
Mathematical Research Letters 10, 11–20 (2003)

DIAMETERS OF HOMOGENEOUS SPACES

Michael H. Freedman, Alexei Kitaev, and Jacob Lurie

Abstract. Let G be a compact connected Lie group with trivial center. Using
the action of G on its Lie algebra, we define an operator norm | |G which induces
a bi-invariant metric dG(x, y) = |Ad(yx−1)|G on G. We prove the existence of a
constant β ≈ .12 (independent of G) such that for any closed subgroup H � G,
the diameter of the quotient G/H (in the induced metric) is ≥ β.

1. Introduction

Finding a lower bound to the (operator norm) diameter of homogeneous
spaces G/H, G compact is a natural geometric problem. It can also be mo-
tivated by considering quantum computation. In standard models [NC] the
state space of a (theoretical) quantum computer is a Hilbert space with a tensor
decomposition, (C2)⊗n. A “gate” is a local unitary operation acting on a small
number, perhaps two, tensor factors (and as the identity on the remaining fac-
tors). One often wonders if a certain set of local gates is “universal” meaning
that the closed subgroup H they generate satisfies U(1)H = U(2n). We produce
a constant β ≈ .12 so that diam U(2n)/U(1)H < β implies universality, where
diameter is to be computed in the operator norm. This norm is well-suited here
because it is stable under ⊗id.

Because the operator norm is bi-invariant it suffices to check that every ele-
ment b in the ball of radius 2β about the identity of SU(2n) has Ballβ(b)∩H �= ∅.
In principle this leads to an algorithm to test if a gate set is universal. Such an
algorithm will be exponentially slow in n. But often it is assumed that identical
gates can be applied on any pair of C2 factors; in this case universality for n = 2
is sufficient to imply universality for all n.

Let G be a compact Lie group with trivial center. The semisimplicity of
G implies that the (negative of the) Killing form is a natural positive-definite,
bi-invariant inner product on the Lie algebra g of G. We let ||x||g denote the
induced (Euclidean) norm on g. We use this to define the operator norm on G
as follows:

|g|G = sup
||y||g=1

|∠(y, Adg y)|

where ∠(y, Adg y) denotes the usual Euclidean angle between the vectors y and
Adg y, normalized so that it lies in the interval [−π, π]. Since angles between
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vectors in a Euclidean space obey a triangle inequality, we deduce the inequality
|gh|G ≤ |g|G+|h|G. It is also clear that |g|G = 0 if and only if Adg is the identity,
which implies that g is the identity since the adjoint action of G is faithful up
to the center of G, and we have assumed that the center of G is trivial.

We define a distance on G by the formula dG(g, g′) = |g−1g′|G. It is easy
to check that this defines a bi-invariant metric on G, where all distances are
bounded above by π. Note that dG is continuous on G, hence there is a contin-
uous bijection from G with its usual topology to G with the topology induced
by dG. Since the source is compact and the target Hausdorff (this fails if G
has nontrivial center, since the operator norm of a central element is equal to
zero), we deduce that the metric dG determines the usual topology on G. For
any closed subgroup H of G, the homogeneous space G/H inherits a quotient
metric given by the formula

dG/H(p, q) = inf dG(p̃, q̃) = inf
gp=q

|g|G

where the first infimum is taken over all pairs p̃, q̃ ∈ G lifting the pair p, q ∈ G/H.
Note that if H is contained in H ′, then the diameter of G/H is at least as large
as that of G/H ′. We are now in a position to state the main result:

Theorem 1. Let G be a compact connected Lie group with trivial center and
H � G a proper compact subgroup of G. Then the diameter of G/H with respect
to the metric dG/H is no smaller than β, where β is the smallest real solution
to the transcendental equation cos2(α − β) + sin2(α − β) sin(β) = cos(4β) and
cos(α) = 7

8 .

One can estimate that the constant β is approximately .124332.

Example 2. Consider the case where G = H × H is a product, and H is
embedded diagonally. Choose an element h ∈ H with |h|H = π (such an element
exists in any nontrivial one parameter subgroup). Then in H ×H, the distance
dH×H(h × 0, h′ × h′) is equal to the larger of dH(h, h′) and dH(h′, e). By the
triangle inequality, this distance is at least π

2 . It follows that the diameter of
G/H is at least π

2 .

Remarks.

(1) For any orthogonal representation τ : G → O(V ) of a group G, we can
define an operator norm on G with respect to V :

|g|G,τ = sup
||v||=1

|∠(v, gv)|

This construction has the following properties:
– If V is the complex plane C, and g ∈ G acts by multiplication by eiα

where −π ≤ α ≤ π, then |g|G,τ = |α|.
– Given any subgroup H ⊆ G, the restriction of | |G,τ to H is equal to

| |H,τ |H .
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– The operator norm associated to a direct sum of representations τi of
G is the supremum of the operator norms associated to the represen-
tations τi.

– In particular, the operator norm on G associated to a representation
V is identical with the operator norm on G associated to the complex-
ification V ⊗R C (with its induced Hermitian structure).

– To evaluate |g|G,τ , we can replace G by the subgroup generated by g
and V by its complexification, which decomposes into one-dimensional
complex eigenspaces under the action of g. We deduce that |g|G,τ is
the supremum of | log λj |, where {λj} is the set of eigenvalues for the
action of g on V (and the logarithms are chosen to be of absolute value
≤ π).

(2) The reader may be curious about the diameter of G/H relative to the
Riemannian quotient of the Killing metric dK . If we let N denote the
dimension of g, then we have

d ≤ dK ≤ 3N
1
2 d

2

(3) We ask if the quotient SO(3)/I is the homogenous space of smallest diam-
eter, where I � A5 denotes the symmetry group of the icosahedron.

(4) We wonder if there is a similar universal lower bound to the diameter of
double coset spaces K�G�H, G as above, K, H ⊂ G closed subgroups.
Our method does not apply directly.

(5) Although suggested by a modern subject the theorem could easily have
been proved a hundred years ago and in fact may have been (or may be)
known.

2. Small Subgroups

Throughout this section, G shall denote a compact, connected Lie group
with trivial center. We give a quantitative version of the principle that discrete
subgroups of G generated by “sufficiently small” elements are automatically
abelian. We will use this in the proof of Theorem 1 in the case where H is
discrete. We will need to understand the operator norm on G a bit better. To
this end, we introduce the operator norm

|x|g = sup
||y||g=1

||[x, y]||g

on the Lie algebra g of G. This is a G-invariant function on g, so we can
unambiguously define the operator norm of any tangent vector to the manifold
G by transporting that tangent vector to the origin (via left or right translation)
and then applying x �→ |x|g. The operator norm on g is related to the operator
norm on G by the following:
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Lemma 3. The exponential map x �→ exp(x) induces a bijection between g0 =
{x ∈ g : |x|g < 2π

3 } and G0 = {g ∈ G : |g|G < 2π
3 }. This bijection preserves the

operator norms.

Proof. First, we claim that the map x �→ exp(x) does not increase the operator
norm. This follows from the fact that the eigenvalues of exp(x) have the form
exp(κ), where κ is an eigenvalue of x. It follows that the exponential map sends
g0 into G0. Choose g ∈ G0, and fix a maximal torus T containing g. Let t be
the Lie algebra of T . Decompose g ⊗R C into eigenspaces for the action of T :
g ⊗R C = t ⊗R C ⊕ ⊕

α gα. The element g acts by an eigenvalue Λ(α) on each
nonzero eigenspace gα. Since g is an orthogonal transformation, we may write
Λ(α) = eiλ(α). Since g ∈ G0, it is possible to choose the function λ so that
− 2π

3 < λ(α) < 2π
3 for each root α. This determines the function λ uniquely.

Choose a system ∆ of simple roots, and let x be the unique element of t such
that α(x) = λ(α) for each α ∈ ∆. It follows immediately that exp(x) = g (since
G has trivial center). To show that x ∈ g0, we need to show that |α(x)| < 2π

3 for
all roots α. For this, it will suffice to prove that α(x) = λ(α) for all roots α. The
uniqueness of λ implies immediately that λ(−α) = −λ(α). Thus, it will suffice
to prove that the equation α(x) = λ(α) holds when α is positive (with respect
to the root basis ∆). Since the equation is known to hold whenever α ∈ ∆, it
will suffice to prove that α(x) = λ(α), β(x) = λ(β) implies

(α + β)(x) = λ(α + β).

In other words, we need to show that the quantity

ε = λ(α + β) − λ(α) − λ(β)

is equal to zero. By construction, |ε| < 2π. On the other hand, since Λ(α)Λ(β) =
Λ(α+β), we deduce that eiε = 1, so that ε is an integral multiple of 2π. It follows
that ε = 0, as desired. It is clear from the construction that |x|g = |g|G. To
complete the proof, we need to show that g has no other logarithms lying in g0.
This follows from the fact that any unitary transformation (in particular, the
adjoint action of g on g) which does not have −1 as an eigenvalue has a unique
logarithm whose eigenvalues are of absolute value < π.

Lemma 4. Let p : [0, 1] → G be a smooth function with p(0) equal to the identity
of G. Then |p(1)|G ≤ ∫ 1

0
|p′(t)|gdt.

Proof. For N sufficiently large, we can write p( i+1
N ) = p( i

N ) exp(xi

N ), where xi

is approximately equal to the derivative of p at i
N . Thus, as N goes to ∞,

the average |x0|g+...+|xN−1|g
N converges to the integral on the right hand side

of the desired inequality. By the triangle inequality, it will suffice to prove
that |p( i

N )−1p( i+1
N )|G ≤ | |xi|g

N |g. If N is sufficiently large, then this follows
immediately from Lemma 3.
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Remark 5. The metric dG on G is not necessarily a path metric: given g, h ∈ G,
there does not necessarily exist a path in G having length equal to dG(g, h). How-
ever, it follows from Lemma 3 that dG is a path metric locally on G. The length
of a (smooth) path can be obtained by integrating the operator norm of the
derivative of a path. Replacing dG by the associated path metric only increases
distances, so that Theorem 1 remains valid for the path metric associated to dG.
This modified version of Theorem 1 makes sense (and remains true) for compact
Lie groups G with finite center.

We can now proceed to the main result of this section. Let α denote the smallest
positive real number satisfying cos(α) = 7

8 .

Theorem 6. Let H ⊂ G be a discrete subgroup. Let h, k ∈ H and suppose
|h|G < π

2 , |k|G < α. Then [h, k] = 1.

Proof. We define a sequence of elements of G by recursion as follows: h0 = h,
hn+1 = [hn, k]. Let C satisfy the equation C2

4 = 2 − 2 cos |k|G. Then the
assumption on k ensures that C < 1. Our first goal is to prove that the operator
norm of the sequence {hn} obeys the estimate |hn|G < Cn π

2 . For n = 0, this
is part of our hypothesis. Assuming that the estimate |hn|G < Cn π

2 is valid,
we can use Lemma 3 to write hn = exp(x), |x|g < Cn π

2 . Now define p(t) =
[exp(tx), k], so that p(0) = 1 and p(t) = hn+1. Using Lemma 4, we deduce that
|hn+1|G ≤ ∫ 1

0
|p′(t)|g ≤ supt |p′(t)|g. On the other hand, the vector p′(t) can be

written as a difference

Rp(t)x − Lexp(tx)k exp(−tx)Rk−1x

where Rg and Lg denote left and right translation by g. We obtain

|p′(t)|g = |x − Adexp(tx)k exp(−tx) x|g
= |Adexp(−tx) x − Adk exp(−tx) x|g
= |x − Adk x|g
= sup||y||g=1 ||[x − Adk x, y]||g
≤ sup||y||g=1(||[x, y] − Adk[x, y]||g + ||Adk[x, y] − [Adk x, y]||g)
≤ sup||y||g=1 ||[x, y] − Adk[x, y]||g + sup||y||g=1 ||[x, y − Ad−1

k y]||g
≤ √

2 − 2 cos |k|G sup||y||g=1 ||[x, y]||g + |x|g sup||y||g=1 ||y − Ad−1
k y]||g

≤ 2
√

2 − cos |k|G|x|g
= C|x|g
< Cn+1 π

2 ,

as desired.
It follows that the operator norms of the sequence {hn} converge to zero.

Therefore the sequence {hn} converges to the identity of G. Since H is a discrete
subgroup, it follows that hn is equal to the identity if n is sufficiently large. We
will next show that hn = 1 for all n > 0, using an argument of Frobenius which
proceeds by a descending induction on n. Once we know that h1 = 1, the proof
will be complete. Assume that hn+1 = 1. Then k commutes with hn, and
therefore also with hnk = hn−1kh−1

n−1. It follows that g ⊗R C admits a basis
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whose elements are eigenvectors for both k and hn−1kh−1
n−1. If the eigenvalues

are the same in both cases, then we deduce that k = hn−1kh−1
n−1, so that hn is

the identity and we are done. Otherwise, there exists v ∈ g ⊗R C which is an
eigenvector for both k and hn−1kh−1

n−1, with different eigenvalues. Equivalently,
both v and hn−1v are eigenvectors for k, with different eigenvalues. Thus v and
hn−1v are orthogonal, which implies |hn−1|G ≥ π

2 , a contradiction.

3. The Proof when H is Discrete

In this section, we will give the proof of Theorem 1 in the case where H is
a discrete subgroup. The idea is to show that if G/H is too small, then H
contains noncommuting elements which are close to the identity, contradicting
Theorem 6. In the statements that follow, we let α denote the smallest positive
real solution to cos(α) = 7

8 and β the smallest positive real solution to the
transcendental equation cos2(α − β) + sin2(α − β) cos(π

2 − β) = cos(4β).

Lemma 7. Let G be a compact, connected Lie group with trivial center. Then
there exist elements h, k ∈ G having the property that for any h′, k′ ∈ G with
dG(h, h′), dG(k, k′) < β, we have |h′|G < π

2 , |k′|G < α, and [h′, k′] �= 1.

Proof. Choose a (local) embedding p : SU(2) → G corresponding to a root of
some simple component of G. We will assume that if the relevant component
has roots of two different lengths, then the embedding p corresponds to a long
root. This ensures that the weights of SU(2) acting on g are no larger than the
weights of the adjoint representation. In the Lie algebra so(3) of SU(2), we let x
and y denote infinitesimal rotations of angles π

2 −β and α−β about orthogonal
axes. Then, by the above condition on weights, we deduce that h = p(exp(x))
and k = p(exp(y)) satisfy the conditions |h|G = π

2 − β, |k|G = α − β. We
claim that the pair h, k ∈ G satisfies the conclusion of the lemma. To see this,
choose any pair h′, k′ ∈ G with d(h, h′), d(k, k′) < β. Then we deduce |h′|G < π

2 ,
|k′|G < α from the triangle inequality. To complete the proof, we must show
that h′ and k′ do not commute. To see this, we let v denote the image in g of a
vector in so(3) about which x is an infinitesimal rotation. Then hv = v, while
∠(v, kv) = α − β. Elementary trigonometry now yields

∠(hkv, khv) = ∠(hkv, kv)
= cos−1(cos2(α − β) + sin2(α − β) cos(π

2 − β))
= cos−1(cos(4β)) = 4β.

By the triangle inequality, we get

4β = ∠(hkv, khv)
≤ ∠(hkv, h′kv) + ∠(h′kv, h′k′v) + ∠(h′k′v, k′h′v)

+∠(k′h′v, k′hv) + ∠(k′hv, khv)
< 4β + ∠(h′k′v, k′h′v),

which implies ∠(h′k′v, k′h′v) > 0 so that [h′, k′] �= 1.

We can now complete the proof of Theorem 1 in the case where H is discrete:
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Proof. Choose h, k ∈ G satisfying the conclusion of Lemma 7. Since G/H
has diameter less than β, the cosets hH and kH are within β of the identity
coset in G/H, which implies that there exist h′, k′ ∈ H with d(h, h′), d(k, k′) <
β. Lemma 7 ensures that h′ and k′ do not commute, which contradicts
Theorem 6.

4. The Proof when G is Simple

In this section, we give the proof of the main theorem in the case where H
is nondiscrete and G is simple. The idea in this case is to show that because
the Lie algebra h of H cannot be a G-invariant subspace of g, the action of G
automatically moves it quite a bit: this is made precise by Theorem 10. Since h

is invariant under the action of H, this will force G/H to have large diameter in
the operator norm. We begin with some general remarks about angles between
subspaces of a Hilbert space. Let V be a real Hilbert space, and let U, W ⊆ V
be linear subspaces. The angle ∠(U, W ) between U and W is defined to be

max( sup
u∈U−{0}

inf
w∈W−{0}

|∠(u, w)|, sup
w∈W−{0}

inf
u∈U−{0}

|∠(u, w))|).

Note that for a fixed unit vector u ∈ U , the cosine of the minimal angle ∠(u, w)
with w ∈ W is equal to the length of the orthogonal projection of u onto W⊥.
Thus, the sine of the minimal (positive) angle is equal to the length of the
orthogonal projection of u onto W⊥. Consequently we have

sin( sup
u∈U−{0}

inf
w∈W−{0}

|∠(u, w)| ) = sup
||u||=1,||w⊥||=1

〈u, w⊥〉

which is symmetric in U and W⊥. From this symmetry we can deduce:

Lemma 8. For any pair of subspaces U, W ⊆ V , the angle ∠(U, W ) is equal to
the angle ∠(U⊥, W⊥).

We will also need the following elementary fact:

Lemma 9. Let V be a finite-dimensional Hilbert space, and let A be an endo-
morphism of V having rank k. Then |Tr(A)| ≤ k|A|.
Proof. Choose an orthonormal basis {vi}1≤i≤n for V having the property that
Avi = 0 for i > k. Then

|Tr(A)| = |
∑

i

〈vi, Avi〉| ≤
∑

1≤i≤k

|〈vi, Avi〉| ≤
∑

1≤i≤k

|A| = k|A|

We now proceed to the main point.

Theorem 10. Let G be a compact Lie group acting irreducibly on a (necessarily
finite dimensional) complex Hilbert space V . Let W �= 0, V be a nontrivial
subspace. Then there exists g ∈ G such that ∠(W, gW ) ≥ π

4 .
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Proof. Suppose, to the contrary, that ∠(W, gW ) < π
4 for all g ∈ G. Let V

have dimension n. Replacing W by W⊥ if necessary, we may assume that the
dimension k of W satisfies k ≤ n

2 .For any subspace U ⊆ V , we let ΠU denote
the orthogonal projection onto U . For each g ∈ G, projection from gW onto
W⊥ or from W⊥ to gW shrinks lengths by a factor of sin∠(W, gW ) ≤ sin π

4 at
least. It follows that

|ΠW⊥ΠgW ΠW⊥ | ≤ |ΠW⊥ΠgW | |ΠgW ΠW⊥ | <
1
2
.

Using the identity Tr(AB) = Tr(BA), we deduce

Tr(ΠgW ΠW⊥) = Tr(ΠgW ΠW⊥ΠW⊥)
= Tr(ΠW⊥ΠgW ΠW⊥) ≤ k|ΠW⊥ΠgW ΠW⊥ |
< k

2 .

Integrating this result over G (with respect to a Haar measure which is normal-
ized so that

∫
G

1 = 1), we deduce

Tr((
∫

G

ΠgW )ΠW⊥) =
∫

G

Tr(ΠgW ΠW⊥) <
n

2
.

On the other hand,
∫

G
ΠgW is a G-invariant element of End(V ). Since V is

irreducible, Schur’s lemma implies that
∫

G
ΠgW = λ1V for some scalar λ ∈ C.

We can compute λ by taking traces:

nλ = Tr(λ1V )
= Tr(

∫
G

ΠgW )
=

∫
G

Tr(ΠgW ) = k,

so that λ = k
n . Thus k(n−k)

n = Tr( k
nΠ⊥

W ) < k
2 , so that 2(n − k) < n, a contra-

diction.

From Theorem 10, one can easily deduce the analogous result in the case when
V is a real Hilbert space, provided that V ⊗RC remains an irreducible represen-
tation of G. Using this, we can easily complete the proof of Theorem 1 in the
case where G is simple and H is nondiscrete (with an even better constant).

Proof. Let h denote the Lie algebra of H. Since H �= G and G is connected,
h � g. Since H is nondiscrete, h �= 0. Since g⊗RC is an irreducible representation
of G, we deduce that there exists g ∈ G such that ∠(gh, h) ≥ π

4 . Now one deduces
that for any h ∈ H, gh′ ∈ gH, the distance

d(gh′, h) = |gh′h−1|G ≥ ∠(gh′h−1h, h) = ∠(gh, h) ≥ π

4
.

It follows that the distance between the cosets gH and H in G/H is at
least π

4 .
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5. The General Case

We now know that Theorem 1 is valid under the additional assumption that
the group G is simple. We will complete the proof by showing how to reduce to
this case. The main tool is the following observation:

Proposition 11. Let π : G → G′ be a surjection of compact connected Lie
groups with trivial center, let H be a closed subgroup of G and H ′ = π(H) its
image in G′. Then diam(G′/H ′) ≤ diam(G/H).

Proof. For any points x′, y′ ∈ G′/H ′, we can lift them to a pair of points x, y ∈
G/H. It will suffice to show dG/H(x, y) ≥ dG′/H′(x′, y′). The left hand side is
equal to

inf
gx=y

|g|G

and the right hand side to

inf
g′x′=y′

|g′|G′ .

To complete the proof, it suffices to show that |g|G ≥ |π(g)|G′ . This follows
immediately since we may identify the Lie algebra g′ of G′ with a direct summand
of g.

Now assume that G is a compact, connected Lie group with trivial center. Then
it is a product of simple factors {Gα}α∈Λ. Let πα : G → Gα denote the pro-
jection. Let H � G be a closed subgroup. If παH �= Gα for some α ∈ Λ, then
diam(G/H) ≥ diam(Gα/παH) ≥ β and we are done. Otherwise, πα induces a
surjection of Lie algebras h → gα for each α. By the structure theory of reduc-
tive Lie algebras, we deduce that h = hα⊕kα, where πα is zero on kα and induces
an isomorphism hα � gα. Since hα is therefore simple, kα may be characterized
as the centralizer of hα in h. Since H �= G and G is connected, H must have
smaller dimension than G. It follows that the subalgebras hα ⊆ h cannot all
be distinct. Choose α, α′ ∈ Λ with hα = hα′ . The the map H → Gα × Gα′ is
not surjective on Lie algebras. Without loss of generality, we may replace G by
Gα × Gα′ and H by its image in Gα × Gα′ . Since the Lie algebra of H now
maps isomorphically onto the Lie algebras of the factors Gα and Gα′ , it follows
that the connected component H0 of the identity in H is isomorphic to Gα,
which is included diagonally in Gα × Gα′ . Then H = H0(H ∩ (Gα × 1)). The
intersection K = H ∩ (Gα × 1) is normalized by H0 = {(g, g) : g ∈ Gα}, hence it
is normalized by Gα × {e}. Since Gα′ is simple, we deduce that K = {e}. Thus
H = H0 is embedded diagonally in Gα × Gα′ . We have already considered this
case in Example 2, where we saw that the diameter of G′/H ′ is at least π

2 .

Remark 12. If we restrict our attention to the case where H is a connected
subgroup of G, then our proof gives a better lower bound of π

4 .
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