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ON THE MORSE INEQUALITIES FOR GEODESICS ON
LORENTZIAN MANIFOLDS

A. Abbondandolo, V. Benci, D. Fortunato, and A. Masiello

Abstract. We extend the classical Morse inequalities in Riemannian Geometry
to the geodesics joining two nonconjugate points on a Lorentzian manifold. The
Morse inequalities are obtained developing a Morse Theory for a class of strongly
indefinite functionals.

1. Introduction

Morse Theory for Riemannian geodesics relates the set of the geodesics joining
two nonconjugate points on a complete Riemannian manifold to the topologi-
cal structure of the manifold. In particular the Morse Inequalities give a lower
bound on the number of such geodesics by the Betti numbers of the based loop
space. Let (M, g) be a smooth, connected and complete Riemannian manifold
and let Ω(M) be the based loop space of the manifold M, equipped with the
compact–open topology. Moreover, let Hk(Ω(M);K) be the k–th singular ho-
mology group of the space Ω(M) with respect to the field K. The Betti numbers
βk(Ω(M);K), k ∈ N, are defined as the dimension of Hk(Ω(M);K). Let p and
q two nonconjugate points for the Riemannian metric g on M and denote by
G(p, q) the set of the geodesics joining p and q. The Morse Relations state that
there exists a formal series Q(λ) =

∑∞
k=0 akλk, with ak ∈ N∪ {+∞}, such that

∑
x∈G(p,q)

λm(x) =
∞∑

k=0

βk(M;K)λk + (1 + λ)Q(λ)

The series
∑∞

k=0 βk(M;K)λk is often called Poincaré polynomial of the manifold
M with coefficients in the field K.

For any k ∈ N let Gk(p, q) be the number of geodesics z in G(p, q) having
Morse index m(z) equal to k. From the Morse Relations one can deduce the
Morse Inequalities for the geodesics joining p and q, which state that for any
k ∈ N,

(1.1) Gk(p, q) ≥ βk(Ω(M);K).

The proof of the Morse Relations is obtained applying the abstract Morse Theory
to the action integral

(1.2) E(x) =
∫ 1

0

g(x(s))[ẋ(s), ẋ(s)]ds
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defined on the infinite dimensional manifold of the sufficiently smooth curves on
M joining p with q, see [Bo,Mo,Mi,Pa]

The extension of Morse Theory to semiriemannian manifolds and in particu-
lar to Lorentzian ones immediately presents some difficulty, because the Morse
Relations and the Morse Inequalities (1.1) do not make sense. Indeed the Morse
index of any geodesic as a critical point of the action integral E is equal to +∞,
because of the indefiniteness of the metric. On the other hand one could still
require to relate the set of geodesics joining two points on a semiriemannian
manifold to the topology of the manifold itself.

Functionals defined on Hilbert manifolds and admitting critical points with
Morse index equal to +∞ are often called strongly indefinite. There are many
examples of strongly indefinite functionals which naturally arise in Nonlinear
Analysis and Differential Geometry, as in the study of periodic orbits of Hamil-
tonian systems, nonlinear wave equations, symplectic geometry and semirieman-
nian geometry. The study of the critical points of strongly indefinite functionals
and the developments of a Morse Theory for them has been the object of several
studies in the last 25 years. After the first results on the existence of critical
points for strongly indefinite functionals and applications to the study of periodic
orbits of Hamiltonian systems [R,AZ], Morse theoretic results for strongly in-
definite functionals have been obtained by several authors [CZ,Sz,CLL,Ab,AM],
with applications to asymptotically linear Hamiltonian systems. We also men-
tion the deep work of A. Floer to develop a Morse Theory for the action in
symplectic geometry. The papers [CZ,Sz,CLL,Ab,AM] all deal with functionals
f(x) defined on a Hilbert space H and having the form

(1.3) f(x) = 1/2(Lx, x) + b(x),

where L is a symmetric Fredholm operator on H and b(x) is a smooth function
with compact gradient. In [CZ,Sz,CLL] a Galerkin finite dimensional reduction
is developed to get some Morse theoretic information on f as a limit of the Morse
properties of the finite dimensional restrictions. A crucial property of the func-
tional (1.3) for the results in the papers [CZ,Sz,CLL] is that the principal part L
of the second derivative of the functional f is independent on the critical points
of the functional. Indeed it is f ′′(x) = L+b′′(x) and b′′(x) is a compact operator
at any critical point x. This fact allows to develop the Galerkin reduction with a
sequence of finite dimensional subspaces (Hn)n∈N such that ‖PnL−LPn‖ = o(1)
in the norm of the convergence of continuous operators, where Pn denotes the
orthogonal projector of the Hilbert space H onto Hn. On the other hand the
second derivative of the action integral at a geodesic z : [0, 1] → M joining two
points on an arbitrary semiriemannian manifold (M, g) is given by

(1.4) E′′(z)[ζ, ζ ′] =
∫ 1

0

g(z)[Dsζ, Dsζ
′]ds −

∫ 1

0

g(z)[R(ż, ζ)ż, ζ ′]ds,

for any couple of smooth vector fields ζ, ζ ′ along z such that ζ(0) = ζ ′(0) = 0,
ζ(1) = ζ ′(1) = 0, where R denotes the curvature tensor for the metric g. By
(1.4) it follows that the principal part of E′′(z) depends on the geodesic z.
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An abstract Morse Theory for a class of strongly indefinite functionals de-
fined on Hilbert manifolds, so that the principal part of the second derivative
may depend on the critical points, has been recently developed in [ABFM] and
applications to Lorentzian Geometry have been obtained. In this note we present
the main results of [ABFM].

2. Morse Inequalities for strongly indefinite functionals

In this section we state the main results on an abstract Morse Theory for a class
of strongly indefinite functionals. First of all we define the relative index for a
class of bilinear forms on a Hilbert space. It extends the usual notion of index
of a bilinear form to cases in which the index can be equal to +∞ and it allows
to define the relative Morse index for critical points of functionals whose second
derivative is a bilinear form belonging to the class. Let H be a real Hilbert
and let a, a0 : H × H −→ R be two continuous, symmetric, and nondegenerate
bilinear forms on H such that k = a − a0, is a bilinear form defining a compact
operator. Let A and A0 be the linear isomorphisms on H induced by the forms
a and a0 and denote by V +(A) and V −(A) the maximal A–invariant subspaces
on which A is respectively positive definite and negative definite. Analogously,
the A0–invariant subspaces V +(A0) and V −(A0) on which A0 is positive definite
and negative definite are defined. Then the index of a relatively to a0, denoted
by j(a, a0) is defined as follows:

(2.1) j(a, a0) = dim(V −(A) ∩ V +(A0)) − dim(V +(A) ∩ (V −(A0))).

The relative index j(a, a0) is an integer number (possibly negative) and it is
equal to the index of the form a (i.e. the maximal dimension of a subspace
where a is negative definite) if a0 is positive definite.

We introduce now a class of strongly indefinite functionals. We fix a (possibly
infinite dimensional) Riemannian manifold (Ω, h), a Hilbert space F , a closed
affine submanifold H = e0 + H0 of F , where H0 is an infinite dimensional,
closed and separable subspace of F and e0 ∈ F . Finally we set Z = Ω × H.
We consider C2 functionals f : Z −→ R such that any critical point z = (x, y)
is nondegenerate and the second derivative of f ′′(z) at z satisfies the following
assumption:

(A0) for any critical point z of f , the second derivative f ′′(z) is of the form
f ′′(z) = a0(z)+ k(z), where k(z) and a0(z) are symmetric and continuous bilin-
ear forms on the (Hilbert) tangent space TzZ = TxΩ × H0. Moreover, the form
k(z) defines a compact operator on TzZ, the form a0(z) is nondegenerate and
V +(a0(z)) = TxΩ and V −(a0(z)) = H0.

Since H0 is infinite dimensional, the Morse index m(z) is equal to +∞ for any
critical point z of f . On the other hand the relative Morse index j(z) =
j(f ′′(z), a0(z)) is well defined.

In order to state the Morse Inequalities for the strongly indefinite functional
f : Z −→ R, we need the (PS)∗ compactness condition, which is a version of the
classical Palais–Smale condition, very useful in the study of strongly indefinite
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functionals, see [Ab]. We fix an orthonormal basis {e1, e2, ...., en, ....} of H0 and
set for any n ∈ N, H0,n = Span{e1, e2, ....., en}, Hn = e0 + H0,n ⊂ H and
Zn = Ω×Hn ⊂ Z. Finally, for any n ∈ N we shall denote by fn the restriction
of f to Zn.

Definition 2.1. Let f : Z −→ R be a C1 functional, we say that f satisfies
the (PS)∗ condition if any sequence (zn)n∈N such that zn ∈ Zn for any n ∈ N,
f(zn)n∈N is bounded and ‖gradfn(zn)‖ → 0 as n → ∞, contains a converging
subsequence, where gradfn(zn) is the gradient of fn with respect to the restricted
Riemannian structure on Zn.

We state now the Morse Relations for the functional f in terms of the singular
homology groups of the manifold Z (or equivalently of the manifold Ω).

Theorem 2.2. Let f : Z −→ R be a C2 functional such that all the critical
points of f are nondegenerate. Assume that the second derivative at any critical
point satisfies (A0) and f satisfies (PS)∗. Moreover, assume that:

(A1) for any x ∈ Ω, supy∈Hf(x, y) < +∞;
(A2) for any n ∈ N, n sufficiently large, there exists Rn > 0 such that, setting

for any R > 0,

Zn(R) = {z = (x, y) ∈ Zn : ‖y − e0‖E ≥ R},
we have:

(A2i) infz∈Zn(Rn) ‖gradfn(zn)‖ > 0;
(A2ii) there exists an ∈ R such that fan

n = {z ∈ Zn : fn(z) ≤ an} ⊂ Zn(Rn).

Let K(f) be the set of the critical points of f and set j(z) = j(f ′′(z), a0(z))
for any z ∈ K(f). Then for any field K there exists a Laurent series Q(λ) =∑k=+∞

k=−∞ akλk, with ak ∈ N ∪ {+∞} such that

∑
z∈K(f)

λj(z) =
∞∑

k=0

βk(Z;K)λk + (1 + λ)Q(λ).

Moreover the Morse Inequalities hold; let Nk(f) the number of critical points z
of f having relative index j(z) = k, for any field K and for any k ∈ N, we have:

(2.2) Nk(f) ≥ βk(Z;K) = βk(Ω;K).

The Morse Inequalities (2.2) can be extended to a class of strongly indefinite
functionals not satisfying the (PS)∗ condition. Indeed in [ABFM] it is shown
that inequalities (2.2) still hold if the functional f does not satisfy the (PS)∗

condition, but it is possible to construct a suitable family of perturbing func-
tionals (fδ)δ>0 satisfying (PS)∗, assumptions (A0)–(A2) and such that fδ → f
uniformly on any bounded subset of Z. However in this case it is an open
problem if the Morse Relations hold. Actually it is not clear how to completely
control the growth of the homology groups of the sublevels of the functionals fδ

as δ → 0. However the Morse Inequalities still hold.
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The proof of Theorem 2.2 and its generalization to functionals not satisfying
(PS)∗ are based on a Galerkin reduction argument. We consider the sequence
(Hn) of finite dimensional, linear submanifold introduced above and consider the
restriction fn of f to Hn. The restricted functionals fn are unbounded, but the
Morse index at any critical point is well defined and the Morse Inequalities can
be proved, under assumptions (A1)-(A2). Some delicate arguments on approxi-
mation of critical points of the functional f by the critical points of the restricted
functionals fn and on evaluation of the relative index of a critical point of f by
the Morse index of the approximating critical points of fn allow to pass to the
limit in the Morse Inequalities for the functional f and to obtain the Morse
Inequalities (2.2). In order to obtain these approximation results, the implicit
function theorem plays a basic role. Moreover we do not need the assumption
that the commutator of the principal part of f ′′(z) with the orthogonal pro-
jections onto Hn is infinitesimal (as n → +∞), as in [CZ,CLL,Sz]. Indeed the
finite dimensional linear submanifold Hn can be arbitrarily chosen, except that
Hn ⊂ Hn+1 and

⋃
n∈N Hn is dense in H.

3. The Morse Inequalities in Lorentzian Geometry

In this section we apply the abstract result of Section 2 to state the Morse
Inequalities for the geodesics joining two nonconjugate points on a standard sta-
tionary or an orthognal splitting Lorentzian manifold. We consider a connected
semiriemannian manifold (M, g), the index of the metric g is the number ν(g)
of the negative eigenvalues of the bilinear form g(z) on the tangent space TzM
at z to M. It does not depend on z ∈ M. The semiriemannian manifold (M, g)
is called Riemannian if ν(g) = 0 and it is called Lorentzian if ν(g) = 1. The
interest to study Lorentzian manifolds comes from General Relativity, where
gravitational fields are modeled by four dimensional Lorentzian manifolds, also
called spacetimes. We refer to the books [BEE,ON] for the basic properties
of semiriemannian manifolds. A smooth curve z(s) : I −→ M is a geodesic if
Dsż = 0, where Ds denotes the covariant derivative along z induced by the Levi-
Civita connection of g and ż is the tangent vector field along z. The geodesics on
a semiriemannian manifold satisfy a variational principle. The geodesics joining
two fixed points p and q are the critical points of the action integral

(3.1) E(z) =
∫ 1

0

g(z(s))[ż(s), ż(s)]ds

defined on the infinite dimensional Sobolev manifold Ω1,2(p, q;M) of the curves
z(s) : [0, 1] −→ M such that z(0) = p, z(1) = q, z is absolutely continuous and
its derivative ż is square integrable. It is well known that the space Ω1,2(p, q;M)
is equipped with a structure of infinite dimensional manifold modelled on the
Sobolev–Hilbert space H1,2([0, 1],Rn). If z ∈ Ω1,2(p, q;M), the tangent space
TzΩ1,2(p, q;M) at z is given by

TzΩ1,2(p, q;M) = {ζ ∈ Ω1,2((p, 0), (q, 0);TM) : π ◦ ζ = z},
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where TM denotes the tangent bundle of M and π : TM → M is the bundle
projection.

Let z be a geodesic joining p and q, the second derivative

E′′(z) : TzΩ1,2(p, q;M) × TzΩ1,2(p, q;M) → R

of E at z is given by (1.4), for any couple of tangent vectors ζ, ζ ′ ∈ TzΩ1,2(p, q;M).
Since the curvature term is compact with respect to the H1,2 topology, E′′(z)
is a compact perturbation of the nondegenerate bilinear form a0(z)[ζ, ζ ′] =∫ 1

0
g(z)[Dsζ, Dsζ

′]ds. So we define the relative index j(z) of a semiriemannian
geodesic setting

(3.2) j(z) = j(E′′(z), a0(z)).

The index j(z) is well defined and j(z) ∈ Z. Moreover, if the metric g is
Riemannian, then a0(z) is positive definite and j(z) equals to the Morse index
m(z, E) of the geodesic.

A geodesic z ∈ Ω1,2(p, q;M) is said nondegenerate if it is a nondegenerate
critical point of the action integral E, i.e. the second derivative defines an
invertible linear operator on the tangent space TzΩ1,2(p, q;M). Since E′′(z)
defines a Fredholm operator of index 0, this is equivalent to require that the
kernel of E′′(z) is trivial and this is equivalent to say that there are no solutions
of the Jacobi equations D2

sζ + R(ζ, ż)ż = 0 such that ζ(0) = 0, ζ(1) = 0. Two
points p and q of a semiriemannian manifold (M, g) are said nonconjugate if any
geodesic joining p and q is nondegenerate. From a variational point of view, the
nonconjugation of the points p and q means that the action integral is a Morse
function, i.e. its critical points are nondegenerate. Using the Sard theorem it
can be proved that all the couple of points in M, except for a nowhere dense
set, are nonconjugate, see [Mi].

The variational properties of the action integral in the Riemannian case are
completely known. If a Riemannian manifold is complete, the functional E is
bounded from below and satisfies the Palais–Smale condition. Then any com-
plete Riemannian manifold is geodesically connected, i.e. any couple of points
of the manifold can be joined by a geodesic. Moreover the Morse Relations hold
for any couple of nonconjugate points.

The situation is completely different in the case of a semiriemannian manifold
with positive index, in particular a Lorentzian manifold. In this case there are
many significant counterexamples to the geodesic connectedeness and then to the
Morse Inequalities. Calabi and Markus, see [CM], first gave some example of
geodesically complete but not geodesically connected Lorentzian manifolds (we
recall that the geodesically completeness is equivalent to the metric complete-
ness for a Riemannian manifold). Moreover there are compact not geodesically
connected Lorentzian manifolds, see [W]. We shall present some of these coun-
terexamples at the end of the note.

The variational properties of the action integral in Lorentzian geometry have
been studied in the last years and some results have obtained on the geodesic con-
nectedeness (see [Ma] and the references therein). In this note we state the Morse
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Inequalities for the geodesics joining two nonconjugate points on two classes of
Lorentzian manifolds, the stationary and the orthogonal splitting Lorentzian
manifolds.

Definition 3.1. A Lorentzian manifold (M,g) is said splitting if M = M0×R,
where M0 is a smooth connected manifold, and the metric g has the following
form: for any z = (x, t) ∈ M and for any ζ = (ξ, τ) ∈ TzM = TxM0 × R,

(3.3) g(z)[ζ, ζ] = 〈α(x, t)ξ, ξ〉 + 2〈δ(x, t), ξ〉τ − β (z) τ2,

where 〈·, ·〉is a Riemannian metric on M0, α(x, t) is a positive linear operator on
TxM0, smoothly depending on z, δ(x, t) is a smooth vector field tangent to M0

and β (z) is a smooth scalar field on M. The metric g is said orthogonal splitting
if δ(x, t) ≡ 0, while the metric g is said standard stationary if the linear operator
α, the vector field δ and the scalar field β do not depend on the variable t.

If the metric is stationary we can assume without any loss of generality that
the the linear operator α(x) is equal to the identity map and the metric has the
following form:

g(z)[ζ, ζ] = 〈ξ, ξ〉 + 2〈δ(x), ξ〉τ − β(x)τ2,

while an orthogonal splitting metric takes the form

g(z)[ζ, ζ] = 〈α(x, t)ξ, ξ〉 − β(x, t)τ2.

Remark 3.2. We recall that by a result of Geroch (see [BEE,CBC]), any time-
oriented globally hyperbolic Lorentzian manifold is isometric to an orthogonal
splitting Lorentzian manifold.

We first consider stationary Lorentzian manifolds. First of all it can be easily
proved that the relative index j(z) of any geodesic on a stationary Lorentzian
manifold is nonnegative, see [ABFM]. This essentially follows by the fact the
second derivative E′′(z) is still negative definite on a maximal subspace where
the principal part a0(z) is negative definite. For this class of Lorentzian mani-
folds, the Morse Relations and the Morse Inequalities hold, under some growth
condition on the coefficients of the metric.

Theorem 3.3. Let (M, g) be a stationary Lorentzian manifold and let z0 =
(x0, t0), z1 = (x1, t1) be two nonconjugate points of M. Assume that:
(S1) The Riemannian manifold (M0, 〈·, ·〉) is complete;
(S2) There exists two positive constants 0 < ν ≤ M such that for any z ∈ M,

ν ≤ β(z) ≤ M ;
(S3) sup{〈δ(x), δ(x)〉0, x ∈ M0} < +∞.

Let G(z0, z1) the set of the geodesics joining z0 and z1. Then for any field K
there exists a series Q(λ) =

∑k=+∞
k=0 akλk, with ak ∈ N ∪ {+∞} such that:

(3.4)
∑

z∈G(z0,z1)

λj(z) =
∞∑

k=0

βk(Z;K)λk + (1 + λ)Q(λ).
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Moreover the Morse inequalities hold; let, for any k ∈ N, Gk(z0, z1) the number
of geodesics joining z0 and z1 and having index k. Then

(3.5) Gk(z0, z1) ≥ βk(Z;K) = βk(Ω(M);K),

where βk(Ω(M),K) is the k–th Betti number of the based loop space Ω(M) of
M with coefficients in the field K.

Remark 3.4. We point out that since the relative index of any geodesic in
a stationary spacetime is nonnegative, the series Q(λ) in Theorem 3.3 is not a
Laurent one as in the abstract Theorem 2.2. For this reason the Morse Relations
(3.4) and the Morse Inequalities (3.5) involve all the geodesics joining z0 and z1.

The proof of Theorem 3.3 is obtained by applying the abstract Morse Theory
presented in Section 2 to the action integral E defined at (3.1). Assumptions
(S1)-(S3) guarantee that E satisfies the (PS)∗ condition. If such assumptions
do not hold, the Morse Inequalities may be false. A counterexample is provided
by the Anti de Sitter spacetime (see below). A version of the Morse Relations
for a stationary Lorentzian manifold satisfying (S1)–(S3) has been previously
proved using a global saddle point reduction (see [Ma]) which allows to define
a nonnegative index m(z) to any geodesic z joining z0 and z1. In [ABFM] we
show that j(z) = m(z).

The situation is completely different for nonstationary Lorentzian manifolds
and in the particular case of orthogonal splitting ones. Roughly speaking we
could say that this case is the genuinely strongly indefinite one. First of all it
is well known that for nonstationary metrics the (PS)∗ condition does not hold
for the action integral E, see [Ma]. Then the results of Theorem 2.2. can not be
applied. However, under some asymptotic conditions on the coefficients of the
metric, it can be proved that the action integral can be perturbed as explained
in Section 2. So for an orthogonal splitting Lorentzian manifold we state only
the Morse Inequalities for the geodesics joining two nonconjugate points.

Theorem 3.5. Let (M, g) be an orthogonal spliting Lorentzian manifold and let
z0 = (x0, t0) and z1 = (x1, t1) be two nonconjugate points of M. Assume that:
(O1) The Riemannian manifold (M0, 〈·, ·〉) is complete;
(O2) There exists λ > 0, such that for any z = (x, t) ∈ M, and for any ξ ∈

TxM0, 〈α(z)ξ, ξ〉 ≥ λ〈ξ, ξ〉 ;
(O3) there exists two positive constants 0 < ν ≤ M such that for any z ∈ M,

ν ≤ β (z) ≤ M ;
(O4) there exists a positive constant L such that for any z ∈ M, |〈αt(z)ξ, ξ〉| ≤

L〈ξ, ξ〉, |βt (z) | ≤ L, where αt and βt denote respectively the partial
derivative, with respect to t, of α and β;

(O5) limsupt→+∞〈αt(x, t)ξ, ξ〉 ≤ 0 and liminft→−∞〈αt(x, t)ξ, ξ〉 ≥ 0, uniformly
with respect to x ∈ M0 and ξ ∈ TxM0, 〈ξ, ξ〉 = 1.

Then for any k ∈ N and for any field K, denoting by Gk(z0, z1) the number of
geodesics joining z0 and z1 and having relative index equal to k, we have

(3.6) Gk(z0, z1) ≥ βk(Ω(M),K).
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The action integral E for a nonstationary metric does not satisfy the (PS)∗

condition and Theorem 2.2 can not be directly applied. However, by virtue
of assumptions (O1)–(O4), it is possible to find a family (Eδ)δ>0 of smooth
functionals satisfying (PS)∗ and such that Eδ → E, as δ → 0, on the bounded
subsets of the Sobolev manifold Ω1,2(z0, z1;M). Moreover, assumptions (O2)-
(O5) permit to prove some apriori estimates on the critical points of Eδ, so we
can pass to the limit as δ → 0 in the Morse Inequalities for the functionals Eδ

obtaining (3.6). We refer to [ABFM] for the details. If assumptions (O1)-(O5)
do not hold, the Morse Inequalities may not be hold. A counterexample is given
by the de Sitter spacetime (see below).

Remarks 3.6.
(1) The index j(z) of a geodesic for a nonstationary Lorentzian metric can

be negative, so in general j(z) ∈ Z. It can be proved that the index
of a causal geodesic is nonnegative, so a geodesic with negative index is
spacelike. We mention the paper [U] where the Morse Inequalities on a
globally hyperbolic Lorentzian manifold, relating the timelike geodesics
joining two causally related points to the topology of the space of timelike
curves are proved. It would be interesting to characterize geodesics with
negative index with respect to the metric or some of its invariants as the
curvature tensor and the Jacobi equation.

(2) It is an open problem to prove the Morse Relations (3.4) for an orthogonal
splitting manifold (M, g), as for stationary Lorentzian manifolds. If the
Relations (3.4) would be true, then the geodesics with negative index are
not due to the topology of the problem (the manifold M), but rather by
the geometrical properties of the metric g. Moreover the number of the
geodesics with negative index is even. Indeed the topological content of
(3.4) is given by the Poincaré polynomial

∑∞
k=0 βk(Z;K)λk, which has

only nonnegative powers, while the geometric content is in the remainder
term (1 + λ)Q(λ). So, if the Laurent series Q(λ) contains a term with
negative power , then the term (1 + λ) forces the existence of two critical
points with negative index.

(3) The Morse Relations in Theorem 3.3 and the Morse Inequalities in The-
orem 3.5 are written in terms of the homology groups of the based loop
space Ω(M) rather than the homology groups of the Sobolev manifold
Ω1,2(z0, z1;M) on which the abstract Morse Theory is applied . It is well
known that the two spaces Ω(M) and Ω1,2(z0, z1;M) are homotopically
equivalent (cf. [Pa]).

(4) It is known (see [FH]) that if the manifold M is noncontractible into itself,
there exists infinitely many nonnull Betti numbers βk(Ω(M),R). As a
consequence we get the following results which is a generalization of the
classical Serre Theorem on the existence of infinitely many geodesics join-
ing two points on a compact Riemannian manifold: if the assumptions of
Theorems 3.3 and 3.5 are satisfied, there exists a sequence (zm) of geodesics
joining z0 and z1 such that the j(zm)m∈N → +∞.
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We present now some counterexample to the Morse Inequalities in Lorentzian
Geometry. Indeed, they are counterexamples to the geodesic connectedeness
which is a necessary condition in order that the Morse Inequalities hold for any
couple of nonconjugate points. For further details see [ABFM].

1) The Anti de Sitter spacetime (M, g), where M =]−π/2, π/2[×R and g is
the stationary (it is also static, that is δ(x) ≡ 0) metric

(3.7) g(z)[ζ, ζ] = g(x, t)[(ξ, τ), (ξ, τ)] =
ξ2

cos2x
− τ2

cos2x
is an example of a geodesically complete Lorentzian manifold for which
the Morse Inequalities do not hold, see [Pe] and also [CM]. Moreover it is
a stationary Lorentzian manifold satisfying (S1) and (S3) but not (S2) of
Theorem 3.3.

2) The de Sitter spacetime (M, g), where M = Sn × R, Sn is the standard
n-dimensional sphere, g is given by

g(z) [ζ, ζ] = cosh2 t〈ξ, ξ〉 − τ2,

and 〈·, ·〉 is the standard Riemannian metric on Sn, is an example of orthog-
nal splitting Lorentzian manifold such that the Morse Inequalities do not
hold for any couple of points, see [CM,ON,ABFM]. The manifold (M, g)
does not satisfy assumptions (O4)-(O5) of Theorem 3.5. Notice that (M, g)
is geodesically complete and globally hyperbolic, giving a counterxample
to the Morse Inequalities in these classes.

3) Classical counterexamples to the geodesic connectedeness and the Morse
Inequalities for compact Lorentzian manifolds are the two dimensional
Clifton-Pohl torus, see [ON,W]. For instance consider R2 with the
Lorentzian metric g(z)[ζ, ζ] = g(x, t)[(ξ, τ), (ξ, τ)] = (cost)ξ2 + (2sint)ξτ −
(cost)τ2. The metric g induces a Lorentzian metric g̃ on the torus T 2 =
{(x, t) : 0 ≤ x ≤ 1,−4π ≤ t ≤ 4π}. The Lorentzian manifold (T 2, g̃) is not
geodesically connected, because any geodesic with starting point on the
circle t = 0 remains in the set {(x, t) : −5/2π ≤ t ≤ 7/2π}.
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