik for u = ui1...ikdx
i1 ∧ ... ∧ dxik .
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By (8.17) the right hand side in (8.18) converges, which implies that the left hand
side in (8.18) converges as h → 0 as well, and we have

lim
h→0

〈∇hu,∇φ〉L2 = 〈∇u,∇φ〉L2 . (8.19)

Combing this with (8.17), we find that

Δu[φ] = −〈∇u,∇φ〉L2

for any φ ∈ C∞
0 (Ω). By denseness of C∞

0 (Ω) in W 1,p∗
0 (Ω) this establishes (8.13) for

the low regularity u ∈ Lp(Ω) with du, δu ∈ Lp(Ω). This completes the proof of Lemma
8.2.

8.2. The weak RT-equations and weak reduced RT-equations. We are
now prepared to derive the weak formulation of the RT-equations (6.1) - (6.4), that
is, of the system

ΔΓ̃ = δdΓ− δ
(
dJ−1 ∧ dJ

)
+ d(J−1A),

ΔJ = δ(J ·Γ)− 〈dJ ; Γ̃〉 −A,

d �A =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
− d

(−−−−→
〈dJ ; Γ̃〉

)
,

δ �A = v.

To begin, let Γ ∈ L2p(Ω) and dΓ ∈ Lp(Ω) for p > n/2, let v ∈ Lp(Ω) be a vector valued
0-form, and assume we are given a smooth solution (Γ̃, J, A) of the RT-equations (6.1) -
(6.4). We now introduce a weak formulation for solutions Γ̃ ∈ W 1,p(Ω), J ∈ W 1,2p(Ω)
and A ∈ Lp(Ω).

For any matrix valued 1-form Φ ∈ W 1,p∗
0 (Ω), 1

p∗ +
1
p = 1, we write the left hand

side of the first RT-equation (6.1) as

ΔΓ̃[Φ] ≡ −〈δΓ̃, δΦ〉L2 − 〈dΓ̃, dΦ〉L2 , (8.20)

by applying the Leibniz-rule (8.7) to Δ = δd+ dδ, c.f. (8.12). Using (8.7) to rewrite
the right hand side of (6.1) in an analogous way, we find that the first RT-equation
(6.1) is equivalent to

−ΔΓ̃[Φ] =
〈
(dΓ− dJ−1 ∧ dJ), dΦ

〉
L2 + 〈J−1A, δΦ〉L2 (8.21)

to hold for any matrix valued 1-form Φ ∈ W 1,p∗
0 (Ω). This is our weak formulation of

(6.1).
Similarly, we find the weak formulation of (6.2) to be

−ΔJ [φ] =
〈
J ·Γ, dφ

〉
L2 +

〈(
〈dJ ; Γ̃〉+A

)
, φ

〉
L2 , (8.22)

for all matrix valued 0-form φ ∈ W
1,(2p)∗

0 (Ω), where

ΔJ [φ] = −〈dJ, dφ〉L2 .

Since we address the solution space J ∈ W 1,2p(Ω), we require the test space

W
1,(2p)∗

0 (Ω), where (2p)∗ denotes the conjugate exponent to 2p, 1
(2p)∗ + 1

2p = 1,

(and (2p)∗ �= 2p∗ in general). Note that 〈A, φ〉L2 is finite for A ∈ Lp(Ω) by Sobolev
embedding, as proven in Lemma 8.6 below.
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To derive the weak formulation of (6.3) - (6.4), we first clarify how to shift
−→
div over

to test functions, i.e., we have to define a suitable adjoint to the operation defined
in (5.11). For this, we introduce div←− as the mapping from vector valued 2-forms

ψ ∈ W 1,p∗
0 (Ω) to matrix valued 2-forms in Lp∗

(Ω) defined by(
div←−(ψ)

)μ
ν
= ∂νψ

μ
ij dx

i ∧ dxj . (8.23)

By applying partial integration component wise, it is straightforward to verify the
following lemma.

Lemma 8.3. For any matrix valued 2-form ω, it is

〈−→div(ω), ψ〉L2 = −〈ω, div←−(ψ)〉L2 (8.24)

for any vector valued 2-form ψ ∈ W 1,p∗
0 (Ω).

Proof. By (5.11) we have
−→
div(ω)μ ≡ ∑n

ν=1 ∂ν(ω
μ
ν )ijdx

i∧dxj , so components-wise
partial integration gives us

〈−→div(ω), ψ〉L2 =
∑
μ

∑
i<j

∫
Ω

∑
ν

∂ν(ω
μ
ν )ijψ

μ
ijdx

=
∑
μ,ν

∑
i<j

∫
Ω

(ωμ
ν )ij∂νψ

μ
ijdx

= −〈ω, div←−(ψ)〉L2 , (8.25)

which proves (8.24) and the lemma.

Applying now (8.24) together with (8.7) for vector valued differential forms, we find
that (6.3) - (6.4) can be written equivalently as{

〈 �A, δψ〉L2 =
〈
(dJ ∧ Γ + J dΓ), div←−(ψ)

〉
L2 − 〈

−−−−→
〈dJ ; Γ̃〉, δψ〉L2

〈 �A, dϕ〉L2 = −〈v, ϕ〉L2 ,
(8.26)

for all vector valued 2-form ψ ∈ W 1,p∗
0 (Ω) and all vector valued 0-forms ϕ ∈ W 1,p∗

0 (Ω).
This is the weak formulation of (6.3) - (6.4).

Definition 8.4. Let Γ ∈ L2p(Ω) and dΓ ∈ Lp(Ω) for p > n/2, and assume
Γ̃ ∈ W 1,p(Ω), J ∈ W 1,2p(Ω) and A ∈ Lp(Ω). We say (Γ̃, J, A) is a weak solution
of the RT-equations if (8.21), (8.22) and (8.26) hold for all matrix valued 1-forms

Φ ∈ W 1,p∗
0 (Ω), all matrix valued 0-forms φ ∈ W

1,(2p)∗

0 (Ω), all vector valued 2-forms

ψ ∈ W 1,p∗
0 (Ω) and all vector valued 0-forms ϕ ∈ W 1,p∗

0 (Ω), where p∗ and (2p)∗ are
conjugate exponents defined by 1

p∗ +
1
p = 1 and 1

(2p)∗ +
1
2p = 1.

The weak formulation of the RT-equations in Definition 8.4 can be easily adapted
to the reduced RT-equations, subject of the next definition. Recall first that the
reduced RT-equations (6.10) - (6.12) are

ΔJ = δ(J ·Γ)−B, (8.27)

d �B =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
, (8.28)

δ �B = w, (8.29)
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with unknowns J and B.

Definition 8.5. Let Γ ∈ L2p(Ω) and dΓ ∈ Lp(Ω) for p > n/2, and assume
J ∈ W 1,2p(Ω) and B ∈ Lp(Ω), we say that (J,B) is a weak solution of the reduced
RT-equations (6.10) - (6.12), if

−ΔJ [φ] = 〈J ·Γ, dφ〉L2 + 〈B, φ〉L2 (8.30)

holds for any matrix valued 0-form φ ∈ W
1,(2p)∗

0 (Ω), (where ΔJ [φ] = −〈dJ, dφ〉L2),
and if {

〈 �B, δψ〉L2 =
〈
(dJ ∧ Γ + J dΓ), div←−(ψ)

〉
L2

〈 �B, dϕ〉L2 = w,
(8.31)

holds for any vector valued 2-form ψ ∈ W 1,p∗
0 (Ω) and any vector valued 0-form ϕ ∈

W 1,p∗
0 (Ω).

8.3. Consistency of the RT-equations at low regularity. We now show
consistency of the reduced RT-equations (by which we mean that the operations on
the right and left hand side of the RT-equations produce the same regularity) for
the solutions space J ∈ W 1,2p(Ω) and B ∈ Lp(Ω), when Γ ∈ L2p(Ω) and dΓ ∈
Lp(Ω), p > n/2. For this we apply the Sobolev embedding theorem to prove for
completeness that Lp(Ω) ⊂ W−1,2p(Ω) in the next lemma. Given this embedding
Lp(Ω) ⊂ W−1,2p(Ω), we obtain consistency of the reduced RT-equations as follows:
For J ∈ W 1,2p(Ω) and Γ ∈ L2p(Ω), applying the Hölder inequality as in (A.7) implies
dJ ∧ Γ ∈ Lp, by which the right hand side of (8.28) is placed in W−1,p(Ω), (the
remaining term is more regular by Morrey’s inequality). This places B in the sought
after solution space Lp(Ω). Using now the embedding Lp(Ω) ⊂ W−1,2p(Ω), we find
that B ∈ W−1,2p(Ω), which in turn implies that the right hand side of (8.27) is
in W−1,2p(Ω). Namely, since JΓ ∈ W 1,2p(Ω) implies that δ(JΓ)[φ] = −〈JΓ, dφ〉L2

is finite for any φ ∈ W 1,(2p)∗(Ω), it follows that also δ(JΓ) ∈ W−1,2p(Ω). This
places J in the sought after solution space W 1,2p(Ω). Taken on whole, this gives the
consistency of the reduced RT-equations once the embedding Lp(Ω) ⊂ W−1,2p(Ω) of
the next lemma is proven.

Lemma 8.6. For p > n/2 the embedding Lp(Ω) ⊂ W−1,2p(Ω) holds, together with
the estimate

‖B‖W−1,2p(Ω) ≤ C‖B‖Lp(Ω), (8.32)

where C > 0 is some constant depending only on Ω, p, n.

Proof. To prove the embedding Lp(Ω) ⊂ W−1,2p(Ω), given some fixed function
B ∈ Lp(Ω), we need to show that the dual pairing B(φ) ≡ 〈B, φ〉L2 is finite for

any φ ∈ W
1,(2p)∗

0 (Ω), i.e., that B defines a functional over W
1,(2p)∗

0 (Ω). By Hölder’s
inequality we have

|〈B, φ〉L2 | ≤ ‖B‖Lp‖φ‖Lp∗ , (8.33)

so it suffices to show that

W
1,(2p)∗

0 (Ω) ⊂ Lp∗
(Ω). (8.34)
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We show (8.34) via the Sobolev embedding Theorem [12, Thm 2, Ch. 5.6], which
asserts that W 1,q(Ω) ⊂ Lq′(Ω) for the Sobolev conjugate q′ ≡ nq

n−q whenever 1 ≤ q <
n, together with the estimate

‖f‖Lq′ (Ω) ≤ CS‖f‖W 1,q(Ω), (8.35)

for some constant CS > 0 depending only on n, q and Ω, (where f ∈ W 1,q(Ω)). Here
we have q = (2p)∗, and it is straightforward to verify 1 ≤ (2p)∗ < n using (2p)∗ =
2p

2p−1 < n
n−1 ≤ 2, so Sobolev embedding applies and gives W

1,(2p)∗

0 (Ω) ⊂ Lq′(Ω) for

q′ ≡ n(2p)∗

n−(2p)∗ . Thus to establish the sought after embedding (8.32), it only remains to

verify that Lq′(Ω) ⊂ Lp∗
(Ω). This inclusion follows directly from our assumption p >

n/2, by verifying the inequality q′ ≥ p∗ by substitution of q′ = n(2p)∗

n−(2p)∗ , (2p)
∗ = 2p

2p−1

and p∗ = p
p−1 , and since q′ ≥ p∗, Lq′(Ω) ⊂ Lp∗

(Ω) follows by the boundedness of Ω.

This proves the sought after embedding (8.34).
We now prove estimate (8.32). By applying Hölder’s inequality to ‖f‖pLp = ‖fp ·

1‖L1 , to show that ‖f‖pLp = ‖fp‖
L

q
p
‖1‖L(q/p)∗ , we find

‖f‖Lp(Ω) ≤ vol(Ω)
q−p
pq ‖f‖Lq(Ω) (8.36)

whenever q ≥ p. Combining now (8.36) with estimate (8.35) of the Sobolev embedding
theorem, gives us

‖φ‖Lp∗ (Ω) ≤ C ‖φ‖W 1,(2p)∗ (Ω) (8.37)

for C ≡ CS · vol(Ω)
q′−p∗
p∗q′ with q′ = n(2p)∗

n−(2p)∗ . From (8.37) together with Hölder’s

inequality we find that B(φ) ≡ 〈B, φ〉L2 is bounded by

|B(φ)| ≤ ‖B‖Lp(Ω)‖φ‖Lp∗ (Ω) ≤ C ‖B‖Lp(Ω)‖φ‖W 1,(2p)∗ (Ω), (8.38)

which implies the sought after estimate (8.32) by taking the supremum over all φ ∈
W

1,(2p)∗

0 (Ω) with ‖φ‖W 1,(2p)∗ (Ω) = 1.

The proof of Lemma 8.6 establishes consistency of the reduced RT-equations at
the level of regularity, Γ ∈ L2p(Ω), dΓ ∈ Lp(Ω), J ∈ W 1,2p(Ω) and B ∈ Lp(Ω), for
p > n/2. To show consistency of the full RT-equations, it suffices to address only the
first RT-equation (1.1),

ΔΓ̃ = δdΓ− δ
(
dJ−1 ∧ dJ

)
+ d(J−1A), (8.39)

for A ∈ Lp(Ω). Consistency of the first RT-equation holds, since dJ−1 ∧ dJ ∈ Lp(Ω)
by Hölder’s inequality (A.7), since J−1A ∈ Lp(Ω) by Morrey’s inequality, and since
dΓ ∈ Lp(Ω) by assumption, which taken on whole places Γ̃′ in the desired space
Γ̃′ ∈ W 1,p(Ω), as proven in Section 9. Note that the assumption dΓ ∈ Lp(Ω) is
only required for consistency of the first RT-equation(1.1), but not for the reduced
RT-equations.

9. Recovering the full from the reduced RT-equations - Proof of The-
orem 6.1. In this section we prove that, given a solution (J,B) of the reduced
RT-equations (6.10) - (6.12), then (J, Γ̃, A) solves the full RT-equations (6.1) - (6.4)
with Γ̃ = Γ̃J and A = A′, where Γ̃J and A′ are defined in (6.6) and (6.14) as

Γ̃J ≡ Γ− J−1dJ,

A′ ≡ B − 〈dJ ; Γ̃J〉.
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From this, using the first RT-equation (6.1) in terms of A = A′ (which is equivalent to
equation (6.13)), we then prove that Γ̃J gains one derivative over the regularity of the
terms separately on the right hand side of its definition in (6.6). This is asserted by
Theorem 6.1, and here we give the proof. Throughout the rest of this paper we only
address the case Γ̃ = Γ̃J and A = A′, so for ease of notation from here on, we denote
Γ̃J by Γ̃ and A′ by A. For completeness, we first prove a version of Theorem 6.1 at
the higher level of connection regularity, Γ, dΓ ∈ Wm,p(Ω), m ≥ 1, p > n, a regularity
sufficient to take point-wise estimates by Morrey’s inequality (A.4).27 In Section 9.2
we then prove the sought after low regularity case Γ ∈ L2p(Ω), dΓ ∈ Lp(Ω), p > n/2.

9.1. A smooth version of Theorem 6.1. We now prove the following propo-
sition which is a version of Theorem 6.1 in the case Γ, dΓ ∈ Wm,p(Ω), m ≥ 1, p > n.
This proposition is not needed to prove the results in this paper, but helpful for under-
standing the main steps in the proof of Theorem 6.1 given in Section 9.2. For ease of
notation we let Ω ≡ Ωx denote the neighborhood Ω

′
x of Theorem 6.1 in x-coordinates,

and we denote the compactly contained subset Ω′′
x by Ω

′.

Proposition 9.1. Assume Γ, dΓ ∈ Wm+1,p(Ω) in x-coordinates, for m ≥ 1,
p > n and p < ∞. Assume (J,B) solves the reduced RT-equations (6.10) - (6.12)
in a weak sense for some w ∈ Wm−1,p(Ω), such that J, J−1 ∈ Wm+1,p(Ω) and B ∈
Wm,p(Ω).28 Then the following holds:

(i) Defining Γ̃J by (6.6), Γ̃ ≡ Γ̃J solves (6.13), and the tuple (J, Γ̃, A) solves the
full RT-equations (6.1) - (6.4) in Ω for v ≡ v′ and A ≡ A′, where A′ and v′

are defined in (6.14) and (6.15).
(ii) The regularity of Γ̃ ≡ Γ̃J is given by Γ̃J ∈ Wm+1,p(Ω′) for any open set Ω′

compactly contained in Ω, i.e., Γ̃J ≡ Γ − J−1dJ is one order more regular
than the two terms on the right hand side are separately.

(iii) Let M > 0 be a constant such that

‖(Γ, dΓ)‖Wm,p(Ω) ≡ ‖Γ‖Wm,p(Ω) + ‖dΓ‖Wm,p(Ω) ≤ M.

Assume that (J,B) satisfies further the estimate

‖I − J‖Wm+1,p(Ω) + ‖I − J−1‖Wm+1,p(Ω) + ‖B‖Wm,p(Ω)

≤ C1(M) ‖(Γ, dΓ)‖Wm,p(Ω), (9.1)

for some constant C1(M) > 0 depending only on Ω, n, p and M . Then, on
any open set Ω′ compactly contained in Ω, Γ̃ ≡ Γ̃J satisfies the uniform bound

‖Γ̃‖Wm+1,p(Ω′
x)

≤ C2(M) ‖(Γ, dΓ)‖Wm,p(Ω) (9.2)

where C2(M) > 0 is some constant depending only on Ω′,Ω, n, p and M .

Proof. Let Γ, dΓ ∈ Wm,p(Ω), for m ≥ 1, p > n, and assume (J,B) is a solution of
the reduced RT-equations (6.10) - (6.12) with J, J−1 ∈ Wm+1,p(Ω) and B ∈ Wm,p(Ω).
For this regularity Lemma 7.2 applies and yields that (J, Γ̃, A) solves the first RT-
equation (6.1).

We now prove that (J, Γ̃, A) solves the second RT-equation (6.2). By assumption,
(J,B) solves the reduced RT-equation (6.10), that is,

ΔJ = δ(J ·Γ)−B. (9.3)

27This also connects the use of the reduced RT-equation here with the approach in [26] based on
the original RT-equations, in particular in Section 9.2 of [26].

28The existence of such a solution follows from our existence theory in [25, 26].
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By definition of A in (6.14), we have

B = A+ 〈dJ ; Γ̃〉, (9.4)

so substitution of (9.4) into (9.3) gives

ΔJ = δ(J ·Γ)− 〈dJ ; Γ̃〉 −A,

which is the sought after RT-equation (6.2).
We now prove that (J, Γ̃, A) solves the last two RT-equations (6.3) - (6.4). By

assumption, (J,B) solves (6.3) - (6.4) for some w ∈ Wm−1,p(Ω), that is,

d �B =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
, (9.5)

δ �B = w. (9.6)

Substituting (9.4) into (9.5) and subtracting the resulting equation by d
−−−−→
〈dJ ; Γ̃〉 gives

us the equation

d �A =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
− d

−−−−→
〈dJ ; Γ̃〉,

which is the sought after third RT-equation (6.3). Similarly, substituting (9.4) into
(9.6) gives

δ �A = w − δ〈dJ ; Γ̃〉,

which is the sought after RT-equation (6.4) for v defined by (6.15), that is, for v =
w − δ〈dJ ; Γ̃〉. Taken together, we proved that (J, Γ̃, A) solves the full RT-equations
(6.1) - (6.4) for the gauge freedom in v fixed by the choice (6.15). This proves (i) of
the proposition.

To prove (ii) of Proposition 9.1, we need to show the regularity Γ̃ ∈ Wm+1,p(Ω)
together with estimate (9.2). In a first step, we establish the lower regularity Γ̃ ∈
Wm,p(Ω) and A ∈ Wm,p(Ω) from their definitions in (6.6) and (6.14). For this we use
that by Morrey’s inequality (A.4) the space Wm,p(Ω) is closed under multiplication
when m ≥ 1, p > n, c.f. [24]. Now Γ̃ ∈ Wm,p(Ω), since Γ ∈ Wm,p(Ω), J−1 ∈
Wm+1,p(Ω) and dJ ∈ Wm,p(Ω) so that the closedness of Wm,p(Ω) yields Γ̃ = Γ −
J−1dJ ∈ Wm,p(Ω) by (6.6). Moreover, the regularity A ∈ Wm,p(Ω) directly follows
from (6.14), since dJ, Γ̃ ∈ Wm,p(Ω) implies that A = B − 〈dJ ; Γ̃〉 ∈ Wm,p(Ω). This
shows that Γ̃ and A are both in Wm,p(Ω).

We now prove that Γ̃ ∈ Wm,p(Ω) is one derivative more regular, Γ̃ ∈ Wm+1,p(Ω),
by establishing estimate (9.2). For this, we use the first RT-equation (6.1),

ΔΓ̃ = δdΓ− δ
(
dJ−1 ∧ dJ

)
+ d

(
J−1A

)
. (9.7)

But estimate (B.8) of elliptic regularity theory gives

‖Γ̃‖Wm+1,p(Ω′) ≤ Ce

(
‖ΔΓ̃‖Wm−1,p(Ω) + ‖Γ̃‖Wm,p(Ω)

)
(9.8)

for any open set Ω′ compactly contained in Ω, where C > 0 is some constant depending
only on Ω′,Ω, p, n,m. The regularity gain of Γ̃ follows once we show ΔΓ̃ ∈ Wm−1,p(Ω),
since Γ̃ ∈ Wm,p(Ω). But to derive the sought after estimate (9.2) we need a more
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refined analysis. For this, we begin by substituting for ΔΓ̃ the right hand side of (9.7)
to obtain

‖Γ̃‖Wm+1,p(Ω′)

≤ Ce

(
‖δdΓ‖Wm−1,p(Ω) + ‖δ

(
dJ−1 ∧ dJ

)
‖Wm−1,p(Ω) + ‖d

(
J−1A

)
‖Wm−1,p(Ω)

)
≤ Ce

(
‖dΓ‖Wm,p(Ω) + ‖δ

(
dJ−1 ∧ dJ

)
‖Wm−1,p(Ω) + ‖J−1A‖Wm,p(Ω)

)
. (9.9)

(We subsequently often write ‖ · ‖Wm,p instead of ‖ · ‖Wm,p(Ω).) The first term on the
right hand side of (9.9) is bounded by assumption. Using first the product rule and
then Morrey’s inequality (A.4), the second term can be bounded by

‖δ
(
dJ−1 ∧ dJ

)
‖Wm−1,p(Ω)

≤
∥∥|D(dJ−1)| · |dJ |

∥∥
Wm−1,p +

∥∥|dJ−1| · |D(dJ)|
∥∥
Wm−1,p

≤ ‖D(dJ−1)‖Wm−1,p‖dJ‖Wm−1,∞ + ‖dJ−1‖Wm−1,∞‖D(dJ)‖Wm−1,p

≤ ‖J−1‖Wm+1,p‖J‖Wm,∞ + ‖J−1‖Wm,∞‖J‖Wm+1,p

(A.4)

≤ 2CM‖J−1‖Wm+1,p(Ω)‖J‖Wm+1,p(Ω),

which is bounded by our incoming assumptions J−1, J ∈ Wm+1,p(Ω). Using that
dJ = d(J − I), the previous estimate gives us

‖δ
(
dJ−1 ∧ dJ

)
‖Wm−1,p(Ω) ≤ 2CM‖J−1‖Wm+1,p(Ω)‖I − J‖Wm+1,p(Ω) (9.10)

To estimate the third term on the right hand side of (9.9), we use that by definition
Γ̃ ≡ Γ̃J = Γ− J−1dJ and A = B − 〈dJ ; Γ̃〉, to write

J−1A = J−1B − J−1〈dJ ; Γ〉+ 〈dJ−1; dJ〉,

where we used the multiplication property (5.10) to get J−1〈dJ ; J−1dJ〉 = 〈dJ−1; dJ〉.
We now estimate the third term on the right hand side of (9.9) as

‖J−1A‖Wm,p(Ω) ≤ ‖J−1B‖Wm,p + ‖J−1〈dJ ; Γ〉‖Wm,p + ‖〈dJ−1; dJ〉‖Wm,p . (9.11)

We now use the closedness of Wm,p(Ω) under multiplication (m ≥ 1, n > p) by
Morrey’s inequality (A.4), to estimate the products in (9.11), for instance,

‖J−1B‖Wm,p(Ω) = ‖D(J−1B)‖Wm−1,p + ‖J−1B‖Wm−1,p

≤ ‖D(J−1)B‖Wm−1,p + ‖J−1DB‖Wm−1,p + ‖J−1B‖Wm−1,p

≤ ‖D(J−1)‖Wm−1,p‖B‖Wm−1,∞ + ‖J−1‖Wm−1,∞‖DB‖Wm−1,p

+ ‖J−1‖Wm−1,∞‖B‖Wm−1,p

≤ CM‖J−1‖Wm,p‖B‖Wm,p .

In this fashion, replacing dJ on the right hand side of (9.11) by d(I − J), we obtain

‖J−1A‖Wm,p

≤ C‖J−1‖Wm+1,p

(
‖B‖Wm,p + ‖J‖Wm+1,p‖Γ‖Wm,p + ‖I − J‖Wm+1,p

)
(9.12)

≤ C‖J−1‖Wm+1,p

(
1 + ‖J‖Wm+1,p

)(
‖B‖Wm,p + ‖Γ‖Wm,p + ‖I − J‖Wm+1,p

)
,
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where C > 0 is some constant depending only on Ω,m, n, p. Substituting (9.10) and
(9.13) back into the original estimate (9.9), we obtain

‖Γ̃‖Wm+1,p(Ω′) (9.13)

≤ P(J)
(
‖Γ‖Wm,p + ‖dΓ‖Wm,p + ‖I − J‖Wm+1,p + ‖B‖Wm,p

)
+ C‖Γ̃‖Wm,p ,

where P(J) ≡ C
(
1+‖J−1‖Wm+1,p

)(
1+‖J‖Wm+1,p

)
for some constant C > 0 depend-

ing only on Ω,m, n, p. By the definition of Γ̃ in (6.6), we bound ‖Γ̃‖Wm,p(Ω) using
Morrey’s inequality as

‖Γ̃‖Wm,p(Ω) ≤ CM

(
‖Γ‖Wm,p(Ω) + ‖J−1‖Wm+1,p(Ω)‖J‖Wm+1,p(Ω)

)
,

from which we obtain the simplified bound

‖Γ̃‖Wm+1,p(Ω′) ≤ P(J)
(
‖Γ‖Wm,p + ‖dΓ‖Wm,p + ‖I − J‖Wm+1,p + ‖B‖Wm,p

)
, (9.14)

by changing the constant C > 0 in the definition on P suitably. Finally, using our
incoming assumption (9.1) to bound the above Sobolev norms on J, J−1 and B, we
obtain the sought after uniform bound (9.2). Clearly, estimate (9.2) implies the sought
after regularity Γ̃ ∈ Wm+1,p(Ω).29 This completes the proof of Proposition 9.1.

9.2. Proof of Theorem 6.1. We now prove Theorem 6.1 by adapting the steps
in the proof of Proposition 9.1 to the weak formulation of the RT-equations to ac-
count for the low regularity addressed here. This is significantly more complicated
because the substitution of the J-equation in the proof of Lemma 7.2, (required to
get the cancellation of terms involving δΓ, on which our whole theories rests), is not
a simple replacement when dealing with the weak form of the equations, due to the
problem of multiplying distributions by low regularity functions, c.f. Lemma 9.2 be-
low. Moreover, for the low regularity here, products must be estimated by Hölder
inequality instead of Morrey, which we compensate for by putting J in the smaller
Sobolev space W 1,2p while estimating Γ̃ in W 1,p. Even though we begin here with a
given solution of the reduced RT-equations, low regularity products have to be incor-
porated into the weak formulation of the Γ̃ equation, reflecting the non-linear nature
of the RT-equations.

So assume Γ ∈ L2p(Ω) and dΓ ∈ Lp(Ω) in x-coordinates for n/2 < p < ∞, and
assume that for some constant M > 0

‖(Γ, dΓ)‖L2p,p(Ω) ≡ ‖Γx‖L2p(Ω) + ‖dΓx‖Lp(Ω) ≤ M. (9.15)

Assume given some J ∈ W 1,2p(Ω) invertible and some B ∈ Lp(Ω) such that (J,B)
solves the reduced RT-equations (6.10) - (6.12) on Ω, such that

‖I − J‖W 1,2p(Ω) + ‖I − J−1‖W 1,2p(Ω) + ‖B‖Lp(Ω) ≤ C2(M)‖(Γ, dΓ)‖L2p,p(Ω), (9.16)

where C2(M) > 0 is some constant depending only on Ω, n, p and M . Define Γ̃ by
(6.6) and A by (6.14), that is,

Γ̃ = Γ̃J ≡ Γ− J−1dJ and A = A′ ≡ B − 〈dJ ; Γ̃〉. (9.17)

29Note, the gain of one derivative to the required regularity Γ̃ ∈ Wm+1,p(Ω), is entirely based on
the cancellation of δΓ-terms in equation (7.6) of the proof of Lemma 7.2.
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Again we denote Γ̃J by Γ̃ and A′ by A from here on, and we let Ω ≡ Ωx denote
the neighborhood Ω′

x of Theorem 6.1 in x-coordinates, and we denote the compactly
contained subset Ω′′

x by Ω′. Theorem 6.1 (i) states that (J, Γ̃, A) solves the full RT-
equations (6.1) - (6.4) in Ω for v = v′ defined in (6.15). Parts (ii) and (iii) of Theorem
6.1 states that Γ̃ is in W 1,p(Ω′) and satisfies the uniform bound

‖Γ̃‖W 1,p(Ω′) ≤ C3(M)‖(Γ, dΓ)‖L2p,p(Ω), (9.18)

on any open set Ω′ compactly contained in Ω, and where C3(M) > 0 is some constant
depending only on Ω′,Ω, n, p and M .30

Proof of Theorem 6.1. So assume J ∈ W 1,2p(Ω) and B ∈ Lp(Ω) solve the reduced
RT-equations (6.10) - (6.12). Since only the regularity of the gauge variable w in
(6.12) is relevant for the proof, we assume here without loss of generality that w = 0,
the case for which we prove existence of solutions in Section 10. So (J,B) is assumed
to solve

ΔJ = δ(J ·Γ)−B, (9.19)

d �B =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
, (9.20)

δ �B = 0, (9.21)

in the weak sense of Definition 8.5. That is, we assume

−ΔJ [φ] = 〈J ·Γ, dφ〉L2 + 〈B, φ〉L2 (9.22)

for any matrix valued 0-form φ ∈ W
1,(2p)∗

0 (Ω), ( 1
(2p)∗ + 1

2p = 1), where ΔJ [φ] =

−〈dJ, dφ〉L2 , and we assume{
〈 �B, δψ〉L2 =

〈
(dJ ∧ Γ + J dΓ), div←−(ψ)

〉
L2

〈 �B, dϕ〉L2 = 0,
(9.23)

for any vector valued 2-form ψ ∈ W 1,p∗
0 (Ω) and any vector valued 0-form ϕ ∈

W 1,p∗
0 (Ω). We here use C > 0 to denote an universal (“running”) constant depending

only on Ω, n and p.
The proof of Theorem 6.1 requires several lemmas. Before we establish these

lemmas, we derive the preliminary regularity Γ̃ ∈ L2p(Ω) and that A ∈ Lp(Ω) from
the definitions in (9.17), regularities we require to bootstrap to the desired regularity
Γ̃ ∈ W 1,p(Ω) in the end. For this, recall that J is assumed to be invertible with
J−1 ∈ W 1,2p(Ω), so Morrey’s inequality (A.4) implies that J−1dJ ∈ L2p(Ω), since
p > n/2. Thus, since Γ ∈ L2p(Ω) by assumption, Γ̃ ≡ Γ − J−1dJ ∈ L2p(Ω) follows
directly from (6.6). To show that A ∈ Lp(Ω), we first apply Hölder’s inequality as in
(A.7) using that dJ and Γ̃ are both in L2p(Ω) to conclude with 〈dJ ; Γ̃〉 ∈ Lp(Ω). This
implies that A ∈ Lp(Ω) by (9.17) and our incoming assumption B ∈ Lp(Ω). We have
established Γ̃ ∈ L2p(Ω) and A ∈ Lp(Ω).

In Lemma 9.3 below we prove that Γ̃ defined in (6.6) solves the first RT-equation
(6.1) for A defined by (6.14), in the weak sense (8.21). We then apply elliptic regularity

30The version of Theorem 6.1 applicable to GR shock waves is obtained directly by substituting

‖(Γ, dΓ)‖L∞ for ‖(Γ, dΓ)‖L2p,p everywhere above, since ‖(Γ, dΓ)‖L2p,p(Ω) ≤ vol(Ω)
1
p ‖(Γ, dΓ)‖L∞(Ω)

for Ω bounded.
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theory to this equation to boost the regularity of Γ̃ by essentially one order to Γ̃ ∈
W 1,p(Ω), as asserted by Theorem 6.1. The main step in the proof of Lemma 9.3 is
accomplished in the following lemma by adapting the computation in the proof of
Lemma 7.2 to the weak formulation required for the low regularity here.

Lemma 9.2. Under the assumption of Theorem 6.1, we have

δΓ̃[φ] = 〈J−1A, φ〉L2 (9.24)

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω), where δΓ̃[φ] ≡ −〈Γ̃, dφ〉L2 . That is,

δΓ̃ = J−1A in the sense of weak derivatives.31

Proof. Assume J is a solution of the first reduced RT-equation in the weak sense
(8.30) for some given B ∈ Lp(Ω). The proof is based on adapting the computation
(7.3) - (7.7) of Lemma 7.2 to regularities J ∈ W 1,2p(Ω) and B ∈ Lp(Ω). This requires
care because of the presence of products. Instead of computing δΓ̃ directly as in (7.3),
which would not yield the weak Laplacian on J (essential for the argument), we begin
by taking δ of J Γ̃.32 Using that Γ̃ ≡ Γ− J−1dJ by its definition in (6.6), taking δ of
J Γ̃ gives us

δ(J Γ̃)[φ] = −〈J Γ̃, dφ〉L2

= −〈JΓ, dφ〉L2 + 〈dJ, dφ〉L2 , (9.25)

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω). Note that the expressions in (9.25) are

finite by Hölder inequality (A.6), since Γ ∈ L2p(Ω) and J ∈ W 1,2p(Ω), and since
Lp∗

(Ω) ⊂ L(2p)∗(Ω) because Ω is bounded and p∗ = p
p−1 is larger than (2p)

∗ = 2p
2p−1 .

For example, by Hölder’s inequality (A.8),

∣∣〈dJ, dφ〉L2

∣∣ ≤ C ‖dJ‖L2p‖dφ‖L(2p)∗ ≤ C‖dJ‖L2p ‖dφ‖
p∗

(2p)∗
Lp∗ < ∞,

where C > 0 is some constant depending only on Ω, n and p. Now, we replace the
second term on the right hand side of (9.25) by the weak reduced RT-equation (9.22),

〈dJ, dφ〉L2 = 〈J ·Γ, dφ〉L2 + 〈B, φ〉L2 ,

which, after the cancellation of the lowest regularity term 〈J ·Γ, dφ〉L2 crucial to our
method, leads to

δ(J Γ̃)[φ] = 〈B, φ〉L2 , that is, 〈J Γ̃, dφ〉L2 + 〈B, φ〉L2 = 0. (9.26)

Our goal now is to move d to the other side of the first inner product in (9.26)
as δ on the product J Γ̃ and isolate the weak derivative δΓ̃, from which the sought
after equation (9.24) then follows. At the start, J Γ̃ is not regular enough to apply
partial integration nor the Leibniz product rule directly, but the following mollification
suffices to complete this last step in the proof.33 So consider standard mollifiers

31For the reader familiar with our previous work in [24, 26], note that establishing (9.24) reverses
a basic identity in the derivation of the RT-equations from the Riemann-flat condition where we
defined A in terms of JδΓ̃.

32Note, applying the results of Lemma 7.2 in this setting at a mollified level, would entail the prob-
lem of controlling the zero mollification limit through the second reduced RT-equation (6.2), a system
of inhomogeneous elliptic PDE’s for which it would be difficult to avoid generalized eigenvalues.

33The reason why this mollification argument works seems to be that one can anticipate Γ̃ to be
one order more regular for given solutions of the RT-equations by their consistency.
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Γε ∈ C∞(Ω) and Jε ∈ C∞(Ω) of Γ and J respectively, so that Γε converges to Γ in
L2p(Ω) as ε → 0 and Jε converges to J in W 1,2p(Ω) as ε → 0.34 Define

Γ̃ε ≡ Γε − J−1dJε,

then Γ̃ε ∈ W 1,2p(Ω) holds. To show that Γ̃ε −→ Γ̃ in L2p(Ω) as ε → 0, recall
J−1 ∈ W 1,2p(Ω) is bounded in L∞(Ω) by Morrey’s inequality, so we have

‖J−1(dJε − dJ)‖L2p ≤ ‖J−1‖L∞‖dJε − dJ‖L2p −→ 0

as ε → 0, and this implies that Γ̃ε −→ Γ̃ in L2p(Ω) as ε → 0. Now, since Γ̃ε −→ Γ̃ in
L2p(Ω) as ε → 0, equation (9.26) implies that

lim
ε→0

(
〈J Γ̃ε, dφ〉L2 + 〈B, φ〉L2

)
= 0. (9.27)

The regularity Γ̃ε ∈ W 1,2p(Ω) allows us now to use partial integration (8.7), followed
by the Leibniz rule (5.8), δ(J Γ̃ε) = JδΓ̃ε + 〈dJ ; Γ̃ε〉, to compute

〈J Γ̃ε, dφ〉L2 + 〈B, φ〉L2 = −〈δ(J Γ̃ε), φ〉L2 + 〈B, φ〉L2

(5.8)
= −〈JδΓ̃ε, φ〉L2 +

〈
(B − 〈dJ ; Γ̃ε〉), φ

〉
L2

= −〈JδΓ̃ε, φ〉L2 + 〈Aε, φ〉L2 , (9.28)

where we set Aε ≡ B−〈dJ ; Γ̃ε〉. Observe that Aε → A in Lp(Ω) as ε → 0, since Γε → Γ
and dJε → dJ in L2p(Ω) as ε → 0. We now applying the multiplication property of
〈·; ·〉 in (5.10) together with cyclic commutativity of matrix multiplication in the trace,
to write (9.28) as

〈J Γ̃ε, dφ〉L2 + 〈B, φ〉L2 = −〈δΓ̃ε, J
Tφ〉L2 + 〈J−1Aε, J

Tφ〉L2 . (9.29)

To clarify this step, consider for example

〈JδΓ̃ε, φ〉L2

(8.2)
=

∫
Ω

tr〈JδΓ̃ε;φ
T 〉dx (5.10)

=

∫
Ω

tr
(
J ·〈δΓ̃ε;φ

T 〉
)
dx

=

∫
Ω

tr
(
〈δΓ̃ε;φ

T 〉·J
)
d

(5.10)
=

∫
Ω

tr〈δΓ̃ε; (J
Tφ)T 〉 = 〈δΓ̃ε, J

Tφ〉L2 .

Applying now the integration by parts formula (8.7) to the first term on the right
hand side of (9.29) and defining ψ ≡ JTφ, we obtain

〈J Γ̃ε, dφ〉L2 + 〈B, φ〉L2 = 〈Γ̃ε, dψ〉L2 + 〈J−1Aε, ψ〉L2 . (9.30)

Since J ∈ W 1,2p(Ω), (for p > n/2, p > 2, so 1 < p∗ < 2), it follows that ψ ≡ JTφ ∈
W 1,p∗

0 (Ω) is indeed a test function, (as proven in Lemma 9.6 below). Thus, since Γ̃ε

converges to Γ̃ in L2p(Ω) and since Aε → A in Lp(Ω) as ε → 0, we conclude that the
right hand side in (9.30) converges as ε → 0. Moreover, by (9.27) the left hand side
in (9.30) converges as well and the limit of (9.30) as ε → 0 vanishes, which gives

−〈Γ̃, dψ〉L2 = 〈J−1A,ψ〉L2 , (9.31)

34By the compact of the test functions, mollifying does not change the region of integration Ω.
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for ψ = JTφ. Since any ψ ∈ W 1,p∗
0 (Ω) there exists some some φ ∈ W 1,p∗

0 (Ω) such that
ψ = JTφ, as proven in Lemma 9.6 below, we conclude that the sought after equation
(9.31) holds. This proves Lemma 9.2.

We now apply Lemma 9.2 to establish that Γ̃ solves the first RT-equation for (6.1)
for A = A′ defined in (6.14), at the correct level of regularity. This lemma establishes
the first statement in part (i) of Theorem 6.1 together with part (ii).

Lemma 9.3. Under the assumption of Theorem 6.1, Γ̃ ∈ L2p(Ω) solves the first
RT-equation (6.1) with A given by (6.14), and thus Γ̃ has the regularity Γ̃ ∈ W 1,p(Ω).

Proof. To begin recall that by (9.24) of Lemma 9.2, we have

δΓ̃[φ] = 〈J−1A, φ〉L2

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω), where δΓ̃[φ] ≡ −〈Γ̃, dφ〉L2 . Since A ∈

Lp(Ω) and J−1 ∈ W 1,2p(Ω), this directly implies that the weak co-derivative δ of Γ̃ is
an Lp function, δΓ̃ ∈ Lp(Ω), and it follows that

δΓ̃ = J−1A ∈ Lp(Ω) (9.32)

holds in the sense of Lp functions. We can now take the exterior derivative d of δΓ̃ in
a weak sense, which gives in light of (9.32) that

〈δΓ̃, δΦ〉L2 = 〈J−1A, δΦ〉L2 (9.33)

for any matrix valued 1-form Φ ∈ W 1,p∗
0 (Ω). This determines the second term of the

weak Laplacian of Γ̃ in (8.20).
To determine the first term of the weak Laplacian ΔΓ̃[Φ] in (8.20), we take the

exterior derivative of Γ̃ε ≡ Γε − J−1dJε, where Γε and Jε are the mollifications of Γ
and J introduced in the proof of Lemma 9.2. This gives us

dΓ̃ε = dΓε − d(J−1dJε)

= dΓε − dJ−1 ∧ dJε, (9.34)

where we applied the Leibniz rule (5.6) for the last equality. We now show that
the right hand side of (9.34) converges in Lp(Ω) as ε → 0. For this recall first that
dΓ ∈ Lp(Ω), which implies that d(Γε) = (dΓ)ε −→ dΓ in Lp(Ω) as ε → 0. Moreover,
by using Hölder’s inequality as in (A.10), we find that∥∥dJ−1 ∧

(
dJε − dJ

)∥∥
Lp ≤

∥∥dJ−1
∥∥
L2p

∥∥dJε − dJ
∥∥
L2p . (9.35)

By L2p convergence of dJε to dJ , (9.35) implies that dJ
−1∧dJε converges to dJ−1∧dJ

in Lp(Ω) as ε → 0. We conclude that the right hand side of (9.34) converges in Lp(Ω)
as ε → 0, and this yields that

dΓ̃ = dΓ− dJ−1 ∧ dJ ∈ Lp(Ω). (9.36)

Taking now the co-derivative δ of (9.36) gives

δdΓ̃ = δdΓ− δ
(
d(J−1) ∧ dJ

)
∈ W−1,p(Ω),

but of course in the weak sense

〈dΓ̃, dΦ〉L2 = 〈
(
dΓ− dJ−1 ∧ dJ

)
, dΦ〉L2 , (9.37)
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for any matrix valued 1-form Φ ∈ W 1,p∗
0 (Ω). Combing now (9.33) and (9.37), and

using that by our definition in (8.20)

ΔΓ̃[Φ] = −〈δΓ̃, δΦ〉L2 − 〈dΓ̃, dΦ〉L2 ,

we finally obtain that Γ̃ solves the sought after first RT-equation,

ΔΓ̃[Φ] = −〈
(
dΓ− dJ−1 ∧ dJ

)
, dΦ〉L2 − 〈J−1A, δΦ〉L2 , (9.38)

in the weak form (8.21).
To complete the proof of Lemma 9.3, it remains to show Γ̃ gains one derivative

to Γ̃ ∈ W 1,p(Ω). For this, note that we have already established that δΓ̃ and dΓ̃ are
in Lp(Ω), c.f. (9.32) and (9.36). Thus, since the right hand side of (9.38) results from
taking d of δΓ̃ and δ of dΓ̃, we conclude that the right hand side of (9.38) lies in
W−1,p(Ω), that is,

ΔΓ̃ ∈ W−1,p(Ω). (9.39)

Applying now Lemma 8.2 for the case of regularity Γ̃ ∈ Lp(Ω) with dΓ̃, δΓ̃ ∈ Lp(Ω), we
find that ΔΓ̃[Φ] = −〈∇Γ̃,∇Φ〉L2 . Thus the standard weak Laplacian −〈∇Γ̃,∇Φ〉L2

lies inW−1,p(Ω) by (9.39). Applying now basic elliptic regularity theory, c.f. Theorem
B.2 in the appendix, we conclude with the sought after regularity Γ̃ ∈ W 1,p(Ω′) for
any open set Ω′ ⊂ Ω compactly contained in Ω. This completes the proof of Lemma
9.3.

In the next Lemma we prove the basic elliptic estimate (6.17) from which we later
derive the curvature bound (3.7), using Hölder and Morrey inequalities in combina-
tion with estimate (6.16) assumed on J, J−1 and B. Lemma 9.4 proves part (iii) of
Theorem 6.1.

Lemma 9.4. Under the assumption of Theorem 6.1, in particular assuming the
bound (9.16) on (J,B) and ‖(Γ, dΓ)‖L2p,p ≤ M , the weak solution Γ̃ ≡ Γ̃J of the first
RT-equation (6.1), defined by (6.6), satisfies

‖Γ̃‖W 1,p(Ω′) ≤ C(M)‖(Γ, dΓ)‖L2p,p(Ω), (9.40)

for any open set Ω′ compactly contained in Ω and some constant C(M) > 0 depending
only on Ω,Ω′, p, n and M .

Proof. By Lemma 9.3, Γ̃ ≡ Γ̃J solves the weak first RT-equation (9.38), that is,

ΔΓ̃[Φ] = −
〈(
dΓ− dJ−1 ∧ dJ

)
, dΦ

〉
L2 − 〈J−1A, δΦ〉L2 (9.41)

holds for any matrix valued 1-form Φ ∈ W 1,p∗
0 (Ω). Applying the basic elliptic esti-

mates (B.8) to (9.41), we obtain

‖Γ̃‖W 1,p(Ω′) ≤ C
(
‖F‖W−1,p(Ω) + ‖Γ̃‖Lp(Ω)

)
(9.42)

for any open Ω′ compactly contained in Ω, and where we define the functional

F(Φ) ≡ −
〈(
dΓ− dJ−1 ∧ dJ

)
, dΦ

〉
L2 − 〈J−1A, δΦ〉L2 (9.43)

on matrix valued 1-forms Φ ∈ W 1,p∗
0 (Ω), and the operator norm ‖ · ‖W−1,p is defined

by

‖F‖W−1,p(Ω) ≡ sup
{
|F(Φ)|

∣∣Φ ∈ W 1,p∗
0 (Ω), ‖Φ‖W 1,p∗ (Ω) = 1

}
. (9.44)
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From (9.43) we find∣∣F(Φ)∣∣ ≤ ∣∣〈(dΓ− dJ−1 ∧ dJ
)
, dΦ

〉
L2

∣∣+ ∣∣〈J−1A, δΦ
〉
L2

∣∣,
which we further estimate using Hölder’s inequality (A.6) as

∣∣F(Φ)∣∣ ≤ C
(∥∥(dΓ− dJ−1 ∧ dJ

)∥∥
Lp‖dΦ‖Lp∗ +

∥∥J−1A
∥∥
Lp‖δΦ‖Lp∗

)
≤ C

(
‖dΓ‖Lp(Ω) +

∥∥dJ−1 ∧ dJ
∥∥
Lp(Ω)

+
∥∥J−1A

∥∥
Lp(Ω)

)
, (9.45)

where we estimated ‖dΦ‖Lp∗ ≤ ‖Φ‖W 1,p∗ = 1 and ‖δΦ‖Lp∗ ≤ 1 for the last inequality.
Throughout this proof C > 0 denotes a universal constant depending only on Ω, n, p
We now use Hölder’s inequality as in (A.10) to estimate the second term in (9.45) as∥∥dJ−1 ∧ dJ

∥∥p
Lp(Ω)

≤ C
〈
|dJ−1|p, |dJ |p

〉
L2

≤ C
∥∥|dJ−1|p

∥∥
L2(Ω)

∥∥|dJ |p∥∥
L2(Ω)

= C
∥∥dJ−1

∥∥p
L2p(Ω)

∥∥dJ∥∥p
L2p(Ω)

, (9.46)

where we lost a little regularity from L2p to Lp, as anticipated in our theory by starting
with J ∈ W 1,2p(Ω). Now taking the p-th root of (9.46) and using that dJ = d(J − I),
we obtain ∥∥dJ−1 ∧ dJ

∥∥
Lp(Ω)

≤
∥∥J−1

∥∥
W 1,2p(Ω)

∥∥I − J
∥∥
W 1,2p(Ω)

. (9.47)

To estimate the third term in (9.45), we substitute (6.6) and (6.14), that is, we
substitute Γ̃ = Γ− J−1dJ into A = B − 〈dJ ; Γ̃〉. This leads to the identity

J−1A = J−1B − J−1〈dJ ; Γ〉+ 〈dJ−1; dJ〉,

where we used the multiplication property (5.10) to write

J−1〈dJ ; J−1dJ〉 = 〈dJ−1; dJ〉.

We now obtain the bound∥∥J−1A
∥∥
Lp ≤ ‖J−1B‖Lp + ‖J−1〈dJ ; Γ〉‖Lp + ‖〈dJ−1; dJ〉‖Lp

≤ ‖J−1B‖Lp + CM‖J−1‖W 1,p ‖〈dJ ; Γ〉‖Lp + ‖〈dJ−1; dJ〉‖Lp , (9.48)

where we applied Morrey’s inequality (A.4) in the last step to bound the L∞-norm
of J−1. We now estimate the remaining product terms in (9.48) employing Hölder’s
inequality as in (9.46), to obtain∥∥J−1A

∥∥
Lp ≤ C‖J−1‖W 1,p

(
‖B‖Lp + ‖dJ‖L2p‖Γ‖L2p + ‖d(I − J)‖L2p

)
, (9.49)

where C > 0 is some constant depending only on Ω, n, p. Applying dJ = d(J − I) we
write bound (9.49) further as∥∥J−1A

∥∥
Lp ≤ C‖J−1‖W 1,p

(
1 + ‖J‖W 1,p

)(
‖B‖Lp + ‖Γ‖L2p + ‖I − J‖W 1,2p

)
. (9.50)

Combining (9.47) and (9.50) to bound the right hand side of (9.45), we obtain∣∣F(Φ)∣∣ ≤ P0

(
‖dΓ‖Lp + ‖Γ‖L2p + ‖B‖Lp + ‖I − J‖W 1,2p

)
, (9.51)
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where P0 = C
(
1+ ‖J−1‖W 1,2p

)(
1+ ‖J‖W 1,2p

)
. Substituting the bound (9.51) for the

right hand side of (9.42), we find that

‖Γ̃‖W 1,p(Ω′) ≤ P0

(
‖dΓ‖L2p + ‖Γ‖L2p + ‖B‖Lp + ‖I − J‖W 1,2p

)
+ C‖Γ̃‖Lp(Ω). (9.52)

From Γ̃ = Γ− J−1dJ and Hölder inequality, we bound ‖Γ̃‖Lp(Ω) by

‖Γ̃‖Lp(Ω) ≤ vol(Ω)
1
2p ‖Γ‖L2p(Ω) + C ‖J−1‖L2p(Ω)‖dJ‖L2p(Ω),

(where we estimated ‖Γ‖Lp ≤ vol(Ω)
1
2p ‖Γ‖L2p(Ω) by applying Hölder’s inequality to

Γ = Γ · 1). Substituting this bound on ‖Γ̃‖Lp(Ω) into (9.52), we obtain

‖Γ̃‖W 1,p(Ω′) ≤ P0

(
‖dΓ‖L2p + ‖Γ‖L2p + ‖B‖Lp + ‖I − J‖W 1,2p

)
, (9.53)

by modifying the constant C > 0 in the definition of P0 suitably.
To derive the sought after bound (9.40) we now use that (J,B) are assumed to

meet the bound (9.16), that is,

‖I − J‖W 1,2p(Ω) + ‖I − J−1‖W 1,2p(Ω) + ‖B‖Lp(Ω) ≤ C2(M)‖(Γ, dΓ)‖L2p,p(Ω). (9.54)

So using (9.54) together with the definition ‖(Γ, dΓ)‖L2p,p(Ω) = ‖Γ‖L2p + ‖dΓ‖Lp to
bound the right hand side of (9.53), we conclude that there exists some constant
C3(M) > 0 depending only on Ω, n, p and M , such that

‖Γ̃‖W 1,p(Ω′) ≤ C3(M)‖(Γ, dΓ)‖L2p,p(Ω)

which is the sought after bound (9.18). This completes the proof of Lemma 9.4.

To establish part (i) of Theorem 6.1 it only remains to verify that (J, Γ̃, A) solves
the weak RT-equations (8.22) - (8.26).

Lemma 9.5. Under the assumption of Theorem 6.1, (J, Γ̃, A) solves the second,
third and fourth weak RT-equations (8.22) - (8.26) for v defined in (6.15) with w = 0.

Proof. By our assumption that J ∈ W 1,2p(Ω) and B ∈ Lp(ω) solve the first weak
reduced RT-equation (9.22), that is,

−ΔJ [φ] = 〈J ·Γ, dφ〉L2 + 〈B, φ〉L2 (9.55)

holds for any matrix valued 0-form φ ∈ W
1,(2p)∗

0 (Ω), where ΔJ [φ] = −〈dJ, dφ〉L2 , and
where 〈B, φ〉L2 is finite by Lemma 8.6. Substituting B = 〈dJ ; Γ̃〉+A, (which follows
from the definition of A in (6.14)), into (9.55), we directly obtain

−ΔJ [φ] =
〈
J ·Γ, dφ

〉
L2 +

〈(
〈dJ ; Γ̃〉+A

)
, φ

〉
L2 ,

which is the sought after weak RT-equation (8.22).
We now show that the third and fourth weak RT-equations (8.26) hold. By

assumption J ∈ W 1,2p(Ω) and B ∈ Lp(Ω) solve the weak reduced RT-equations
(9.23), that is, {

〈 �B, δψ〉L2 =
〈
(dJ ∧ Γ + J dΓ), div←−(ψ)

〉
L2

〈 �B, dϕ〉L2 = 0,
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holds for any vector valued 2-form ψ ∈ W 1,p∗
0 (Ω) and any vector valued 0-form ϕ ∈

W 1,p∗
0 (Ω). From the definition of A in (6.14), we find that �B = �A +

−−−−→
〈dJ ; Γ̃〉 and

substituting this for �A in (9.56) gives us{
〈 �A, δψ〉L2 =

〈
(dJ ∧ Γ + J dΓ), div←−(ψ)

〉
L2 − 〈

−−−−→
〈dJ ; Γ̃〉, δψ〉L2

〈 �A, dϕ〉L2 = −〈v, ϕ〉L2 ,

for v = δ〈dJ ; Γ̃〉. This proves that (J, Γ̃, A) solves the weak RT-equations (8.22) -
(8.26), and completes the proof of Lemma 9.5.

For completeness we prove the following technical lemma which was used in the
proof of Lemma 9.2 above. The point was that ψ ≡ JTφ can be taken as test function
in the same space as the test function φ used in the argument. It suffices to prove
the lemma for products φJ instead of JTφ, since only regularity of components is at
issue here. It is only in this lemma where we require the assumption p > 2.

Lemma 9.6. Let J ∈ W 1,2p(Ω) for p > max{n/2, 2}, n ≥ 2. Assume J is

invertible with inverse J−1 ∈ W 1,2p(Ω). Then φJ ∈ W 1,p∗
0 (Ω) for any φ ∈ W 1,p∗

0 (Ω),

and for every ψ ∈ W 1,p∗
0 (Ω) there exists some φ ∈ W 1,p∗

0 (Ω) such that ψ = φJ . That

is, J ·W 1,p∗
0 (Ω) =W 1,p∗

0 (Ω).

Proof. So let J ∈ W 1,2p(Ω) for p > max{n/2, 2}. We first show that φJ ∈
W 1,p∗

0 (Ω) for any φ ∈ W 1,p∗
0 (Ω). To begin, observe that by the Leibniz rule, we

obtain

‖φJ‖W 1,p∗ ≡ ‖φJ‖Lp∗ + ‖d(φJ)‖Lp∗

≤ ‖φJ‖Lp∗ + ‖dφ·J‖Lp∗ + ‖φ dJ‖Lp∗ . (9.56)

By Morrey’s inequality the first term in (9.56) can be bounded, namely

‖φJ‖Lp∗ ≤ C‖φ‖Lp∗ ‖J‖L∞ ≤ C‖φ‖Lp∗ ‖J‖W 1,2p

and similarly

‖dφ·J‖Lp∗ ≤ C‖dφ‖Lp∗ ‖J‖W 1,2p .

So, to prove φJ ∈ W 1,p∗
0 (Ω), it remains to show the third term in (9.56) is bounded.

For this, by (A.1), we first write

‖φ dJ‖Lp∗
(A.1)
=

∑
μ,ν,σ,j

‖φμ
σ ∂jJ

σ
ν ‖Lp∗ =

∑
μ,ν,σ,j

(∥∥|φμ
σ|p

∗ |∂jJσ
ν |p

∗∥∥
L1

) 1
p∗
.

Applying now Hölder’s inequality (A.6) to each term separately gives

‖φ dJ‖Lp∗
(A.6)

≤
∑

μ,ν,σ,j

(∥∥|φμ
σ|p

∗∥∥
Lq

∥∥|∂jJσ
ν |p

∗∥∥
L

2p
p∗

) 1
p∗

=
∑

μ,ν,σ,j

∥∥φμ
σ

∥∥
Lqp∗

∥∥∂jJσ
ν

∥∥
L2p

≤
(∑

μ,ν

∥∥φμ
ν

∥∥
Lqp∗

)( ∑
μ,ν,j

∥∥∂jJμ
ν

∥∥
L2p

)
,
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where q is the conjugate exponent of 2p
p∗ , (i.e.,

1
q +

p∗

2p = 1). By our definitions of

norms in (A.1), the sought after estimate now follows directly,

‖φ dJ‖Lp∗ ≤ ‖φ‖Lqp∗ ‖dJ‖L2p . (9.57)

We conclude that to prove φJ ∈ W 1,p∗
0 (Ω), it suffices to show that φ ∈ W 1,p∗

0 (Ω)
implies ‖φ‖Lqp∗ to be finite. For this, we apply the Sobolev embedding Theorem

for bounded domains [12, Thm 2, Ch. 5.6], stating that W 1,p∗
(Ω) ⊂ L

np∗
n−p∗ (Ω) for

1 ≤ p∗ < n, (note that p > 2 implies p∗ ∈ (1, 2), so p∗ < n holds). Thus the
boundedness of ‖φ‖Lqp∗ follows from the Sobolev embedding Theorem, as long as

qp∗ ≤ np∗

n− p∗ . (9.58)

To verify (9.58), we first compute that

q =
2

3− p∗
, (9.59)

as follows; inserting into the defining identity 1
q +

p∗

2p = 1 that p∗ = p
p−1 and solving

for q, we find that q = 2(p−1)
2(p−1)−1 =

2
2− 1

p−1

= 2
3−p∗ , where the last equality follows from

the identity p∗ = p
p−1 = 1+ 1

p−1 . To continue, we substitute (9.59) into the left hand

side of (9.58), and show that (9.58) holds if and only if p > n/2. For this, recall that
p∗ ∈ (1, 2) and n ≥ 2, so n − p∗ > 0 and 3 − p∗ > 0. This now allows us to write
(9.58) equivalently as

p∗

p∗ − 1
≥ n/2. (9.60)

Since p = p∗

p∗−1 by 1
p +

1
p∗ = 1, (9.60) is equivalent to p ≥ n/2 which holds by

assumption. This shows that (9.58) holds and thereby proves that φJ ∈ W 1,p∗
0 (Ω) for

any φ ∈ W 1,p∗
0 (Ω), which is the forward implication of Lemma 9.6.

To prove the backward implication, that for every ψ ∈ W 1,p∗
0 (Ω) there exists

a φ ∈ W 1,p∗
0 (Ω) such that ψ = φJ , we make the ansatz φ ≡ ψJ−1. Since J−1 ∈

W 1,2p(Ω) by assumption, we use the forward implication of Lemma 9.6 to conclude

that φ = ψJ−1 ∈ W 1,p∗
0 (Ω), while φJ = ψ holds trivially. This proves the backward

implication and completes the proof of Lemma 9.6.

Taken together, Lemmas 9.2 - 9.5 complete the proof of Theorem 6.1. To complete the
proofs of Theorems 3.1 and 3.2 it remains to prove Theorem 6.3, asserting existence of
the solutions of the reduced RT-equations precisely as assumed in this section. This
is accomplished in Sections 10 - 12.

10. Existence theory for the reduced RT-equations - Proof of Theorem
6.3. In this section we prove Theorem 6.3, regarding existence of solutions to the
reduced RT-equations (6.10) - (6.12) which meet the assumptions of Theorem 6.1.
This is the final step remaining to complete the proof of Theorems 3.1 and 3.2. The
proof of Theorem 6.3 is based on an iteration scheme which reduces the problem
to known estimates in elliptic PDE theory, recorded in Appendix B. To handle the
first order system of equations for B (6.11) - (6.12), we extend the existence theory
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for Cauchy-Riemann type equations in [6] to the low regularity required here. This
extension is presented in Appendix C. The proof of Theorem 6.3 is given in terms
of several technical lemmas whose proofs are postponed to Section 11. We give the
proof of Theorem 6.3 first under the stronger assumption Γ, dΓ ∈ L∞(Ω), for which
our scaling argument below is cleaner, and extend the proof to connection regularity
Γ ∈ L2p, dΓ ∈ Lp, p > n/2, in Section 12. For simplicity we establish here solutions
B in L2p and explain in Section 12 the modification to B ∈ Lp.

So assume Γ, dΓ ∈ L∞(Ω) in x-coordinates, let M > 0 be a constant such that

‖(Γ, dΓ)‖L∞(Ω) ≡ ‖Γ‖L∞(Ω) + ‖dΓ‖L∞(Ω) ≤ M.

Again, we work in fixed x-coordinates and we write Ω for Ωx and Γ for Γx throughout
the remainder of this paper. Let q ∈ Ω and let n < p < ∞. Then, to prove Theorem
6.3, it suffices to prove that there exists a neighborhood Ω′ ⊂ Ω of x(q), depending only
on Ω, n, p,M , and there exists J ∈ W 1,p(Ω′) and B ∈ Lp(Ω′) such that (J,B) solves
the reduced RT-equations (6.10) - (6.12) in Ω′ in the weak sense of Definition 8.5, such
that (J,B) satisfies the uniform bound (6.16), J is invertible with J−1 ∈ W 1,p(Ω′)
and

d �J ≡ Curl(J) = 0 (10.1)

in Ω′, (implying that J is integrable to coordinates). For ease of notation we show
J ∈ W 1,p and B ∈ Lp for p > n, instead of J ∈ W 1,2p and B ∈ L2p for p > n/2. For
simplicity we assume without loss of generality that w = 0 in (6.12), that is, we prove
existence of a solution (J,B) of

ΔJ = δ(J ·Γ)−B, (10.2)

d �B =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
, (10.3)

δ �B = 0, (10.4)

in the weak sense specified in Definition 8.5. Without loss of generality we assume
that Ω is the unit ball in R

n centered at x(q) = 0, Ω = B1(0). We show below that
it suffices to take Ω′ = Bε(0), the ball of radius ε > 0 centered at x = 0, where ε > 0
is taken sufficiently small for the iteration scheme to converge. We begin the proof
of Theorem 6.3 by giving a formal introduction to the iteration scheme on which our
existence proof is based.

10.1. The iteration scheme. Start with J0 = 11. For induction, we show that
(Bk+1, Jk+1) can be constructed from Jk for each k ≥ 0. So assume Jk is given for
some k ≥ 0. Define Bk+1 as a weak solution of{

d �Bk+1 =
−→
div

(
dJk ∧ Γ

)
+
−→
div

(
Jk dΓ

)
,

δ �Bk+1 = 0,
(10.5)

such that Bk+1 ∈ Lp(Ω) satisfies a uniform bound in the Lp-norm. The regularity Lp

is too low to impose boundary data in 10.5, and our theory does not require Bk+1

to meet any boundary conditions, Bk+1 only needs to satisfy a uniform Lp bound.
This is achieved by choosing Bk+1 to be the zero mollification limit of a solution of
the corresponding mollified equation with zero Dirichlet boundary data, c.f. Sections
10.3 and C.
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Likewise, the regularity J ∈ W 1,p(Ω) is too low to impose the boundary condition

(6.5), d �J = 0 on ∂Ω, a problem we circumvent by imposing �J = dy, for y solving
an auxiliary elliptic equation. For this, define auxiliary variables Ψk+1 and yk+1 in
terms of Jk and Bk+1, but independent of the previous iterates Ψk and yk. That is,
we define the vector valued 0-form Ψk+1 ∈ Lp(Ω) as a weak solution of

dΨk+1 =
−−−−→
δ(Jk·Γ)−

−−−→
Bk+1, (10.6)

with uniform Lp bounds, obtained again by mollification in the same manner as in
the case for Bk+1. We then define the vector valued 0-form yk+1 ∈ W 2,p(Ω) as the
solution of

Δyk+1 = Ψk+1, (10.7)

for zero Dirichlet data. Given Bk+1,Ψk+1 and yk+1, now define Jk+1 ∈ W 1,p(Ω) as
the weak solution of the following Dirichlet boundary value problem:

ΔJk+1 = δ(Jk·Γ)−Bk+1, (10.8)
−−→
Jk+1 = dyk+1 on ∂Ω. (10.9)

Equations (10.5) - (10.8) define our iteration scheme in a formal way. To prove
convergence we need a small parameter ε > 0. We incorporate ε into the iteration
scheme in Sections 10.2 - 10.3, and prove convergence for ε > 0 sufficiently small in
Section 10.4.

Two clarifying remarks are in order. First note that (10.6) requires a solvability
condition, namely that d of its right hand side must be zero. This condition is meet,
because by (5.12) we have

d
(−−−−→
δ(Jk·Γ)

)
=

−→
div

(
dJk ∧ Γ

)
+
−→
div

(
Jk·dΓ

)
,

which implies in light of equation (10.5) for Bk+1 that

d
(−−−−→
δ(Jk·Γ)−

−−−→
Bk+1

)
= 0,

so the right hand side of (10.5) has a vanishing exterior derivative. That this con-
sistency condition is necessary and sufficient for the low regularity here is shown in
Appendix C.

Secondly, we remark on the role of auxiliary equations (10.6) - (10.7). The reason
for introducing Ψk and yk+1 is that the W

1,p-regularity of Jk+1 is too low to impose

the boundary data d �Jk+1 = 0 which was required in [24] to arrange for the integrability
condition of J (10.1). Now, augmenting the reduced RT-equations by equations (10.6)
and (10.7), allows us to impose Dirichlet data for Jk+1 which again gives rise to
integrability of Jk+1 to coordinates, as we show in the following lemma for smooth
solutions. In Lemma 10.9 below we extend this result to the low regularities required
by the above iteration scheme.

Lemma 10.1. Assume Γ is smooth and that Bk+1,Ψk+1, yk+1, Jk+1 are defined

by the iteration scheme (10.5) - (10.9) and are smooth. Then dyk+1 = �Jk+1, and

hence Jk+1 is integrable to coordinates yk+1 and d �Jk+1 = 0.
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Proof. By (10.5) - (10.9) it follows that

Δdyk+1 = dΔyk+1 = dΨk+1 =
−−−−→
δ(Jk·Γ)−

−−−→
Bk+1 = Δ �Jk+1,

where the last equality holds, since the operation vec commutes with the Laplacian
Δ (which acts component wise). Thus,

Δ( �Jk+1 − dyk+1) = 0 in Ω,

�J − dy = 0 on ∂Ω, (10.10)

which implies by uniqueness of solutions of the Laplace equation that �Jk+1 = dyk+1

in Ω. Since second derivatives of yk+1 commute, we conclude that

d �Jk+1 = Curl( �Jk+1) = 0 in Ω.

Moreover, Jk+1 is the Jacobian of the coordinate system yk+1.

Lemma 10.9 below generalizes the above result to the low regularity required
in this paper. To prove convergence of the iteration scheme, we introduce a small
parameter ε > 0 by restricting to Ω′ = Bε(0), and prove convergence for ε > 0
sufficiently small.

10.2. The ε-rescaled reduced RT-equations. We first incorporate the small
parameter ε > 0 into the theory by deriving an ε-rescaled version of the reduced RT-
equations, required to prove convergence of our iteration scheme. For this we use the
fact that regularity is a local problem, so that we can suitably restrict and rescale Γ
to isolate the small parameter ε, while maintaining the uniform bound (3.6) assumed
in Theorems 3.1 and 3.2. This is accomplished in the following lemma.

Lemma 10.2. Assume Ω = B1(0) and introduce the coordinate transformation
x → x̃(x) = x

ε . Define Γ∗ as the restriction of the components of Γx to Bε(0),
transformed to x̃-coordinates as scalars, Γ∗(x̃) ≡ Γx(x(x̃)). Then, Γx̃ satisfies in x̃-
coordinates

Γx̃(x̃) = ε Γ∗(x̃), (10.11)

together with the bound

‖(Γ∗, dΓ∗)‖L∞(Ω′
x̃)
= ‖Γx‖L∞(Ω′

x)
+ ε‖dΓx‖L∞(Ω′

x)
, (10.12)

where Ω′
x̃ = B1(0) and Ω

′
x = Bε(0).

Proof. By the connection transformation law we have

(Γx̃)
σ
μν =

∂x̃σ

∂xk

( ∂xi

∂x̃μ

∂xj

∂x̃ν
(Γx)

k
ij +

∂2xk

∂x̃μ∂x̃ν

)
= ε (Γx)

σ
μν , (10.13)

since ∂xi

∂x̃j = ε δij under the transformation x̃(x) = x
ε . It follows that for x̃ ∈ B1(0),

we have component wise

Γx̃(x̃) = ε Γx(x(x̃)) ≡ ε Γ∗(x̃).

To prove (10.12), observe that by construction of Γ∗, as the scalar transformed compo-
nents of the restriction of Γx to the ball of radius ε, we have ‖Γ∗‖L∞(Ω′

x̃)
= ‖Γx‖L∞(Ω′

x)
,
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and by the chain rule we have ‖dΓ∗‖L∞(Ω′
x̃)
= ε‖dΓx‖L∞(Ω′

x)
since ∂x

∂x̃ = εI. In com-
bination, this gives (10.12) and completes the proof.

By (10.12), and assuming without loss of generality that ε ≤ 1, we find that Γ∗

satisfies the original uniform bound (3.6),

‖(Γ∗, dΓ∗)‖L∞(Ω′
x̃)

≤ M.

We can thus construct solutions to the reduced RT-equations and apply Theorem
6.1 in x̃-coordinates, and obtain the uniform curvature bound (3.7) in x̃-coordinates,
without ever scaling back to x-coordinates.35

So now we can take the x̃-coordinates to be the original x-coordinates, and assume
without loss of generality that the connection in x-coordinates has the form

Γx = ε Γ∗, (10.14)

for some Γ∗ satisfying

‖(Γ∗, dΓ∗)‖L∞(Ωx) < M, (10.15)

and we assume without loss of generality that Ωx = B1(0). In light of (10.14), we
introduce the scaling ansatz

J = I + ε u, B = ε a. (10.16)

Since we only need to prove existence of a solution to establish optimal connection
regularity via the RT-equations, assumption 10.16 is made without loss of generality.
Note, the variables Ψ and y “inherit” their ε-scaling from B and J , c.f. Section
10.3 below. To derive the reduced RT-equations expressed in terms of the rescaled
variables, we now substitute (10.14) and (10.16) into (10.2) - (10.4) and divide by ε.
This yields the following equivalent set of equations:

Lemma 10.3. The reduced RT-equations (8.30) - (8.31) written in terms of the
rescaled connection (10.14) and rescaled variables (10.16) are equivalent to

−Δu[φ] = Fu(u, a)[φ], (10.17){
〈�a, δψ〉L2 = Fa(u)[ψ]

〈�a, dϕ〉L2 = 0,
(10.18)

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω), any vector valued 2-form ψ ∈ W 1,p∗

0 (Ω)

and any vector valued function ϕ ∈ W 1,p∗
0 (Ω), where we define the linear functionals

Fu(u, a)[φ] ≡
〈
Γ∗, dφ

〉
L2 + ε

〈
u·Γ∗, dφ

〉
L2 +

〈
a, φ

〉
L2 , (10.19)

Fa(u)[ψ] ≡
〈
dΓ∗, div←−(ψ)

〉
L2 + ε

〈
(u·dΓ∗ + du ∧ Γ∗), div←−(ψ)

〉
L2 . (10.20)

35A note might be in order here regarding our proof of Uhlenbeck compactness. In the proof we
implicitly assumed that there is a uniform ε > 0 which applies uniformly to each connection in the
sequence. In the Proposition10.11 below we show that ε can be taken to be on the order of 1

M
, and

therefore independent of connections in the sequence.
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Proof. Substituting J = I + εu and B = εa into (8.30) and dividing by ε, we
obtain

−Δu[φ]
(8.12)
= 〈du, dφ〉L2

= 〈(I + εu)·Γ∗, dφ〉L2 + 〈a, φ〉L2

= 〈Γ∗, dφ〉L2 + ε〈u·Γ∗, dφ〉L2 + 〈a, φ〉L2

= Fu(u, a)[φ]

which proves the equivalence between (10.2) and (10.17). Similarly, substituting our
scaling ansatz J = I + εu and B = εa into (8.31), a division by ε gives

〈�a, δψ〉L2 =
〈
(εdu ∧ Γ∗ + (I + εu)·dΓ∗), div←−(ψ)

〉
L2

=
〈
dΓ∗, div←−(ψ)

〉
L2 + ε

〈
(du ∧ Γ∗ + u·dΓ∗), div←−(ψ)

〉
L2

= Fa(u)[ψ]

as well as 〈�a, dϕ〉L2 = 0, which proves the equivalence between (8.31) and (10.18).

The existence result of Theorem 6.3 is a corollary of the following proposition,
the proof of which is topic of Sections 10.3 - 11.

Proposition 10.4. Let Γ∗, dΓ∗ ∈ L∞(Ω) satisfy the bound (10.15) and let n <
p < ∞. Then, for every ε > 0 sufficiently small, there exists u ∈ W 1,p(Ω) and
a ∈ Lp(Ω) which solve the ε-rescaled reduced RT-equation (10.17) - (10.18).

The proof of Proposition 10.4 is based on the iteration scheme introduced in Sec-
tion 10.1, but adjusted to incorporate the small parameter ε. The resulting iteration
scheme for the ε-rescaled reduced RT-equations is introduced in the next Section 10.3.
The proof of our main existence result, Theorem 6.3, is completed in Section 10.5 by
applying Proposition 10.4 together with additional arguments to establish the inte-
grability and invertability of the Jacobian J = I+ ε u, claimed in the theorem, as well
as the uniform bound (6.16).

10.3. The iteration scheme in the ε-rescaled variables. In this section we
define the iterates (uk, ak), k ≥ 0, for approximating solutions of (10.17)-(10.18), and
set up the framework for proving convergence of the scheme in the appropriate Sobolev
spaces for ε sufficiently small. The iteration scheme we introduce here differs from the
iteration scheme in Section 10.1 in that it is adapted to the rescaled equations (10.17)-
(10.18). Existence at each stage will be established in Lemma 10.7 below. From here
on we often omit dependence of norms on Ω, e.g., writing ‖ · ‖Lp for ‖ · ‖Lp(Ω). We
define now the matrix valued 0-forms uk+1 and ak+1 by induction as follows.

To start the iteration, set

u0 = a0 = 0.

Given uk ∈ W 1,p(Ω) and ak ∈ Lp(Ω) for k ≥ 0, we then construct a particular matrix
valued 0-form ak+1 ∈ Lp(Ω) which solves{

〈−−→ak+1, δψ〉L2 = Fa(uk)[ψ],

〈−−→ak+1, dϕ〉L2 = 0,
(10.21)

and satisfies the estimate

‖ak+1‖Lp ≤ C‖Fa(uk)‖W−1,p , (10.22)
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for some constant C > 0 independent of k, where (10.21) are taken in the weak
sense specified in Lemma 10.3, i.e., (10.21) shall hold for any vector valued 2-form

ψ ∈ W 1,p∗
0 (Ω) and any vector valued function ϕ ∈ W 1,p∗

0 (Ω). Existence is established
Lemma 10.7 and relies on the algorithm developed in Appendix C for constructing
particular solutions when regularity is too low to impose Dirichlet data in a classical
sense.

We next introduce the vector valued 0-form Ψk+1 ∈ Lp(Ω) as a weak solution of

dΨk+1 =
−−−−−→
δ(Jk·Γ∗)−−−→ak+1, (10.23)

where Jk ≡ I + εuk, such that Ψk+1 meets the bound

‖Ψk+1‖Lp ≤ C‖Fa(uk)‖W−1,p , (10.24)

for some constant C > 0 independent of k. That is, Ψk+1 ∈ Lp(Ω) meets the bound
(10.24) and satisfies

〈Ψk+1, δ�φ〉L2 = FΨ(uk, ak+1)[φ], (10.25)

for any matrix-valued 0-form φ ∈ W 1,p∗
0 (Ω), where we set

FΨ(uk, ak+1)[φ] ≡ 〈JkΓ∗, dφ〉L2 + 〈−−→ak+1, �φ〉L2 . (10.26)

The definition in (10.26) is based on the product rule 〈−→δw, �φ〉L2 = −〈w, dφ〉L2 for
matrix valued 1-forms w ∈ W 1,p(Ω), established in the proof of Lemma 10.5 below.
Because of this product rule it is convenient to interpret the test forms in (10.25)
and (10.26) as matrix valued 0-forms instead of vector valued 1-forms. In Lemma
10.5 below we show that the weak formulation of (10.25) is equivalent to the strong
formulation (10.23) in the case of smooth solutions. Existence of Ψk+1 also follows
from Lemma 10.7 by use of the algorithm in Appendix C.

We next define the vector valued 0-form yk+1 ∈ W 2,p(Ω) as the solution of{
Δyk+1 = Ψk+1,

yk+1

∣∣
∂Ω

= 0.
(10.27)

Similar to Lemma 10.1, equations (10.21), (10.25) and (10.27) again arrange for the
integrability of Jk+1 = I + εuk+1.

Finally, we define uk+1 ∈ W 1,p(Ω) as the unique weak solution satisfying

−Δuk+1[φ] = Fu(uk, ak+1)[φ], (10.28)

for every matrix valued 0-forms φ ∈ W 1,p∗
0 (Ω), with Dirichlet boundary data

uk+1|∂Ω = dyk+1|∂Ω. (10.29)

Equations (10.21) - (10.29) define our iteration scheme. For completeness we show in
the next lemma that smooth solutions Ψk+1 of the weak equation (10.25) are indeed
strong solutions of (10.23).

Lemma 10.5. Let Ψk+1 ∈ W 1,p(Ω) be a vector valued 0-form, then Ψk+1 solves
(10.25) if and only if Ψk+1 solves (10.23).
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Proof. We first prove the following statement: Let w ∈ W 1,p(Ω) be a matrix

valued 1-form and φ ∈ W 1,p∗
0 (Ω) a matrix valued 0-form, then

〈−→δw, �φ〉L2 = −〈w, dφ〉L2 . (10.30)

To prove (10.30), let w = wμ
νidx

i and φ = φμ
ν , then

δw =
∑

i=1,..,n

∂iw
μ
νi and

−→
δwμ = (δw)μνdx

ν =

n∑
i=1

∂iw
μ
νidx

ν .

Using partial integration component wise, we compute

〈−→δw, �φ〉L2 =
∑
μ,ν

∫
Ω

δwμ
νφ

μ
ν dx =

∑
μ,ν,i

∫
Ω

∂iw
μ
νi φ

μ
νdx

= −
∑
μ,ν,i

∫
Ω

wμ
νi ∂iφ

μ
νdx = −〈w, dφ〉L2 ,

c.f. the definition of inner products on matrix and vector valued differential forms
(8.2) and (8.4). This proves the sought after equation (10.30).

We now apply (10.30) to prove Lemma 10.5. So assume Ψk+1 ∈ W 1,p(Ω) solves
(10.25), that is,

〈Ψk+1, δ�φ〉L2 = 〈JkΓ∗, dφ〉L2 + 〈−−→ak+1, �φ〉L2 , (10.31)

for any matrix-valued 0-form φ ∈ W 1,p∗
0 (Ω). From the partial integration formula

(8.7) for vector valued forms, we find that

〈Ψk+1, δ�φ〉L2 = −〈dΨk+1, �φ〉L2 , (10.32)

and by (10.30), we have

〈JkΓ∗, dφ〉L2 = −〈−−−−−→δ(JkΓ
∗), �φ〉L2 . (10.33)

Combining (10.32) and (10.33), we write (10.31) as

〈dΨk+1, �φ〉L2 =
〈(−−−−−→

δ(JkΓ
∗)−−−→ak+1

)
, �φ

〉
L2
,

and since this equation holds for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω), we conclude

by Riesz representation that the strong form (10.23) holds. The opposite implication
is straightforward. This completes the proof of Lemma 10.5.

The iteration scheme on which the existence theory for the reduced RT-equations
stated in Proposition 10.4 is based, is defined in (10.21) - (10.29). Our strategy for
completing the proof of Proposition 10.4 is to first state the main technical lemmas
regarding the iteration scheme being well-defined and convergent, including elliptic
estimate for differences of iterates to establish convergence in suitable Sobolev spaces.
The statement of these lemmas is the topic of the next section.
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10.4. Well-posedness and convergence of the iteration scheme. In this
section we state the main lemmas required for the proof of Proposition 10.4, and
assuming these, we give the proof of Proposition 10.4. Proofs of the supporting
lemmas are postponed until Section 11 below. The first lemma provides an apriori
estimate for the source terms.

Lemma 10.6. Let Γ∗, dΓ∗ ∈ L∞(Ω) and assume u ∈ W 1,p(Ω) and a ∈ Lp(Ω), for
n < p < ∞, then

‖Fu(u, a)‖W−1,p ≤ ‖a‖Lp +
(
|Ω| 1p + ε ‖u‖Lp

)
‖(Γ∗, dΓ∗)‖L∞ , (10.34)

‖Fa(u)‖W−1,p ≤
(
|Ω| 1p + ε ‖u‖W 1,p

)
‖(Γ∗, dΓ∗)‖L∞ . (10.35)

Lemma 10.6 is proven in Section 11.1 below. Our second lemma gives the elliptic
estimates required to establish that the iteration scheme is well-defined.

Lemma 10.7. Assume uk ∈ W 1,p(Ω) is given, n < p < ∞. Then there exists
ak+1 ∈ Lp(Ω) which solves (10.21), there exists the auxiliary iterates Ψk+1 ∈ Lp(Ω)
and yk+1 ∈ W 2,p(Ω) which solve (10.25) - (10.27), and there exists uk+1 ∈ W 1,p(Ω)
which solves (10.28) with boundary data (10.29). In addition, the iterates satisfy the
following elliptic estimates:

‖ak+1‖Lp(Ω) ≤ Ce ‖Fa(uk)‖W−1,p(Ω), (10.36)

‖Ψk+1‖Lp(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (10.37)

‖yk+1‖W 2,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (10.38)

‖uk+1‖W 1,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (10.39)

for some constant Ce > 0 depending only on n, p and Ω.

The proof of Lemma 10.7, given in Section 11.2, is based on the Lp elliptic estimate
(B.3) of Theorem B.1 and Gaffney’s inequality (C.3) of Theorem C.2.36 Lemma 10.7
directly implies the following corollary.

Corollary 10.8. The iteration scheme is well-defined.

Before we establish convergence of the iteration scheme, we show that each Jaco-
bian Jk = I + ε uk is integrable to coordinates for each k ∈ N. This is the subject of
the next lemma, proven in Section 11.4 below, which extends Lemma 10.1 to the low
regularities here.

Lemma 10.9. Let uk+1 ∈ W 1,p(Ω) be a solution of (10.28) with boundary data
(10.29), and let yk+1 ∈ W 2,p(Ω) be a solution of (10.27). Then

d−−→uk+1 = 0 (10.40)

in Ω and Jk+1 ≡ I + ε uk+1 is the Jacobian of the coordinate transformation x →
x+ ε yk+1(x).

We now discuss convergence of the iteration scheme. Lemma 10.7 yields a se-
quence of iterates (uk, ak)k∈N. To establish convergence of this sequence inW 1,p×Lp,
we require estimates on the differences

ak ≡ ak − ak−1 and uk ≡ uk − uk−1 (10.41)

36Note that the boundary data (10.29) for J , i.e. J = dy on ∂Ω, does not enter estimate (10.39),
since it can be bounded by ‖Fu(uk, ak+1)‖W−1,p(Ω) using (10.38).
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in terms of the corresponding previous difference of iterates, ak−1 and uk−1. This is
accomplished in the following lemma, proven in Section 11.3. The proof of the lemma
combines the elliptic estimates (10.36) - (10.37) with suitable bounds on differences
of source terms by previous differences of iterates in the fashion of the estimates of
Lemma 10.6.

Lemma 10.10. Assume Γ∗, dΓ∗ ∈ L∞(Ω), then

‖ak+1‖Lp ≤ ε Cd ‖(Γ∗, dΓ∗)‖L∞ ‖uk‖W 1,p , (10.42)

‖uk+1‖W 1,p ≤ ε Cd ‖(Γ∗, dΓ∗)‖L∞ ‖uk‖W 1,p , (10.43)

where Cd ≡ Ce(1 + Ce) > 0 depends only on n, p, Ω, through the constant Ce > 0 of
Lemma 10.7.

Convergence of the iteration scheme will follow from Lemma 10.10, because

‖(Γ∗, dΓ∗)‖L∞(Ω) ≤ M,

by (10.15). This is proven in the following proposition, which completes the proof of
Proposition 10.4, assuming Lemmas 10.6, 10.7 and 10.10 hold.

Proposition 10.11. Assume Lemmas 10.6, 10.7 and 10.10 hold. Let Γ∗, dΓ∗ ∈
L∞(Ω) satisfy the initial bound (10.15), ‖(Γ∗, dΓ∗)‖L∞ < M for some constant M >
0, and assume

0 < ε <
1

CdM
, (10.44)

where Cd > 0 is the constant from Lemma 10.10. Then the sequence of iterates
(uk, ak)k∈N defined by (10.21) - (10.29) converges in W 1,p(Ω) × Lp(Ω), and the cor-
responding limits

u ≡ lim
k→∞

uk ∈ W 1,p(Ω),

a ≡ lim
k→∞

ak ∈ Lp(Ω),

solve the reduced RT-equations (10.17) - (10.18) and satisfy the bound

‖u‖W 1,p(Ω) + ‖a‖Lp(Ω) ≤ C2(M)‖(Γ∗, dΓ∗)‖L∞(Ω), (10.45)

for some constant C2(M) > 0 depending only on Ω, n, p and M .

Proof. We prove Proposition 10.11 under the assumption that Lemmas 10.6, 10.7
and 10.10 are valid, and postpone their proofs to Section 11. So by Lemma 10.7
there exist a sequence of iterates (uk). Given two such iterates uk, ul ∈ W 1,p(Ω),
(k ≥ l), estimate (10.43) of Lemma 10.10 in combination with our incoming bound
‖(Γ∗, dΓ∗)‖L∞ ≤ M , implies

‖uk − ul‖W 1,p ≤
k∑

j=l+1

‖uj‖W 1,p ≤ ‖ul+1‖W 1,p

k∑
j=l+1

(ε Cd M)j .

By the bound (10.44) on ε, the above geometric series converges as k → ∞. This
implies that (uk)k∈N is a Cauchy sequence in the Banach space W 1,p(Ω). Therefore,
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(uk)k∈N converges to some u in W 1,p(Ω). Similarly, (10.42) together with the bound
(10.15) implies

‖ak − al‖Lp ≤
k∑

j=l+1

‖aj‖Lp ≤ ‖ul+1‖Lp

k∑
j=l+1

(ε Cd M)j ,

which in light of (10.44) is a convergent geometric series, and we conclude with con-
vergence of (ak)k∈N to some a in the Banach space Lp(Ω).

The limit (u, a) solves (10.17) and (10.18) because each term in the equations
(10.21) and (10.28) converge to the corresponding terms in (10.17) and (10.18) with
respect to the Lp-norm on Ω. For example, using Hölder inequality we find from
(10.28) that

Δu[φ] + Fu(u, a)[Φ] = lim
k→∞

(
Δuk+1[φ] + Fu(uk, ak+1)[Φ]

)
= 0,

which shows that u = lim
k→∞

uk is indeed a solution of (10.17).

To derive estimate (10.45), we use the bounds on source terms of Lemma 10.6
in combination with the above convergence (uk, ak) → (u, a). That is, using that we
initiated the iteration with a0 = 0 and u0 = 0, we find

‖a‖Lp = ‖a− a0‖Lp ≤
∞∑
k=1

‖ak+1 − ak‖Lp + ‖a1‖Lp .

Using first (10.42) and then (10.43) successively, we estimate the above sum as

‖a‖Lp ≤
∞∑
k=1

(
ε Cd ‖(Γ∗, dΓ∗)‖L∞

)k
+ ‖a1‖Lp . (10.46)

We now use the elliptic estimate (10.36) in combination with the bound (10.35) on
Fa(u0) and u0 = 0 to obtain

‖a1‖Lp ≤ Ce vol(Ω) ‖(Γ∗, dΓ∗)‖L∞ (10.47)

Substituting this back into (10.46) and using (10.15) to estimate ‖(Γ∗, dΓ∗)‖L∞ by
M > 0, we obtain

‖a‖Lp ≤
(
Cevol(Ω) + ε Cd

∞∑
k=1

(
ε Cd M

)k−1

)
‖(Γ∗, dΓ∗)‖L∞ ,

and our ε-bound (10.44) implies the above infinite sum converges, so we conclude that

‖a‖Lp ≤ C2(M)‖(Γ∗, dΓ∗)‖L∞ (10.48)

for some constant C2(M) > 0 depending only on Ω, n, p and M .
We now derive an estimate on u in a similar way. Using u0 = 0, we begin by

writing

‖u‖W 1,p = ‖u− u0‖W 1,p ≤
∞∑
k=1

‖uk+1 − uk‖W 1,p + ‖u1‖W 1,p ,
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and applying (10.43) together with our initial bound (10.15) yields

‖u‖W 1,p ≤ ε Cd

∞∑
k=1

(
ε Cd M

)k−1‖(Γ∗, dΓ∗)‖L∞ + ‖u1‖W 1,p , (10.49)

where the sum is finite by our ε-bound (10.44). Using the elliptic estimate (10.39) in
combination with the bound (10.34) on Fu(u0, a1), we obtain

‖u1‖W 1,p ≤ Ce

(
‖a1‖Lp + vol(Ω)

)
‖(Γ∗, dΓ∗)‖L∞

(10.47)

≤ Ce(Ce + 1) vol(Ω)‖(Γ∗, dΓ∗)‖L∞ .

Substituting this estimate into (10.49), we obtain the estimate

‖u‖W 1,p ≤ C2(M) ‖(Γ∗, dΓ∗)‖L∞ , (10.50)

for some constant C2(M) > 0 depending only on Ω, n, p and M . Adding (10.48) and
(10.50) yields the sought after estimate (10.45).

Theorem 10.11 is a refined restatement of Proposition 10.4, and thereby completes
the proof of Proposition 10.4, once we give the proofs of Lemmas 10.6, 10.7 and 10.10.
This is accomplished in Section 11 below.

10.5. Proof of Theorem 6.3. We now give the proof of our main existence
result, Theorem 6.3, for connection Γ ∈ L∞(Ω) with dΓ ∈ L∞(Ω), under the as-
sumption that Proposition 10.11 and Lemma 10.9 hold. So given a weak solution
u ∈ W 1,p(Ω) and a ∈ Lp(Ω) of the rescaled reduced RT-equations (10.17) - (10.18)
constructed in Proposition 10.11, we obtain a solution J ∈ W 1,p(Ω) and B ∈ Lp(Ω)
of the reduced RT-equations (10.2) - (10.4) by setting

J = I + ε u and B = ε a, (10.51)

as can be verified by inspection, c.f. our scaling ansatz (10.16) and Lemma 10.3.
It remains to prove that (J,B) satisfy estimate 6.16, and that J is integrable to
coordinates as well as invertible for any ε > 0 subject to some upper bound depending
only on Ω, n, p and M .

We first prove that J is invertible assuming ε > 0 meets (10.44) together with the
upper bound

ε <
1

2CMC2(M)M
, (10.52)

where CM > 0 is the constant from Morrey’s inequality (A.4), C2(M) is the constant
from estimate (10.45) of Proposition 10.11, and M > 0 is our incoming bound on
‖(Γ, dΓ)‖L∞ in (6.16). For this we use the following lemma, which was proven in [25,
Lemma 6.1].

Lemma 10.12. Let J = I + εu for some matrix valued 0-form u ∈ W 1,p(Ω),
p > n, and assume

0 < ε <
1

2CM‖u‖W 1,p

, (10.53)

where CM > 0 is the constant from Morrey’s inequality (A.4). Then J is invertible
and there exists a matrix valued 0-form u− ∈ W 1,p(Ω) such that

J−1 = I + ε u− (10.54)
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and there exists a constant C− > 0 depending only on Ω, n, p such that

‖u−‖W 1,p(Ω) ≤ C− ‖u‖W 1,p(Ω). (10.55)

To apply Lemma 10.12 to the matrix valued 0-form u ∈ W 1,p(Ω) constructed in
Proposition 10.11, it suffices to show that the ε-bound (10.52) implies the ε-bound
(10.53) of Lemma 10.12. By estimate (10.45) of Proposition 10.11 and our initial
bound (10.16) on Γ∗, we find

‖u‖W 1,p(Ω) ≤ C2(M)‖(Γ∗, dΓ∗)‖L∞(Ω) ≤ C2(M)M,

which implies

1

2CMC2(M)M
≤ 1

2CM‖u‖W 1,p

,

and this shows that our ε-bound (10.52) implies (10.53). We conclude that the Jaco-
bian J = I + ε u is invertible with J−1 ∈ W 1,p(Ω), c.f. (10.54). Moreover, by (10.54)
and (10.55) it follows that

‖I − J−1‖W 1,p(Ω) ≤ ε C−‖u‖W 1,p(Ω), (10.56)

where C− > 0 is the constant from Lemma 10.12, which depends only on Ω, n, p.
We now prove estimate (6.16). For this, observe first that by (10.51), we have

‖I − J‖W 1,p = ε ‖u‖W 1,p and ‖B‖Lp = ε ‖a‖Lp . Applying now estimate (10.45) of
Proposition 10.11, we obtain

‖I − J−1‖W 1,p + ‖I − J‖W 1,p + ‖B‖W 1,p ≤ ε (1 + C−)
(
‖u‖W 1,p + ‖a‖Lp

)
≤ C2(M)ε ‖(Γ∗, dΓ∗)‖L∞(Ω),

absorbing (1 + C−) > 0 into the constant C2(M) > 0. Now our scaling assumption
Γx = εΓ∗ in (10.14) directly gives

‖I − J−1‖W 1,p(Ω) + ‖I − J‖W 1,p(Ω) + ‖B‖W 1,p(Ω) ≤ C(M)‖(Γx, dΓx)‖L∞(Ω),

which is the sought after estimate 6.16 of Theorem 6.3.
We finally show that J ≡ I + ε u is indeed a Jacobian which is integrable to

coordinates. For this recall that by Lemma 10.9, for each k ≥ 1, the Jacobian Jk ≡
I + ε uk is integrable to coordinates, that is,

d
−→
Jk = 0 (10.57)

holds, c.f. (10.40), where uk+1 ∈ W 1,p(Ω) is defined by (10.28) - (10.29) of the
iteration scheme. By the convergence uk → u in W 1,p as k → ∞, it follows that Jk
converges to J in W 1,p as k → ∞ as well. Thus d

−→
Jk converges to d

−→
J in Lp, and this

implies d
−→
J = 0 by (10.57). That is, J is integrable to some coordinate system y. It

then follows directly that yk defined by our iteration scheme converges to some y in
W 2,p(Ω), and that J is the Jacobian of the coordinate transformation x → x+ ε y(x).
This completes the proof of Theorem 6.3.

It remains only to prove Lemmas 10.6, 10.7 and 10.10, used to prove Proposition
10.11, and to prove Lemma 10.9, which together with Proposition 10.11 was used to
prove Theorem 6.3.
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11. Proof of Lemmas 10.6, 10.7, 10.9 and 10.10. The proof of Theorem
6.3 in Section 10.5 above followed from Lemma 10.9 and Proposition 10.11, which
assumed Lemmas 10.6, 10.7 and 10.10 to be valid. In this section we prove these
lemmas and thereby complete the proof of Theorem 6.3.

11.1. Proof of Lemma 10.6 (Estimates of the source terms). Lemma
10.6 provides the basic estimates for the terms on the right hand side of equations
(10.17) - (10.18), and is required for the proofs of Lemmas 10.7 and 10.10. Let
Γ∗, dΓ∗ ∈ L∞(Ω), and assume u ∈ W 1,p(Ω) and a ∈ Lp(Ω), for n < p < ∞. Then
Lemma 10.6 states that (10.34) and (10.35) hold, namely

‖Fu(u, a)‖W−1,p ≤ ‖a‖Lp +
(
|Ω| 1p + ε ‖u‖Lp

)
‖(Γ∗, dΓ∗)‖L∞(Ω)

‖Fa(u)‖W−1,p ≤
(
|Ω| 1p + ε ‖u‖W 1,p

)
‖(Γ∗, dΓ∗)‖L∞(Ω),

where Fu(u, a) and Fa(u) are defined in (10.19) and (10.20).

Proof. Recall that the operator norm on a linear functional F ∈ W−1,p(Ω),

F : W 1,p∗
0 (Ω) −→ R, is defined as

‖F‖W−1,p ≡ sup
φ∈T

∣∣F [φ]∣∣, (11.1)

where

T ≡
{
φ ∈ W 1,p∗

0 (Ω)
∣∣ ‖φ‖W 1,p∗ = 1

}
,

and p∗ is the conjugate of p, 1
p +

1
p∗ = 1. We first derive (10.34). For this, recall the

definition of Fu(u, a) in (10.19),

Fu(u, a)[φ] ≡
〈
Γ∗, dφ

〉
L2 + ε

〈
u·Γ∗, dφ

〉
L2 +

〈
a, φ

〉
L2 ,

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω). From this together with (11.1), we

directly obtain that

‖Fu(u, a)‖W−1,p ≤ sup
φ∈T

(∣∣〈Γ∗, dφ
〉
L2

∣∣+ ε
∣∣〈u·Γ∗, dφ

〉
L2

∣∣+ ∣∣〈a, φ〉
L2

∣∣). (11.2)

We now estimate the right hand side of (11.2) term by term. For the first term we
apply Hölder’s inequality (A.6) component-wise to obtain∣∣〈Γ∗, dφ

〉
L2

∣∣ ≤ ‖Γ∗‖Lp‖dφ‖Lp∗

≤ |Ω| 1p ‖Γ∗‖L∞‖φ‖W 1,p∗

≤ |Ω| 1p ‖(Γ∗, dΓ∗)‖L∞ , (11.3)

for |Ω| ≡ vol(Ω), and where the last estimate follows from ‖φ‖W 1,p∗ = 1 for φ ∈ T .
Likewise, using Hölder’s inequality, we estimate the second term in (11.2) as∣∣〈u·Γ∗, dφ

〉
L2

∣∣ ≤ ‖u·Γ∗‖Lp‖dφ‖Lp∗

≤ ‖Γ∗‖L∞‖u‖Lp‖φ‖W 1,p∗

≤ ‖u‖Lp ‖(Γ∗, dΓ∗)‖L∞ (11.4)

and the third term as ∣∣〈a, φ〉
L2

∣∣ ≤ ‖a‖Lp‖φ‖Lp∗ ≤ ‖a‖Lp . (11.5)
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Substituting (11.3) - (11.5) into (11.2), we obtain

‖Fu(u, a)‖W−1,p ≤
(
|Ω| 1p + ε ‖u‖Lp

)
‖(Γ∗, dΓ∗)‖L∞ + ‖a‖Lp

which implies the sought after estimate (10.34).
We next prove (10.35). The functional Fa is defined in (10.20) as

Fa(u)[ψ] ≡
〈
dΓ∗, div←−(ψ)

〉
L2 + ε

〈
(u·dΓ∗ + du ∧ Γ∗), div←−(ψ)

〉
L2 ,

for any vector valued 2-form ψ ∈ W 1,p∗
0 (Ω), where(

div←−(ψ)
)μ
ν
= ∂νψ

μ
ij dx

idxj

by (8.23). Thus we have

‖Fa(u)‖W−1,p ≤ sup
ψ∈T

(∣∣〈dΓ∗, div←−(ψ)
〉
L2

∣∣+ ε
∣∣〈(u·dΓ∗ + du ∧ Γ∗), div←−(ψ)

〉
L2

∣∣), (11.6)
where T is now taken as the space of vector valued 2-forms in W 1,p∗

0 (Ω) having
unit length with respect to the W 1,p∗

-norm. Applying again Hölder’s inequality, we
estimate the first term in (11.6) by∣∣〈dΓ∗, div←−(ψ)

〉
L2

∣∣ ≤ ‖dΓ∗‖Lp ‖div←−(ψ)‖Lp∗

≤ |Ω| 1p ‖dΓ∗‖L∞ ‖ψ‖W 1,p∗

≤ |Ω| 1p ‖(Γ∗, dΓ∗)‖L∞ , (11.7)

since ‖ψ‖W 1,p∗ = 1 for all ψ ∈ T . Likewise, we estimate the second term in (11.6)
using Hölder’s inequality by∣∣〈(u·dΓ∗ + du ∧ Γ∗), div←−(ψ)

〉
L2

∣∣ ≤ ∥∥u·dΓ∗ + du ∧ Γ∗∥∥
Lp‖div←−(ψ)‖Lp∗

≤
(
‖u‖Lp‖dΓ∗‖L∞ + ‖du‖Lp‖Γ∗‖L∞

)
‖ψ‖W 1,p∗

≤ ‖u‖W 1,p ‖(Γ∗, dΓ∗)‖L∞ , (11.8)

again using ‖ψ‖W 1,p∗ = 1. Substituting (11.7) and (11.8) into (11.6), we finally obtain

‖Fa(u)‖W−1,p ≤
(
|Ω| 1p + ε ‖u‖W 1,p

)
‖(Γ∗, dΓ∗)‖L∞ , (11.9)

which is the sought after estimate (10.35). This completes the proof.

11.2. Proof of Lemma 10.7 (Well-posedness of the iteration scheme).
We now prove Lemma 10.7 regarding well-posedness of the iteration scheme. For this,
assume uk ∈ W 1,p(Ω) is given and let n < p < ∞, n ≥ 2. Lemma 10.7 then states
that there exists ak+1 ∈ Lp(Ω) which solves (10.21), there exists Ψk+1 ∈ Lp(Ω) and
yk+1 ∈ W 2,p(Ω) which solve (10.25) - (10.27), and there exists uk+1 ∈ W 1,p(Ω) which
solves (10.28) with boundary data (10.29), and these solutions satisfy the elliptic
estimates (10.36) - (10.39),

‖ak+1‖Lp(Ω) ≤ Ce ‖Fa(uk)‖W−1,p(Ω), (11.10)

‖Ψk+1‖Lp(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (11.11)

‖yk+1‖W 2,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (11.12)

‖uk+1‖W 1,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω), (11.13)
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for some constant Ce > 0 depending only on n, p and Ω.

Proof. We begin by proving existence of a weak solution ak+1 to the first order
system (10.21), namely {

〈−−→ak+1, δψ〉L2 = Fa(uk)[ψ],

〈−−→ak+1, dϕ〉L2 = 0,

subject to the bound (10.36), by applying Proposition C.4 of Appendix C. Proposition
C.4 gives the existence of solutions to Cauchy Riemann type systems in a scalar
variable at low level of regularity ak+1 ∈ Lp(Ω). We obtain such solutions by solving
mollified equations with classical Dirichlet data, and then taking the zero mollification
limit to obtain solutions ak+1 ∈ Lp(Ω). (Note that ak+1 ∈ Lp is too weak to impose
Dirichlet data directly.) To start, note that the incoming assumption uk ∈ W 1,p(Ω)
together with the source estimates of Lemma 10.6 show that Fa(uk) ∈ W−1,p(Ω),
which is the regularity assumed in Proposition C.4. We now show that each vector
component of (10.21) is a Cauchy Riemann type system in scalar variables, each
component satisfying the assumptions of Proposition C.4. The right hand side of the
second equation in (10.21) is zero, and hence of the form assumed in Proposition C.4.
To apply Proposition C.4 to the first equation in (10.21), it suffices to show that there
exists a vector valued 1-form w ∈ W−1,p(Ω) such that Fa(u) = dw in a weak sense,
which then also implies the standard consistency conditions dFa(u) = 0 a weak sense.
This is accomplished in the next lemma.

Lemma 11.1. Assume u ∈ W 1,p(Ω) is given, then there exists a vector valued
1-form w ∈ W−1,p(Ω) such that Fa(u) = dw in the weak sense Fa(u)[ϕ] = −w[δϕ]

for any vector valued 2-form ϕ ∈ W 2,p∗
0 (Ω). Moreover, dFa(u) = 0 holds in the weak

sense that Fa(u)[δϕ] = 0 for any vector valued 3-form ϕ ∈ W 2,p∗
0 (Ω).

Proof. By definition (10.20), we have

Fa(u)[ψ] ≡
〈
dΓ∗, div←−(ψ)

〉
L2 + ε

〈
(u·dΓ∗ + du ∧ Γ∗), div←−(ψ)

〉
L2

=
〈(
(I + εu)·dΓ∗ + d(I + εu) ∧ Γ∗), div←−(ψ)

〉
L2

for any vector valued 2-form ψ ∈ W 1,p∗
0 (Ω). Let Γ∗

ρ denote a standard mollifier of
Γ∗ ∈ L∞(Ω) and uρ a mollifier of u ∈ W 1,p(Ω), then Γ∗

ρ → Γ∗ in L∞ and dΓ∗
ρ → dΓ∗

in L∞ as ρ → 0, while uρ → u in W 1,p(Ω) as ρ → 0. As a consequence, setting

Fρ[ψ] ≡ lim
ρ→0

〈(
(I + εuρ)·dΓ∗

ρ + d(I + εuρ) ∧ Γ∗
ρ

)
, div←−(ψ)

〉
L2
,

Hölder inequality (A.6) implies convergence

Fa(u)[ψ] = lim
ρ→0

Fρ[ψ]. (11.14)

We now show that Fρ[δϕ] = 0. For this we begin by using the Leibniz rule for
differential forms (5.6) to compute

Fρ[ψ] =
〈
d
(
(I + εuρ)·Γ∗

ρ

)
, div←−(ψ)

〉
L2
,

Application of the adjoint property (8.24) gives

Fρ[ψ] =
〈−→
div

(
d
(
(I + εuρ)·Γ∗

ρ

))
, ψ

〉
L2
.
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We now apply (5.12) to commute d and
−→
div, from which we obtain

Fρ[ψ] =
〈
d
−−−−−−−−−−−→
δ
(
(I + εuρ)·Γ∗

ρ

)
, ψ

〉
L2

=
〈−−−−−−−−−−−→
δ
(
(I + εuρ)·Γ∗

ρ

)
, δψ

〉
L2
, (11.15)

where the last equality follows from partial integration for differential forms (8.7).
Now, since Γ∗

ρ → Γ∗ in L∞ and uρ → u in W 1,p(Ω) as ρ → 0, it follows that
the expression on the right hand side converges in W−1,p(Ω) and defines the vector
valued 1-form w ∈ W−1,p(Ω) as

w[ψ] ≡ lim
ρ→0

〈−−−−−−−−−−−→
δ
(
(I + εuρ)·Γ∗

ρ

)
, δψ

〉
L2
.

Combining (11.14) with (11.15) imply that Fa(u)[ψ] = w[δψ] for any vector valued

2-form ϕ ∈ W 2,p∗
0 (Ω), which is the sought after equation.

To prove the supplement, substitute ψ = δϕ into (11.15), the identity δ2 = 0 then
gives us

Fρ[δϕ] =
〈−−−−−−−−−−−→
δ
(
(I + εuρ)·Γ∗

ρ

)
, δδϕ

〉
L2

= 0,

which implies by (11.14) that

Fa(u)[δϕ] = lim
ρ→0

Fρ[δϕ] = 0

for any vector valued 3-form ϕ ∈ W 2,p∗
0 (Ω). This proves Lemma 11.1.

By Lemma 11.1, the desired condition dFa(u) = 0 holds for each vector component
in the weak sense, since there exists of a vector valued 1-form w ∈ W−1,p(Ω) such
that Fa(u) = dw. We conclude that Proposition C.4 applies component wise and
yields the existence of a solution ak+1 ∈ Lp(Ω) to (10.21). Moreover, the solution
constructed in Proposition C.4 meets the Lp-bound (C.14), which by application to
each vector component directly implies the sought after Lp-bound (10.36) on ak+1.

Next, we prove existence of a weak solution Ψk+1 ∈ Lp(Ω) of (10.25), namely of

〈Ψk+1, δ�φ〉L2 = FΨ(uk, ak+1)[φ]

for any matrix-valued 0-form φ ∈ W 1,p∗
0 (Ω), subject to the Lp bound (10.24) by

applying Proposition C.5, which is a version of Proposition C.4 applying to the simpler
case of 0-forms. For this, we need to verify that each vector component of (10.25)
meets the consistency condition df = 0, in the weak sense f(δψ) = 0, of Proposition
C.5, which is achieved in the next Lemma.

Lemma 11.2. Assume ak+1 ∈ Lp(Ω) solves (10.21) for some uk ∈ W 1,p(Ω), then
FΨ, defined in (10.25), satisfies the weak consistency condition

FΨ(uk, ak+1)[δψ] = 0 (11.16)

for any vector valued 2-form ψ ∈ W 2,p∗
0 (Ω), (so ψ|∂Ω = 0 and δψ|∂Ω = 0).37

37Note, δψ is a vector valued 1-form, and any such form can always be interpreted as a matrix
valued 0-form. So δψ is an admissible argument for FΨ.
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Proof. By (10.26), FΨ is defined as

FΨ(uk, ak+1)[φ] = 〈JkΓ∗, dφ〉L2 + 〈−−→ak+1,
−→
φ 〉L2 ,

for matrix valued 0-forms φ ∈ W 1,p∗
0 (Ω), where Jk ≡ I + εuk. In order for FΨ to

act on the vector valued 1-form δ
(
ψμ
ijdx

i ∧ dxj
)
= (δψ)μνdx

ν , we express δψ as the
associated matrix valued 0-form (δψ)μν , then

FΨ(uk, ak+1)[δψ] = 〈JkΓ∗, d(δψ)〉L2 + 〈−−→ak+1,
−→
δψ〉L2 , (11.17)

where d(δψ) = ∂i(δψ)
μ
νdx

i is the exterior derivative of the matrix valued 0-form δψ,

and where
−→
δψ denotes the original vector valued 1-form δψμ = (δψ)μνdx

ν . The main
technical step of this proof is to show by a mollification argument that the first term
on the right hand side of (11.17) equals

〈JkΓ∗, d(δψ)〉L2 = −
〈(
Jk·dΓ∗ + dJk ∧ Γ∗), div←−(ψ)

〉
L2 . (11.18)

Assuming for the moment (11.18) holds, we substitute Jk = I + ε uk to write (11.18)
as

〈JkΓ∗, d(δψ)〉L2 = −
〈
dΓ∗, div←−(ψ)

〉
L2 − ε

〈
(uk·dΓ∗ + duk ∧ Γ∗), div←−(ψ)

〉
L2

= −〈−−→ak+1,
−→
δψ〉L2 , (11.19)

where the last equality follows from (10.21), the equation for ak+1. Substituting
(11.19) into (11.17) gives the sought after consistency condition, FΨ(uk, ak+1)[δψ] = 0

for any vector valued 2-form ψ ∈ W 1,p∗
0 (Ω), which completes the proof of Lemma 11.2

once we prove equation (11.18) holds.
To verify (11.18), we consider a standard mollifier Γ∗

ρ of Γ
∗ together with a molli-

fier (uk)ρ of uk, as in the proof of Lemma 11.1. For ease of notation we omit writing
out the mollifier (uk)ρ in the subsequent argument, that is, whenever Γ

∗
ρ appears we

assume Jk denotes the mollification (Jk)ρ = I+ε(uk)ρ. Now, since Γ
∗
ρ → Γ∗ in L∞(Ω)

and (uk)ρ → uk in W 1,p(Ω), it follows that

〈JkΓ∗, d(δψ)〉L2 = lim
ρ→0

〈JkΓ∗
ρ, d(δψ)〉L2 .

Using the partial integration formula (8.7), we obtain

〈JkΓ∗
ρ, d(δψ)〉L2 = −〈δ(JkΓ∗

ρ), (δψ)〉L2

= −〈−−−−−→δ(JkΓ
∗
ρ),

−→
δψ〉L2 ,

where for the last equality we used the inner product identity (8.5) for matrix and val-

ued forms, using again the notation
−→
δψ = (δψ)μνdx

ν . Applying now partial integration
(8.7) for vector valued 1-forms, we get

〈JkΓ∗
ρ, d(δψ)〉L2 = 〈d−−−−−→δ(JkΓ

∗
ρ), ψ〉L2 ,

and using (5.12) to commute d and
−→
div as

d
−−−−−→
δ(JkΓ

∗
ρ) =

−→
div

(
d(JkΓ

∗
ρ)
)
,
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we find that

〈JkΓ∗
ρ, d(δψ)〉L2 = 〈−→div

(
d(JkΓ

∗
ρ)
)
, ψ〉L2

(8.24)
= −〈d(JkΓ∗

ρ), div←−(ψ)〉L2 , (11.20)

using the adjoint property (8.24) for
−→
div in the last step. Now, by the Leibniz rule,

the L∞ convergence of Γ∗
ρ and dΓ∗

ρ and the W
1,p convergence of (Jk)ρ, it follows that

d
(
(Jk)ρΓ

∗
ρ

)
= d(Jk)ρ ∧ Γ∗

ρ + (Jk)ρ·dΓ∗
ρ

ρ→0−→ dJk ∧ Γ∗ + Jk·dΓ∗

converges in Lp(Ω). Thus the left and right hand sides in (11.20) both converge (as
can be shown using Hölder inequality) and yield

〈JkΓ∗, d(δψ)〉L2 = −
〈(
dJk ∧ Γ∗ + Jk·dΓ∗), div←−(ψ)

〉
L2 ,

which is the sought after identity (11.18). This completes the proof of Lemma 11.2.

Lemma 11.2 establishes the consistency condition required by Proposition C.5
for existence of a solution to the first order Cauchy Riemann type system. To apply
Proposition C.5 and conclude with the sought after existence of a vector valued 0-
form Ψk+1 ∈ Lp(Ω) which solves (10.25), it remains only to show that FΨ(uk, ak+1) ∈
W−1,p(Ω). For this, recall that by (10.26), FΨ is defined as

FΨ(uk, ak+1)[φ] = 〈JkΓ∗, dφ〉L2 + 〈−−→ak+1,
−→
φ 〉L2 ,

for any matrix valued 0-form φ, where Jk ≡ I + εuk. Comparing this Fu in (10.19),

Fu(u, a)[φ] ≡
〈
(I + ε u)·Γ∗, dφ

〉
L2 +

〈
a, φ

〉
L2 ,

where φ ∈ W 1,p(Ω) can be any matrix valued 0-form, we conclude that

‖FΨ(uk, ak+1)‖W−1,p(Ω) = ‖Fu(uk, ak+1)‖W−1,p(Ω).

which is finite by the source estimate (10.34) of Lemma 10.6. We can now apply
Proposition (C.5) and conclude with existence of a vector valued 0-form Ψk+1 ∈ Lp(Ω)
which solves (10.25) and satisfies the sought after estimate (11.11).

We now prove the existence of a solution yk+1 ∈ W 2,p(Ω) to the Dirichlet problem
(10.27), {

Δyk+1 = Ψk+1,

yk+1

∣∣
∂Ω

= 0,

together with the elliptic estimate (11.12). By Lemma 10.6, Fu(uk, ak+1) is in
W−1,p(Ω) and we can apply the basic existence result for the Poisson equation with
Lp sources, Theorem B.1. This yields the existence of a solution yk+1 ∈ W 2,p(Ω).
To prove estimate (10.39), we now apply the elliptic estimate (B.4) of Theorem B.1
component wise to (10.27), which gives us

‖yk+1‖W 2,p(Ω) ≤ C ‖Ψk+1‖Lp(Ω).
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Using now estimate (10.38) on ‖Ψk+1‖Lp(Ω), we obtain

‖yk+1‖W 2,p(Ω) ≤ C ‖Fu(uk, ak+1)‖W−1,p(Ω),

where we have absorbed the constant from the estimate on ‖Ψk+1‖Lp into the universal
constant C > 0. This is the sought after estimate (11.12).

We now prove existence of a solution uk+1 ∈ W 1,p(Ω) of (10.28) with boundary
data (10.29), that is,

−Δuk+1[φ] = Fu(uk, ak+1)[φ], (11.21)

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω), and with Dirichlet boundary data

uk+1|∂Ω = dyk+1|∂Ω. By Lemma 10.6 we have Fu(uk, ak+1) ∈ W−1,p(Ω), so exis-
tence of a solution uk+1 ∈ W 1,p(Ω) of (11.21) follows directly from Theorem B.1. To
prove estimate (10.37), we apply estimate (B.3) of Theorem B.1 component wise to
equation (11.21) and obtain

‖uk+1‖W 1,p(Ω) ≤ C
(
‖Fu(uk, ak+1)‖W−1,p(Ω) + ‖dyk+1‖W 1,p(Ω)

)
, (11.22)

where the second terms on the right hand side results from the boundary data, uk+1 =
dyk+1 on ∂Ω. Applying now estimate (11.12) to bound the boundary term by

‖dyk+1‖W 1,p(Ω) ≤ ‖yk+1‖W 2,p(Ω) ≤ C ‖Fu(uk, ak+1)‖W−1,p(Ω),

we obtain

‖uk+1‖W 1,p(Ω) ≤ C ‖Fu(uk, ak+1)‖W−1,p(Ω),

which is the sought after estimate (10.37). We now choose the maximum over all
constants in the above estimates as the constant Ce > 0 stated in Lemma 10.7. This
completes the proof of Lemma 10.7.

11.3. Proof of Lemma 10.10 (Bounds on differences of iterates). We
prove the closeness of subsequent iterates required to conclude with convergence of
the iteration scheme in the proof of Proposition 10.11. So assume Γ∗, dΓ∗ ∈ L∞(Ω),
and let Ce > 0 denote the constant from the elliptic estimates of Lemma 10.7, which
depends only on n, p, Ω. Then, to prove Lemma 10.10, it suffices to show that
differences of iterates satisfy

‖ak+1‖Lp ≤ ε Ce ‖(Γ∗, dΓ∗)‖L∞ ‖uk‖W 1,p , (11.23)

‖uk+1‖W 1,p ≤ ε Ce(1 + Ce) ‖(Γ∗, dΓ∗)‖L∞ ‖uk‖W 1,p , (11.24)

for any k ∈ N. To prove Lemma 10.10, we require the following lemma which gives
bounds on differences of source terms,

Fa(uk) ≡ Fa(uk)− Fa(uk−1),

Fu(uk, ak+1) ≡ Fu(uk, ak+1)− Fu(uk−1, ak),
(11.25)

which by linearity of Fa and Fu is a straightforward modification of the proof of
Lemma 10.6.
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Lemma 11.3. Assume (uk, ak) are defined by the iteration scheme (10.21) -
(10.28), then the differences of source terms defined in (11.25) satisfy∥∥Fu(uk, ak+1)

∥∥
W−1,p ≤‖ak+1‖Lp + ε ‖uk‖Lp ‖(Γ∗, dΓ∗)‖L∞ , (11.26)∥∥Fa(uk)

∥∥
W−1,p ≤ε ‖uk‖W 1,p ‖(Γ∗, dΓ∗)‖L∞ . (11.27)

Proof. We prove the lemma by using linearity of the source terms Fu and Fa

and following the steps in the proof of Lemma 10.6. In more detail, we find from the
definition of Fu(u, a) in (10.19), that

Fu(uk, ak+1)[φ] = ε
〈
uk·Γ∗, dφ

〉
L2 +

〈
ak+1, φ

〉
L2 ,

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω). Following the steps in the proof of

Lemma 10.6, then yields (11.26). Similarly, from the definition of Fa in (10.20) that

Fa(uk)[ψ] ≡ ε
〈
(uk·dΓ∗ + duk ∧ Γ∗), div←−(ψ)

〉
L2 ,

for any vector valued 2-form ψ ∈ W 1,p∗
0 (Ω), and following the steps in the proof of

Lemma 10.6 gives us (11.27). This completes the proof of Lemma 11.3.

Lemma 10.10 now follows from the elliptic estimates (10.36) and (10.39) together
with the bounds on differences of sources in Lemma 11.3. That is, by linearity of
(10.36), we have

‖ak+1‖Lp(Ω) ≤ Ce ‖Fa(uk)‖W−1,p(Ω)

(11.27)

≤ ε Ce ‖uk‖W 1,p ‖(Γ∗, dΓ∗)‖L∞ . (11.28)

Likewise, by linearity of (10.39), we find

‖uk+1‖W 1,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,p(Ω)

(11.26)

≤ Ce

(
‖ak+1‖Lp + ε ‖uk‖Lp ‖(Γ∗, dΓ∗)‖L∞

)
(11.28)

≤ ε Ce(1 + Ce) ‖uk‖W 1,p ‖(Γ∗, dΓ∗)‖L∞ . (11.29)

This completes the proof of Lemma 10.10.

11.4. Proof of Lemma 10.9 (Integrability of J). On smooth k-forms the
Laplacian acts component wise, (i.e., on components of matrix-, vector- and differen-
tial forms separately), and the relation between vector and matrix valued solutions
of the Poisson equations in a classical sense is straightforward. That is, we have−→
Δu = Δ�u in a classical sense. This is used in Lemma 10.1 to prove that the Jacobian
J produced by the iteration scheme is integrable to coordinates. The next lemma

establishes the relation
−→
Δu = Δ�u for the weak Laplacian.

Lemma 11.4. Let u ∈ W 1,p(Ω) be a matrix valued 0-form, then

Δ(u)
[
φ
]
= Δ�u

[
�φ
]

(11.30)

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω).
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Proof. From the weak form of the Laplacian in (8.12), using that δu = 0 and
du = ∇u for matrix valued 0-forms, (where again ∇u denotes the gradient acting on
each component of u), we find

−Δ(u)[φ] = 〈du, dφ〉L2 + 〈δu, δφ〉L2 = 〈du, dφ〉L2

= 〈∇u,∇φ〉L2 =
∑
j

〈∂ju, ∂jφ〉L2 ,

where the last equality follows from the definition in (8.14), c.f. Lemma 8.2. Using
now that for fixed j the inner product is invariant under vectorization for matrix
valued 0-forms, c.f. (8.5), we obtain

−Δ(u)[φ] = 〈∇�u,∇�φ〉L2 .

Now, let uε be a standard mollification of u. Then uε → u inW 1,p(Ω) as ε → 0, which
allows us to compute

−Δ(u)[φ] = lim
ε→0

〈∇�uε,∇�φ〉L2

= − lim
ε→0

〈Δ�uε, �φ〉L2

= lim
ε→0

(
〈d�uε, d�φ〉L2 + 〈δ�uε, δ�φ〉L2

)
= 〈d�u, d�φ〉L2 + 〈δ�u, δ�φ〉L2

= −Δ�u[�φ].

This completes the proof.

We now prove Lemma 10.9, which states that

d−−→uk+1 = 0, (11.31)

where uk+1 ∈ W 1,p(Ω) is a solution of (10.28) with boundary data (10.29). Equation
(11.31) implies directly that Jk+1 ≡ I+ ε uk+1 is integrable to coordinates. Moreover,
Lemma 10.9 states that Jk+1 is the Jacobian of the coordinate transformation x →
x+ ε yk+1(x), where yk+1 ∈ W 2,p(Ω) is the solution of (10.27).

Proof of Lemma 10.9. The idea of proof is similar to that of Lemma 10.1, but
adapted to the weak formulation of (10.23), to take into account the regularity of
Ψk+1 ∈ Lp(Ω) and uk+1 ∈ Lp(Ω). That is, we need to show that

Δ
(−−→uk+1 − dyk+1

)[
�φ
]
= 0, (11.32)

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω). Assume for the moment (11.32) is true.

Then, since −−→uk+1−dyk+1 vanishes on ∂Ω by the boundary condition (10.29), equation
(11.32) implies that

−−→uk+1 − dyk+1 = 0 (11.33)

in Ω, which is the sought after equation (10.40). Moreover, (11.33) directly implies
that

d(x+ εyk+1) =
−−→
Jk+1,
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where Jk+1 ≡ I + ε uk+1. Thus Jk+1 is in fact the Jacobian of the coordinate trans-
formation x → x+ ε yk+1(x). This proves Lemma 10.9 once we establish (11.32).

To prove (11.32), recall that Ψk+1 satisfies (10.25),

〈Ψk+1, δ�φ〉L2 = 〈JkΓ∗, dφ〉L2 + 〈−−→ak+1, �φ〉L2 , (11.34)

for any matrix-valued 0-form φ ∈ W 1,p∗
0 (Ω), where Jk ≡ I + εuk. Moreover, yk+1 ∈

W 2,p(Ω) solves

Δyk+1 = Ψk+1, (11.35)

with boundary data yk+1

∣∣
∂Ω

= 0, c.f. (10.27).

Combining (11.34) and (11.35), and using d2yk+1 = 0, we obtain from the defini-
tion of the weak Laplacian in (8.12) that

−Δ(dyk+1)[�φ] =
〈
δdyk+1, δ�φ

〉
L2 +

〈
d2yk+1, d�φ

〉
L2

=
〈
δdyk+1, δ�φ

〉
L2

=
〈
Δyk+1, δ�φ

〉
L2 , (11.36)

since yk+1 is a vector valued 0-form, so that δyk+1 = 0 and Δyk+1 = (δd+ dδ)yk+1 =
δdyk+1. Substituting now (11.35) for Δyk+1, we write (11.36) as

−Δ(dyk+1)[�φ]
(11.35)
=

〈
Ψk+1, δ�φ

〉
L2

(11.34)
= 〈Jk Γ∗, dφ〉L2 + 〈−−→ak+1, �φ〉L2 . (11.37)

Now, recall that uk+1 solves (10.28), that is,

−Δuk+1[φ] =
〈
Jk Γ

∗, dφ
〉
L2 +

〈
ak+1, φ

〉
L2 . (11.38)

By definition of the inner products we have
〈
ak+1, φ

〉
L2 =

〈−−→ak+1,
−→
φ
〉
L2 , c.f. (8.5).

Thus, (11.37) in combination with (11.38) gives us

Δ(dyk+1)
[
�φ
]
= Δuk+1

[
φ
]

(11.39)

for any matrix valued 0-form φ ∈ W 1,p∗
0 (Ω). Finally, applying Lemma 11.4 to the

right hand side of (11.39), we obtain

Δ(dyk+1)
[
�φ
]
= Δ−−→uk+1

[
�φ
]
,

which directly gives the sought after equation (11.32). This completes the proof of
Lemma 10.9.

This finishes the proof of Theorem 3.1 and 3.2, thereby establishing optimal reg-
ularity and Uhlenbeck compactness for L∞ connections.

12. Extension of the existence theory to Lp connections. We now extend
the existence theory developed in Sections 10 - 11 for L∞ connections with L∞ cur-
vature to the setting of connections Γ ∈ L2p(Ω) with dΓ ∈ Lp(Ω), n/2 < p < ∞, ad-
dressed in Theorem 6.3, for which we now seek solutions J ∈ W 1,2p(Ω) and B ∈ Lp(Ω)
of the reduced RT-equations (9.19) - (9.21),

ΔJ = δ(J ·Γ)−B, (12.1)

d �B =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)
, (12.2)

δ �B = 0. (12.3)
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Consistency of the reduced RT-equations at the level of regularity here is established
in Section 8.3 by application of the Hölder and Morrey inequalities as well as Sobolev
embedding in the form of Lemma 8.6, which states that Lp(Ω) ⊂ W−1,2p(Ω) for
p > n/2 and that

‖B‖W−1,2p(Ω) ≤ C‖B‖Lp(Ω), (12.4)

where C > 0 is some constant depending only on Ω, p, n. The consistency of the
auxilliary system of equations

dΨ =
−−−→
δ(JΓ)−B, (12.5)

Δy = Ψ, (12.6)

follows analogously, since B ∈ W−1,2p(Ω) together with δ(JΓ) ∈ W−1,2p(Ω) place Ψ
in the desired space L2p(Ω), which in turn places y in the sought after spaceW 2,2p(Ω).

The argument for obtaining consistency of the augmented reduced RT-equations,
(12.1) - (12.3) and (12.5) - (12.6), extends rather directly to the well-posedness and
convergence proof of our iteration scheme in Section 10, by using also estimate (12.4).
This, as we show below, yields the existence of solutions in the sought after spaces
B ∈ Lp(Ω) and J ∈ W 1,2p(Ω), (invertible and integrable to coordinates). The most
critical step is to extend the ε-scaling (10.14) of the connection to the regularities
here, and prove that the Lp-bound ‖(Γ, dΓ)‖L2p,p ≤ M is maintained, analogous to
Lemma 10.11. This is somewhat tricky, as we now explain, and is the reason why we
currently need slightly stronger assumptions to prove Uhlenbeck compactness.

To now address the ε-scaling for Lp connections, assume again without loss of
generality that Ω = B1(0). As in Lemma 10.11, we would like to introduce Γ

∗ as the
restriction of the components of Γx to Bε(0), transformed to x̃-coordinates as scalars,
where x̃(x) ≡ x

ε . This is sufficient to preserve L∞-bounds, but not Lp-bounds, since
transformation of the components of Γ∗

x̃ to Γx as scalars (not as connections) gives

‖Γ∗
x̃‖Lq(B1(0)) = ε−

n
q ‖Γx‖Lq(Bε(0)). (12.7)

On the other hand, the differentiated connection components, transformed as scalars,
get one additional factor of ε,

‖dx̃Γ∗
x̃‖Lp(B1(0)) = ε1−

n
p ‖dxΓx‖Lp(Bε(0)). (12.8)

It follows that, the differentiated connection decreases along with ε > 0 whenever
p ≥ n, but the Lp norm on the undifferentiated connection is problematic as it always
grows as ε > 0 approaches zero. An easy way to circumvent this problem, is to
measure the undifferentiated connection in the L∞-norm, (i.e., taking q = ∞), and
measuring dΓ in the Lp-norm for p ≥ n. This is precisely what we assume for our
Uhlenbeck compactness result, Theorem 3.2.

To obtain now the optimal regularity result for connections Γ ∈ L2p(Ω) with
dΓ ∈ Lp(Ω) for p > n/2 of Theorem (3.1), we use the following improved version of
the scaling: By locality of the problem of optimal regularity, it suffices to restrict to
arbitrarily small neighborhoods Bδ(0). So we can exploit that

‖(Γx, dxΓ)‖L2p,p(Bδ(0)) −→ 0

as δ → 0. Thus, at the start, for each ε, choose δ = δ(ε) depending on ε such that

‖(Γx, dxΓ)‖L2p,p(Bδ(0)) ≤ ε
n
2pM.
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Now basing our scaling on Bδ(0) in the sense that we first restrict Γx to Bεδ(0),
then scale by the coordinate transformation x̃ = x

ε to Bδ(0) which gives again
Γx̃(x̃) = εΓx(x̃) ≡ εΓ∗(x̃), but defined on Bδ(0) instead of B1(0). Working now
in x′ coordinates in Bδ(0), we maintain by (12.7) the sought after bound

‖(Γx′ , dx′Γ)‖L2p,p(Bδ(0)) ≤ M.

Since the estimates used for our existence proof in Section 10, hold uniformly inside
the ball of radius one, (as proven below in Lemma 12.1 for completeness), instead of
carrying δ along throughout the argument, we assume without loss of generality that
δ = 1, and that we have the initial bound

‖(Γ∗, dΓ∗)‖L2p,p(Ω) ≤ M. (12.9)

Let us remark that, since the above choice of δ > 0 depends on ε as well as the
shape of Γ (not just its upper bound), the improved ε − δ-scaling does not preserve
uniform bounds for a sequence of connections Γi, in the sense that for fixed ε >
0 each Γi might requires a smaller δi than the previous sequence element, so that
Bδ(0) might collapse to a single point. Because of this Theorem 3.2 on Uhlenbeck
compactness requires the stronger assumption that ‖(Γx, dΓx)‖L∞,p(Ω) < M for p > n.
Before we continue addressing the iteration scheme and its convergence, we prove for
completeness the following lemma which shows that the constants of estimates used
in Section 10, (the Morrey and the Poincaré inequalities, Sobolev embedding, and
elliptic estimates), all hold uniformly inside the ball of radius one, using denseness of
C∞ functions of compact support in the respective Sobolev spaces.

Lemma 12.1. Let ‖ · ‖a,r and ‖ · ‖b,r denote (potentially distinct) Wm,p-norms
‖ · ‖Wm,p(Br(0)) or Hölder norms ‖ · ‖C0,α(Br(0)) on L1 functions defined over the ball
Br(0) of radius r > 0, where m ≥ 0. Denote with (Ba,r, ‖ · ‖a,r) and (Bb,r, ‖ · ‖b,r)
the Banach spaces of functions in L1(Br(0)) for which ‖ · ‖a,r, respectively ‖ · ‖b,r, are
finite. Assume that for some fixed R > 0 the inequality

‖f‖a,R ≤ C(R)‖f‖b,R (12.10)

holds for any f ∈ Bb,R, for some constant C(R) > 0 depending only on R. Then, for
any 0 < r ≤ R and any f ∈ Bb,r,

‖f‖a,r ≤ C(R)‖f‖b,r (12.11)

holds for the same constant C(R) > 0.

Proof. Let ψ ∈ C∞
0 (Br(0)), then ψ ∈ C∞

0 (BR(0)) as well. Moreover, ψ ∈ Ba,R

and ψ ∈ Bb,R by definition of the Banach spaces in terms of Wm,p or Hölder norms,
and we have by (12.10) that

‖ψ‖a,R ≤ C(R)‖ψ‖b,R. (12.12)

On the other hand, by compact support of ψ in Br(0), we find that ‖ψ‖a,R = ‖ψ‖a,r
and ‖ψ‖b,R = ‖ψ‖b,r for the Wm,p and Hölder norms considered here. Thus (12.12)
implies

‖ψ‖a,r ≤ C(R)‖ψ‖b,r (12.13)
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for the same constant C(R) > 0. Since C∞
0 (Br(0)) is dense in Ba,r with respect to

‖ · ‖a,r and dense in Bb,r with respect to ‖ · ‖b,r, the sought after inequality (12.11)
follows in terms of the same constant C(R).

The inequalities (12.10) - (12.11) may represent the Morrey or the Poincaré inequal-
ities, the bounds of the Sobolev embedding theorem, standard elliptic estimates or
Gaffney’s inequality.38 Taken on whole, Lemma 12.1 completes the refined scaling
argument required for Lp connection regularity.

We now explain how to prove existence of solutions (J,B) of the reduced RT-
equations when Γ ∈ L2p(Ω), dΓ ∈ Lp(Ω), p > n/2. The above scaling argument
again yields the ε-rescaled reduced RT-equations (10.17) - (10.18), and one can again
introduce the iteration scheme as in Section 10.3, but adjusted to the sought after
solution spaces J ∈ W 1,2p(Ω) and B ∈ Lp(Ω), by using precisely the regularities for
testing prescribed in Definition 8.5 of the weak formulation. That is, set u0 = a0 = 0
to start the iteration, and assume uk ∈ W 1,2p(Ω) and ak ∈ Lp(Ω) given for some
k ≥ 0. (Recall that the Jacobian associated to uk is Jk ≡ I + εuk.) We again
introduce the 0-form ak+1 ∈ Lp(Ω) as the weak solution of{

〈−−→ak+1, δψ〉L2 = Fa(uk)[ψ],

〈−−→ak+1, dϕ〉L2 = 0,
(12.14)

(for vector valued 2-forms ψ ∈ W 1,p∗
0 (Ω) and vector valued 0-forms ϕ ∈ W 1,p∗

0 (Ω)),
subject to the bound

‖ak+1‖Lp ≤ C‖Fa(uk)‖W−1,p , (12.15)

where C > 0 denotes again a universal constant independent of k. We then introduce
the vector valued 0-form Ψk+1, now in L2p(Ω), as the weak solution of

〈Ψk+1, δ�φ〉L2 = FΨ(uk, ak+1)[φ] (12.16)

for any matrix-valued 0-form φ ∈ W
1,(2p)∗

0 (Ω), again subject to the bound

‖Ψk+1‖Lp ≤ C‖Fa(uk)‖W−1,p , (12.17)

and the vector valued 0-form yk+1 ∈ W 2,2p(Ω) as the solution of{
Δyk+1 = Ψk+1,

yk+1

∣∣
∂Ω

= 0.
(12.18)

In the last step, we introduce uk+1 ∈ W 1,2p(Ω) as the weak solution of{
−Δuk+1[φ] = Fu(uk, ak+1)[φ],

uk+1|∂Ω = dyk+1|∂Ω
(12.19)

38Note that elliptic estimates can we written in the form (12.10). For example, one may define
‖u‖b,R ≡ ‖Δu‖W−1,p(Ω) + ‖u‖Lp(Ω) for the right hand side of elliptic estimate (B.8). Lemma 12.1
can be adapted to elliptic estimates involving boundary data simply by taking norms on boundary
data u0 over the whole domain (not its boundary), prescribing boundary data in the sense that

u− u0 ∈ W 1,p
0 (Ω), as we do in Sections 10 - 11, c.f. Appendix B.
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for matrix valued 0-forms φ ∈ W
1,(2p)∗

0 (Ω). To prove well-posedness and convergence
of the iteration scheme (12.14) - (12.19) we proceed as in Section 10.4, by adapting
Lemmas 10.6 - 10.10 to the regularities here. The first lemma gives the adapted source
estimates of Lemma 10.6.

Lemma 12.2. Let Γ∗ ∈ L2p(Ω), dΓ∗ ∈ Lp(Ω), for n/2 < p < ∞, and assume
u ∈ W 1,2p(Ω) and a ∈ Lp(Ω). Then there exists a constant Cs > 0 depending only on
Ω, n, p, such that

‖Fu(u, a)‖W−1,2p ≤ ‖a‖Lp + Cs

(
vol(Ω) + ε ‖u‖L2p

)
‖(Γ∗, dΓ∗)‖L2p,p

‖Fa(u)‖W−1,p ≤ Cs

(
vol(Ω) + ε ‖u‖W 1,2p

)
‖(Γ∗, dΓ∗)‖L2p,p .

Proof. The lemma follows by the proof of Lemma 10.6 in Section 11.1, using
estimate (12.4) in suitable places and Hölder’s inequality to bound products involv-
ing Γ (similarly to the consistency proof in Section (8.3)). For example, the bound∣∣〈a, φ〉

L2

∣∣ ≤ C‖a‖Lp‖φ‖W 1,(2p)∗ follows from (8.32) of Lemma 8.6, while∣∣〈uΓ∗, dφ
〉
L2

∣∣ ≤ C‖uΓ∗‖L2p‖dφ‖L(2p)∗ ≤ C CM‖u‖W 1,2p‖Γ∗‖L2p‖u‖Lp‖φ‖W 1,p∗

follows by first using Hölder’s and then Morrey’s inequality.

The next lemma gives the well-posedness of the adapted iteration scheme.

Lemma 12.3. Assume uk ∈ W 1,2p(Ω) is given, n/2 < p < ∞. Then there exists
ak+1 ∈ Lp(Ω) which solves (10.21), there exists the auxiliary iterates Ψk+1 ∈ L2p(Ω)
and yk+1 ∈ W 2,2p(Ω) which solve (10.25) - (10.27), and there exists uk+1 ∈ W 1,2p(Ω)
which solves (10.28) with boundary data (10.29). In addition, the iterates satisfy the
following elliptic estimates,

‖ak+1‖Lp(Ω) ≤ Ce ‖Fa(uk)‖W−1,p(Ω), (12.20)

‖Ψk+1‖L2p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,2p(Ω), (12.21)

‖yk+1‖W 2,2p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,2p(Ω), (12.22)

‖uk+1‖W 1,2p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖W−1,2p(Ω), (12.23)

for some constant Ce > 0 depending only on n, p and Ω.

Proof. The elliptic estimates and resulting well-posedness of the iteration scheme
follows exactly as in the proof of Lemma 10.7 by simply adapting the regularity of
the source function to those in Lemma 12.2, Fu(uk, ak+1) ∈ W−1,2p(Ω) and Fa(uk) ∈
W−1,p(Ω).

Lemma 10.9, asserting the integrability of each Jacobian Jk = I+ εuk to coordinates,
applies again at the level of regularity here and the proof carries over directly. The
convergence of the iteration scheme is based again on the estimate on difference in
the following lemma.

Lemma 12.4. Assume Γ∗ ∈ L2p(Ω), dΓ∗ ∈ Lp(Ω), n/2 < p < ∞, then

‖ak+1‖Lp ≤ ε Cd ‖(Γ∗, dΓ∗)‖L2p,p ‖uk‖W 1,2p , (12.24)

‖uk+1‖W 1,2p ≤ ε Cd ‖(Γ∗, dΓ∗)‖L2p,p ‖uk‖W 1,2p , (12.25)

where Cd ≡ CsCe(1+Ce) > 0 depends only on n, p, Ω, where Cs > 0 and Ce > 0 are
the constants of Lemmas 12.2 and 12.3 respectively.
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Proof. This follows as in the proof of Lemma 10.10 in Section 11.3, by combining
the elliptic estimates (12.20) - (12.21) with bounds on differences of source terms by
previous differences of iterates. As for Lemma 12.2, the proof of Lemma 10.10 can
be adapted to the regularities here by suitable use of estimate (12.4) to bound B in
W−1,2p and by using Hölder’s inequality to bound products involving Γ.

Analogous to Section 10.4, Lemma 12.4 implies convergence of the iteration scheme,
as recorded in the next proposition.

Proposition 12.5. Assume Γ∗ ∈ L2p(Ω), dΓ∗ ∈ Lp(Ω), n/2 < p < ∞, satisfy
the initial bound (12.9), and assume 0 < ε < 1

CdM
, where Cd > 0 is the constant

from Lemma 10.10. Then the sequence of iterates (uk, ak)k∈N defined by (10.21) -
(10.29) converges in W 1,2p(Ω)× Lp(Ω), and the corresponding limits

u ≡ lim
k→∞

uk ∈ W 1,2p(Ω),

a ≡ lim
k→∞

ak ∈ Lp(Ω),

solve the reduced RT-equations (10.17) - (10.18) and satisfy the bound

‖u‖W 1,2p(Ω) + ‖a‖Lp(Ω) ≤ C2(M)‖(Γ∗, dΓ∗)‖L2p,p(Ω), (12.26)

for some constant C2(M) > 0 depending only on Ω, n, p and M .

Proof. This is a straightforward extension of the proof of Proposition 10.11 in
Section 10.4.

Theorem 6.3 follows now from Proposition 12.5 by the argument given in Section
10.5. This completes the existence theory for the reduced RT-equations at the sought
after level of regularity Γ ∈ L2p(Ω), dΓ ∈ Lp(Ω), n/2 < p < ∞, and completes the
proof of Theorem 6.3.

13. Proof of Theorems 3.1 and 3.2. In this section we complete the proofs of
our main results stated in Section 3, Theorem 3.1 on optimal regularity and Theorem
3.2 on Uhlenbeck compactness, by applying Theorems 6.1 and (6.3).

13.1. Proof of Theorem 3.1 - Optimal Regularity. Let q be some point in
Ω ⊂ R

n and let p > max{n/2, 2}, n ≥ 2. Assume Γ ∈ L2p(Ω) and dΓ ∈ Lp(Ω) in
x-coordinates, and assume the initial bound (3.6) holds, i.e. ‖(Γ, dΓ)‖L2p,p(Ω) ≤ M for
some constant M > 0. Theorem 3.1 now asserts that there exists a neighborhood Ω′ ⊂
Ω of q and a coordinate transformation x → y with Jacobian J = ∂y

∂x ∈ W 1,2p(Ω′
x),

such that the connection components Γy in y-coordinates exhibit optimal regularity
Γy ∈ W 1,p(Ω′′

y), (precisely one derivative above its curvature), on every open set Ω′′

compactly contained in Ω′, where Ω′′
y ≡ y(Ω′′).

We prove this assertion by combining Theorem 6.3 and Theorem 6.1. The exis-
tence of the neighborhood Ω′ together with the coordinate transformation with Jaco-
bian J ∈ W 1,2p(Ω′

x) follows by Theorem 6.3, which asserts that there exists a solution
(J,B) of the reduced RT-equations (6.10) - (6.12) defined in Ω′

x containing q, such

that J ∈ W 1,2p(Ω′
x), J

−1 ∈ W 1,2p(Ω′
x), B ∈ L2p(Ω′

x), d �J = 0 in Ω′
x. This J is indeed

integrable to coordinates, J = ∂y
∂x , since d

�J = 0, (c.f. Theorem C.2). Moreover, since
this Jacobian J solves the reduced RT-equations and meets the properties assumed in
Theorem 6.1, Corollary 6.2 of Theorem 6.1 implies that J is indeed the Jacobian to
coordinates y such that Γy has optimal regularity, Γy ∈ W 1,p(Ω′′

y). Namely, by part

(iii) of Theorem 6.1, we have that Γ̃J ≡ Γ − J−1dJ ∈ W 1,p(Ω′′
x) on every open set
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Ω′′ compactly contained in Ω′, using then that the connection of optimal regularity
is given by

(Γy)
γ
αβ = Jγ

k (J
−1)iα(J

−1)jβ(Γ̃J)
k
ij , (13.1)

it follows that Γy ∈ W 1,p(Ω′′
y), (c.f. the proof of Corollary 6.2); below we show in

detail how to control the regularity of the products in (13.1). This proves the first
assertion of Theorem 3.1.

Theorem 3.1 asserts further that the connection Γy satisfies the uniform bound

‖Γy‖W 1,p(Ω′′
y )

≤ C1(M) ‖(Γ, dΓ)‖L2p,p(Ω′), (13.2)

and the Jacobian J satisfies

‖J‖W 1,2p(Ω′′
x )
+ ‖J−1‖W 1,2p(Ω′′

x )
≤ C1(M) ‖(Γ, dΓ)‖L2p,p(Ω′), (13.3)

for some constant C1(M) > 0 depending only on Ω′′
x,Ω

′
x, p, n, q and M . Moreover,

Theorem 3.1 states that the neighborhood Ω′ can be taken as Ω′
x = Ωx ∩ Br(q), for

Br(q) the Euclidean ball of radius r in x-coordinates, where r depends only on Ωx, p, n
and Γ near q; if ‖(Γ, dΓ)‖L∞,2p(Ω) ≤ M , then r depends only on Ωx, p, n and M .

The uniform bound (13.3) on J directly follows from the elliptic estimate (6.16)
of Theorem 6.3 on the solution (J,B) of the reduced RT-equations. Moreover, the
dependence of Ω′ also follows from Theorem 6.3. Note that Ω′ arises from our scaling
argument in Section 10, and this scaling only depends on M > 0, (instead of Γ
near q), in case that the stronger initial bound ‖(Γ, dΓ)‖L∞,2p(Ω) ≤ M holds, (as
assumed for Uhlenbeck compactness). So it only remains to prove estimate (13.2) on
the connection of optimal regularity. For this, we used that part (iii) of Theorem 6.1
implies the uniform bound (6.17) on Γ̃J , and this gives the bound (13.2) on Γy by the

relation between Γ̃J and Γy given in (13.1). That is, (13.1) implies

‖Γy‖W 1,p(Ω′′
y )

≤ C ‖J‖W 1,p(Ω′′
x )
‖J−1‖2W 1,p(Ω′′

x )
‖Γ̃J‖W 1,p(Ω′′

x )
, (13.4)

which can be shown by applying Morrey’s inequality to each product in the case that
p > n. However, in the case that n/2 < p ≤ n a little more care has to be taken,
since Morrey’s inequality cannot be used to bound the L∞ norm of Γ̃J ∈ W 1,p. To
address the case n/2 < p ≤ n, note first that Morrey’s inequality still applies to
J, J−1 ∈ W 1,2p(Ω′

x), and it follows that f ≡ Jγ
k (J

−1)iα(J
−1)jβ is again in W 1,2p(Ω′

x),
(we use f here formally to represent any of the components, since only the regularity
is of relevance at this stage). Writing now (13.1) symbolically as Γy = f · Γ̃J , we have

‖Γy‖W 1,p ≤ ‖f · Γ̃J‖Lp + ‖f ·DΓ̃J‖Lp + ‖Df · Γ̃J‖Lp . (13.5)

The first two terms on the right hand side of (13.5) can be bounded by applying
Morrey’s inequality to bound ‖f‖L∞ ,

‖f · Γ̃J‖Lp + ‖f ·DΓ̃J‖Lp ≤ ‖f‖L∞
(
‖Γ̃J‖Lp + ‖DΓ̃J‖Lp

)
≤ CM‖f‖W 1,2p ‖Γ̃J‖W 1,p . (13.6)

On the other hand, the third term can be bounded by first applying Hölder’s inequality
as in (A.7),

‖Df · Γ̃J‖Lp ≤ ‖Df‖L2p‖Γ̃J‖L2p , (13.7)
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and then by applying Sobolev embedding [12, Thm 2, Ch. 5.6], in (∗), to bound

‖Γ̃J‖L2p ≤ vol(Ω)
p′
2p ‖Γ̃J‖Lp′

(∗)
≤ CS‖Γ̃J‖W 1,p , (13.8)

where CS > 0 is the constant of Sobolev embedding and p′ is the Sobolev conjugate,
p′ = np

n−p . Note that the first inequality in (13.8) holds since 2p ≤ p′ for n/2 ≤ p < n

(with equality at p = n/2). Note further that the Sobolev embedding in (13.8) holds
for any p with n/2 < p < n. The analogous bound to (13.8) in the special case p = n

is obtained by applying Sobolev embedding to W 1, 23n, that is,

‖Γ̃J‖L2n ≤ CS‖Γ̃J‖
W 1, 2

3
n ≤ vol(Ω)

1
3 ‖Γ̃J‖W 1,p , (13.9)

where we used that Γ̃J ∈ W 1,p(Ω′′
x) lies also in W 1, 23n(Ω′′

x) when p = n, and that 2n is
the Sobolev conjugate of 2

3n. Estimates (13.5) - (13.9) taken together now establishes
(13.4) in the remaining case n/2 < p ≤ n. The sought after estimate (13.2) now
follows by estimating Γ̃J in (13.4) by (6.17) and J, J−1 by (6.16). This completes the
proof of Theorem 3.1.

13.2. Proof of Theorem 3.2 - Uhlenbeck Compactness. For the proof we
employ Morrey’s inequality, the Banach-Alaoglu Theorem, Sobolev compactness and
Lemma 13.1 below, (a technical lemma which states that products of strongly and
weakly converging functions converge weakly). Recall that Morrey’s inequality tells
us that, when p > n (our assumption here), functions uniformly bounded in W 1,p

are also uniformly bounded in L∞, so W 1,p is closed under products, and uniform
bounds in W 1,p norms extend to uniform bounds on products. Banach-Alaoglu tells
us that the closed unit ball in Lp is weakly compact [30]. These together with Sobolev
compactness and the boundedness of Ω tell us that sequences of functions uniformly
bounded inW 1,p and L∞ admit subsequences which converge weakly inW 1,p, strongly
in Lp, with uniform bounds given by the original uniform W 1,p and L∞ bounds.

We now give the proof of Theorems 3.2. So assume {(Γi)x}i∈N are the x-
components of a sequence of connections Γi defined on the tangent bundle TM of
an n-dimensional manifold M in a fixed coordinate system x, let n < p < ∞, and
assume (Γi)x ∈ L∞(Ωx), d

(
(Γi)x

)
∈ Lp(Ωx) such that

‖(Γi, dΓi)‖L∞,p(Ωx) ≤ M, (13.10)

for some constant M > 0 independent of i ∈ N. We need to prove that for each
q ∈ Ω there exists a fixed neighborhood Ω′ ⊂ Ω of q, and for each (Γi)x there exists
a coordinate transformation x → yi(x) taking Ω

′
x to Ω′

yi
, such that the components

Γyi
≡ (Γi)yi

of Γi in yi-coordinates exhibit optimal regularity Γyi
∈ W 1,p(Ω′

yi
), both in

yi-coordinates, and when expressed in x-coordinates Γyi
(x) ≡ Γyi

(yi(x)) ∈ W 1,p(Ω′
x).

We need to prove further that a subsequence of yi(x) converges to some y(x) weakly
inW 2,2p(Ω′

x), strongly inW 1,2p(Ω′
x), and that a further subsequence Γyi(x) converges

to Γy(x) weakly in W 1,p(Ω′
x), strongly in Lp(Ω′

x), and that Γy is the connection Γx

in y-coordinates, where Γx is the weak Lp-limit of (Γi)x.
By Theorem 3.1, there exists a single neighborhood Ω′ depending only on M ,

(assuming n, p,Ω fixed), on which a coordinate transformation x → yi(x) exists for
each i ∈ N, taking Ω′

x to Ω′
yi
, which maps (Γi)x to optimal regularity on Ω′, so

Γyi
∈ W 1,p(Ω′

yi
). Moreover, by estimate (3.7) of Theorem 3.1, ‖Γyi

‖W 1,p(Ω′
yi

) are

uniformly bounded. This proves (i) of Theorem 3.2.
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For each i ∈ N, the coordinate transformations yi(x) are obtained from the Ja-
cobians constructed in Theorem 6.3. To obtain a uniform Lp-bound on yi(x), we
choose yi(x(q)) = 0 for each i ∈ N. It follows from estimate (3.8) of Theorem 3.1,
(or alternatively (6.16) of Theorem 6.3), that the Jacobians Ji of x → yi(x) satisfy
the uniform bound ‖Ji‖W 1,2p(Ω′

x)
≤ C2(M) and ‖J−1

i ‖W 1,2p(Ω′
x)

≤ C2(M). Since the
Jacobians bound the derivatives of the coordinate maps x → yi(x), and yi(x(q)) = 0
bounds the Lp-norm (and supnorm), it follows that each map yi(x) as a function of x
is uniformly bounded in W 2,2p(Ω′

x) by some constant C4(M), again depending only
onM . It now follows from the basic compactness theorem for Sobolev spaces (Banach
Alaoglu) that there exists a subsequence, also denoted yi(x), on which yi(x) converges
to y(x) weakly inW 2,2p(Ω′

x), strongly inW 1,2p(Ω′
x), such that ‖y‖W 2,2p(Ω′

x)
< C4(M).

In particular, Ji converges to J weakly in W 1,2p(Ω′
x), strongly in L2p(Ω′

x), and the
uniform bound on J−1

i implies invertibility of J . This proves (iii) of Theorem 3.2.
Now since Ji ∈ W 1,2p(Ω′

x), Γyi(x) are uniformly bounded in W 1,p(Ω′
x) by the

chain rule. That is, by Morrey’s inequality one can estimate products Γyi(x) times Ji
to lie in W 1,p(Ω′

x), with norm bounded by some C5(M) depending only on M . This
proves (ii) of Theorem 3.2.

By the uniform W 1,p-bound on Γyi
(x), it follows that a further subsequence of

Γyi(x) converges weakly in W 1,p(Ω′
x) to a connection Γy(x) which satisfies the same

bound C5(M) in W 1,p(Ω′
x). Thus the coordinate map x → y is in W 2,2p(Ω′

x), and so
Γy exhibits optimal regularity in y-coordinates.

Finally, by taking a further subsequence, (Γi)x converges to some Γx weakly in
Lp(Ωx) by the Banach Alaoglu Theorem, (i.e., the uniform L∞-bound (13.10) directly
implies a uniform Lp-bound because Ω is bounded). To show that Γy is indeed the
connection Γx in y-coordinates, we use that for each i, Γyi is the connection (Γi)x in
yi-coordinates, so by the transformation law for connections (written in shorthand,
suppressing indices) we have

J−1
i ·Ji·Ji · Γyi

= (Γi)x − J−1
i dJi. (13.11)

Since Ji converges to J weakly in W 1,2p(Ω′
x), Ji converges to J strongly in L2p and

dJi converges to dJ weakly in L2p. Similarly, J−1
i converges to J−1 strongly in L2p

and weakly in W 1,2p(Ω′
x), and Γyi

(x) converges to Γy(x) strongly in Lp and weakly
in W 1,p(Ω′

x). Thus by Lemma 13.1 below, (taking J−1
i ·Ji·Ji for fi and Γyi

for gi), the
left hand side of (13.11) converges to J−1·J·J·Γy weakly in Lp, and the right hand side
of (13.11) converges to Γx − J dJ weakly in Lp. Taken on whole, (13.11) and Lemma
13.1 imply that the connection Γy is the connection Γx transformed to y-coordinates
as Lp functions, which proves (iv) and completes the proof of Theorem 3.2 once we
prove the following lemma.

Lemma 13.1. Let fi, gi be sequences of functions on a bounded set Ω such that
fi → f in Lp(Ω) with ‖fi‖L∞ , ‖f‖L∞ ≤ M , and such that gi → g weakly in Lp with
‖gi‖Lp , ‖g‖Lp ≤ M̃, p > n. Then figi → fg weakly in Lp(Ω).

Proof. Since ‖fi‖∞, ‖f‖∞ ≤ M , and fi → f in Lp on a bounded set, it follows
that fi → f in every Lp, p ≥ 1. This follows by measure theory because the measure
of the set on which |fi − f | > ε tends to zero as i → ∞ for every ε > 0. Recall now
that the dual space of Lp is Lp∗

with 1/p+1/p∗ = 1. Thus to prove that figi−fg → 0
weakly in Lp, we must show that

〈figi − fg, φ〉L2 ≡
∫
Ω

(figi − fg)φ → 0 (13.12)
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for every φ ∈ Lp∗
, where 〈·, ·〉L2 is the L2 inner product. But

〈figi − fg, φ〉L2 = 〈f(gi − g), φ〉L2 + 〈(fi − f)gi, φ〉L2 . (13.13)

But f ∈ L∞ implies fφ ∈ Lp∗
, so the first term in (13.13) satisfies

〈f(g − gi), φ〉L2 = 〈(g − gi), fφ〉L2 → 0

because gi − g tends to zero weakly in Lp.
Consider now the second term in (13.13). Since fi− f ∈ L∞, we have (fi− f)φ ∈

Lp∗
, so we can apply Holder’s inequality twice to obtain the estimate

|〈(fi − f)gi, φ〉L2 | = |〈gi, (fi − f)φ〉L2 |
≤ ‖gi‖Lp‖(f − fi)φ‖Lp∗

≤ M̃‖(f − fi)φ‖Lp∗ . (13.14)

Now let EN =
{
x ∈ Ω : |φ|p∗ ≥ N

}
. Then since φp∗ ∈ L1, it follows that

∫
EN

|φ|p∗ →
0 as N → ∞. Thus

‖(f − fi)φ‖p
∗

Lp∗ =

∫
Ω

|f − fi|p
∗ |φ|p∗

dμ

=

∫
EN

|f − fi|p
∗ |φ|p∗

dμ+

∫
Ec

N

|f − fi|p
∗ |φ|p∗

dμ

≤ ‖(f − fi)
p∗‖L∞

∫
EN

|φ|p∗
dμ+N

∫
Ec

N

|f − fi|p
∗
dμ

≤ (2M)p
∗
∫
EN

|φ|p∗
dμ+N

∫
Ω

|f − fi|p
∗
dμ. (13.15)

Now we can make the first term arbitrarily small by choosing N sufficiently large,
and the second term tends to zero with i because fi → f in Lp∗

(Ω). It follows that
‖(f − fi)φ‖Lp∗ → 0, and by this we conclude from (13.14) that the second term in
(13.13) tends to zero as well. Thus figi → fg weakly in Lp as claimed.

Appendix A. Sobolev norms and inequalities. We first give an overview of
the norms used in this paper. These norms are coordinate dependent, so we assume
at the start a given coordinate system x defined on an open set Ω ⊂ M such that
Ωx ≡ x(Ω) ⊂ R

n is bounded. In this section Ω always refers to Ωx. We denote by
‖·‖Wm,p(Ω) the standardWm,p-norm, defined as the sum of the Lp-norms of derivatives
from order zero up to m [12]. When applied to matrix or vector valued differential
forms ω, ‖ω‖Wm,p(Ω) denotes the sum of the Wm,p-norms of all components, i.e.,
summation over all matrix (or vector) and differential form components. That is, for
matrix valued k-forms ω = ωμ

ν i1...ik
dxi1 ∧ ... ∧ dxik we define

‖ω‖Lp(Ω) ≡
∑

μ,ν,i1,...,ik

∥∥ωμ
ν i1...ik

‖Lp(Ω) (A.1)

‖ω‖Wm,p(Ω) ≡
∑

μ,ν,i1,...,ik

∥∥ωμ
ν i1...ik

‖Wm,p(Ω) =
∑
|l|≤m

‖∂lω‖Lp(Ω), (A.2)

where 1 ≤ p ≤ ∞, l is a multi-index, (i.e., l = (l1, ..., ln), |l| = l1 + ... + ln and
∂lω ≡ (∂l1ω, ...∂lnω) taken component wise). We further define the L2-inner product
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on matrix valued forms ω and u,

〈ω, u〉L2 ≡
∫
Ω

tr
(
〈ω ;uT 〉

)
dx =

n∑
ν,σ=1

∑
i1<...<ik

∫
Ω

ων
σ i1...ik

uν
σ i1...ik

dx, (A.3)

c.f. (8.2), where tr(·) is the matrix trace and 〈· ; ·〉 the matrix valued inner product
(5.9), and dx is the Lebesgue measure in a fixed coordinate system x. By this we
introduce the Hilbert-Schmidt inner product on the matrix components of matrix
valued differential forms. Note that, (by Young’s inequality), the L2 norm associated
to (A.3) is equivalent to (A.1) when p = 2. When convenient we drop the dependence
of norms on Ω, writing ‖ · ‖Wm,p instead of ‖ · ‖Wm,p(Ω).

We now summarize the basic integral inequalities we apply in this paper, see [12]
for details. The space W 1,p for p > n, is embedded in the space of Hölder continuous
functions C0,α(Ω). Namely, for p > n Morrey’s inequality gives

‖f‖C0,α(Ω) ≤ CM‖f‖W 1,p(Ω), (A.4)

where α ≡ 1 − n
p and CM > 0 is a constant depending only on n, p and Ω [12].39

Morrey’s inequality (A.4) extends unchanged to components of matrix valued differ-
ential forms and hence to the norms in (A.1). By Morrey’s inequality we can estimate
products of W 1,p functions f and g on bounded domains Ω as

‖fg‖W 1,p(Ω) ≤ CM‖f‖W 1,p(Ω)‖g‖W 1,p(Ω), (A.5)

by pulling L∞ norms of undifferentiated functions out of Lp norms and applying
(A.4) to bound the resulting L∞ norms. This shows that W 1,p(Ω) is closed under
multiplication on bounded domains.

To handle products in the RT-equations at the lowest order of regularity we
employ Hölder’s inequality, which states

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lp∗ (Ω), (A.6)

where p and p∗ are conjugate exponents, i.e., 1
p+

1
p∗ = 1. Now, assuming f, g ∈ L2p(Ω),

(A.6) implies the estimate

‖fg‖Lp(Ω) =
∥∥|fg|p∥∥ 1

p

L1(Ω)

(A.6)

≤
∥∥|f |p∥∥ 1

p

L2(Ω)

∥∥|g|p∥∥ 1
p

L2(Ω) = ‖f‖L2p(Ω) ‖g‖L2p(Ω), (A.7)

which shows in particular that fg ∈ Lp(Ω). Estimate (A.7) allows us to control the
gradient product dJ−1 ∧ dJ in (6.1) in the proof of Theorem 6.1, which is a key
step in our analysis. Hölder’s inequality (A.6) and estimate (A.7) extend to matrix
valued differential forms. For example, for matrix valued 0-forms A and matrix valued
k-forms B, we have

‖A ·B‖L1(Ω) ≡
∑
μ,ν

‖(A ·B)μν‖L1(Ω) ≤
∑
μ,ν,σ

‖Aμ
σB

σ
ν ‖L1(Ω)

(A.6)

≤
∑
μ,ν,σ

‖Aμ
σ‖Lp(Ω)‖Bσ

ν ‖Lp∗ (Ω)

≤
(∑

μ,ν

‖Aμ
ν‖Lp(Ω)

)(∑
μ,ν

‖Bμ
ν ‖Lp∗ (Ω)

)
= ‖A‖Lp(Ω)‖B‖Lp∗ (Ω), (A.8)

39In Section 9.1, we absorb combinatorial factors in CM when applying (A.4) to higher derivatives.
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and by applying (A.7) component-wise, we obtain in a similar fashion

‖A ·B‖Lp(Ω) ≤ ‖A‖L2p(Ω) ‖B‖L2p(Ω). (A.9)

This extends to general matrix valued differential forms A and B as

‖A ∧B‖L1(Ω) ≤ ‖A‖Lp(Ω)‖B‖Lp∗ (Ω),

‖A ∧B‖Lp(Ω) ≤ ‖A‖L2p(Ω)‖B‖L2p(Ω). (A.10)

Appendix B. Elliptic PDE theory. We now summarize the estimates we
use from elliptic PDE theory. It suffices to assume here that 1 < p < ∞, n ≥ 2.
We assume throughout that Ω ⊂ R

n is a bounded open domain, simply connected
and with smooth boundary. Our estimates are based on the following two theorems,
which directly extend to matrix valued and vector valued differential forms since the
Laplacian acts component wise, c.f. Lemma 8.2. That is, we take the weak Laplacian
here as Δu[φ] = −〈∇u,∇φ〉L2 for scalar functions u ∈ W 1,p(Ω) and for test functions

φ ∈ W 1,p∗
0 (Ω), where W 1,p∗

0 (Ω) is the closure of C∞
0 (Ω) with respect to the W 1,p∗

-
norm (so φ|∂Ω = 0). Our first theorem is based on Theorem 7.2 in [31], but adapted
to the case of solutions to the Poisson equation with non-zero Dirichlet data.

Theorem B.1. Let Ω ⊂ Rn be a bounded open set with smooth boundary ∂Ω,
assume f ∈ W−1,p(Ω) and u0 ∈ W 1,p(Ω) ∩ C0(Ω) for 1 < p < ∞, n ≥ 2. Then the
Dirichlet boundary value problem

Δu[φ] = f [φ], in Ω (B.1)

u = u0 on ∂Ω, (B.2)

for any φ ∈ W 1,p∗
0 (Ω), has a unique weak solution u ∈ W 1,p(Ω) with boundary data

u− u0 ∈ W 1,p
0 (Ω). Moreover, any weak solution40 u of (B.1) - (B.2) satisfies

‖u‖W 1,p(Ω) ≤ C
(
‖f‖W−1,p(Ω) + ‖u0‖W 1,p(Ω)

)
, (B.3)

for some constant C depending only on Ω, n, p, and if f ∈ Lp(Ω) and u0 ∈ W 2,p(Ω),
then the solution u satisfies

‖u‖W 2,p(Ω) ≤ C
(
‖f‖Lp(Ω) + ‖u0‖W 2,p(Ω)

)
. (B.4)

Proof. Theorem 7.2 in [31] yields existence of a unique solution u ∈ W 1,p(Ω) to
(B.1) - (B.2) satisfying estimate (B.3) in the case of zero Dirichlet data, i.e. when
u0 = 0 in Ω. Note, Theorem 7.2 in [31] applies since the weak Laplacian is a strongly
uniformly elliptic operator in the sense of equation (1.8) of [31, Def 1.3].41 To extend
this result to non-zero Dirichlet data, let ũ ∈ W 1,p(Ω) be the solution of the Laplace
equation Δũ = 0 with boundary data ũ = u0 on ∂Ω in the sense that u0−ũ ∈ W 1,p

0 (Ω);
note that u can be constructed via Green’s representation formula [13, Eqn. (2.21)]
forW 1,p-data. Assume now w ∈ W 1,p is the solution of (B.1) with zero Dirichlet data
satisfying (B.3), Δw = f in a weak sense and w ∈ W 1,p

0 (Ω), which exists by Theorem

40It suffices to assume that u is regular enough to make sense of the weak formulation of the
Laplacian, for example, du, δu ∈ Lp(Ω) for a differential form u, as in Section 9.2.

41That in fact any such solution satisfies estimate (B.3) follows from Theorem 6.1 in [31], equation
(6.2), where we can take C2 = 0 since Δ is strongly uniformly elliptic.
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7.2 in [31]. Then u ≡ w + ũ solves (B.1) - (B.2), since Δu = Δw = f (in a weak
sense) and u− u0 ∈ W 1,p

0 (Ω). To show that estimate (B.3) holds, we begin by using
the triangle inequality twice to get

‖u‖W 1,p ≤ ‖w‖W 1,p + ‖ũ− u0‖W 1,p + ‖u0‖W 1,p . (B.5)

We can now apply the established case of estimate (B.3), for the case of zero Dirichlet
data, to the first two terms, since w, ũ− u0 ∈ W 1,p(Ω). This yields

‖w‖W 1,p ≤ C‖f‖W−1,p(Ω), (B.6)

while the second term is bounded by

‖ũ− u0‖W 1,p(Ω) ≤ C‖Δ(ũ− u0)‖W−1,p(Ω)

≤ C‖u0‖W 1,p(Ω), (B.7)

where we used that Δ(ũ− u0) = Δu0 and ‖Δu0‖Wm−1,p(Ω) ≤ ‖u0‖Wm+1,p(Ω). Substi-
tution of estimates (B.6) and (B.7) into (B.5) yields the sought after estimate (B.3)
in the general case of non-zero Dirichlet data. We proved that there exists a solution
to (B.1) - (B.2) which satisfies estimate (B.3).

To complete the proof, note that estimate (B.4) in the case of zero Dirichlet
data (u0 = 0) is already proven in [31, Thm 7.2], (c.f. Lemma 9.17 in [13]). The
case of estimate (B.4) for non-zero Dirichlet data follows by an argument analogous
to (B.5) and (B.7). Namely, let ũ be the solution of Δũ = 0 with boundary data
u0− ũ ∈ W 1,p

0 (Ω), and let w ∈ W 2,p(Ω) be the solution of Δw = f with w ∈ W 1,p
0 (Ω)

established in [31, Thm 7.2]. Then setting again u ≡ w + ũ and applying estimate
(B.4) in the case of vanishing Dirichlet data (y = 0) to w and ũ−u0 yields the sought
after estimate (B.4):

‖u‖W 2,p(Ω) ≤ ‖w‖W 2,p + ‖ũ− u0‖W 2,p + ‖u0‖W 2,p

≤ C
(
‖f‖Lp(Ω) + ‖Δ(ũ− u0)‖Lp(Ω)

)
+ ‖u0‖W 2,p(Ω)

≤ C
(
‖f‖Lp(Ω) + ‖u0‖W 2,p(Ω)

)
,

where C > 0 was again used as a running constant. This completes the proof of
Theorem B.1.

We require the following interior elliptic estimates in the proof of Theorem 6.1 in
Section 9 in the casem = 0, and for higher regularitiesm ≥ 1 to prove Proposition 9.1.
Note that interior elliptic estimates usually are established earlier in the development
of elliptic PDE theory, but for completeness we derive the interior estimate from (B.3).

Theorem B.2. Let f ∈ Wm−1,p(Ω), for m ≥ 0 and 1 < p < ∞, n ≥ 2. Assume
u is a weak solution of (B.1). Then u ∈ Wm+1,p(Ω′) for any open set Ω′ compactly
contained in Ω and there exists a constant C depending only on Ω,Ω′,m, n, p such
that

‖u‖Wm+1,p(Ω′) ≤ C
(
‖f‖Wm−1,p(Ω) + ‖u‖Wm,p(Ω)

)
. (B.8)

Proof. We only need to prove the case m = 0. The case for m ≥ 1 can easily
be obtained by differentiating and applying the estimate for the case m = 0; (c.f.
Appendix A in [25].)
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We apply estimate (B.3) to φu where φ is a standard smooth cutoff function,
φ = 1 in Ω′, φ = 0 on ∂Ω. Then

Δ(φu) = φΔu+ 2∇φ · ∇u+ uΔφ ≡ f̂ . (B.9)

Then applying (B.3) together with the assumption that we have a solution of the
Poisson equation (B.1), we have

‖u‖W 1,p(Ω′) = ‖φu‖W 1,p(Ω′) ≤ ‖φu‖W 1,p(Ω) ≤ C‖f̂‖W 1,p(Ω)

= C‖φ‖C2

(
‖f‖W−1,p(Ω) + ‖∇u‖W−1,p(Ω) + ‖u‖W−1,p(Ω)

)
, (B.10)

from which (B.8) follows, since by definition of the operator norm we have the bounds
‖∇u‖W−1,p(Ω) ≤ ‖u‖Lp and ‖u‖W−1,p(Ω) ≤ ‖u‖Lp . This completes the proof.

Appendix C. Cauchy Riemann type equations at low regularities. In this
appendix we prove Propositions C.4 and C.5 which give existence of weak solutions
to Cauchy Riemann type equation for scalar valued differential forms, required in the
proof of Lemma 10.7 for well-posedness of the iteration scheme. For this, in Theorems
C.1, C.2 and C.3 below, we first collect the theorems from [6] regarding classical W 1,p

solutions of first order Cauchy-Riemann type equations

du = f and δu = 0, in Ω, (C.1)

where the Cartan algebra of differential forms is determined by the Euclidean metric
in R

n. We extend these theorems in Proposition C.4 and C.5 below to prove existence
of weak Lp solutions, the lower regularity required for well-posedness of our iteration
scheme, in the special case when boundary data is free to assign.

To begin, we state the following partial integration formula for non-zero boundary
data, ∫

Ω

〈du,w〉dx+
∫
Ω

〈u, δw〉dx =
∫
∂Ω

〈N ∧ u,w〉 =
∫
∂Ω

〈u,N · w〉, (C.2)

where u is a k-form and w a (k+1)-form, N denotes the outward-pointing unit normal
of ∂Ω and N · w denotes the contraction of N and w, c.f. Theorem 3.28 in [6], (and
(8.6) for the case of vanishing boundary data).

We now state the basic elliptic estimate for (C.1), which mirrors estimate (B.3)
for the Poisson equation, the so-called Gaffney inequality, (c.f. Theorem 5.21 in [6]).
The Gaffney inequality shows that d and δ control all derivatives of u.

Theorem C.1 (Gaffney Inequality). Let u ∈ Wm+1,p(Ω) be a k-form, where
m ≥ 0, 1 ≤ k ≤ n − 1, 1 < p < ∞ and n ≥ 2. Then there exists a constant C > 0
depending only on Ω, m,n, p, such that

‖u‖Wm+1,p(Ω) ≤ C
(
‖du‖Wm,p(Ω) + ‖δu‖Wm,p(Ω) + ‖u‖

W
m+

p−1
p

,p
(∂Ω)

)
. (C.3)

The following special case of Theorem 7.4 in [6], provides the existence theorem
sufficient for our purposes, and contains a refinement of Gaffney’s inequality (C.3)
for 1-forms and 0-forms.
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Theorem C.2. (i) Let f ∈ Wm,p(Ω) be a 2-form with df = 0, where m ≥ 0,
n ≥ 2, 1 < p < ∞. Assume further that f = dv for some 1-form v ∈ Wm,p(Ω).42

Then there exists a 1-form u = ui dx
i ∈ Wm+1,p(Ω) which solves

du = f and δu = 0 in Ω, (C.4)

together with the boundary condition

u ·N = 0 on ∂Ω, (C.5)

where N is the unit normal on ∂Ω and u·N ≡ uiN
i. Moreover, there exists a constant

C > 0 depending only on Ω, m,n, p, such that

‖u‖Wm+1,p(Ω) ≤ C‖f‖Wm,p(Ω). (C.6)

(ii) Let f ∈ Wm,p(Ω) be a 1-form with df = 0. Then there exists a 0-form u ∈
Wm+1,p(Ω) such that u solves du = f , has zero average

∫
Ω
udx = 0 and satisfies

estimate (C.6).

Proof. Theorem C.2 and its proof are taken from [25], and the proof is included
for completeness, c.f. Theorem 2.4 in [25]. Part (i) is a special case of Theorem 7.4
in [6] for 1-forms with zero boundary conditions. Namely, our assumption df = 0
together with zero boundary data, (ω0 = 0, following notation in [6]), directly gives
condition (C1) of [6, Thm 7.4]. The first equation of condition (C2) of [6, Thm 7.4]
follows trivially from our assumptions; g = 0 and ω0 = 0 in the notation of [6]. The
second equation in (C2), that

∫
Ω
〈f ; Ψ〉 = 0 for any harmonic form Ψ (i.e. δΨ = 0)

with vanishing normal components (i.e. N ·Ψ = 0) on the boundary (Ψ ∈ HN in the
notation of [6]), follows by application of the integration by parts formula (C.2) for
differential forms to f = dv,

〈f,Ψ〉L2 = −〈v, δΨ〉L2 + 〈v,N ·Ψ〉L2 = 0.

Theorem 7.4 in [6] now yields the existence of a solution u ∈ Wm+1,p(Ω) to (C.4) -
(C.5) satisfying estimate (C.6).

Part (ii) of Theorem C.2, can be thought of as a version of Theorem [6, Thm 7.4],
in the special case of 0-forms, which does not require condition (C2) by abandoning
boundary data. That is, we seek a 0-form u solving the gradient equation du = f
such that estimate (C.6) holds. (No boundary data is required for our purposes). To
begin the proof, observe that a solution u ∈ Wm+1,p(Ω) of du = f , in the case m ≥ 1,
is given by the path integral

u(x) =

∫ x

x0

f · d�r + u0 (C.7)

along any differentiable curve connecting x0 and x, where x0 ∈ Ω is some point we
fix, and the constant u0 is the value of u at x0, which is free to be chosen. Note, since
df = 0, the integral (C.7) is path independent, as can be shown by applying Stokes
Theorem to integration of df over the region enclosed by two curves connecting x0 and
x. We now choose u0 such that the average of u is zero,

∫
Ω
udx = 0. Then Poincaré’s

42Since d2 = 0, the assumption f = dv implies df = 0, and is a slightly stronger assumption than
df = 0, convenient for our purposes.



OPTIMAL REGULARITY FOR CONNECTIONS ON TANGENT BUNDLES 389

inequality [13, Eqn. (7.45)] implies that ‖u‖Lp(Ω) ≤ C‖f‖Lp(Ω) for a suitable constant
C > 0. Thus, since ‖du‖Lp(Ω) = ‖f‖Lp(Ω) follows directly from du = f , we have

‖u‖W 1,p(Ω) ≤ C‖f‖Lp(Ω). (C.8)

Estimate (C.6) follows by suitable differentiation of du = f and application of estimate
(C.8). Existence of a solution u to du = f in the case m = 0 follows again from (C.7)
by mollifying f , and using that this mollification is controlled by estimate (C.8). This
completes the proof of Theorem C.2.

We finally require the so-called Hodge-Morrey decomposition, taken from Theo-
rem 6.12 in [6]:

Theorem C.3 (Hodge-Morrey decomposition). (i) Let Φ ∈ Lp(Ω) be a 1-form
for 1 < p < ∞. Then there exists 1-forms w1, w2 ∈ W 2,p(Ω) such that

Φ = dα+ δβ + h, (C.9)

where α = δw1 and β = dw2 such that N ∧ α
∣∣
∂Ω

= 0 and N · β
∣∣
∂Ω

= 0, where N is
interpreted as either a 1-form or a vector normal to ∂Ω, and where h is a harmonic
1-form in the sense that dh = 0 = δh. Moreover, there exists a constant C > 0
depending only on Ω, n, p such that

‖w1‖W 2,p(Ω) + ‖w2‖W 2,p(Ω) + ‖h‖Lp(Ω) ≤ C‖Φ‖Lp(Ω). (C.10)

(ii) Let Φ ∈ Lp(Ω) be a 0-form, 1 < p < ∞, then there exist 0-forms w ∈ W 2,p(Ω)
and a constant h0 such that

Φ = δβ + h0, (C.11)

where β = dw and N ·β
∣∣
∂Ω

= 0, and exists a constant C > 0 depending only on Ω, n, p
such that

‖w‖W 2,p ≤ C‖Φ‖Lp . (C.12)

Proof. Part (i) of Theorem C.3 is the case of Theorem 6.12 (iii) in [6] for 1-forms
Φ. Part (ii) follows from (iii) of [6, Thm 6.12] for 0-forms Φ, by observing that any
harmonic 0-form h is constant, (since dh = 0 is the vanishing gradient condition for
h), so h = h0.

43

We are now prepared to establish the existence theorems for 1-forms and 0-forms
required in our iteration scheme in Section 11.2, Proposition C.4 and C.5 below. We
begin with the case of 1-forms. That is, given f ∈ W−1,p(Ω) for 1 < p < ∞, we prove
existence of a 1-form a ∈ Lp(Ω) which is a weak solution{

da = f

δa = 0,
(C.13)

43One can understand Theorem C.3 (ii) quite easily from the point of view of the Poisson equation.
Namely the sought after function w is the solution to the Poisson equation Δw = Φ − h0 with
Neumann data N · dw = 0 on ∂Ω, where h0 is a constant chosen such that Φ − h0 satisfies the
consistency condition

∫
Ω(Φ− h0)dx = 0 existence of w, (required by the divergence theorem applies

to the equation). The solution w is unique up to addition by a constant, and we choose this constant
for w to have zero average

∫
Ω wdx = 0. Now, the Poincaré inequality implies the Lp-norm of w

to be bounded by the Lp norm of dw, and from this estimate (C.12) follows from standard elliptic
estimates. (Compare also with Theorem 9.2 in [6] and its proof.)
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such that

‖a‖Lp ≤ C‖f‖W−1,p (C.14)

for some constant C > 0 depending only on n, p,Ω. No boundary data is imposed.
Here a is a scalar valued 1-form and f a linear functional over the space of 2-forms

with components in W 1,p∗
0 (Ω), f : W 1,p∗

0 (Ω) −→ R, where W 1,p∗
0 (Ω) is the closure of

C∞
0 (Ω) with respect to the W 1,p∗

-norm, and where 1
p +

1
p∗ = 1. We refer to such a

linear functional again as a 2-form in W−1,p(Ω). Equations (C.13) are interpreted in
the following weak sense, {

〈a, δφ〉L2 = −f(φ)

〈a, dψ〉L2 = 0,
(C.15)

for all 2-forms φ with components in W 1,p∗
0 (Ω) and all 0-forms ψ ∈ W 1,p∗

0 (Ω), (so
φ|∂Ω = 0 and ψ|∂Ω = 0), where 〈·, ·〉L2 denotes the standard L2-inner product on
differential forms.

Proposition C.4. Let f ∈ W−1,p(Ω) be a 2-form satisfying df = 0 in the weak

sense that f(δψ) = 0 for all 3-forms ψ with components in W 2,p∗
0 (Ω); assume further

that f = dv for some 1-form v ∈ W−1,p(Ω) in the sense that f [φ] = −v(δφ) for any

2-forms φ ∈ W 1,p∗
0 (Ω).44 Then there exists a solution a ∈ Lp(Ω) of (C.15) satisfying

(C.14).

Proof. The proof consists of the following three steps: (1) Construct approxi-
mate solutions aε. (2) Derive an ε-independent bound on the approximate solutions
which implies existence of a convergent subsequence. (3) Prove that the limit of this
convergent subsequence is a solution of (C.14) which satisfies estimate (C.15).

To implement step (1), we mollify the functional f , that is, we introduce f ε(x) ≡
f(ϕε(· −x)), where ϕε ≡ ϕε

ijdx
i ∧ dxj is a 2-form with components ϕε

ij ∈ C∞
0 (Ω) that

are a standard mollifier function. So f ε ∈ C∞(Ω), and f ε converges to f in W−1,p

component-wise. For each ε > 0, we now introduce aε as the solution of{
daε = f ε

δaε = 0,
(C.16)

with boundary data N jaεj = 0 on ∂Ω, where N is the outward pointing unit normal
of ∂Ω. The solution aε does indeed exist by Theorem C.2 (i), since f ε = dvε for the
1-form vε ≡ v[ϕε] ∈ C∞(Ω). Namely, our assumption f [φ] = −v(δφ) for any 2-forms

φ ∈ W 1,p∗
0 (Ω) implies that

f ε = f(ϕε) = −v[δϕε] = dv[ϕε] = dvε,

by definition of the distributional derivative dv. Clearly, df ε = d2vε = 0. Thus
Theorem C.2 (i) applies and yields a solution aε ∈ W 1,p(Ω) for each ε > 0, establishing
step (1).

To establish step (2), we now derive a uniform bound on ‖aε‖Lp in order to
conclude convergence of a subsequence to the sought after solution a. The uniform

44As in Theorem 8.8, assuming f = dv is a slightly stronger assumption than df = 0, convenient
in our proof of well-posedness of the iteration scheme, c.f. Lemma 10.7.
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bound we derive can be thought of as a version of Gaffney’s inequality at the lower
level of Lp regularity, when boundary data cannot be imposed strongly. To begin,
since the operator norm is equivalent to the Lp norm, we find that

‖aε‖Lp = sup
Φ∈F

∣∣〈aε,Φ〉L2

∣∣, (C.17)

where

F ≡
{
Φ ∈ Lp∗

(Ω) a 1-form with ‖Φ‖Lp∗ = 1
}

is the space of test functions. Now, fix Φ ∈ F and apply the Hodge-Morrey decom-
position of Theorem C.3 to write

Φ = dα+ δβ + h, (C.18)

where α = δw1 and β = dw2 for 1-forms w1, w2 ∈ W 2,p∗
(Ω), such that N ∧ α

∣∣
∂Ω

= 0

and N · β
∣∣
∂Ω

= 0, and where h is a harmonic 1-form. Next, applying the existence

theory of Theorem C.2 (ii), we define the 0-form Ψ ∈ W 1,p∗
0 as a solution of

dΨ = h (C.19)

which exists, since dh = 0 for h harmonic; no boundary data imposed. We now
substitute the decomposition (C.18) for Φ to write 〈aε,Φ〉L2 in (C.17) equivalently as

〈aε,Φ〉L2 = 〈aε, (dα+ δβ + h)〉L2

= 〈aε, dα〉L2 + 〈aε, δβ〉L2 + 〈aε, h〉L2 . (C.20)

Applying now the partial integration formula (C.2) to each term, we obtain

〈aε, dα〉L2 = −〈δaε, α〉L2 + 〈aε, N ∧ α〉L2(∂Ω) = −〈δaε, α〉L2 , (C.21)

where the last equality follows from N∧α
∣∣
∂Ω

= 0, c.f. Theorem C.3. Similarly, partial

integration together with N · β
∣∣
∂Ω

= 0 gives

〈aε, δβ〉L2 = −〈daε, β〉L2 + 〈aε, N · β〉L2(∂Ω) = −〈daε, β〉L2 , (C.22)

and by (C.19),

〈aε, h〉L2 = 〈aε, dΨ〉L2

= −〈δaε,Ψ〉L2 + 〈N · aε,Ψ〉L2(∂Ω)

= −〈δaε,Ψ〉L2 , (C.23)

since N · aε = 0 on ∂Ω by assumption. Now, substituting (C.21) - (C.23) into (C.20),
and using that aε solves (C.16), we obtain

〈aε,Φ〉L2 = −〈δaε, α〉L2 − 〈daε, β〉L2 − 〈δaε,Ψ〉L2

= −〈f ε, β〉L2 . (C.24)

Now (C.24) and the definition of the operator norm ‖ · ‖W−1,p imply

|〈aε,Φ〉L2 | ≤ ‖f ε‖W−1,p ‖β‖W 1,p∗ . (C.25)
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By Theorem C.3, we have β = dw2 so estimate (C.10) gives us

‖β‖W 1,p∗ = ‖dw2‖W 1,p∗ ≤ ‖w2‖W 2,p∗
(C.10)

≤ C‖Φ‖Lp∗ , (C.26)

where C > 0 is some constant only depending on p, n,Ω. Substituting (C.26) into
(C.25) and using that ‖Φ‖Lp∗ = 1 for any Φ ∈ F , we obtain the estimate

|〈aε,Φ〉L2 | ≤ C‖f ε‖W−1,p ≤ 2C‖f‖W−1,p , (C.27)

for all ε > 0 sufficiently small, since f ε converges to f in W−1,p by standard mollifi-
cation. Finally, substituting (C.27) into (C.17), we obtain the sought after uniform
bound

‖aε‖Lp ≤ C‖f‖W−1,p , (C.28)

where C > 0 is some constant only depending on p, n,Ω.
We now complete step (3). By (C.28), ‖aε‖Lp is bounded independent of ε, so the

Banach Alaoglu Theorem implies convergence of a subsequence to some differential
form a ∈ Lp weakly in Lp. We now show that this limit a solves (C.13). For this,
let εk > 0 such that εk → 0 as k → ∞ and assume ak = aεk is the convergent
subsequence, so ak → a weakly in Lp as k → ∞. By (C.2), we have for any φ and

ψ ∈ W 1,p∗
0 (Ω) that

〈daε, φ〉L2 = −〈aε, δφ〉L2 ,

〈δaε, ψ〉L2 = −〈aε, dψ〉L2 . (C.29)

So using that ak solves (C.16), we write (C.29) as{
〈ak, δφ〉L2 = −〈f εk , φ〉L2

〈ak, dψ〉L2 = 0,
(C.30)

which converges to the sought after equation (C.15). We conclude that a is the sought
after weak solution of (C.15). Moreover, the sought after estimate (C.14) follows from
the uniform bound (C.28), since

‖a‖Lp = sup
ψ∈Lp∗

∣∣〈a, ψ〉∣∣ = lim
k→∞

sup
ψ∈Lp∗

∣∣〈ak, ψ〉∣∣
= lim

k→∞
‖ak‖Lp

(C.28)

≤ C‖f‖W−1,p . (C.31)

This completes the proof of Proposition C.4.

Our final existence result for 0-forms u is required to extend Theorem C.2 (ii)
to solutions in the space Lp(Ω). It is an extension of Poincaré’s Lemma to linear
functionals. We seek weak solutions u ∈ Lp(Ω) of the first order equation

du = f, (C.32)

satisfying

‖u‖Lp ≤ C‖f‖W−1,p , (C.33)
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for any 1-form f with components in W−1,p(Ω), where C > 0 is a constant depending
only on n, p,Ω. That is, we prove existence of weak solutions u ∈ Lp(Ω) of (C.32) in
the sense that

〈u, δφ〉 = −f(φ), (C.34)

for any 1-form φ with components in W 1,p∗
0 (Ω) subject to estimate (C.33).

Proposition C.5. Assume the 1-form f ∈ W−1,p(Ω) satisfies df = 0 in the

sense that f(δφ) = 0 for any 2-form φ with components in W 2,p∗
0 (Ω). Then there

exists a solution u ∈ Lp(Ω) of (C.34) satisfying (C.33).

Proof. The proof is similar to that of Proposition C.4, consisting of the same
three steps. To begin with the first step, we mollify the functional f , setting again
f ε(x) ≡ f(ϕε(· − x)), where ϕε ∈ C∞

0 (Ω) is a 1-form whose components are standard
mollifier functions. So f ε ∈ C∞(Ω), and f ε converges to f in W−1,p component wise.
For each ε > 0, we have df ε = −f(δϕε) = 0 by assumption. Thus Theorem C.2 (ii)
applies, and yields the existence of a 0-form uε ∈ W 1,p(Ω) solving

duε = f ε (C.35)

such that uε has zero average,
∫
Ω
uεdx = 0.

In the next step we derive a uniform bound on ‖uε‖Lp . That is, we express the
Lp-norm in terms of the operator norm,

‖uε‖Lp = sup
Φ∈F

∣∣〈uε,Φ〉L2

∣∣, (C.36)

where

F ≡
{
Φ ∈ Lp∗

(Ω) a function with ‖Φ‖Lp∗ = 1
}

is the space of test functions and 〈·, ·〉L2 denotes the standard L2 inner product. We
fix some Φ ∈ F and apply the Hodge-Morrey decomposition in Theorem C.3 (ii) to
write

Φ = δβ + h0, (C.37)

where β = dw for some 0-form w ∈ W 2,p∗
(Ω) and N · β

∣∣
∂Ω

= 0. From (C.37) we find
that

〈uε,Φ〉L2 = 〈uε, δβ〉L2 + 〈uε, h0〉L2 = 〈uε, δβ〉L2 ,

since 〈uε, h0〉L2 = h0

∫
ω
uεdx = 0 by our zero average assumption on uε. Integration

by parts (C.2) gives further

〈uε,Φ〉L2 = −〈duε, β〉L2 + 〈uε, N · β〉L2(∂Ω) = 〈f ε, β〉L2 , (C.38)

where the last equality follows by substituting (C.32) for uε and N · β|∂Ω = 0. From
(C.38) and the definition of the operator norm ‖ · ‖W−1,p , we obtain

|〈uε,Φ〉L2 | ≤ ‖f ε‖W−1,p ‖β‖W 1,p∗ . (C.39)
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Using now that β = dw in combination with estimate (C.12) of the Hodge-Morrey
decomposition, we obtain

‖β‖W 1,p∗ ≤ ‖w‖W 2,p∗ ≤ C‖Φ‖Lp∗ , (C.40)

for some constant C > 0 only depending on p, n,Ω. Substituting now (C.40) into
(C.39) and using that ‖Φ‖Lp∗ = 1 for any Φ ∈ F , we obtain the uniform bound

|〈uε,Φ〉L2 | ≤ C‖f ε‖W−1,p ≤ 2C‖f‖W−1,p , (C.41)

for all ε > 0 sufficiently small, because f ε converges to f in W−1,p by standard
mollification. Finally, substituting (C.41) into (C.36), we obtain the sought after
uniform bound

‖uε‖Lp ≤ C‖f‖W−1,p , (C.42)

where C > 0 is some constant only depending on p, n,Ω.
The uniform bound (C.42) implies the existence of a subsequence which converges

to some function u ∈ Lp(Ω) subject to the Lp-bound (C.33), and an argument similar
to that of step (3) in the proof of Proposition C.4 shows that u solves (C.35). This
completes the proof of Proposition C.5.
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