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RECTANGULAR DIFFERENTIATION OF INTEGRALS OF
BESOV FUNCTIONS

Hugo Aimar, Liliana Forzani, and Virginia Naibo

Abstract. We study the differentiation of integrals of functions in the Besov

spaces Bα,1
p (R

n), α > 0, 1 ≤ p < ∞, with respect to the basis of arbitrarily
oriented rectangular parallelepipeds in R

n. We show that positive results hold if
α ≥ n−1

p
and we give counterexamples for the case 0 < α < n

p
− 1. Similar results

hold for Bα,q
p (R

n), q > 1. For more general bases we can also prove negative results

for n
p
− 1 ≤ α < n−1

p
.

1. Definitions and main results

Following de Guzmán [3, 4] we shall say that a differentiation basis A is a
collection of open bounded sets in R

n such that for each x ∈ R
n there is a

sequence {Aj} ⊂ A with x ∈ Aj for every j and diameter of Aj tending to 0.
A differentiation basis A is said to differentiate the integral of a locally inte-

grable function f defined in R
n if

lim
diam(A)→0, x∈A∈A

1
|A|

∫
A

f(y) dy = f(x)

for almost every x ∈ R
n, where |A| denotes the Lebesgue measure of the set A.

If A differentiates the integral of every function of a given class we say that A
differentiates that class.

We denote by B the basis of all arbitrarily oriented rectangular parallelepipeds
in R

n with diameter smaller than 1. Each element of B can be regarded as a
proper rigid motion of a multidimensional interval of the form

∏n
j=1(−bj , bj),

bj > 0 and
∑n

j=1(2bj)2 ≤ 1.

The basis B does not differentiate the spaces Lp(Rn). Actually, it does not
even differentiate the characteristic functions of measurable sets in R

n, as was
observed by Zygmund (in Nikodym [6]) (see [3, 8]). Then, no restriction on the
global growth of functions is sufficient for differentiation of integrals with respect
to that basis and it seems natural to impose additional restrictions on the inte-
gral smoothness of functions. In that direction, Stokolos [9, 10] considered the
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differentiation of the integral of functions in terms of the integrability properties
of the Lp modulus of continuity.

We define the Besov spaces Bα,q
p (Rn) for α > 0 and 1 ≤ p, q ≤ ∞. Let ᾱ be

the smallest integer greater than α and denote by uf (x, t) = (f ∗Pt)(x), x ∈ R
n,

t > 0, the Poisson integral of f ∈ Lp(Rn), where Pt(x) = cnt/(t2 + |x|2)(n+1)/2,
cn = Γ((n + 1)/2)/π(n+1)/2. Then Bα,q

p (Rn) is the set of functions for which the
norm

‖f‖Bα,q
p (Rn) = ‖f‖Lp(Rn) + (

∫ ∞

0

‖tᾱ−α ∂ᾱuf

∂tᾱ (·, t)‖q
Lp(Rn)

dt
t )

1
q(1.1)

is finite (with the obvious changes for q = ∞).

In this paper we study the differentiation of integrals of functions in
Bα,q

p (Rn) with respect to B. The problem only has interest when n ≥ 2 and
p < ∞ since otherwise we are dealing with intervals or continuous functions.
The main results are the following:

Theorem 1.2.

a) If 1 ≤ p < ∞ then B differentiates B
(n−1)/p,1
p (Rn).

b) If 1 ≤ p < n and 0 < α < n
p − 1 then B does not differentiate Bα,1

p (Rn).

Using the immersion theorems for Besov spaces we can extend the positive
and negative results in the following way:

Corollary 1.3.

a) Let 1 ≤ p < ∞. If either 1 < q ≤ ∞ and α > n−1
p or q = 1 and α ≥ n−1

p

then B differentiates Bα,q
p (Rn).

b) If 1 ≤ p < n, 0 < α < n
p − 1 and 1 ≤ q ≤ ∞ then B does not differentiate

Bα,q
p (Rn).

Let us point out that we do not have a result for n
p − 1 ≤ α < n−1

p .

Part a) of Theorem 1.2 will follow from the next local weak type inequality:

Theorem 1.4. Let M be the maximal operator associated to B,

Mf(x) = sup
x∈R∈B

1
|R|

∫
R

|f(y)| dy.

If 1 ≤ p < ∞ and r > 0 then

|{x ∈ R
n : Mf(x) > λ}| ≤ c

λ
(r + 1)n−1 r1/p′‖f‖

B
(n−1)/p,1
p (Rn)

(1.5)

for every f ∈ B
(n−1)/p,1
p (Rn) with supp(f) ⊂ B(0, r) = {x ∈ R

n : |x| < r}. Here
c is a constant independent of f and r and 1

p + 1
p′ = 1.

Part b) of Corollary 1.3 can be improved to get the following result:
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Theorem 1.6. If 1 ≤ p < n, 0 < α < n
p − 1 and 1 ≤ q ≤ ∞, then there exists

f ∈ Bα,q
p (Rn) such that

lim sup
diam(R)→0, x∈R∈B

1
|R|

∫
R

f(y) dy = +∞

for every x ∈ Q0 = {y = (y1, · · · , yn) : − 1
2 < yi ≤ 1

2 , i = 1, · · · , n}.

In §2 we enumerate different equivalent norms in Bα,q
p (Rn) that we will use

throughout this paper and we state immersion and regularization results for
Besov spaces. In §3 we prove a trace inequality which is interesting by itself and
will be useful in the proof of Theorem 1.4. In §4 we give the proofs of parts
a) of Theorem 1.2 and Corollary 1.3 (positive results). In §5 we present the
proofs of parts b) of Theorem 1.2 and Corollary 1.3 and Theorem 1.6 (negative
results). In §6 we consider the differentiation of integrals of Besov functions with
respect to a somehow more general basis. In particular we show that the gap
n
p − 1 ≤ α < n−1

p is filled with negative results.

In what follows, c will denote a constant that can vary even within a single
chain of inequalities.

2. Norms, inmersions, regularization and localization of besov
functions

Throughout this paper we will use different norms equivalent to (1.1) in
Bα,q

p (Rn) :

1. For k an integer larger than α, an equivalent norm is given by

‖f‖Lp(Rn) + (
∫ ∞

0

‖tk−α ∂kuf

∂tk (·, t)‖q
Lp(Rn)

dt
t )

1
q .(2.7)

(Taibleson [11]).
2. For k ∈ N and f ∈ Lp(Rn) we introduce the Lp modulus of continuity of f of

order k,

ωk(f, t)p = sup
|h|≤t,h∈Rn

‖∆k
hf‖Lp(Rn)

where ∆k
hf(x) =

∑k
i=0

(
k
i

)
(−1)k−if(x + ih) is the finite difference operator

of order k and step h. Then, if k > α,

‖f‖Lp(Rn)+
( ∫ ∞

0

(t−αωk(f, t)p)q dt
t

) 1
q(2.8)

is an equivalent norm in Bα,q
p (Rn) (Triebel [12]).
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3. Let ϕ ∈ S(Rn), the Schwartz class, be such that supp(ϕ̂) ⊂ {1/2 ≤ |ξ| ≤ 2}
and |ϕ̂(ξ)| ≥ c for 3/5 ≤ |ξ| ≤ 5/3 for some constant c > 0, where ϕ̂ denotes
the Fourier transform of ϕ. Another equivalent norm in Bα,q

p (Rn) is given by

‖f‖Lp(Rn) +
(∫ ∞

0

(
t−α‖ϕt ∗ f‖Lp(Rn)

)q dt
t

)1/q(2.9)

where ϕt(x) = t−nϕ(x/t) (Triebel [12],Bui-Paluszyński-Taibleson [2]).
In (2.7), (2.8) and (2.9) we have the obvious changes for q = ∞ and if q < ∞,∫ ∞
0

may be replaced by
∫ 1

0
.

We have the following immersion results for Besov spaces (Taibleson [11]):

Proposition 2.10. Bα,q
p (Rn) ↪→ Bβ,v

w (Rn) if and only if either p ≤ w and
α − n

p > β − n
w or p ≤ w, α − n

p = β − n
w and q ≤ v.

Localization and regularization are two valid procedures in Besov spaces. The
following lemma will be helpful in the proofs of the results in §4 (see Taible-
son [11] and Triebel [12]). In the following if ν = (ν1, · · · , νn) ∈ N

n
0 is a multiin-

dex then |ν| =
∑n

i=1 νi and Dνg denotes the derivative of order ν of g. C∞
0 (Rn)

is the set of indefinitely differentiable functions on R
n, with compact support.

Lemma 2.11. Let α > 0 and 1 ≤ p, q ≤ ∞.

a) If p, q < ∞ and f ∈ Bα,q
p (Rn) with supp(f) ⊂ B(0, r), r > 0, then, given

ε > 0, there exists g ∈ C∞
0 (Rn) such that supp(g) ⊂ B(0, 2r) and ‖f −

g‖Bα,q
p (Rn) < ε.

b) If g ∈ C∞
0 (Rn) then gf ∈ Bα,q

p (Rn) for every f ∈ Bα,q
p (Rn). Moreover if

m ∈ N, m > α, then

‖gf‖Bα,q
p (Rn) ≤ c

∑
|ν|≤m

‖Dνg‖L∞(Rn)‖f‖Bα,q
p (Rn).

where c is a constant independent of f and g.
c) We have C∞

0 (Rn) ⊂ Bα,q
p (Rn). Moreover, if p, q < ∞ then C∞

0 (Rn) is a dense
subset in Bα,q

p (Rn).

3. A trace inequality

If x ∈ R
n we set x = (x′, xn) where x′ ∈ R

n−1 and xn ∈ R. For a function f
of variable x ∈ R

n, we write ‖f(·, xn)‖Bα,1
p (Rn−1) for the norm in Bα,1

p (Rn−1) of
f(x′, xn) as a function of x′.

In this section we are going to prove the following theorem:

Theorem 3.12. Let α > 0, 1 ≤ p ≤ ∞, r > 0 and f ∈ C∞
0 (Rn). If supp(f) ⊂

B(0, r) then ∫ r

−r

‖f(·, xn)‖Bα,1
p (Rn−1) dxn ≤ c r1/p′‖f‖Bα,1

p (Rn)

where c is a constant independent of f and r.
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For the proof of Theorem 3.12 we need the following lemmata:

Lemma 3.13. If f is an indefinitely differentiable function on R
n, k ∈ N and

h ∈ R
n then

∆k
hf(x) =

∫
R

∑
|ν|=k

k!
ν! (D

νf)(x + ξh)hνMk(ξ) dξ,

where M1 = χ(0,1) and Mk = M1 ∗ Mk−1 for k ≥ 2. Here hν = hν1
1 · · ·hνn

n and
ν! = ν1! · · · νn! if h = (h1, · · · , hn) and ν = (ν1, · · · , νn).

Lemma 3.14. If 1 ≤ p ≤ ∞ and f ∈ C∞
0 (Rn) then uf (x′, xn, y) → f(x′, xn) in

Lp(Rn−1) as y → 0 for every xn ∈ R.

Proof of Theorem 3.12. Fix r > 0, α > 0, 1 ≤ p ≤ ∞ and k ∈ N, k > α.
Let f ∈ C∞

0 (Rn) with supp(f) ⊂ B(0, r), y, t > 0, y < t, and consider the
following integral version of Taylor’s formula

uf (x′, xn, y) =
k−1∑
m=0

1
m!

∂muf

∂tm (x′, xn, t)(y − t)m

− 1
k−1!

∫ t

y

(y − s)k−1 ∂kuf

∂sk (x′, xn, s) ds.

For h ∈ R
n−1 let us perform the finite difference operator of order k and step h

in the variable x′, then

∆k
huf (x′, xn, y) =

k−1∑
m=0

1
m!∆

k
h

∂muf

∂tm (x′, xn, t)(y − t)m

− 1
k−1!

∫ t

y

(y − s)k−1∆k
h

∂kuf

∂sk (x′, xn, s) ds.

By Lemma 3.13 applied to ∂muf

∂tm (x′, xn, t) as a function of x′ for m = 0, · · · , k−1,

where the order of derivation ν belongs to N
n−1
0 , we obtain

∆k
huf (x′, xn, y) =

k−1∑
m=0

1
m!

∫
R

∑
|ν|=k

k!
ν! (D

ν ∂muf

∂tm )(x′ + ξh, xn, t)hνMk(ξ) dξ (y − t)m

− 1
k−1!

∫ t

y

(y − s)k−1∆k
h

∂kuf

∂sk (x′, xn, s) ds.

Applying Minkowski’s integral inequality and noting that
∫

R
Mk(ξ) dξ = 1 and

that ‖∆k
h

∂kuf

∂sk (·, xn, s)‖Lp(Rn−1) ≤ 2k‖∂kuf

∂sk (·, xn, s)‖Lp(Rn−1) it turns out that

‖∆k
huf (·, xn, y)‖Lp(Rn−1) ≤

k−1∑
m=0

1
m!

∑
|ν|=k

k!
ν!‖Dν ∂muf

∂tm (·, xn, t)‖Lp(Rn−1)|h|k (t − y)m

+ 2k

k−1!

∫ t

y

(s − y)k−1‖∂kuf

∂sk (·, xn, s)‖Lp(Rn−1) ds.
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Since by Lemma 3.14

∆k
huf (x′, xn, y) → ∆k

hf(x′, xn)

in Lp(Rn−1) as y → 0 then

‖∆k
hf(·, xn)‖Lp(Rn−1) ≤

k−1∑
m=0

1
m!

∑
|ν|=k

k!
ν!‖Dν ∂muf

∂tm (·, xn, t)‖Lp(Rn−1)|h|k tm

+ 2k

k−1!

∫ t

0

sk−1‖∂kuf

∂sk (·, xn, s)‖Lp(Rn−1) ds.

Taking supremun for |h| ≤ t, multiplying by t−α and integrating in (0,∞) with
respect to dt

t we have∫ ∞

0

t−αωk(f(·, xn), t)p
dt
t

≤
k−1∑
m=0

1
m!

∑
|ν|=k

k!
ν!

∫ ∞

0

‖tm+k−αDν ∂muf

∂tm (·, xn, t)‖Lp(Rn−1)
dt
t

+ 2k

k−1!

∫ ∞

0

t−α

∫ t

0

sk−1‖∂kuf

∂sk (·, xn, s)‖Lp(Rn−1) ds dt
t .

Applying Hardy’s inequality to the second term on the right hand side, inte-
grating in (−r, r) with respect to dxn and then applying Hölder’s inequality, we
get∫ r

−r

∫ ∞

0

t−αωk(f(·, xn), t)p
dt
t dxn

≤
k−1∑
m=0

1
m!

∑
|ν|=k

k!
ν!

∫ ∞

0

(2r)1/p′‖tm+k−αDν ∂muf

∂tm (·, t)‖Lp(Rn)
dt
t

+ 2k

k−1!α

∫ ∞

0

(2r)1/p′‖tk−α ∂kuf

∂tk (·, t)‖Lp(Rn)
dt
t .

Using that, for |ν| = k, we have (see Taibleson [11, Lemma 4 and Theorem 1])∫ ∞

0

‖tm+k−αDν ∂muf

∂tm (·, t)‖Lp(Rn)
dt
t ≤ c

∫ ∞

0

‖tk−αDνuf (·, t)‖Lp(Rn)
dt
t

≤ c

∫ ∞

0

‖tk−α ∂kuf

∂tk (·, t)‖Lp(Rn)
dt
t ,

then∫ r

−r

∫ ∞

0

t−αωk(f(·, xn), t)p
dt
t dxn ≤ c r1/p′

∫ ∞

0

‖tk−α ∂kuf

∂tk (·, t)‖Lp(Rn)
dt
t .

This last inequality and the fact that
∫ r

−r
‖f(·, xn)‖Lp(Rn−1) dxn is less than or

equal to (2r)1/p′‖f‖Lp(Rn) gives the desired result.
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Proof of Lemma 3.13. We follow Bennett-Sharpley [1]. We first prove the lemma
for n = 1 by induction on k. Noting by f ′ the first derivative of f, we have for
k = 1,

∫
R

f ′(x + ξh)hM1(ξ) dξ =
∫ 1

0

f ′(x + ξh)h dξ

= f(x + h) − f(x)

= ∆1
hf(x).

Assume the formula is true for k = 1, · · · , m and let us prove it for k = m + 1.
We note by f (k) the derivative of f of order k. Applying ∆1

h to both sides of the
induction hypothesis for k = m, ∆m

h f(x) =
∫

R
f (m)(x + ξh)hmMm(ξ) dξ, and

using the induction hypothesis for k = 1 applied to f (m) we obtain

h−(m+1)∆m+1
h f(x) =

∫
R

h−1(∆1
hf (m))(x + ξh)Mm(ξ) dξ

=
∫

R

h−1
(∫

R

f (m+1)(x + ξh + τh)hM1(τ) dτ
)
Mm(ξ) dξ

=
∫

R

(∫
R

f (m+1)(x + uh)M1(u − ξ) du
)
Mm(ξ) dξ

=
∫

R

f (m+1)(x + uh)
(∫

R

M1(u − ξ)Mm(ξ) dξ
)
du

=
∫

R

f (m+1)(x + uh)Mm+1(u) du.

In the next to the last equality we have used Fubini’s Theorem since the integrals
converge absolutely.

Assume now n ≥ 2. Let g(t) = f(x + t h
|h| ), t ∈ R. Observe that ∆k

|h|g(t) =

(∆k
hf)(x + t h

|h| ) and that g(k)(ξ|h|) =
∑

|ν|=k
k!
ν! (D

νf)(x + ξh)
(

h
|h|

)ν
. Applying

the thesis of the lemma for n = 1 to g in t = 0 we obtain

∆k
hf(x) = ∆k

|h|g(0) =
∫

R

g(k)(ξ|h|)|h|kMk(ξ) dξ

=
∫

R

∑
|ν|=k

k!
ν! (D

νf)(x + ξh)
(

h
|h|

)ν |h|kMk(ξ) dξ

=
∫

R

∑
|ν|=k

k!
ν! (D

νf)(x + ξh)hνMk(ξ) dξ.

Proof of Lemma 3.14. Let f ∈ C∞
0 (Rn). Observe that uf (x, y) → f(x) uniformly

in R
n as y → 0, so in particular uf (x′, xn, y) → f(x′, xn) in L∞(Rn−1) as y → 0

for every xn ∈ R. So we may assume 1 ≤ p < ∞. We follow some ideas of
Taibleson [11, Theorem 12].
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Let j ∈ N0. Then
∫

Rn−1
|∂juf

∂yj (x′,xn, y)|p dx′ =
∫

Rn−1
|∂juf

∂yj (x′, xn, y/2) ∗ Py/2(x′, xn)|p dx′

≤
∫

x′∈Rn−1

(∫
z∈Rn

|∂juf

∂yj (z, y/2)|Py/2(x′ − z′, xn − zn) dz
)p

dx′

≤
∫

x′∈Rn−1

∫
z∈Rn

|∂juf

∂yj (z, y/2)|p Py/2(x′ − z′, xn − zn) dz dx′

≤ c y−1

∫
z∈Rn

|∂juf

∂yj (z, y/2)|p dz.

In particular, uf (·, xn, y) ∈ Lp(Rn−1) and

‖∂uf

∂y (·, xn, y)‖Lp(Rn−1) ≤ c y−1/p‖∂uf

∂y (·, y/2)‖Lp(Rn).(3.15)

Observe that if 0 < γ < 1/p′ then

‖∂uf

∂y (·, y)‖Lp(Rn) ≤ c yγ−1/p′
.(3.16)

In fact, taking into account that ‖∂uf

∂y (·, y)‖Lp(Rn) is a non increasing function
of y for y ∈ (0,+∞)(Stein [7, page 154, Lemma 6 ]) we have

(1/p′ − γ)−1y1/p′−γ‖∂uf

∂y (·, y)‖Lp(Rn) =
∫ y

0

t1/p′−γ‖∂uf

∂y (·, y)‖Lp(Rn)
dt
t

≤
∫ y

0

t1/p′−γ‖∂uf

∂t (·, t)‖Lp(Rn)
dt
t

≤
∫ ∞

0

t1/p′−γ‖∂uf

∂t (·, t)‖Lp(Rn)
dt
t .

Since f ∈ C∞
0 (Rn) ⊂ B

1−1/p′+γ,1
p (Rn) (Lema 2.11) the last integral is finite and

then we have (3.16).
From (3.15) and (3.16) we obtain ‖∂uf

∂y (·, xn, y)‖Lp(Rn−1) ≤ c yγ−1. So,
if y′ < y,

‖uf (·, xn, y) − uf (·, xn, y′)‖Lp(Rn−1) ≤
∫ y

y′
‖∂uf

∂t (·, xn, t)‖Lp(Rn−1) dt

≤ c

∫ y

y′
tγ−1 dt.

We then have that uf (x′, xn, y) converges in Lp(Rn−1) to a function gxn(x′) ∈
Lp(Rn−1) as y → 0. Since uf (x, y) → f(x) uniformly in R

n as y → 0, it must be
gxn

(x′) = f(x′, xn) and we obtain the desired result.
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4. Proofs of 1.2.a and 1.3.a (positive results)

Since the proof of Theorem 1.4 follows that of Stokolos [9, Lemma1] which
makes use of the non-increasing rearrangement of a function, we give its defini-
tion here and we state a property (equality (4.17)) which will be useful in the
proofs of both Theorem 1.4 and Lemma 4.18 below.

Suppose f is a measurable function in R
n. The non-increasing rearrangement

of f is the function f∗ defined in [0,+∞) by

f∗(t) = inf{λ ≥ 0 : mf (λ) ≤ t} t ≥ 0,

where mf is the distribution function of f, that is, mf (λ) = |{x ∈ R
n : |f(x)| >

λ}|.
Let t > 0, then ∫ t

0

f∗(s) ds = sup
|E|=t, E⊂Rn

∫
E

|f(x)| dx.(4.17)

See for example Bennett-Sharpley [1, page 53, Propotition 3.3 ].
For the proof of Theorem 1.4 we also need the following estimate of rearrange-

ments in terms of Besov norms.

Lemma 4.18. For 1 ≤ p < ∞ we have

1
t

∫ t

0

f∗(s) ds ≤ c ‖f‖
B

n/p,1
p (Rn)

for all t > 0. Here c is a constant independent of f and t.

Proof of Theorem 1.4. Fix 1 ≤ p < ∞ and r > 0. By part a) of Lemma 2.11 and
using standard arguments it is enough to prove inequality (1.5) for f ∈ C∞

0 (Rn)
with supp(f) ⊂ B(0, r). We follow Stokolos [9, Lemma 1] to get the proof of the
theorem.

Let f ∈ C∞
0 (Rn) with supp(f) ⊂ B(0, r) and x = (x′, xn) ∈ R ∈ B. It can be

shown that there exists a measurable set R̄, containing R, whose measure and
diameter are comparable to those of R, whose projection onto a coordinate axis,
yn for instance, is an interval I and the section of R̄ by the hyperplane yn = t,
denoted by R̄t (i.e. R̄t = {y′ ∈ R

n−1 : (y′, t) ∈ R̄}), has constant measure for
t ∈ I. We denote by f∗(t, yn) the non-increasing rearrangement of f(y′, yn) for
each fixed yn as a function of y′. Then, using (4.17) and Lemma 4.18 we have

1
|R|

∫
R

|f(y)| dy ≤ c
1
|R̄|

∫
R̄

|f(y)| dy

= c
1
|I|

∫
I

1
|R̄yn |

∫
R̄yn

|f(y′, yn)| dy′ dyn

≤ c
1
|I|

∫
I

1
|R̄yn |

∫ |R̄yn |

0

f∗(t, yn) dt dyn

≤ c
1
|I|

∫
I

‖f(·, yn)‖
B

(n−1)/p,1
p (Rn−1)

dyn.
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Then, if Mhl denotes the Hardy-Littlewood maximal operator on R, it turns
out that

Mf(x) ≤ cMhl(‖f(·, ·)‖
B

(n−1)/p,1
p (Rn−1)

)(xn),

and since the sets in B have diameter smaller than 1, supp(f) ⊂ B(0, r) and
Mhl is of weak type (1, 1) , it follows that

|{x ∈ R
n : Mf(x) > λ}| = |{x ∈ B(0, r + 1) : Mf(x) > λ}|

≤ c
(r + 1)n−1

λ

∫ r

−r

‖f(·, xn)‖
B

(n−1)/p,1
p (Rn−1)

dxn.

Taking into account the result of Theorem 3.12, we complete the proof of the
theorem.

Proof of part a) of Theorem 1.2. By part b) of Lemma 2.11 it is enough to
prove the theorem for functions of compact support. Let f ∈ B

(n−1)/p,1
p (Rn),

supp(f) ⊂ B(0, r), r > 0 and

Γf(x) = lim sup
R→x

1
|R|

∫
R

|f(y) − f(x)| dy

= inf
δ>0

sup{ 1
|R|

∫
R

|f(y) − f(x)| dy, x ∈ R ∈ B, diam(R) < δ}.

Set t > 0 and Et(f) = {x ∈ R
n : Γf(x) > t}. We are done if we prove that

|Et(f)|e = 0 for every t > 0, where |.|e denotes outer measure.
By part a) of Lemma 2.11, given ε > 0 there exists g ∈ C∞

0 (Rn) such that
supp(g) ⊂ B(0, 2r) and ‖f − g‖

B
(n−1)/p,1
p (Rn)

< ε. We have

Γf(x) ≤ Γ(f − g)(x) + Γg(x)

≤ M(f − g)(x) + |f(x) − g(x)| + Γg(x)

= M(f − g)(x) + |f(x) − g(x)|.
So, using Theorem 1.4,

|Et(f)|e ≤ |{x ∈ R
n : M(f − g)(x) > t

2}| + |{x ∈ R
n : |f(x) − g(x)| > t

2}|
≤ (c/t)(2r + 1)n−1(2r)1/p′‖f − g‖

B
(n−1)/p,1
p (Rn)

+ (2/t)p‖f − g‖p
Lp(Rn)

≤ (c/t)(2r + 1)n−1(2r)1/p′
ε + (2/t)pεp.

Since ε is arbitrary, this ends the proof of the theorem.

Proof of part a) of Corollary 1.3. It is a direct consequence of part a) of The-
orem 1.2 and Proposition 2.10. In fact, we have Bα,q

p (Rn) ⊂ B
(n−1)/p,1
p (Rn) if

α > n−1
p , 1 ≤ q ≤ ∞ and 1 ≤ p < ∞.

Proof of Lemma 4.18. We will prove the lemma using a result which is es-
sentially Calderón’s representation formula for tempered distributions. More



DIFFERENTIATION OF INTEGRALS OF BESOV FUNCTIONS 183

precisely, it can be shown that for µ a finite Borel measure satisfying the stan-
dard Tauberian condition (for all ξ ∈ R

n, ξ �= 0, there exists s > 0 such that
µ̂(sξ) �= 0) there exists η ∈ S(Rn) such that supp(η̂) is contained in an annulus
and

∫ ∞
0

µ̂(sξ)η̂(sξ) ds
s = 1 for ξ �= 0 (Heideman [5]).

Fix 1 ≤ p < ∞. We assume f ∈ B
n/p,1
p (Rn) since otherwise there is nothing

to prove. Consider in B
n/p,1
p (Rn) the norm (2.9) and let η ∈ S(Rn) be associated

to µ = ϕ(x) dx according to Heideman’s result above. We then define

ψ̂(ξ) =
{ ∫ ∞

1
ϕ̂(sξ)η̂(sξ) ds

s , ξ �= 0,
1, ξ = 0.

Observe that ψ̂ ∈ C∞
0 (Rn) and ψ̂ = 1 in a neighborhood of the origin. In fact, if

supp(η̂) ⊂ {ξ : 0 < a < |ξ| < b}, then ψ̂(ξ) = 1 if |ξ| < a and ψ̂(ξ) = 0 if |ξ| > b.

It is now clear that ψ̂ ∈ C∞
0 (Rn). Then ψ ∈ S(Rn) and

∫
Rn ψ(x)dx = 1. So that

ψ is a good approximation to the identity.
Set Iε,a(x) =

∫ a

ε
(ϕs ∗ ηs)(x) ds

s , ε < a. The function Iε,a ∈ L1(Rn) since
∫

Rn

|Iε,a(x)| dx ≤
∫ a

ε

∫
Rn

|(ϕs ∗ ηs)(x)| dx ds
s

≤ ‖ϕ‖L1(Rn)‖η‖L1(Rn) log
(

a
ε

)
.

By Fubini’s theorem,

ˆIε,a(ξ) =
∫

Rn

∫ a

ε

(ϕs ∗ ηs)(x)e−ixξ ds
s dx

=
∫ a

ε

∫
Rn

(ϕs ∗ ηs)(x)e−ixξ dx ds
s

=
∫ a

ε

(ϕs ∗ ηs)̂(ξ) ds
s

=
∫ a

ε

ϕ̂(sξ)η̂(sξ) ds
s

= ψ̂(εξ) − ψ̂(aξ)

= ψ̂ε(ξ) − ψ̂a(ξ).

So Iε,a ∈ S(Rn) and Iε,a = ψε − ψa. Then, since convolution with f commutes
with the integral, we arrive at

(ψε ∗ f)(x) − (ψa ∗ f)(x) = (Iε,a ∗ f)(x) =
∫ a

ε

(ϕs ∗ ηs ∗ f)(x) ds
s .(4.19)

Applying Minkowski’s integral inequality and Young’s inequality we have

‖ψε ∗ f − ψa ∗ f‖Lp(Rn) ≤ ‖η‖L1(Rn)

∫ a

ε

‖ϕs ∗ f‖Lp(Rn)
ds
s
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and since ψε ∗ f → f in Lp(Rn) as ε → 0, it turns out that

‖f − ψa ∗ f‖Lp(Rn) ≤ ‖η‖L1(Rn)

∫ a

0

‖ϕs ∗ f‖Lp(Rn)
ds
s .(4.20)

On the other hand, taking a = 1 (ψa = ψ) in (4.19) and applying Hölder’s
inequality,

|(ψε ∗ f)(x)| ≤ |(ψ ∗ f)(x)| +
∫ 1

ε

|(ϕs ∗ ηs ∗ f)(x)| ds
s

≤ ‖ψ‖Lp′ (Rn)‖f‖Lp(Rn) +
∫ 1

ε

‖ηs‖Lp′ (Rn)‖ϕs ∗ f‖Lp(Rn)
ds
s

= ‖ψ‖Lp′ (Rn)‖f‖Lp(Rn) + ‖η‖Lp′ (Rn)

∫ 1

ε

s−n/p‖ϕs ∗ f‖Lp(Rn)
ds
s

≤ c
(‖f‖Lp(Rn) +

∫ 1

ε

s−n/p‖ϕs ∗ f‖Lp(Rn)
ds
s

)
.(4.21)

Then, using (4.17), Hölder’s inequality, (4.20) and (4.21) we have, for a < 1,

1
t

∫ t

0

f∗(s) ds =
1
t

sup
E⊂Rn, |E|=t

∫
E

|f(x)| dx

≤ 1
t

sup
E⊂Rn, |E|=t

∫
E

|f(x) − (ψa ∗ f)(x)| dx + ‖ψa ∗ f‖L∞(Rn)

≤ 1
t1/p

‖f − ψa ∗ f‖Lp(Rn) + ‖ψa ∗ f‖L∞(Rn)

≤ ‖η‖L1(Rn)

t1/p

∫ a

0

‖ϕs ∗ f‖Lp(Rn)
ds
s + c

(‖f‖Lp(Rn)

+
∫ 1

a

s−n/p‖ϕs ∗ f‖Lp(Rn)
ds
s

)
.

If t < 1 and a = t1/n we obtain

1
t1/p

∫ t1/n

0

‖ϕs ∗ f‖Lp(Rn)
ds
s ≤

∫ t1/n

0

s−n/p‖ϕs ∗ f‖Lp(Rn)
ds
s

and then

1
t

∫ t

0

f∗(s) ds ≤ c ‖f‖
B

n/p,1
p (Rn)

, t < 1.

If t ≥ 1 then

1
t

∫ t

0

f∗(s) ds ≤ 1
t1/p

( ∫ t

0

f∗(s)p ds
) 1

p

≤ (∫ ∞

0

f∗(s)p ds
) 1

p = ‖f‖Lp(Rn) ≤ ‖f‖
B

n/p,1
p (Rn)

.
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5. Proofs of 1.2.b, 1.3.b and 1.6 (negative results)

Proof of part b) of Theorem 1.2. Fix 1 ≤ p < n and 0 < α < n
p − 1. Following

Stokolos [9, 10], we consider in Q0 = {(y1, · · · , yn) : − 1
2 < yi ≤ 1

2 , i = 1, · · · , n},
mn disjoint equal cubes Im

j of measure |Im
j | = m−n. Let Qm

j be the cube
concentric with Im

j of measure |Qm
j | = 2−nm. Let ψ be a non-negative func-

tion in B
(n−1)/p,∞
∞ (Rn) with supp(ψ) ⊂ B(0, 1) and ψ ≡ 1 in B(0, 1

2 ). We
define fm

j (x) = 2mψ(2m+1(x − xm
j )), where xm

j is the center of Qm
j . Then

supp(fm
j ) ⊂ Qm

j and since, from (2.8), |∆n
hψ(x)| ≤ c |h|(n−1)/p for every h ∈ R

n

and x ∈ R
n, we have

|∆n
hfm

j (x)| = |
n∑

i=0

(
n

i

)
(−1)n−ifm

j (x + ih)|

= |2m
n∑

i=0

(
n

i

)
(−1)n−iψ(2m+1(x + ih − xm

j ))|

= |2m∆n
2m+1hψ(2m+1(x − xm

j ))|

≤ c 2m|2m+1h|
n−1

p

= c 2m(1+
n−1

p )|h|
n−1

p .

Set

f(x) =
∞∑

m=1

mn∑
j=1

fm
j (x)

for x ∈ R
n. Clearly f ∈ Lp(Rn) since

‖f‖Lp(Rn) ≤
∞∑

m=1

mn∑
j=1

‖fm
j ‖Lp(Rn) = 2−

n
p ‖ψ‖Lp(Rn)

∞∑
m=1

mn2m(1−n
p )

< ∞.

Moreover f ∈ Bα,1
p (Rn). In fact, if t > 0 and l ∈ N are such that 2−(l+1) ≤ t <

2−l and h ∈ R
n with |h| < t, we have

‖∆n
hf‖Lp(Rn) ≤

l∑
m=1

mn∑
j=1

‖∆n
hfm

j ‖Lp(cnQm
j ) + 2n

∞∑
m=l+1

mn∑
j=1

‖fm
j ‖Lp(Rn)

≤ c (|h|
n−1

p

l∑
m=1

mn2m(1+
n−1

p )2−
nm
p +

∞∑
m=l+1

mn2m(1−n
p ))

≤ c (|h|
n−1

p ln+12l(1− 1
p ) +

∞∑
m=l+1

mn2m(1−n
p )).

Since |h| < t,
∑∞

m=l+1 mn2m(1−n
p ) ≤ c (l + 1)n+12(l+1)(1−n

p ) for 1 ≤ p < n and
t ≥ 2−(l+1), then both terms on the right hand side of the above inequality are
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bounded above by c t
n−1

p ln+12l(1− 1
p )

. We then have,

∫ 1

0

t−αωn(f, t)p
dt
t ≤ c

∞∑
l=0

∫ 2−l

2−(l+1)
t

n−1
p −α

ln+12l(1− 1
p ) dt

t

= c
∞∑

l=0

ln+12l(1− 1
p )(2−l(

n−1
p −α) − 2−(l+1)(

n−1
p −α)) < ∞

since α < n
p − 1.

Let us now prove that

lim sup
diam(R)→0, x∈R∈B

1
|R|

∫
R

f(y) dy = +∞

for every x ∈ Q0 by showing that if x ∈ Im
j , there exists a convex set K(x), and

then a rectangular parallelepiped (de Guzmán [3, page 139, Lemma 2.2 (John’s
Lemma) ]), such that x ∈ K(x), diam(K(x)) ≤ c m−1 and

1
|K(x)|

∫
K(x)

fm
j (y) dy ≥ c m.

Set x ∈ Im
j and consider the closed segment J joining x with xm

j . Let Bm
j be

the ball with center xm
j circumscribing Qm

j (that is, Bm
j = B(xm

j , (
√

n/2)2−m))
and K(x) = ∪y∈JB(y, (

√
n/2)2−m). Then Qm

j ⊂ K(x),

diam(K(x)) = l(J) + diam(Bm
j ) ≤ 2diam(Im

j ) ≤ c m−1,

and

|K(x)| ≤ c (l(J) + diam(Bm
j ))(diam(Bm

j ))n−1 ≤ c m−12−(n−1)m.

Finally, observing that fm
j (x) = 2m in 1

2
√

n
Qm

j , the cube concentric with Qm
j

whose side measures 1
2
√

n
times the side of Qm

j , we have

1
|K(x)|

∫
K(x)

fm
j (y) dy ≥ c

2m| 1
2
√

n
Qm

j |
2−(n−1)mm−1

= c m.

Proof of part b) of Corollary 1.3. It is a consequence of part b) of Theorem 1.2
and Proposition 2.10 since we have Bα,1

p (Rn) ⊂ Bα,q
p (Rn), q ≥ 1.

Proof of Theorem 1.6. It is a consequence of the proof of part b) of Theorem 1.2
and Proposition 2.10.



DIFFERENTIATION OF INTEGRALS OF BESOV FUNCTIONS 187

6. Stokolos’ basis of pliable tubes

Theorem 1.4 is valid for more general bases. Given i = 1, · · · , n, let E be
a measurable set whose projection onto the xi−axis is an interval I and such
that the section of E by the hyperplane xi = t has constant measure for t ∈ I.
We denote by Pi the differentiation basis of all such sets with diameter smaller
than 1 and set P = ∪n

i=1Pi. This is what Stokolos [9] calls the basis of pliable
tubes. It is clear that the proof of Theorem 1.4 allows to show inequality (1.5)
for the maximal operator associated to P instead of M. In fact, we have used in
the proof that every element of B is contained in an element of P of comparable
measure and diameter. So P differentiates Bα,q

p (Rn) with α, p and q in the range
of the positive results for B. We can give a complete answer to the question of
differentiation of integrals of Besov functions in this case.

Theorem 6.22. Let 0 < α < n−1
p , 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Then P does

not differentiate Bα,q
p (Rn).

Proof. We use the following

Lemma 6.23. Let α > 0, 1 ≤ p, q ≤ ∞, m, n ∈ N, m ≤ n. For φ ∈ Bα,q
p (Rm)

and g ∈ Bα,q
p (Rn−m) let

f(x1, · · · , xn) = φ(x1, · · · , xm)g(xm+1, · · · , xn).

Then f ∈ Bα,q
p (Rn).

The proof of Theorem 6.22 we present here is essentially that of Stokolos [9,
Theorem 1]. Fix 0 < α < n−1

p , 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, then there exists
a non-negative function v ∈ Bα,q

p (Rn−1) such that v /∈ L∞(Rn−1). Let {mi}i∈N

be a dense subset in R
n−1 and define

φ(y) =
∞∑

i=1

2−iv(y + mi), y ∈ R
n−1.

Then φ ∈ Bα,q
p (Rn−1) and φ is unbounded in every neighborhood of every point

of R
n−1. Let g ∈ Bα,q

p (R) be a non-negative function such that g = 1 in (−1, 1)
and consider

f(x1, · · · , xn) = φ(x1, · · · , xn−1)g(xn).

Then, by Lemma 6.23, f ∈ Bα,q
p (Rn). We will see that P does not differentiate

the integral of f by showing that for every x = (x1, · · · , xn) with |xn| < 1 we
have

lim sup
diam(E)→0, x∈E∈P

1
|E|

∫
E

f(y) dy = +∞.

Fix x = (x1, · · · , xn) ∈ R
n with |xn| < 1. Given an n − 1 dimensional neigh-

borhood N of (x1, · · · , xn−1) let Q be an (n − 1)−dimensional ball contained
in N such that 1

|Q|
∫

Q
φ(y′) dy′ is great enough. Let w = (w1, · · · , wn−1) be the

center of Q and a < b < c numbers such that b − a = c − b, (a, c) ⊂ (−1, 1) and
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xn ∈ (b, c). Let J be the segment through x starting at (w1, · · · , wn−1, b) and
such that its projection onto the xn−axis is the closed interval [b, c]. We define
E1 as the union of all balls congruent to Q with center in J and E2 = Q× (a, b).
Let E = E1 ∪E2, so E ∈ P, x ∈ E, |E| = 2|Q|(b− a) and the diameter of E can
be made small enough taking N and c − a small enough; moreover we have

1
|E|

∫
E

f(y) dy ≥ 1
2|Q|(b − a)

∫
E2

f(y) dy =
1

2|Q|
∫

Q

φ(y′) dy′.

Proof of Lemma 6.23. Let φ, g, f be as in the statement of the lemma. Observe
that f ∈ Lp(Rn), since ‖f‖Lp(Rn) = ‖φ‖Lp(Rm)‖g‖Lp(Rn−m). Let t > 0, h ∈ R,
|h| < t and k ∈ N, k > α. Then, if j = 1, · · · , m, we have

∆k
hej

f(x1, · · · , xn) =
k∑

i=0

(
k

i

)
(−1)k−iφ(x1, · · · , xj + ih, · · · , xm)g(xm+1, · · · , xn)

= g(xm+1, · · · , xn)∆k
hej

φ(x1, · · · , xm).

So, ‖∆k
hej

f‖Lp(Rn) = ‖g‖Lp(Rn−m)‖∆k
hej

φ‖Lp(Rm) and then

ωj
k(f, t)p := sup

|h|<t, h∈R

‖∆k
hej

f‖Lp(Rn) = ‖g‖Lp(Rn−m)ω
j
k(φ, t)p

for j = 1, · · · , m. Analogously it follows that

ωj
k(f, t)p = ‖φ‖Lp(Rm)ω

j
k(g, t)p.

if j = m + 1, · · · , n. Since (Triebel [12])

‖f‖Bα,q
p (Rn) ∼ ‖f‖Lp(Rn) +

n∑
j=1

(∫ 1

0

(t−αωj
k(f, t)p)q dt

t

) 1
q ,

with the obvious changes for q = ∞, φ ∈ Bα,q
p (Rm) and g ∈ Bα,q

p (Rn−m), we
have that f ∈ Bα,q

p (Rn).
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