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DIAMETERS OF HOMOGENEOUS SPACES

MicHAEL H. FREEDMAN, ALEXEI KITAEV, AND JACOB LURIE

ABSTRACT. Let G be a compact connected Lie group with trivial center. Using
the action of G on its Lie algebra, we define an operator norm | | which induces
a bi-invariant metric dg(z,y) = | Ad(yz~!')|g on G. We prove the existence of a
constant 3 = .12 (independent of G) such that for any closed subgroup H ¢ G,
the diameter of the quotient G/H (in the induced metric) is > S.

1. Introduction

Finding a lower bound to the (operator norm) diameter of homogeneous
spaces G/H, G compact is a natural geometric problem. It can also be mo-
tivated by considering quantum computation. In standard models [NC] the
state space of a (theoretical) quantum computer is a Hilbert space with a tensor
decomposition, (C?)®". A “gate” is a local unitary operation acting on a small
number, perhaps two, tensor factors (and as the identity on the remaining fac-
tors). One often wonders if a certain set of local gates is “universal” meaning
that the closed subgroup H they generate satisfies U(1)H = U(2"). We produce
a constant § &~ .12 so that diam U(2")/U(1)H < [ implies universality, where
diameter is to be computed in the operator norm. This norm is well-suited here
because it is stable under ®;q.

Because the operator norm is bi-invariant it suffices to check that every ele-
ment b in the ball of radius 25 about the identity of SU(2™) has Ballg(b)NH # (.
In principle this leads to an algorithm to test if a gate set is universal. Such an
algorithm will be exponentially slow in n. But often it is assumed that identical
gates can be applied on any pair of C? factors; in this case universality for n = 2
is sufficient to imply universality for all n.

Let G be a compact Lie group with trivial center. The semisimplicity of
G implies that the (negative of the) Killing form is a natural positive-definite,
bi-invariant inner product on the Lie algebra g of G. We let ||z||y denote the
induced (Euclidean) norm on g. We use this to define the operator norm on G
as follows:

lgle = sup [Z£(y,Adgy)|
llyllg=1
where Z(y, Ad, y) denotes the usual Euclidean angle between the vectors y and
Ad, y, normalized so that it lies in the interval [—m,7]. Since angles between
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vectors in a Euclidean space obey a triangle inequality, we deduce the inequality
lgh|c < |glc+|h|c. It is also clear that |g|¢ = 0 if and only if Ad, is the identity,
which implies that g is the identity since the adjoint action of G is faithful up
to the center of G, and we have assumed that the center of G is trivial.

We define a distance on G by the formula dg(g,9') = |[¢g71¢'|g. It is easy
to check that this defines a bi-invariant metric on G, where all distances are
bounded above by 7. Note that dg is continuous on (G, hence there is a contin-
uous bijection from G with its usual topology to G with the topology induced
by dg. Since the source is compact and the target Hausdorff (this fails if G
has nontrivial center, since the operator norm of a central element is equal to
zero), we deduce that the metric dg determines the usual topology on G. For
any closed subgroup H of G, the homogeneous space G/H inherits a quotient
metric given by the formula

da/n(p;q) = infde(p,q) = inf |g|c

where the first infimum is taken over all pairs p, ¢ € G lifting the pair p,q € G/H.
Note that if H is contained in H’, then the diameter of G/H is at least as large
as that of G/H’'. We are now in a position to state the main result:

Theorem 1. Let G be a compact connected Lie group with trivial center and

H & G a proper compact subgroup of G. Then the diameter of G/H with respect

to the metric dg/g is no smaller than 3, where 3 is the smallest real solution

to the transcendental equation cos?®(a — () + sin®*(a — () sin(B) = cos(48) and
7

cos(a) = 3.

One can estimate that the constant § is approximately .124332.

Example 2. Consider the case where G = H x H is a product, and H is
embedded diagonally. Choose an element h € H with |h|g = 7 (such an element
exists in any nontrivial one parameter subgroup). Then in H x H, the distance
duxm(h x 0,h" x h') is equal to the larger of dy(h,h’) and dgy(h',e). By the
triangle inequality, this distance is at least 7. It follows that the diameter of
G/H is at least 7.

Remarks.

(1) For any orthogonal representation 7 : G — O(V) of a group G, we can
define an operator norm on G with respect to V:

l9la, = sup [£(v, gv)|

[|v]]=1

This construction has the following properties:
— If V is the complex plane C, and g € G acts by multiplication by e*®
where —m < a < 7, then |g|¢.r = |a|.
— Given any subgroup H C G, the restriction of | |g,+ to H is equal to
| |H,T|H~
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— The operator norm associated to a direct sum of representations 7; of
G is the supremum of the operator norms associated to the represen-
tations 7;.

— In particular, the operator norm on GG associated to a representation
V is identical with the operator norm on G associated to the complex-
ification V ®@g C (with its induced Hermitian structure).

— To evaluate |g|¢c -, we can replace G by the subgroup generated by ¢
and V by its complexification, which decomposes into one-dimensional
complex eigenspaces under the action of g. We deduce that |g|¢c - is
the supremum of |log A;|, where {);} is the set of eigenvalues for the
action of g on V' (and the logarithms are chosen to be of absolute value
< ).

(2) The reader may be curious about the diameter of G/H relative to the
Riemannian quotient of the Killing metric dx. If we let N denote the
dimension of g, then we have

3Nzd

d<dg < 5

(3) We ask if the quotient SO(3)/I is the homogenous space of smallest diam-
eter, where I ~ As denotes the symmetry group of the icosahedron.

(4) We wonder if there is a similar universal lower bound to the diameter of
double coset spaces K\ G, H, G as above, K, H C G closed subgroups.
Our method does not apply directly.

(5) Although suggested by a modern subject the theorem could easily have
been proved a hundred years ago and in fact may have been (or may be)
known.

2. Small Subgroups

Throughout this section, G shall denote a compact, connected Lie group
with trivial center. We give a quantitative version of the principle that discrete
subgroups of G generated by “sufficiently small” elements are automatically
abelian. We will use this in the proof of Theorem 1 in the case where H is
discrete. We will need to understand the operator norm on G a bit better. To
this end, we introduce the operator norm

|zlg = sup ||[z,y]llq
llyllg=1
on the Lie algebra g of G. This is a G-invariant function on g, so we can
unambiguously define the operator norm of any tangent vector to the manifold
G by transporting that tangent vector to the origin (via left or right translation)
and then applying x — |z|;. The operator norm on g is related to the operator
norm on G by the following:



14 MICHAEL H. FREEDMAN, ALEXEI KITAEV, AND JACOB LURIE

Lemma 3. The exponential map x — exp(x) induces a bijection between gg =
{reg:|zlg <3} and Go={g € G:|glc < &}. This bijection preserves the
operator norms.

Proof. First, we claim that the map x — exp(x) does not increase the operator
norm. This follows from the fact that the eigenvalues of exp(z) have the form
exp(k), where k is an eigenvalue of z. It follows that the exponential map sends
go into Gg. Choose g € Gq, and fix a maximal torus T' containing g. Let t be
the Lie algebra of T. Decompose g ®r C into eigenspaces for the action of T
gOr C=t®r C® P, ga- The element g acts by an eigenvalue A(a) on each
nonzero eigenspace g,. Since g is an orthogonal transformation, we may write
A(a) = ). Since g € Gy, it is possible to choose the function A so that
—2?” < AMa) < %’r for each root «. This determines the function A uniquely.
Choose a system A of simple roots, and let x be the unique element of t such
that a(z) = A(«a) for each o € A. It follows immediately that exp(x) = ¢ (since
G has trivial center). To show that z € go, we need to show that |a(z)| < 2 for
all roots . For this, it will suffice to prove that a(z) = A(«) for all roots a. The
uniqueness of A\ implies immediately that A\(—a) = —A(a). Thus, it will suffice
to prove that the equation a(z) = A(a) holds when « is positive (with respect
to the root basis A). Since the equation is known to hold whenever a € A, it
will suffice to prove that a(xz) = M«), f(x) = A\(3) implies

(a+ B)(x) = Mo+ 9).

In other words, we need to show that the quantity

= Ma+8) = Ala) = A(B)

is equal to zero. By construction, |e| < 27. On the other hand, since A(a)A(S) =
A(a+f3), we deduce that e = 1, so that € is an integral multiple of 2. It follows
that € = 0, as desired. It is clear from the construction that |z|; = |g|g. To
complete the proof, we need to show that g has no other logarithms lying in gg.
This follows from the fact that any unitary transformation (in particular, the
adjoint action of g on g) which does not have —1 as an eigenvalue has a unique
logarithm whose eigenvalues are of absolute value < 7. O

Lemma 4. Letp: [0, 1] — G be a smooth function with p(0) equal to the identity
of G. Then |p(1)|g < fo P/ (t)]qdt.

Proof. For N sufficiently large, we can write p(%) = p(%) exp(%), where z;
is approximately equal to the derivative of p at §. Thus, as N goes to oo,
the average [Zola+. Hx” il converges to the mtegral on the right hand side
of the desired 1nequahty By the triangle inequality, it will suffice to prove

that [p(4) 'p(Eh)|e < |%]g. If N is sufficiently large, then this follows
immediately from Lemma 3. O
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Remark 5. The metric dg on G is not necessarily a path metric: given g, h € G,
there does not necessarily exist a path in G having length equal to dg (g, h). How-
ever, it follows from Lemma 3 that dg is a path metric locally on G. The length
of a (smooth) path can be obtained by integrating the operator norm of the
derivative of a path. Replacing dg by the associated path metric only increases
distances, so that Theorem 1 remains valid for the path metric associated to d¢.
This modified version of Theorem 1 makes sense (and remains true) for compact
Lie groups G with finite center.

We can now proceed to the main result of this section. Let o denote the smallest

positive real number satisfying cos(a) = £.

Theorem 6. Let H C G be a discrete subgroup. Let h,k € H and suppose
|hla < 5, |kla < o. Then [h, k] = 1.

Proof. We define a sequence of elements of G by recursion as follows: hg = h,
hnt1 = [hn,k]. Let C satisfy the equation %2 = 2 — 2cos|k|g. Then the
assumption on k ensures that C' < 1. Our first goal is to prove that the operator
norm of the sequence {h,} obeys the estimate |h,|g < C"%. For n = 0, this
is part of our hypothesis. Assuming that the estimate |h,|¢ < C™7 is valid,
we can use Lemma 3 to write h, = exp(z), |z|g < C"F. Now define p(t) =
[exp(tx), k], so that p(0) =1 and p(t) = hy41. Using Lemma 4, we deduce that
|hnt1le < fol P’ (t)|g < sup, |p'(t)|g- On the other hand, the vector p’(¢) can be
written as a difference

Rp(t)x - Lexp(tz)k exp(—tx)kalx
where R, and L, denote left and right translation by g. We obtain

’p/(t”g = |IE - Adexp(tr)k: exp(—tzx) :L"g
= | Adexp(—ta:) r — Ady exp(—tzx) x|g
= |z —Adyz|g

supy|y |, =1 |z — Adk 2, 9]llg

< supyy =1 (llz; y] = Ad[z, y]llg + [| Ad[z, y] — [Ady w,y]\llg)
< supyy,—1 [z, y] — Adi[z, ylllg + supyy, =1 |2,y — Ady y]Hgl
< V2 —2cosklg SUDP||y||4=1 [z, y]llg + [xlg SUDP||y||4=1 ly — Ady, " ylllg
< 2/2— cos [Hlolely
= Clzf,
< Ccrtiz,
as desired.

It follows that the operator norms of the sequence {h,} converge to zero.
Therefore the sequence {h,,} converges to the identity of G. Since H is a discrete
subgroup, it follows that h, is equal to the identity if n is sufficiently large. We
will next show that h,, = 1 for all n > 0, using an argument of Frobenius which
proceeds by a descending induction on n. Once we know that hy = 1, the proof
will be complete. Assume that h,y; = 1. Then k& commutes with h,, and
therefore also with hpk = h,_1kh *,. It follows that g ®g C admits a basis

n—1-
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whose elements are eigenvectors for both k£ and hn_lkrh;il. If the eigenvalues
are the same in both cases, then we deduce that k = hn,lkh;il, so that h,, is
the identity and we are done. Otherwise, there exists v € g ®g C which is an
eigenvector for both £ and hn_lkhflil, with different eigenvalues. Equivalently,
both v and h,,_jv are eigenvectors for k, with different eigenvalues. Thus v and
hyn—1v are orthogonal, which implies |h,,_1|¢ > 7, a contradiction. O

3. The Proof when H is Discrete

In this section, we will give the proof of Theorem 1 in the case where H is
a discrete subgroup. The idea is to show that if G/H is too small, then H
contains noncommuting elements which are close to the identity, contradicting
Theorem 6. In the statements that follow, we let a denote the smallest positive
real solution to cos(e) = % and 3 the smallest positive real solution to the

transcendental equation cos®(a — () + sin?(a — 3) cos(§ — ) = cos(4/3).

Lemma 7. Let G be a compact, connected Lie group with trivial center. Then
there exist elements h,k € G having the property that for any W', k' € G with
da(h,h'),da(k, k") < B8, we have |V |g < T, |K'|a < a, and [h', k'] # 1.

Proof. Choose a (local) embedding p : SU(2) — G corresponding to a root of
some simple component of G. We will assume that if the relevant component
has roots of two different lengths, then the embedding p corresponds to a long
root. This ensures that the weights of SU(2) acting on g are no larger than the
weights of the adjoint representation. In the Lie algebra so(3) of SU(2), we let x
and y denote infinitesimal rotations of angles 3 — 3 and a — # about orthogonal
axes. Then, by the above condition on weights, we deduce that h = p(exp(x))
and k = p(exp(y)) satisfy the conditions |h|l¢ = § — 3, |klg = a — 3. We
claim that the pair h, k € G satisfies the conclusion of the lemma. To see this,
choose any pair h', k" € G with d(h, '), d(k, k') < 8. Then we deduce |h/|¢ < 7,
|k'|¢ < a from the triangle inequality. To complete the proof, we must show
that A’ and &’ do not commute. To see this, we let v denote the image in g of a
vector in so(3) about which x is an infinitesimal rotation. Then hv = v, while
Z(v,kv) = o — 5. Elementary trigonometry now yields

Z(hkv,khv) = Z(hkv, kv)
= cos” (cos*(a = ) +sin(a — B) cos(§ — )
= cos !(cos(43)) = 40.
By the triangle inequality, we get

48 = Z(hkv, kho)
< Z(hkv,Wkv) + Z(W kv, W'E'v) + Z(WE v, k'h'v)
+Z(K v, k') + Z(k ho, kho)
< 4B+ Z(WEv, K'h'v),
which implies Z(h'k'v, k'h'v) > 0 so that [/, k'] # 1. O

We can now complete the proof of Theorem 1 in the case where H is discrete:
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Proof. Choose h,k € G satisfying the conclusion of Lemma 7. Since G/H
has diameter less than (3, the cosets hH and kH are within 3 of the identity
coset in G/H, which implies that there exist ', k" € H with d(h,h),d(k, k") <
(. Lemma 7 ensures that h’ and k&’ do not commute, which contradicts
Theorem 6. O

4. The Proof when G is Simple

In this section, we give the proof of the main theorem in the case where H
is nondiscrete and G is simple. The idea in this case is to show that because
the Lie algebra h of H cannot be a G-invariant subspace of g, the action of G
automatically moves it quite a bit: this is made precise by Theorem 10. Since h
is invariant under the action of H, this will force G/H to have large diameter in
the operator norm. We begin with some general remarks about angles between
subspaces of a Hilbert space. Let V be a real Hilbert space, and let U, W C V
be linear subspaces. The angle Z(U, W) between U and W is defined to be

maX(u;]ug N v |£(u, w)], e L £ (u, w))]).
Note that for a fixed unit vector u € U, the cosine of the minimal angle Z(u, w)
with w € W is equal to the length of the orthogonal projection of u onto W+.
Thus, the sine of the minimal (positive) angle is equal to the length of the
orthogonal projection of u onto W+. Consequently we have
sin(  sup inf |Z(u,w)|) = sup (u, wh)
el ~{0} weW—{0} [lull|=1,][w{]=1

which is symmetric in U and W+. From this symmetry we can deduce:

Lemma 8. For any pair of subspaces U, W C V', the angle Z(U, W) is equal to
the angle Z(U+,W).

We will also need the following elementary fact:

Lemma 9. Let V be a finite-dimensional Hilbert space, and let A be an endo-
morphism of V' having rank k. Then | Tr(A)| < k|A|.

Proof. Choose an orthonormal basis {v; }1<i<, for V having the property that
Av; =0 for i > k. Then

!TT(A)IZIZ@Z-,AWHS D v Av) < Y Al =K[A]

1<i<k 1<i<k

We now proceed to the main point.

Theorem 10. Let G be a compact Lie group acting irreducibly on a (necessarily
finite dimensional) complex Hilbert space V. Let W # 0,V be a nontrivial
subspace. Then there exists g € G such that Z(W,gW) > 7.
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Proof. Suppose, to the contrary, that Z(W,gW) < 7 for all g € G. Let V
have dimension n. Replacing W by W if necessary, we may assume that the
dimension k of W satisfies k& < 4.For any subspace U C V, we let Iy denote
the orthogonal projection onto U. For each g € G, projection from gW onto
W+ or from W+ to gW shrinks lengths by a factor of sin Z(W, gW) < sin 7 at
least. It follows that

1
‘HwLHgWH‘/Vi‘ < ’HWLng| ’ngnwi‘ < 5
Using the identity Tr(AB) = Tr(BA), we deduce

TI'(HQWHI/VL) = TI'(HgWHm/lnwL)
= Tr(HwLHgW]IwL) S k|HWngWHWi|
k
< 3.

Integrating this result over G (with respect to a Haar measure which is normal-
ized so that [, 1= 1), we deduce

Tr((/GHgW)HWL):/GTr(HgWHWL) < g

On the other hand, [,Igw is a G-invariant element of End(V). Since V is
irreducible, Schur’s lemma implies that fG II;w = Aly for some scalar A € C.
We can compute A by taking traces:

nAx = TI‘()\I\/)
= Tr(Jg Mgw)
= fG TI'(ng) = k,
so that A = £, Thus M = Tr(113;,) < %, so that 2(n — k) < n, a contra-
diction. O

From Theorem 10, one can easily deduce the analogous result in the case when
V' is a real Hilbert space, provided that V ®g C remains an irreducible represen-
tation of GG. Using this, we can easily complete the proof of Theorem 1 in the
case where G is simple and H is nondiscrete (with an even better constant).

Proof. Let b denote the Lie algebra of H. Since H # G and G is connected,
h C g. Since H is nondiscrete, §h # 0. Since g@grC is an irreducible representation
of G, we deduce that there exists g € G such that Z(gh,h) > 7. Now one deduces
that for any h € H, gh’ € gH, the distance

d(gh'.h) = |gh'h™|c = Z(gh'h~"0,b) = Z(gb.b) > 7.

It follows that the distance between the cosets gH and H in G/H is at
least 7. O
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5. The General Case

We now know that Theorem 1 is valid under the additional assumption that
the group G is simple. We will complete the proof by showing how to reduce to
this case. The main tool is the following observation:

Proposition 11. Let 7 : G — G be a surjection of compact connected Lie
groups with trivial center, let H be a closed subgroup of G and H' = w(H) its
image in G'. Then diam(G'/H'") < diam(G/H).

Proof. For any points z’,y’ € G'/H’, we can lift them to a pair of points z,y €
G/H. It will suffice to show dg/p(2,y) > dg//m/(2',y"). The left hand side is
equal to

inf gl
gr=y
and the right hand side to
Jnf 19'lc
z'=y

To complete the proof, it suffices to show that |g|¢ > |7(g)|g:. This follows
immediately since we may identify the Lie algebra g’ of G’ with a direct summand
of g. O

Now assume that G is a compact, connected Lie group with trivial center. Then
it is a product of simple factors {G,}aca. Let 1o : G — G, denote the pro-
jection. Let H C G be a closed subgroup. If 7, H # G, for some o € A, then
diam(G/H) > diam(G, /7o H) > [ and we are done. Otherwise, 7, induces a
surjection of Lie algebras h — g, for each a. By the structure theory of reduc-
tive Lie algebras, we deduce that h = h, PE,, where 7, is zero on £, and induces
an isomorphism b, >~ g,. Since f, is therefore simple, £, may be characterized
as the centralizer of h, in . Since H # G and G is connected, H must have
smaller dimension than G. It follows that the subalgebras h, C h cannot all
be distinct. Choose a, o’ € A with b, = bo. The the map H — G4 x Gy is
not surjective on Lie algebras. Without loss of generality, we may replace G by
Ga X Go and H by its image in G, X G4 . Since the Lie algebra of H now
maps isomorphically onto the Lie algebras of the factors G, and G/, it follows
that the connected component Hy of the identity in H is isomorphic to Gg,,
which is included diagonally in G, X Go/. Then H = Ho(H N (G, x 1)). The
intersection K = H N (G, x 1) is normalized by Hy = {(g,9) : g € Ga}, hence it
is normalized by G, x {e}. Since G, is simple, we deduce that K = {e}. Thus
H = Hj is embedded diagonally in G, x G,/. We have already considered this
case in Example 2, where we saw that the diameter of G'/H’ is at least 7.

Remark 12. If we restrict our attention to the case where H is a connected
subgroup of G, then our proof gives a better lower bound of 7.
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