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A PARTIAL ORDER ON ×2-INVARIANT MEASURES
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Dedicated to the memory of Bill Parry

Abstract. We introduce a partial order on the set of ×2-invariant probability measures,

describing relative dispersion, and show that the minimal elements for this order are the

Sturmian measures of Morse & Hedlund.

1. Introduction

Iteration of the “×2 map” T (x) = 2x (mod 1) provides a favourite example of a
dynamical system exhibiting a variety of complicated behaviour. The richness of the
dynamics of T is reflected by the diversity of its invariant sets, and more generally
of its invariant (Borel) probability measures. Much is known about the set of ×2-
invariant measures, though open problems remain, such as the determination of those
members which are also ×3-invariant, see e.g. [13, 18, 32].

Here we shall be interested in the relative dispersion of ×2-invariant measures,
declaring one measure to be more diffuse than another if, roughly speaking, its mass
lies closer to the boundary of [0, 1). With this in mind, it is convenient to extend
T to the closed interval X = [0, 1] by defining T (1) = 1, thus effecting a (weak-
∗) compactification of the set of invariant measures. The resulting simplex M of
T -invariant Borel probability measures on X is naturally identified with the set of
shift-invariant Borel probability measures on {0, 1}N.

An established notion of the relative dispersion of two probability measures µ and ν
is the following: we say that µ is majorized1 by ν, and write µ ≺ ν, if µ(f) ≤ ν(f) for
every convex function f : X → R. Among all (not necessarily invariant) probability
measures on X, the least diffuse are the Dirac masses: indeed Jensen’s inequality
implies that the Dirac mass δ% is majorized by every probability measure µ whose
barycentre b(µ) :=

∫
x dµ(x) equals %. The most diffuse probability measures are

those concentrated on the boundary of X: ν% := (1 − %)δ0 + %δ1 majorizes every µ
with b(µ) = %.

If, however, we restrict attention to probability measures invariant under some
given transformation of X, it is usually a non-trivial problem to determine which
measures in this subset are the most, or the least, diffuse. In the case of the ×2
map, the most diffuse measures are in fact easily identified: both endpoints 0 and

Received by the editors September 18, 2007.
1While its roots lie in economics [12, 25, 29], the mathematical foundations of majorization were

laid by Hardy, Littlewood & Pólya [15], and later developed notably in [3, 9, 10]. Majorization is

the basis for numerous inequalities in pure mathematics (see [27]), while in various applications it is
regarded as the proper indicator of relative dispersion (see e.g. [27, 31]).
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1 are fixed, so each measure ν% is invariant, and majorizes all other members of
M% := {µ ∈ M : b(µ) = %}.2 In other words, each ordered set (M%,≺) has a
greatest element, namely ν%, and these measures are precisely the maximal elements
of (M,≺). Determining the minimal elements of (M,≺) is more difficult, however,
since the Dirac measures δ% are not invariant (unless % = 0 or 1). In particular it is
unclear, a priori, whether or not each (M%,≺) has a least element.

Remarkably, it turns out that each (M%,≺) does have a least element, which
moreover can be identified explicitly:

Theorem 1. For every % ∈ [0, 1], the ordered set (M%,≺) has a least element. This
least element is the Sturmian measure S% of rotation number %.

The Sturmian measure of rotation number % is defined in terms of a standard
symbolic coding procedure induced by the circle rotation of angle %. Specifically, for
% ∈ (0, 1) it is the push forward of Lebesgue measure on X under the map x 7→∑

n≥0 χ[1−%,1)({x+n%})/2n+1, where { · } denotes reduction modulo 1, and for % = 0
or 1 it is the Dirac measure supported on the corresponding fixed point. For rational
% the Sturmian measure is supported on a single periodic orbit, while for irrational
% its support is a uniquely ergodic Cantor set. For example the Sturmian measures
of rotation numbers 1/2, 1/3, 2/5, 3/8 and 5/13 are, respectively, the periodic orbit
measures corresponding to the strings

01 , 001 , 00101 , 00100101 , 0010010100101 ,

while the Sturmian measure of rotation number (3 −
√

5)/2 is the unique invariant
probability measure supported by the shift orbit closure of

0010010100100101001010010010100101 . . .

The terminology Sturmian follows Morse & Hedlund [28], who coined the term to
describe (symbolically) the points in the support of Sturmian measures, so-called
Sturmian sequences. A Sturmian sequence of rotation number % is a sequence on the
alphabet {0, 1} in which the symbol 1 occurs with frequency %, and as “regularly” as
possible3. For various other characterizations see e.g. [1, 4, 8, 20, 26, 28, 30].

A result of Cartier [9] asserts that µ ≺ ν if and only if ν is a dilation of µ, i.e. there
exists a family of probability measures (Dx)x∈X , with each b(Dx) = x, such that if
f : X → R is bounded and Borel then so is x 7→ Dx(f), and ν(f) =

∫
Dx(f) dµ(x).

Combining this characterization with Theorem 1 gives:

Corollary 1. If f : X → R is strictly convex then for every % ∈ [0, 1], the Sturmian
measure S% has strictly smaller f-integral than any other measure in M%.

The proof follows from the fact that Jensen’s inequality is strict, i.e. Dx(f) > f(x),
whenever f is strictly convex and Dx is not the Dirac measure at x. In particular the
variance var(µ) =

∫
(x− b(µ))2 dµ(x) is minimized precisely when µ is Sturmian:

2An equivalent definition ofM% is as the set of invariant measures giving weight % to the symbol
“1” (i.e. to the half-interval [1/2, 1]), since the identity on X differs from the indicator function
χ[1/2,1] by T − id, which has zero mean for each invariant measure.

3Morse & Hedlund used the term mechanical to reflect the regularity of such sequences. Many

authors prefer the term balanced, reserving the terminology Sturmian for the case of irrational % (see
e.g. [1, 26, 30]).
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Corollary 2. For every % ∈ [0, 1], the Sturmian measure of rotation number % is the
unique measure with smallest variance in M%.

Another consequence is that, among all periodic orbits with a given arithmetic
mean, the Sturmian orbit has largest geometric mean:

Corollary 3. Let x1, . . . , xQ be any non-Sturmian periodic orbit. If s1, . . . , sq de-
notes the Sturmian orbit of rotation number p/q = Q−1

∑Q
i=1 xi, then (

∏q
i=1 si)1/q >

(
∏Q

i=1 xi)1/Q.

The original motivation for Theorem 1 was its application to ergodic optimiza-
tion (see e.g. [5, 6, 11, 21]): for a bounded Borel function f : X → R, a mea-
sure µ ∈ M is said to be minimizing if µ(f) = infm∈Mm(f) and maximizing if
µ(f) = supm∈Mm(f). Since % 7→ S%(f) = infµ∈M% µ(f) is convex, and strictly so
when f is strictly convex (a simple consequence of Corollary 1), we deduce4:

Corollary 4. If f : X → R is convex then it has a Sturmian minimizing measure.
If it is strictly convex then it has a unique minimizing measure, and this measure is
Sturmian.

The appearance of Sturmian measures as minimizing and maximizing measures
for natural classes of functions is not altogether new: Bousch [4] has shown that
every degree-one trigonometric polynomial has unique minimizing and maximizing
measures, both of which are Sturmian (this corresponds to the fact that Sturmian
measures describe the boundary of the “poisson” {

∫
exp(2πit) dµ(t) : µ ∈ M} ⊂ C).

A significant difference is that, for convex functions, the Sturmian nature of the mini-
mizing measure is a consequence of solving a family of restricted variational problems.
For degree-one trigonometric polynomials f there is no analogue of Theorem 1: it is
not the case that every Sturmian measure has smaller f -integral than all other invari-
ant measures of same barycentre.

Investigation of the ordered set (M,≺) is facilitated by the fact that certain ×2-
invariant measures are known “explicitly” (Lebesgue measure, periodic orbit mea-
sures), while others can be well-approximated, either by periodic orbit measures or
via explicit symbolic coding. For example, part of (M1/2,≺) is depicted in the Hasse
diagram5 of Figure 1; here each binary string represents the invariant probability mea-
sure supported by the corresponding periodic orbit, so for example Morse measure
(concentrated on the shift orbit closure of the Morse sequence 0110100110010110 . . .)
majorizes 01 = {1/3, 2/3}, is majorized by 000111 = {1/9, . . . , 8/9}, and is incompa-
rable with 0011 = {1/5, 2/5, 3/5, 4/5}.

To derive the above relations, and more generally to decide if and how two measures
in M are related, one may exploit the characterisation (see [23, 24, 31]) that µ ≺ ν

if and only if b(µ) = b(ν) and
∫ t

0
µ[0, x] dx ≤

∫ t

0
ν[0, x] dx for all t ∈ [0, 1]. In the

case where µ and ν are purely atomic and each atom has equal weight (e.g. if they
are periodic orbit measures of the same period), this recovers the famous Hardy-
Littlewood-Pólya criterion for majorization (see [15, 16]): if b(µ) = b(ν) then µ ≺ ν

4Note that determining the maximizing measure for a convex function is trivial, because the

endpoints of X are both fixed by T .
5See [22] for a Hasse diagram of a larger portion of (M1/2,≺).
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Figure 1. Hasse diagram of part of M1/2

if and only if
∑n

i=1 µi ≥
∑n

i=1 νi for all 1 ≤ n ≤ Q − 1, where µ := Q−1
∑Q

i=1 δµi
,

ν := Q−1
∑Q

i=1 δνi
, with µ1 ≤ . . . ≤ µQ and ν1 ≤ . . . ≤ νQ. For example, combining

this criterion with Theorem 1 yields:

Corollary 5. Let µ1 < . . . < µQ be any periodic orbit, and p/q = Q−1
∑Q

i=1 µi

its arithmetic mean, where 1 ≤ p < q are coprime integers. If s1 < . . . < sq are the
points in the Sturmian orbit of rotation number p/q, and s′i+(j−1)q := sj for 1 ≤ i ≤ q,
1 ≤ j ≤ Q/q, then

(1)
n∑

i=1

s′i ≥
n∑

i=1

µi for all 1 ≤ n ≤ Q− 1 .

If the orbit µ1 < . . . < µQ is non-Sturmian then the extreme cases n = 1 and
n = Q − 1 of (1) clearly become strict inequalities, s1 > µ1 and sq < µQ; these two
inequalities were first proved, using different methods, by Bernhardt [2] (see also [14]).
In fact a modification of the proof below yields a stronger result, namely that s1 is
strictly greater than min(supp(µ)), and sq is strictly smaller than max(supp(µ)), for
any non-Sturmian measure µ ∈Mp/q.

Notation. The Lebesgue measure of a set E is denoted by |E|, and the Lebesgue
integral of a function g by

∫
g. For other measures µ we write either µ(g) or

∫
g dµ

for the integral of g.

2. Proof of Theorem 1

If % equals 0 or 1 then M% is a singleton, and Theorem 1 is trivially true, so
suppose % ∈ (0, 1). Since C2 convex functions are weakly dense among all convex
functions, it suffices to show that if f is C2 convex then S%(f) ≤ µ(f) for all µ ∈M%.
If fθ : X → R is defined, for θ ∈ R, by fθ(x) = f(x) + θx, this is equivalent to

(2) S%(fθ) ≤ µ(fθ) for all µ ∈M% .
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The strategy, therefore, will be to find, for each % ∈ (0, 1), a value θ ∈ R for which
(2) holds. In fact θ can be chosen with the stronger property that S% is a minimizing
measure for fθ, a result described by the following Theorem 2, which in particular
implies Theorem 1.

Theorem 2. Let f : X → R be a C2 convex function. For every % ∈ (0, 1) there
exists θ ∈ R such that the Sturmian measure S% is a minimizing measure for the
function fθ defined by fθ(x) = f(x) + θx.

Proof. There exists γ ∈ (0, 1/2) such that the support of S% is contained in Hγ =
[γ, γ + 1/2] (see e.g. [7, 8, 14, 34]).6 Define τ = τγ : X → X by

τγ(x) =

{
(x + 1)/2 if x ∈ [0, 2γ)
x/2 if x ∈ [2γ, 1] .

If θ := −
∫ ∑∞

n=1 2−nf ′ ◦ τn then the L∞ function
∑∞

n=1 2−nf ′θ ◦ τn has Lebesgue
integral zero, so is the almost everywhere derivative of a Lipschitz function ϕθ : X → R
satisfying ϕθ(0) = ϕθ(1). Now (fθ + ϕθ − ϕθ ◦ T )′ = 0 Lebesgue almost everywhere
on Hγ , because τ ◦ T is, Lebesgue almost everywhere, the identity function on Hγ .
Therefore, since fθ + ϕθ −ϕθ ◦ T is absolutely continuous on X, its restriction to Hγ

is constant. We claim that the constant value taken by fθ + ϕθ − ϕθ ◦ T on Hγ is in
fact its minimum, i.e. that

(3) (fθ + ϕθ)(s) ≤

{
(fθ + ϕθ)(s + 1/2) for s ∈ (γ, 1/2] ,
(fθ + ϕθ)(s− 1/2) for s ∈ (1/2, γ + 1/2) .

From this it follows that S% is a minimizing measure for fθ + ϕθ − ϕθ ◦ T , and hence
for fθ.

To prove the first inequality in (3) let s ∈ (γ, 1/2], so that

(fθ + ϕθ)(s)− (fθ + ϕθ)(s + 1/2) =
∫ s

γ

(fθ + ϕθ)′ −
∫ s+1/2

γ+1/2

(fθ + ϕθ)′

=
∞∑

n=0

[∫
E

2−nf ′θ ◦ τn −
∫

E′
2−nf ′θ ◦ τn

]

=
∞∑

n=0

[∫
τn(E)

f ′θ −
∫

τn(E′)

f ′θ

]

=
∫

Cs · f ′θ ,

where

Cs :=
∞∑

n=0

[χ(τnE)− χ(τnE′)] , E = Es := (γ, s], E′ = E′s := (γ + 1/2, s + 1/2] .

Now Cs(0) = 0, and Cs is Lebesgue-integrable, with
∫

Cs = 0, because |τnE| =
2−n|E| = |τnE′| for all n ≥ 0. If Bs(t) :=

∫ t

0
Cs then Bs(0) = 0 = Bs(1), so

6The value γ is unique if and only if % is irrational. S% is the unique invariant measure for the
continuous degree-one map of the circle ([0, 1] with endpoints identified) whose restriction to Hγ is

T and which is constant on the complement of Hγ .
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integration by parts yields (fθ + ϕθ)(s) − (fθ + ϕθ)(s + 1/2) = −
∫

Bs · f ′′θ . Now f
is convex, therefore f ′′θ = f ′′ ≥ 0, so the required inequality will follow if it can be
shown that Bs is non-negative on X.

For this, first note that Cs is identically zero on [0, γ], hence so is Bs. Since E′

and Hγ are disjoint, τm(E′) ∩ τn(E′) = ∅ for m 6= n, so
∑∞

n=0 χ(τn(E′)) ≤ 1. In
particular, Cs ≥ 1 −

∑∞
n=0 χ(τn(E′)) ≥ 0 on E = (γ, s], hence Bs ≥ 0 on (γ, s] as

well. So Bs(t) ≥ 0 for t ∈ [0, s]. Now Cs is identically zero on (s + 1/2, 1], and equal
to −1 on E′ = (γ + 1/2, s + 1/2], so Bs(t) =

∫ t

0
Cs = −

∫ 1

t
Cs = s + 1/2 − t > 0 for

t ∈ [γ + 1/2, s + 1/2), and Bs(t) = 0 for t ∈ [s + 1/2, 1]. If t ∈ (s, γ + 1/2) then

Bs(t) =
∫ t

0

Cs =
∫ t

γ

Cs

=
∞∑

n=0

∫ t

γ

χ(τn(E))− χ(τn(E′))

≥ |(γ, t] ∩ E| − |(γ, t] ∩ E′| −
∞∑

n=1

|(γ, t] ∩ τnE′|

≥ |E| −
∞∑

n=1

|τnE′| = |E|(1−
∞∑

n=1

2−n) = 0 .

The second inequality in (3) is proved similarly: if s ∈ (1/2, γ + 1/2) then

(fθ + ϕθ)(s)− (fθ + ϕθ)(s− 1/2) =
∫

C̃s · f ′θ = −
∫

B̃s · f ′′ ,

where C̃s :=
∑∞

n=0 χ(τn(D′)) − χ(τn(D)), D′ = [s − 1/2, γ), D = [s, γ + 1/2),
B̃s(t) :=

∫ t

0
C̃s, and an argument analogous to the one above can be used to show

that B̃s is non-negative on X. �

Remark 1.
(a) The choice of θ in Theorem 2 is inspired by Bousch’s précondition de Sturm [4],
cf. [17].
(b) If fθ + ϕθ happens to itself be convex (in general it is not, despite its second
derivative being Lebesgue almost everywhere positive), the key inequality (3) is im-
mediate.
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