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A PARTIAL ORDER ON x2-INVARIANT MEASURES

OLIVER JENKINSON

Dedicated to the memory of Bill Parry

ABSTRACT. We introduce a partial order on the set of X 2-invariant probability measures,
describing relative dispersion, and show that the minimal elements for this order are the
Sturmian measures of Morse & Hedlund.

1. Introduction

Iteration of the “x2 map” T(x) = 2z (mod 1) provides a favourite example of a
dynamical system exhibiting a variety of complicated behaviour. The richness of the
dynamics of T is reflected by the diversity of its invariant sets, and more generally
of its invariant (Borel) probability measures. Much is known about the set of x2-
invariant measures, though open problems remain, such as the determination of those
members which are also x3-invariant, see e.g. [13, 18, 32].

Here we shall be interested in the relative dispersion of x2-invariant measures,
declaring one measure to be more diffuse than another if, roughly speaking, its mass
lies closer to the boundary of [0,1). With this in mind, it is convenient to extend
T to the closed interval X = [0,1] by defining T'(1) = 1, thus effecting a (weak-
*) compactification of the set of invariant measures. The resulting simplex M of
T-invariant Borel probability measures on X is naturally identified with the set of
shift-invariant Borel probability measures on {0, 1}".

An established notion of the relative dispersion of two probability measures p and v
is the following: we say that i is majorized! by v, and write u < v, if u(f) < v(f) for
every convex function f : X — R. Among all (not necessarily invariant) probability
measures on X, the least diffuse are the Dirac masses: indeed Jensen’s inequality
implies that the Dirac mass J, is majorized by every probability measure ;1 whose
barycentre b(p) := [xdu(x) equals p. The most diffuse probability measures are
those concentrated on the boundary of X: v, := (1 — g)dp + 061 majorizes every p
with b(p) = o.

If, however, we restrict attention to probability measures invariant under some
given transformation of X, it is usually a non-trivial problem to determine which
measures in this subset are the most, or the least, diffuse. In the case of the x2
map, the most diffuse measures are in fact easily identified: both endpoints 0 and

Received by the editors September 18, 2007.

LWhile its roots lie in economics [12, 25, 29], the mathematical foundations of majorization were
laid by Hardy, Littlewood & Pélya [15], and later developed notably in [3, 9, 10]. Majorization is
the basis for numerous inequalities in pure mathematics (see [27]), while in various applications it is
regarded as the proper indicator of relative dispersion (see e.g. [27, 31]).
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1 are fixed, so each measure v, is invariant, and majorizes all other members of
M, == {u € M : bu) = o}.? In other words, each ordered set (M,, <) has a
greatest element, namely v,, and these measures are precisely the maximal elements
of (M, <). Determining the minimal elements of (M, <) is more difficult, however,
since the Dirac measures §, are not invariant (unless ¢ = 0 or 1). In particular it is
unclear, a priori, whether or not each (M,, <) has a least element.

Remarkably, it turns out that each (M,, <) does have a least element, which
moreover can be identified explicitly:

Theorem 1. For every o € [0,1], the ordered set (M,, <) has a least element. This
least element is the Sturmian measure S, of rotation number o.

The Sturmian measure of rotation number p is defined in terms of a standard
symbolic coding procedure induced by the circle rotation of angle p. Specifically, for
0 € (0,1) it is the push forward of Lebesgue measure on X under the map z —
Y ons0 X—o) ({7 +mnp}) /2", where { -} denotes reduction modulo 1, and for o = 0
or 1 it is the Dirac measure supported on the corresponding fixed point. For rational
o the Sturmian measure is supported on a single periodic orbit, while for irrational
o its support is a uniquely ergodic Cantor set. For example the Sturmian measures
of rotation numbers 1/2, 1/3, 2/5, 3/8 and 5/13 are, respectively, the periodic orbit
measures corresponding to the strings

01, 001, 00101, 00100101, 0010010100101,

while the Sturmian measure of rotation number (3 — /5)/2 is the unique invariant
probability measure supported by the shift orbit closure of

0010010100100101001010010010100101 ...

The terminology Sturmian follows Morse & Hedlund [28], who coined the term to
describe (symbolically) the points in the support of Sturmian measures, so-called
Sturmian sequences. A Sturmian sequence of rotation number g is a sequence on the
alphabet {0,1} in which the symbol 1 occurs with frequency g, and as “regularly” as
possible. For various other characterizations see e.g. [1, 4, 8, 20, 26, 28, 30].

A result of Cartier [9] asserts that p < v if and only if v is a dilation of u, i.e. there
exists a family of probability measures (Dy).cx, with each b(D,) = z, such that if
f: X — R is bounded and Borel then so is z — D,(f), and v(f) = [ D,(f) du(x).
Combining this characterization with Theorem 1 gives:

Corollary 1. If f : X — R is strictly convex then for every o € [0, 1], the Sturmian
measure S, has strictly smaller f-integral than any other measure in M,.

The proof follows from the fact that Jensen’s inequality is strict, i.e. D, (f) > f(x),
whenever f is strictly convex and D, is not the Dirac measure at x. In particular the
variance var(u) = [(z — b(u))? du(x) is minimized precisely when y is Sturmian:

2An equivalent definition of M, is as the set of invariant measures giving weight g to the symbol
“1” (i.e. to the half-interval [1/2,1]), since the identity on X differs from the indicator function
X[1/2,1] by T' —id, which has zero mean for each invariant measure.
Morse & Hedlund used the term mechanical to reflect the regularity of such sequences. Many
authors prefer the term balanced, reserving the terminology Sturmian for the case of irrational g (see
e.g. [1, 26, 30]).
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Corollary 2. For every o € [0, 1], the Sturmian measure of rotation number o is the
unique measure with smallest variance in M,.

Another consequence is that, among all periodic orbits with a given arithmetic
mean, the Sturmian orbit has largest geometric mean:

Corollary 3. Let x1,...,2g be any non-Sturmian periodic orbit. If sq,...,5, de-
notes the Sturmian orbit of rotation number p/q = Q! 2?:1 z;, then ([T, ;)Y >

(IT32, =) V/@.

The original motivation for Theorem 1 was its application to ergodic optimiza-
tion (see e.g. [5, 6, 11, 21]): for a bounded Borel function f : X — R, a mea-
sure u € M is said to be minimizing if u(f) = infem m(f) and mazimizing if
p(f) = sup,eps m(f). Since o — S,(f) = infcpm, p(f) is convex, and strictly so
when f is strictly convex (a simple consequence of Corollary 1), we deduce?:

Corollary 4. If f : X — R is convex then it has a Sturmian minimizing measure.
If it is strictly convex then it has a unique minimizing measure, and this measure is
Sturmian.

The appearance of Sturmian measures as minimizing and maximizing measures
for natural classes of functions is not altogether new: Bousch [4] has shown that
every degree-one trigonometric polynomial has unique minimizing and maximizing
measures, both of which are Sturmian (this corresponds to the fact that Sturmian
measures describe the boundary of the “poisson” { [ exp(2mit) du(t) : p € M} C C).
A significant difference is that, for convex functions, the Sturmian nature of the mini-
mizing measure is a consequence of solving a family of restricted variational problems.
For degree-one trigonometric polynomials f there is no analogue of Theorem 1: it is
not the case that every Sturmian measure has smaller f-integral than all other invari-
ant measures of same barycentre.

Investigation of the ordered set (M, <) is facilitated by the fact that certain x2-
invariant measures are known “explicitly” (Lebesgue measure, periodic orbit mea-
sures), while others can be well-approximated, either by periodic orbit measures or
via explicit symbolic coding. For example, part of (M5, <) is depicted in the Hasse
diagram® of Figure 1; here each binary string represents the invariant probability mea-
sure supported by the corresponding periodic orbit, so for example Morse measure
(concentrated on the shift orbit closure of the Morse sequence 0110100110010110. . .)
majorizes 01 = {1/3,2/3}, is majorized by 000111 = {1/9,...,8/9}, and is incompa-
rable with 0011 = {1/5,2/5,3/5,4/5}.

To derive the above relations, and more generally to decide if and how two measures
in M are related, one may exploit the characterisation (see [23, 24, 31]) that p < v
if and only if b(u) = b(v) and fotp[O,x] dz < fot v|0, 2] dz for all ¢ € [0,1]. In the
case where pu and v are purely atomic and each atom has equal weight (e.g. if they
are periodic orbit measures of the same period), this recovers the famous Hardy-
Littlewood-Pdélya criterion for majorization (see [15, 16]): if b(u) = b(v) then p < v

4Note that determining the mazimizing measure for a convex function is trivial, because the
endpoints of X are both fixed by T'.
5See [22] for a Hasse diagram of a larger portion of (My/2,=).
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FIGURE 1. Hasse diagram of part of My,
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if and only if Y7, g > N7 viforall 1 <n < Q—1, where p:= Q' N% 4.,
vi=0Q ! Z?Zl 0y,, with g < ... < pg and 11 < ... < vg. For example, combining
this criterion with Theorem 1 yields:

Corollary 5. Let py < ... < pg be any periodic orbit, and p/q = Q7! Z?:l Lbi
its arithmetic mean, where 1 < p < q are coprime integers. If s1 < ... < sq are the

points in the Sturmian orbit of rotation number p/q, and s;+(j_1)q =55 for1 <1 <gq,
1<5<Q/q, then

(1) dosizd pi forall 1<n<Q-1.

i=1 i=1

If the orbit pu; < ... < pg is non-Sturmian then the extreme cases n = 1 and
n =@ — 1 of (1) clearly become strict inequalities, s; > p1 and s; < pg; these two
inequalities were first proved, using different methods, by Bernhardt [2] (see also [14]).
In fact a modification of the proof below yields a stronger result, namely that s; is
strictly greater than min(supp(p)), and s, is strictly smaller than max(supp(u)), for

any non-Sturmian measure p € M, /.

Notation. The Lebesgue measure of a set F is denoted by |E|, and the Lebesgue
integral of a function g by [ g. For other measures p we write either p(g) or [ gdp
for the integral of g.

2. Proof of Theorem 1

If o equals 0 or 1 then M, is a singleton, and Theorem 1 is trivially true, so
suppose o € (0,1). Since C? convex functions are weakly dense among all convex
functions, it suffices to show that if f is C? convex then S,(f) < u(f) for all u € M,.
If fo : X — R is defined, for 6 € R, by fy(z) = f(x) + Oz, this is equivalent to

(2) So(fo) < plfo) forall peM,.
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The strategy, therefore, will be to find, for each p € (0,1), a value 6 € R for which
(2) holds. In fact # can be chosen with the stronger property that S, is a minimizing
measure for fy, a result described by the following Theorem 2, which in particular
implies Theorem 1.

Theorem 2. Let f : X — R be a C? convex function. For every o € (0,1) there
exists 0 € R such that the Sturmian measure S, is a minimizing measure for the
function fy defined by fo(x) = f(x) + 0.

Proof. There exists v € (0,1/2) such that the support of S, is contained in H, =
[v,7 +1/2] (see e.g. [7, 8, 14, 34]).° Define r =7, : X — X by

() = (z+1)/2 ifxzel0,2y)
A Py if x € [27,1].

Ifg:=—[>°,27"f or" then the L* function ) > 27" f} o 7™ has Lebesgue
integral zero, so is the almost everywhere derivative of a Lipschitz function gy : X — R
satisfying ¢g(0) = wa(1). Now (fo + ws — pe o T)’ = 0 Lebesgue almost everywhere
on H.,, because 7 o T' is, Lebesgue almost everywhere, the identity function on H,.
Therefore, since fg 4+ pg — g o T is absolutely continuous on X, its restriction to H,
is constant. We claim that the constant value taken by fg + w9 — @9 0T on H, is in
fact its minimum, i.e. that

(fo+@o)(s+1/2) fors e (v,1/2],
(fo+vo)(s—1/2) forse(1/2,v+1/2).
From this it follows that S, is a minimizing measure for fs + @9 — g o T', and hence

for fg.
To prove the first inequality in (3) let s € (v,1/2], so that

(3) (fo 4+ @o)(s) < {

(fo +o)(s) — (fo +po)(s +1/2) = Ls(fe + ¢0) — /;le/f(fe + o)
-y [/EZ”féOT"—/ElQ”féoT"}

n=0

- i Umm o /mE/) fé]

n=0
:/Csfév

Co=Y [X(r"E) = x(r"E")], E = Eq:=(y,s], E' = E,:= (y+1/2,5s+1/2].
n=0
Now Cs(0) = 0, and Cy is Lebesgue-integrable, with [ Cy = 0, because |T"E| =
27"|E| = |[r"E'| for all n > 0. If By(t) := [; C, then B,(0) = 0 = B,(1), so

where

6The value v is unique if and only if g is irrational. S, is the unique invariant measure for the
continuous degree-one map of the circle ([0, 1] with endpoints identified) whose restriction to Hy is
T and which is constant on the complement of H- .
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integration by parts yields (fo + ¢o)(s) — (fo + ¢o)(s +1/2) = — [ By - fj/. Now f
is convex, therefore fj = f” > 0, so the required inequality will follow 1f it can be
shown that B is non-negative on X.

For this, first note that Cy is identically zero on [0,4], hence so is Bs. Since E’
and H, are disjoint, 7™(E') N 7"(E’) = 0 for m # n, so Y- x(7"(E’)) < 1. In
particular, Cs > 1 — ">  x(7"(E’)) > 0 on E = (v,s], hence By > 0 on (v, s] as
well. So Bs(t) > 0 for t € [0, s]. Now Cj is identically zero on (s + 1/2,1], and equal
to —1on E' = (y+1/2,s + 1/2], so Bg( fOC’— L105=s+1/2—t>0f0r
tey+1/2,s+1/2), and Bs(t) —Oforte [s+1/2,1]. If t € (s,7+ 1/2) then

wzfngq
- i / () ()

> |(77t]mE| — |(’Y,t}ﬂE’|—Z| 77 anE,|

n=1

> |E| - ZIT”E’I = [E|(1 - Z

The second inequality in (3) is proved similarly: if s € (1/2,+ + 1/2) then
o+ 00)(s) = o+ eu)(s = 1/2) = [ Cuvfy== [ B 1",

where Cs := 307 X(*(D") — x("(D)), D' = [s = 1/2,7), D = [s,7 + 1/2),

B, (t) = fo s, and an argument analogous to the one above can be used to show
that B, is non-negative on X. O
Remark 1.

(a) The choice of 8 in Theorem 2 is inspired by Bousch’s précondition de Sturm [4],
cf. [17].

(b) If fo + @9 happens to itself be convex (in general it is not, despite its second
derivative being Lebesgue almost everywhere positive), the key inequality (3) is im-
mediate.
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