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CLIFFORD ALGEBRAS AND THE CLASSICAL DYNAMICAL
YANG-BAXTER EQUATION

A. Alekseev and E. Meinrenken

Abstract. We describe a relationship of the classical dynamical Yang-Baxter
equation with the following elementary problem for Clifford algebras: Given a
vector space V with quadratic form QV , how is the exponential of an element
in ∧2(V ) under exterior algebra multiplication related to its exponential under
Clifford multiplication?

1. Introduction

Let g be a real Lie algebra, equipped with a non-degenerate invariant qua-
dratic form Q. Let Θ ∈ ∧3g be the cubic element defined by the quadratic form
and the Lie algebra structure. An element r ∈ ∧2g is called a classical r-matrix
for g if it satisfies the (modified) classical Yang-Baxter equation (CYBE)

1
2
[r, r]g = εΘ

for some coupling constant ε ∈ R. Here [r, r]g is defined using the extension of
the Lie bracket to the Schouten bracket on the exterior algebra, [·, ·]g : ∧kg ×
∧lg → ∧k+l−1g. Drinfeld [8] and Semenov-Tian-Shansky [20] gave a geometric
interpretation of the CYBE in terms of Poisson-Lie group structures, and a
classification of r-matrices for semi-simple Lie algebras and ε �= 0 was obtained
by Belavin-Drinfeld [6].

The CYBE admits an important generalization known as the classical dynam-
ical Yang-Baxter equation (CDYBE). Let k ⊂ g be a Lie subalgebra. A classical
dynamical r-matrix is a k-equivariant (meromorphic) function r : k∗ → ∧2g

satisfying the (modified) CDYBE [11]∑
i

∂r

∂µi
∧ ei +

1
2
[r, r]g = εΘ.

Here ei is a basis on k with dual basis ei ∈ k∗, and µi are the corresponding
coordinates on k∗.

The CDYBE was formulated for g semi-simple and k a Cartan subalgebra in
a 1990 paper by Balog-Dabrowski-Feher [4, page 231], who also described the
basic trigonometric solution for this case. Etingof-Varchenko [11] interpreted
classical dynamical r-matrices in terms of Poisson Lie groupoids, and gave a
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classification for g semi-simple and k of maximal rank. The classification was
extended by Schiffmann [19] to more general subalgebras, interpolating between
the Belavin-Drinfeld (k = 0) and the Etingof-Varchenko cases. For more general
g, Etingof-Schiffmann [10] introduced the moduli space of classical dynamical
r-matrices, and described its structure.

The CDYBE was discovered in conformal field theory and the theory of quan-
tum groups [4, 5, 13], but arises in many other contexts as well. Fehér-Gábor-
Pusztai [12] describe their appearance in Dirac reduction. Poisson geometric
applications include work by Jiang-Hua Lu [16], who proved that Poisson ho-
mogeneous structures on G/T (for a compact Lie group G with maximal torus
T ) all come from solution of the CDYBE, and Ping Xu [21] who showed that
solutions of the CDYBE for (g, k) give rise to certain invariant Poisson structures
on k∗×G. The CDYBE also appears in the theory of quasi-Poisson manifolds [1]
and is related to the Duflo map in Lie theory [3]. Petracci [18] has studied the
CDYBE for arbitrary Lie algebras, and found relations to Lie’s third theorem
and the Poincaré-Birkhoff-Witt isomorphism.

Our goal in this paper is to explain a close relationship of the CDYBE with
the following elementary problem in the theory of Clifford algebras. Suppose V is
a vector space with a quadratic form QV , and let Cl(V ) be its Clifford algebra.
Recall that there is a vector space isomorphism q : ∧V → Cl(V ), called the
quantization map, and that elements q(∧2V ) ⊂ Cl(V ) exponentiate to the Spin
group Spin(V ) ⊂ Cl(V ). One can then ask: How is the exponential exp(q(λ)) ∈
Cl(V ) of λ ∈ ∧2(V ) related to the corresponding exponential exp(λ) ∈ ∧(V ) in
the exterior algebra? Clifford calculus gives nice formulas for this and closely
related problems. Taking V = g, the answer to this problem produces solutions
of the CDYBE.

2. Clifford exponentials

In this section we describe various formulas for exponentials of quadratic
elements in a Clifford algebra. Proofs of these formulas will be given in Section
5 below.

Let V be a finite-dimensional real vector space, equipped with a non-
degenerate quadratic form QV . The pair (V,QV ) will be called a quadratic
vector space. The Clifford algebra Cl(V ) is the quotient of the tensor algebra
T (V ) by the ideal generated by elements v ⊗ v − 1

2Q(v), v ∈ V .
The involutive automorphism a ∈ Aut(Cl(V )) given on generators by a(v) =

−v gives Cl(V ) the structure of a Z2-graded algebra. For the rest of this pa-
per, commutators in the Clifford algebra, tensor products with other Z2-graded
algebras and so on will always be taken in the Z2-graded sense. Let

q : ∧V → Cl(V )

be the quantization map, defined by the inclusion ∧V → T (V ) as anti-symmetric
tensors followed by the quotient map T (V ) → Cl(V ). The quantization map q
is an isomorphism of vector spaces, with inverse q−1 the symbol map.
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Let O(V ) denote the orthogonal group of (V,QV ), o(V ) its Lie algebra, and

λ : o(V ) → ∧2V, λ(A) =
1
2

∑
a

A(ea) ∧ ea

the canonical isomorphism. Here ea is a basis of V with dual basis ea ∈ V ∗

(identified with V via QV ). The map

γ : o(V ) → Cl(V ), γ(A) = q(λ(A))

is a Lie algebra homomorphism into the even part of the Clifford algebra (with
bracket the commutator). γ(A) generates the action of A as a derivation of
Cl(V ), that is,

A(v) = [γ(A), v]
for all v ∈ V ⊂ Cl(V ). We will be interested in formulas for the Clifford algebra
exponential exp(γ(A)). One such formula reads (cf. [7, Proposition 3.13])

q−1(exp(γ(A))) = det1/2(cosh(A/2)) exp(2λ(tanh(A/2))),(1)

where the square root of the determinant is a well-defined analytic function of
A, equal to 1 at A = 0. If dimV is even, one has an alternative expression

q−1(exp(γ(A))) = det1/2(2 sinh(A/2)) exp(ι 1
2 λ(coth(A/2))) d Vol(2)

Here d Vol is the Euclidean volume form on V , for a given choice of orientation,
and the square root of the determinant is defined as a Pfaffian. More generally,
given commuting elements c ∈ O(V ) and A ∈ o(V ), and a lift ĉ ∈ Pin(V ) one
has the formula

q−1(ĉ exp(γ(A))) = ± det1/2(c exp(A) − I) exp
(
ι 1

2 λ(
c exp(A)+I
c exp(A)−I

)

)
d Vol,(3)

where the sign depends on the choice of lift.
Most important for our purposes will be a formula relating exp(γ(A)) to

the corresponding exponential exp(λ(A)) in the exterior algebra. Consider the
holomorphic function

j(z) =
sinh(z/2)

z/2
(4)

and let f(z) be its logarithmic derivative,

f(z) = (ln j)′(z) =
1
2

coth(
z

2
) − 1

z
.(5)

Note that j is symmetric with simple zeroes at points z ∈ 2π
√−1Z\{0}, while f

is anti-symmetric with simple poles at those points. The function J ∈ C∞(o(V ))
given by

J(A) = det(j(A))
admits a unique smooth square root equal to 1 at A = 0. Define a meromorphic
function r : o(V ) → ∧2(V ) by

r(A) = λ(f(A))
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and set S : o(V ) → ∧even(V ),

S(A) = J1/2(A) exp(r(A)).

Theorem 2.1. The function S is analytic on all of o(V ). Let E be a vector
space of “parameters”, and φ : V → E a linear map with components φa =
φ(ea). For all A ∈ o(V ), the following identity holds in Cl(V ) ⊗ ∧(E):

q ◦ ιS(A) exp(λ(A) −
∑

a
eaφa) = exp(γ(A) −

∑
a
eaφa).(6)

Notice that if A has no eigenvalue equal to 0 so that λ(A) ∈ ∧2(V ) is non-
degenerate, any element α ∈ ∧(V ) can be written in the form α = ιβeλ(A) for a
unique element β ∈ ∧(V ). This explains formula (6) for φ = 0 and λ(A) non-
degenerate. The remarkable feature of this formula is that S extends analytically
to all A, and is independent of φ.

For applications to Lie algebras, it is sometimes useful to write the right hand
side of (6) somewhat differently. Define holomorphic functions

g(z) =
sinh(z) − z

z2
, jR(z) =

ez − 1
z

, jL(z) =
1 − e−z

z
.

Let ψ = φ◦jR(A) : V → E, with components ψa = ψ(ea), and let "(A) ∈ ∧2(E)
be the image of λ(g(A)) ∈ ∧2(V ) under the extended map φ : ∧(V ) → ∧(E).
Then

q ◦ ιS(A) exp(λ(A) −
∑

a
eaφa) = exp(−"(A)) exp(γ(A)) exp(−

∑
a

eaψa).(7)

3. Quadratic Lie algebras

In this Section, we specialize Theorem 2.1 to Lie algebras with an invariant
quadratic form. We show that the exponentials in the Clifford and exterior alge-
bras satisfy natural differential equations. In the following Section the dynamical
Yang-Baxter equation emerges as a consistency condition for these differential
equations.

3.1. Lie algebra consequences of Theorem 2.1. A quadratic Lie algebra is
a Lie algebra g, together with an invariant, non-degenerate quadratic form Q.
We will denote the Lie bracket by [·, ·]g, to avoid confusion with commutators.
The invariance condition means that the adjoint representation ad : g → End(g)
takes values in o(g). Examples of quadratic Lie algebras include semi-simple Lie
algebras, and semi-direct products g = s � s∗, where s is any real Lie algebra,
acting on its dual s∗ by the coadjoint action. Also, given a possibly degenerate
invariant quadratic form Q′ on a Lie algebra g′, the quotient of g = g′/K by the
radical K of the quadratic form is a quadratic Lie algebra. Note that quadratic
Lie algebras are unimodular. See the work of Medina-Revoy [17] for further
information and classification results.

The ingredients in Theorem 2.1, and its consequences, take on geometric
meanings if V = g is a quadratic Lie algebra, and A = adµ for µ ∈ g.
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λ(A), γ(A) The map λg = λ ◦ ad : g → ∧2g is the map dual to the Lie bracket. The
map γg = q(λg) : g → Cl(g) generates the adjoint action of g on the Clifford
algebra.

jL/R(A) Let G be the connected, simply connected Lie group having g as its Lie
algebra, and let expG : g → G be the exponential map. Denote by
θL, θR ∈ Ω1(G, g) the left/right invariant Maurer-Cartan forms. Under
left trivialization of the tangent bundle TG, the differential expG at µ ∈ g

is given by the operator jL(adµ) (cf. [14, Theorem II.1.7]). Equivalently,
the value of exp∗ θL at µ is given by

(exp∗ θL)µ = jL(adµ).

Similarly one has (exp∗ θR)µ = jR(adµ).
J(A) Let Jg = J ◦ ad. The quadratic form Q defines a translation invariant

measure on g and a bi-invariant measure on G. Since g is unimodular,
det(jL(adµ)) = det(jR(adµ)) = Jg(µ). Thus Jg is the Jacobian of the
exponential map expG with respect to left or right trivialization of TG, and
the subset of g where A = adµ has eigenvalues in 2πiZ\{0} is the set of
critical points.

"(A) Let B(µ, µ′) = 1
2 (Q(µ + µ′)−Q(µ)−Q(µ′)) denote the symmetric bilinear

form associated with Q. Let η = 1
12B(θL, [θL, θL]g) ∈ Ω3(G) be the Cartan

3-form on G. It is bi-invariant and therefore closed. Let "g ∈ Ω2(g) be the
image of exp∗

G η under the usual homotopy operator Ωp(g) → Ωp−1(g), so
that d"g = exp∗

G η. If we identify ∧2T ∗
µg ∼= ∧2g, the value of "g at µ is

given by the formula (cf. [2]),

"g
µ = "(adµ).

r(A) Let rg(µ) = r(adµ) = λ(f(adµ)). Given ξ ∈ g let ξL, ξR denote the left/right
invariant vector fields on G generated by ξ. On the subset of g where expG

is regular, the vector field 1
2 exp∗

G(ξL + ξR) is well-defined. It differs from
the constant vector field ξ by a vector field tangent to orbit directions for
the adjoint action. It turns out [3, Lemma A.1] that the difference at µ ∈ g

coincides with the vector field generated by f(adµ)ξ.

Theorem 2.1 takes on the following form. Let Sg(µ) = S(adµ).

Proposition 3.1. The identity

q ◦ ιSg(eλg−∑
a eaφa

) = eγg−∑
a eaφa

(8)

holds in Cl(g) ⊗ C∞(g) ⊗ ∧E.

The alternative formula (7) takes on a particularly nice form for E = T ∗
µg,

with φ : g ∼= g∗ → T ∗
µg the standard identification. Then φa = dµa where

µa are the coordinate functions on g, and ψa = exp∗
G(θL)a. Since G is simply

connected, the Lie algebra homomorphism γg : g → Cl(g) exponentiates to a
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Lie group homomorphism τ : G → Spin(g), with eγg

= exp∗
G τ . The resulting

formula
q ◦ ιSg(eλg−∑

a eadµa

) = e−�g

exp∗
G

(
τ e−

∑
a ea(θL)a

)
relates τ e−

∑
a ea(θL)a ∈ Cl(g)⊗Ω(G) and eλg−∑

a eadµa ∈ ∧g⊗Ω(g). For the case
of compact Lie algebras, this result was proved in [3, Section 6.3].

3.2. Lie algebra differential. In this Section, g denotes an arbitrary Lie al-
gebra (not necessarily quadratic), and λg : g∗ → ∧2g∗ the map dual to the Lie
bracket,

ιξιηλg(µ) = 〈µ, [ξ, η]g〉.(9)

In a basis ea of g, with dual basis ea of g∗,

λg(ec) = − 1
2

∑c
ab fc

abe
a ∧ eb

where fc
ab = 〈ec, [ea, eb]g〉 are the structure constants. Recall that the Lie algebra

differential dg : ∧•g∗ → ∧•+1g∗ is the (degree +1) derivation given on generators
µ ∈ g∗ by

dgµ = λg(µ).(10)

Lemma 3.2. Let E be some vector space, φ : g → E a linear map, and φa =
φ(ea). Then

λg −
∑

a

eaφa

is closed under the differential, dg +
∑

a
∂

∂µa
φa on C∞(g∗) ⊗ ∧g∗ ⊗ ∧E .

Proof. Since dgλg(µ) = dgdgµ = 0, this follows from the calculation,

dg(
∑

a

eaφa) =
∑

a

λg(ea)φa =
∑

a

∂λg

∂µa
φa.

We will need the following Lemma, describing the transformation of dg under
conjugation with exp(ιr):

Lemma 3.3. For any r ∈ ∧2g,

exp(−ιr) ◦ dg ◦ exp(ιr) = dg − 1
2
ι[r,r]g +

∑
a

ea ◦ ι[ea,r]g − ιu(11)

where u ∈ g is the image of r under the Lie bracket map ∧2g → g, ξ∧ξ′ �→ [ξ, ξ′]g.

Proof. Write ιa = ιea . Then dg = − 1
2

∑
abc fc

abe
a∧eb ◦ ιc. Introduce components

rab by r = 1
2

∑
ab rabea ∧ eb. Then the Schouten bracket of r with itself is given

by the formula,
[r, r]g =

∑
abc

(
∑
kl

rakf b
klr

lc)ea ∧ eb ∧ ec.
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We compute the left hand side of (11) as a sum
∑∞

j=0
1
j! adj(−ιr)dg:

ad(−ιr)dg =
1
4

∑
abklm

rabfk
lm[ιaιb, e

l ∧ em]ιk

= −
∑

abkm

rabfk
bmemιaιk − 1

2

∑
abk

rabfk
abιk

=
∑

a

ea ◦ ι[ea,r]g − ιu,

ad2(−ιr)dg =
1
2

∑
abkmst

rstrabfk
bm[ιsιt, em]ιaιk =

∑
abkst

rabrstfk
btιsιaιk

= −ι[r,r]g

adm(−ιr)dg = 0, m ≥ 3

3.3. Clifford differential. Let (g,Q) be a quadratic Lie algebra. Similar to
(10) there is a unique odd derivation δg on Cl(g) given on generators µ ∈ g by

δgµ = γg(µ).

In fact δg may be written as a (Z2-graded) commutator: Let Θ ∈ ∧3g be the
cubic element defined by ιµΘ = λg(µ). In terms of a basis ea of g, with dual
basis ea, we have

Θ = − 1
6

∑
abc fabcea ∧ eb ∧ ec

where fabc = B(ea, [eb, ec]g). Then δg = [q(Θ), ·]. Kostant-Sternberg [15] made
the beautiful observation that q(Θ) squares to a constant, hence that δg squares
to 0. We will call δg the Clifford differential. Under the quantization map q, the
Lie algebra and Clifford differentials are related as follows [3, Proposition 3.3]:

q−1 ◦ δg ◦ q = dg + 1
4 ιΘ.(12)

Replacing λ with γ in the proof of Lemma 3.2, we find:

Lemma 3.4. Let E be some vector space, φ : g → E a linear map, and φa =
φ(ea). Then

γg −
∑

a

eaφa

is closed under the differential, δg +
∑

a
∂

∂µa φa on C∞(g) ⊗ Cl(g) ⊗ ∧E.

4. Solutions of the classical dynamical Yang-Baxter equation

In this section, we will use our Clifford algebra techniques to construct solu-
tions to the CDYBE in a number of cases.

Theorem 4.1. The function rg(µ) = λ(f(adµ)) for f(z) = 1
2 coth(z/2) − 1

z

solves the CDYBE for k = g, with coupling constant ε = 1
4 .
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Proof. The proof relies on the identity (8) from Proposition 3.1. To simplify
notation, we denote rg,Sg simply by r,S, respectively.

By Lemma 3.4, the right hand side of (8) is closed under the differential,
δg +

∑
a

∂
∂µa φa. Hence

(δg +
∑

a

∂

∂µa
φa)

(
q ◦ ιS(eλg−∑

a eaφa

)
)

= 0.

By (12), this gives

(dg +
1
4
ιΘ +

∑
a

∂

∂µa
φa)

(
ιS(eλg−∑

a eaφa

)
)

= 0.

Since ιS = J1/2 exp(ιr) we have, using Lemma 3.3,

dg ◦ ιS = ιS ◦
(
dg − ιu +

∑
a

ea ◦ ι[ea,r]g − 1
2
ι[r,r]g

)
Furthermore,

∂

∂µa
◦ ιS = ιS ◦

( ∂

∂µa
+

1
2

∂ ln(J)
∂µa

+ ι ∂r
∂µa

)
.

Using that eλg−∑
a eaφa

is closed under the differential dg +
∑

a
∂

∂µa φa, we there-
fore obtain

(13)
(
− ιu +

∑
a

ea ◦ ι[ea,r]g − 1
2
ι[r,r]g +

∑
a

(
1
2

∂ ln(J)
∂µa

+ ι ∂r
∂µa

)
φa +

1
4
ιΘ

)
(
eλg−∑

b ebφb
)

= 0.

Multiply this Equation from the left by exp(
∑

a eaφa), and pick the coefficient
cubic in φ’s. Only the three terms involving

∑
a φa ι ∂r

∂µa
, ι[r,r]g and ιΘ contribute

to this coefficient, and we obtain:∑
a

φ

(
∂r

∂µa

)
∧ φa +

1
2
φ([r, r]g) − 1

4
φ(Θ) ≡ φ

(
∂r

∂µa
∧ ea +

1
2
[r, r]g − 1

4
Θ

)
= 0.

Taking E = g, with φ the identity map, this is exactly the CDYBE.

Remark 4.2. It is not hard to work out the coefficients of φ of lower degree.
Two of these identities simply state that r is equivariant and J is invariant. The
remaining identity reads (cf. [3, Lemma A.2])

1
2

∑
a

∂ ln(J)
∂µa

ea + u = 0.

Theorem 4.1 was first obtained by Etingof-Varchenko [11] in the semi-simple
case. See Etingof-Schiffmann [10] for a proof in the quadratic case.

More generally, let k ⊂ g be a quadratic subalgebra of g, i.e. a subalgebra
such that the restriction of Q to k is non-degenerate. Let p be the orthogonal
complement of k, so that g = k ⊕ p. Suppose that for µ in an open dense
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subset of k, the operator adp
µ := adµ |p is invertible. Let adk

µ = adµ |k and define
rk : k → ∧2k and rp : k → ∧2p by

rk(µ) = λ(f(adk
µ)), rp(µ) =

1
2
λ(coth(adp

µ /2)), r = rk + rp

Theorem 4.3. The function r = rk + rp solves the CDYBE for k ⊂ g, with
coupling constant ε = 1

4 .

Proof. Let

Jk(µ) = det(j(adk
µ)), Jp(µ) = det(2 sinh(adp

µ /2)), J = JkJp,

and
Sk = (Jk)1/2 exp(rk),Sp = (Jp)1/2 exp(rp), S = SkSp.

Here the square root (Jp)1/2 is defined as a Pfaffian, for some choice of orien-
tation on p. Let d Volp be the volume form defined by the orientation and the
quadratic form Q|p.

Let ea be a basis of g given by a basis of k followed by a basis of p. In
what follows, summation over a denotes summation over the entire basis, while
summation over i denotes summation over the basis of k.

The restriction of γg to k is a sum γg|k = γk + γp, where γp takes values
in Cl(p). Combining Equation (8), with k in place of g, with Equation (2), for
V = p, we obtain the following identity in C∞(k) ⊗ Cl(g) ⊗ ∧E:

q ◦ ιS(eλk−∑
i eiφ

i ∧ d Volp) = eγg|k−
∑

i eiφ
i

.(14)

Write dg = dk+d′, where dk is extended to ∧g by letting dkµ = 0 for µ ∈ p. Since
γg|k −

∑
i eiφ

i is closed under the differential δg +
∑

i
∂

∂µi φ
i, and λk − ∑

i eiφ
i

is closed under the differential dk +
∑

i
∂

∂µi φ
i we can proceed as in the proof of

Theorem 4.1 to obtain(
d′ − ιu +

∑
a

ea ◦ ι[ea,r]g − 1
2
ι[r,r]g +

∑
i

(1
2

∂ ln(J)
∂µi

+ ι ∂r

∂µi

)
φi +

1
4
ιΘ

)
(
eλk−∑

i eiφ
i ∧ d Volp

)
= 0.

Multiply from the left by e
∑

a eaφa−λk

(summation over the entire basis of g).
The term cubic in φ’s is proportional to d Volp, and the coefficient gives the
CDYBE.

Still more generally, suppose c ∈ O(g) is an automorphism of g. Suppose
k is a quadratic subalgebra contained in the fixed point set of c. Let p be its
orthogonal complement as above, and suppose that for µ in an open dense subset
of k, the operator c exp(adµ) − I is invertible on p. Then

Jp
c = detp(c exp(adp

µ) − I), rp
c =

1
2
λ
(c exp(adµ) + I

c exp(adµ) − I

∣∣∣
p

)
, Sp

c = (Jp
c )1/2 exp(rp

c)

are well-defined meromorphic functions on k.



262 A. ALEKSEEV AND E. MEINRENKEN

Theorem 4.4. The function r = rk + rp
c solves the CDYBE with coupling con-

stant ε = 1
4 .

Proof. Equations (3) and (8) give the following identity in C∞(k)⊗Cl(g)⊗∧E:

q ◦ ιS(eλk−∑
i eiφ

i ∧ d Volp) = ± ĉ eγg|k−
∑

i eiφ
i

(15)

where S = Sk Sp
c . The element ĉ commutes with q(Θ), since c is an automor-

phism of g preserving the quadratic form. Hence ĉ commutes with δg, and hence
the right hand side of (15) is closed under δg +

∑
i

∂
∂µi φ

i. The rest of the proof
is as before.

The classical dynamical r-matrix described here was first obtained by Etingof-
Schiffmann [10], for the case that c is a finite order automorphism and k = g0.
(Note that the fixed point set of a finite order automorphism c ∈ O(g) is a
quadratic subalgebra.)

Example 4.5. Let (k,Qk) be a quadratic Lie algebra, and g = kC its complex-
ification. The real part of the complexification of Qk defines a non-degenerate
quadratic form Q on g, with p =

√−1k (viewed as a real subalgebra). Let
c ∈ O(g) denote the automorphism given by complex conjugation. The r-matrix
described above has the form

r = λ

(
f(adk

µ) +
1
2

tanh(adp
µ /2)

)
.

As explained in [11, 9], one obtains other solutions of the CDYBE by scaling
or taking limits:
(i) If r is a solution of the CDYBE for coupling constant ε, then rt(µ) :=

t−1 r(t−1µ) is a solution with coupling constant t−2ε. Applying this to the
trigonometric solutions obtained above, and taking the limit for t → ∞ one
obtains rational solutions of the CDYBE with vanishing coupling constant.
If r is anti-symmetric in µ, one can also take imaginary t changing the sign
of the coupling constant. This replaces coth with cot in our formulas.

(ii) For any element ν in the center of k, the shifted r-matrix µ �→ r(µ+ν) again
solves the CDYBE for coupling constant ε. Furthermore, if the limit

rν(µ) = lim
t→∞ r(µ + tν)

exists, then the limiting r-matrix again solves the CDYBE for ε. For in-
stance, if g is semi-simple and k = t, one obtains constant r-matrices by
taking ν ∈ t some regular element.

(iii) Recall that classical dynamical r-matrices r : k → ∧2g are always required
to be k-invariant. Hence, the Schouten bracket of any element of ∧k with
r vanishes. Thus if s : k → ∧2k solves the CDYBE for (k, k) with coupling
constant δ, then r + s solves the CDYBE for (g, k) with coupling constant
δ + ε. In particular, if k is Abelian, any closed 2-form on k gives rise to a
solution of the CDYBE for (k, k) with coupling constant 0.
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5. Clifford algebra calculations

In this section we prove the Clifford algebra identities from Section 2. These
formulas are most systematically obtained from the spinor representation for the
Clifford algebra of the direct sum V ⊕ V ∗, which we briefly review.

5.1. Spinor representation. Let V be a finite-dimensional real vector space.
The direct sum W = V ⊕ V ∗ carries a quadratic form

QW (v ⊕ α) = 2α(v).

Let Cl(W ) be the Clifford algebra of (W,QW ), and consider the algebra repre-
sentation

π : Cl(W ) → gl(∧V )
where generators v ∈ V act by wedge product and generators α ∈ V ∗ act
by contraction. The restriction of π to a group representation of Spin(W ) ⊂
Cl(W )× is called the spinor representation.

The group SO(W ) contains ∧2(V ),∧2(V ∗),GL(V ) as distinguished subgroups,
lifting to subgroups ∧2(V ),∧2(V ∗),ML(V ) of Spin(W ):
(i) For any skew-adjoint linear map D : V ∗ → V let λ(D) = 1

2

∑
a D(ea)∧ea ∈

∧2(V ). There is an inclusion

∧2(V ) → SO(W ), λ(D) �→
(

I D
0 I

)
.

This inclusion lifts to a vector subgroup ∧2(V ) ↪→ Spin(W ), and the action
of π(λ(D)) is wedge product with exp(λ(D)).

(ii) Similarly, there is an identification E �→ λ(E) of skew-adjoint linear maps
V → V ∗ with ∧2V ∗. The inclusion

∧2V ∗ → SO(W ), λ(E) �→
(

I 0
E I

)
.

lifts to an inclusion ∧2V ∗ ↪→ Spin(W ), and π(λ(E)) is given by contraction
with exp(λ(E)).

(iii) Finally, there is an inclusion

GL(V ) → SO(W ), R �→
(

R 0
0 (R−1)∗

)
.

The metalinear group ML(V ) ↪→ Spin(W ) is the inverse image of GL(V )
under the covering map Spin(W ) → SO(W ). The action of an element
R̂ ∈ ML(V ), covering R ∈ GL(V ), in the spinor representation is given by

π(R̂).α =
R.α

|det |1/2(R̂)
.(16)

Here |det |1/2 : ML(V ) → R
× is a suitable choice of square root of |det | :

GL(V ) → R>0 (defined by this formula), and R.α is defined by the unique
extension of R ∈ GL(V ) to an algebra automorphism of ∧(V ).
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5.2. The action of Spin(V ) on ∧V . We now return to our original setting,
where V itself comes equipped with a quadratic form QV . Under the identifi-
cation q : ∧V ∼= Cl(V ), the left multiplication of the Clifford algebra on itself
defines a representation,

3 : Cl(V ) → gl(∧V ),(17)

given on generators v ∈ V by

3(v).α = v ∧ α +
1
2
ιvα.

The symbol map q−1 : Cl(V ) → ∧(V ) can be expressed in terms of 3 as q−1(x) =
3(x).1, the action on 1 ∈ ∧V .

We will now relate 3 (hence also the symbol map) to the representation π
from 5.1. Let V denote the same vector space with quadratic form QV = −QV .
Then

κ : V ⊕ V → W, (v, w) �→ (
v + w,

1
2
(v − w)

)
is an isometry, with inverse κ−1(x, y) = (x/2+y, x/2−y). Using the isomorphism

Cl(V ) ⊗ Cl(V ) = Cl(W )

to view Cl(V ) as a subalgebra of Cl(W ), the homomorphism 3 : Cl(V ) → gl(∧V )
is simply the restriction of π. The inclusion Cl(V ) → Cl(W ) restricts to an
inclusion of Spin groups, Spin(V ) → Spin(W ). The corresponding inclusion
ι : SO(V ) → SO(W ) is given by

ι : SO(V ) → SO(W ), C �→ κ ◦
(

C 0
0 I

)
◦ κ−1 =

(
1
2 (C + I) C − I
1
4 (C − I) 1

2 (C + I)

)
.

Proposition 5.1. Let C ∈ SO(V ) with det(C − I) �= 0, and suppose that D ∈
o(V ) is invertible and commutes with C. Then there is a unique factorization

ι(C) =
(

I 0
E1 I

) (
I D
0 I

) (
I 0

E2 I

) (
R 0
0 (R−1)t

)
(18)

such that E1, E2 ∈ o(V ) and R ∈ GL(V ) commute with C and D. One finds

E1 =
1
2

C + I

C − I
− 1

D
, E2 =

1
D2

(
C − C−1

2
− D

)
, R =

D

I − C−1
.

Proof. Working out the matrix product on the right hand side Equation (18)
reads(

1
2 (C + I) C − I
1
4 (C − I) 1

2 (C + I)

)
=

(
(I + DE2)R D(R−1)t

(E1 + E1DE2 + E2)R (I + DE1)(R−1)t

)
It is straightforward to check this equality with the given formulas for R, E1, E2.
Conversely, equality of the upper right corners gives R, and then the diagonal
entries give our formulas for E1, E2.
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The factorization (18) gives rise to a factorization for any Ĉ ∈ Spin(V ) cov-
ering C. The first three factors lift as in (i),(ii) above, and a lift R̂ ∈ ML(V ) of
R = D/(I − C−1) is determined by the choice of lift Ĉ of C. Using the known
action of each factor in the representation π we obtain:

Proposition 5.2. Suppose Ĉ ∈ Spin(V ) maps to C ∈ SO(V ) with det(C−I) �=
0, and that D ∈ o(V ) is invertible and commutes with C. Let E1, E2 ∈ o(V )
and R̂ ∈ ML+(V ) be as above. Then the operator 3(Ĉ) on ∧V has the following
factorization:

3(Ĉ).α =
exp(ιλ(E1)) exp(λ(D)) exp(ιλ(E2))R.α

|det |1/2(R̂)
.(19)

In particular, the symbol of Ĉ is given by the formula,

q−1(Ĉ) =
exp(ιλ(E1)) exp(λ(D))

|det |1/2(R̂)
.(20)

Given Ĉ, there may be many natural choices of D with the required properties,
leading to different formulas for the symbol of Ĉ.

Proposition 5.3.
a. Suppose Ĉ ∈ Spin(V ) maps to C ∈ SO(V ), with det(C + I) �= 0. Then

q−1(Ĉ) = ± det1/2(C+I
2 ) exp(2λ(C−I

C+I )).(21)

b. Suppose Ĉ ∈ Pin(V ) maps to C ∈ O(V ), with det(C − I) �= 0. Then

q−1(Ĉ) = ± det1/2(I − C−1) exp(ιλ( 1
2

C+I
C−I )) dVol,(22)

where dVol is the volume form on V given by the quadratic form and some
choice of orientation.

Proof. Let us first assume that Ĉ ∈ Spin(V ) and that both det(C + I) �= 0
and det(C − I) �= 0. (In particular, dimV must be even.) The first formula is
obtained from the choice

D = 2(C − I)/(C + I),(23)

since E1 = 0 in this case. Let Dt := tD for t > 0. As t → ∞,

exp(λ(Dt)) = tdim V/2det1/2(D)d Vol +O(tdim V/2−1),

where det1/2(D) the Pfaffian corresponding to the choice of orientation, and

det1/2(Rt) = tdim V/2det1/2( D
I−C−1 ).

The factors tdim V/2det1/2(D) cancel, and taking the limit t → ∞ we obtain the
second formula. By continuity, one can drop the assumption det(C − I) �= 0 in
the first formula and the assumption det(C + I) �= 0 in the second formula. The
first formula also holds if dimV is odd, by restricting the formula for V ⊕ R.
Similarly, to extend the second formula to Ĉ ∈ Pin(V ) one replaces V with V ⊕R

and C with ( C 0
0 −1 ).
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The sign ambiguity is resolved if C = exp(A) and Ĉ = exp(γ(A)). In this
case, Equation (21) reduces to (1) and Equation (22) to (2). Similarly, Equation
(3) is obtained from (22) by the choice C = c exp(A). The function S appears
if we restate (19) for Ĉ = exp(γ(A)) and the choice D = A. For the time being,
we treat S as a meromorphic function of A.

Proposition 5.4. Suppose A ∈ o(V ) has no eigenvalues in the set 2π
√−1Z\{0}.

Then the operator 3(exp(γ(A))) on ∧V has the following factorization:

3(exp(γ(A))) = ιS(A) ◦ exp(λ(A)) ◦ exp(ιλ(g(A))) ◦ jL(A)−1.(24)

In particular,

q−1(exp(γ(A))) = ιS(A) exp(λ(A))(25)

Proof. The assumption on A implies that f(A), g(A), jL(A), jR(A) are all well-
defined and that jL(A) is invertible. If dimV is even, the two sides of (24)
are equal since they agree on the open dense subset where A is invertible, by
Proposition 5.2. The odd-dimensional case follows by restricting the identity for
V ⊕ R.

Equation (25) gives Theorem 2.1 for φ = {0}. We now show that in fact, it
implies the general case.

Proof of Theorem 2.1. Let Ṽ = V ⊕ E. Fix a non-degenerate quadratic form
QE on E, and let Ṽ be equipped with the quadratic form QṼ = QV ⊕ εQE for
ε > 0. Then λ(A) − ∑

aeaφa = λ(Ã) with

Ã =
(

A −εφt

εφ 0

)
∈ o(Ṽ ).

By the above, q ◦ ιS(Ã) exp(λ(Ã)) = exp(γ(Ã)). Equation (6) follows by letting
ε → 0. It remains to show that S is analytic everywhere. Equation (6) says that

ιS(A)α(A) = β(A)

where α(A) = eλ(A)−∑
a eaφa

and β(A) = q−1
(
eγ(A)−∑

a eaφa
)

are differential
forms depending analytically on A. Take E = V and φ = id. Then −∑

a eaφa ∈
∧2(V ⊕ E) is non-degenerate. Equivalently, the form Γ given as the top degree
part of exp(−∑

a eaφa) is a volume form. Let ∗ denote the star operator defined
by Γ, i.e. ζ = ∗ιζΓ for ζ ∈ ∧(V ⊕ E). Then ιS(A)α(A) = β(A) is equivalent to
S(A) ∧ ∗α(A) = ∗β(A). Since the top form degree part of α(A) coincides with
Γ, the constant term of ∗α(A) is equal to 1. Hence ∗α(A)−1 is well-defined and
depends analytically on A. We obtain

S(A) = ∗β(A) ∧ (∗α(A))−1,

showing explicitly that S(A) is analytic everywhere.

As another application of the factorization formula (24) we prove the alternative
formula (7) for the Clifford exponential:
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Proof of (7). Apply Equation (24) to α = exp(−∑
a eaψa) ∈ ∧(V )⊗∧(E). The

left hand side is
q−1

(
exp(γ(A)) exp(−

∑
a

eaψa)
)
.

To compute the right hand side, we first note that

jL(A)−1
∑

a

eaψa =
∑

a

(jL(A)−1.ea)φ(jR(A)ea) =
∑

a

eaφa.

Hence jL(A)−1. exp(−∑
a eaψa) = exp(−∑

a eaφa). Furthermore,

exp(ιλ(g(A))). exp(−
∑

a

eaφa) = exp("(A)) exp(−
∑

a

eaφa).

Hence the right hand side of (24) becomes

exp("(A)) ιS(A)

(
exp(λ(A)) exp(−

∑
a

eaφa)
)
.
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