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SPIN STRUCTURES AND CODIMENSION-TWO
HOMEOMORPHISM EXTENSIONS

Fan Ding, Yi Liu, Shicheng Wang and Jiangang Yao

Abstract. Let ı : M ↪→ R
p+2 be a smooth embedding from a connected, oriented,

closed p-dimesional smooth manifold to R
p+2, then there is a spin structure ı�(ςp+2) on

M canonically induced from the embedding. If an orientation-preserving diffeomorphism

τ of M extends over ı as an orientation-preserving topological homeomorphism of R
p+2,

then τ preserves the induced spin structure.
For C being Top, PL or Diff, let EC(ı) be the subgroup of the C-mapping class

group MCGC(M) consisting of elements whose representatives extend over R
p+2 as

orientation-preserving C-homeomorphisms. We apply the invariance of ı�(ςp+2) to study
[MCGC(M) : EC(ı)] when M is a p-dimensional torus or a closed-orientable surface.

1. Introduction

Let M be a connected, oriented, closed p-dimensional smooth manifold, and ı :
M ↪→ R

p+2 be a smooth embedding. We are concerned with the question: ‘how many
mapping classes of M extend over R

p+2?’ Regarding to different possible flavors of
this question, we shall write Top (resp. PL, or Diff) for the category of topological
(resp. PL, or smooth) manifolds with continuous (resp. PL or smooth) maps as mor-
phisms, and generally write C for any of these categories. We speak of C-manifolds,
C-homeomorphisms, C-isotopies, etc., in the usual sense.

With notations above, denote MCGC(M) = π0 Homeo+
C (M) for the C-mapping-

class-group of M , i.e., the group of C-isotopy classes of orientation-preserving C-self-
homeomorphisms on M . A class [τ ] ∈ MCGC(M) is called C-extendable over ı if for
some (hence any, cf. Lemma 2.2) representative τ , there is an orientation-preserving
C-self-homeomorphism τ̃ of R

p+2 such that ı ◦ τ = τ̃ ◦ ı. We define the C-extendable
subgroup with respect to ı as:

EC(ı) = {[τ ] ∈ MCGC(M) | τ is C-extendable over ı.}.
Now the question makes sense by asking what is the index of EC(ı) ≤ MCGC(M).

Note in the smooth category, as our target space is R
p+2, an orientation-preserving

diffeomorphism τ is diffeomorphically extendable if and only if ı ◦ τ is diffeotopic to ı,
(Lemma 2.3). Therefore, the question in this case is the same as counting diffeotopy
classes of smooth embeddings M ↪→ R

p+2, which has the same image as ı. Let ςp+2

be the canonical spin structure on R
p+2. For any smooth embedding ı : M ↪→ R

p+2,
there is a canonically induced spin structure ı�(ςp+2) on M (Definition 2.1). In this
paper, we prove the following criterion:

Received by the editors August 3, 2011.

1991 Mathematics Subject Classification. 57N35.

345



346 FAN DING ET AL.

Proposition 1.1. For any smooth embedding ı : M ↪→ R
p+2, the induced spin

structure ı�(ςp+2) on M is null spin-cobordant. Moreover, it is invariant under any
orientation-preserving self-diffeomorphism of M that extends over ı as an orientation-
preserving topological self-homeomorphism of R

p+2.

In fact, ı�(ςp+2) is naturally induced as the boundary of a spin structure on a
smooth Seifert hypersurface Σ of ı(M). Proposition 1.1 allows us to find non-trivial
lower bounds of [MCGC(M) : EC(ı)] in certain cases. In this paper, we apply the
criterion to certain smoothly embedded p-dimensional tori in R

p+2 and smoothly
embedded surfaces in R

4.
Denote the standard p-dimensional smooth torus S1 × · · · × S1 (p copies) as T p.

The structure of MCGC(T p) is fairly well understood except for p = 4, (see Section 3
for details). This allows us to obtain the following result:

Theorem 1.1. For p ≥ 1, suppose ı : T p ↪→ R
p+2 is a smooth embedding whose

induced spin structure ı�(ςp+2) on T p is not the Lie-group spin structure, then:

[MCGTop(T p) : ETop(ı)] ≥ 2p − 1.

Moreover, the lower bound is realized by unknotted embeddings (Definition 3.1).

Corollary 1.1. If ı : T p ↪→ R
p+2 is an unknotted embedding, then [MCGDiff(T p) :

EDiff(ı)] and [MCGPL(T p) : EPL(ı)] are finite but at least 2p − 1.

The same lower bound under the assumption of Theorem 1.1 holds in the PL
and the smooth categories (cf. Lemma 3.1), but it is still an interesting problem to
figure out the exact bound for unknotted embeddings in both of these cases. When p
equals 3, an equivalent condition to the assumption of Theorem 1.1 is that a (hence
any) smooth Seifert hypersurface Σ4 of the knotted three-torus has signature 0 modulo
16. However, there are examples in which this condition does not hold [19]. We make
the following conjecture:

Conjecture 1.1. For any smooth embedding ı : T p ↪→ R
p+2, ETop(ı) is a proper

subgroup of MCGTop(T p).

For any integer g > 0, denote the closed-orientable surface of genus g as Fg.

Theorem 1.2. For any smooth embedding ı : Fg ↪→ R
4, where g > 0,

[MCGTop(Fg) : ETop(ı)] ≥ 22g−1 + 2g−1.

This strengthens a result previously known for the smooth category, ([8], cf. also [17]
for g = 1), using the Rokhlin quadratic form [18]. The lower bound has been realized
for unknotted embeddings, namely, which bounds a smoothly embedded handlebody
of genus g in R

4, by an explicit construction of Susumu Hirose [8]. Following from the
proof of Theorem 1.2, we also have an interesting corollary:

Corollary 1.2. For any g ≥ 1, there exists [τ ] ∈ MCGTop(Fg), which is not homeo-
morphically extendable over any smooth embedding ı : Fg ↪→ R

4.

In Section 2, we introduce ı�(ςp+2) (Definition 2.1) using Seifert hypersurfaces,
and prove Proposition 1.1. In Section 3, we consider embedded T p in R

p+2. We prove
Theorem 1.1 and Corollary 1.1 by studying the action of MCGC(T p) on S(T p). In
Section 4, we consider embedded surfaces in R

4 and using the action of MCGC(Fg)
on the space of spin structures S(Fg) on Fg to prove Theorem 1.2 and Corollary 1.2.
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2. Invariant-induced spin structure

In this section, we introduce the induced spin structures for codimension-2 closed
oriented smooth submanifolds of R

p+2, and prove Proposition 1.1.

2.1. Induced spin structure. In this subsection, we introduce the induced spin
structures for closed oriented codimension-2 smooth submanifolds of R

p+2. We often
regard a spin structure of a finite-dimensional real vector bundle over a CW complex
as a (stabilized) trivialization over the two-skeleton up to homotopy. A spin structure
of a smooth manifold is a spin structure of its tangent bundle with respect to some
(hence any) CW complex structure on the manifold, which exists if and only if M
is orientable, and the second Stiefel–Whitney class w2(M) = 0, (cf. [12, Chapter IV],
[15]).

Suppose ı : M ↪→ R
p+2 is a connected, closed, oriented p-dimensional smooth

submanifold of R
p+2, p ≥ 1. Since any closed oriented smooth submanifold of R

p+2

has trivial Euler class ( [16, Corollary 11.4]), the normal bundle of M in R
p+2 is trivial

as M is codimension 2. On the other hand, it is well known that there exists a Seifert
hypersurface:

Σ ⊂ R
p+2,

of ı(M), namely, a compact connected oriented (p + 1)-dimensional smooth subman-
ifold such that ∂Σ = ı(M), (cf. for example, [2, Lemma 2.2]).

Let W be an inward normal vector field of ı(M) in Σ (with respect to any com-
patible Riemannian metric on a collar), and H be a normal vector field of Σ in R

p+2

over ı(M), such that the orientation (W, H) of the normal bundle NRp+2(ı(M)) and
the orientation of M match up to that the canonical orientation of R

p+2. The trivi-
alization:

(W, H),
of NRp+2(ı(M)) defines a spin structure σ of NRp+2(ı(M)). Recall that if ξ = ξ′ ⊕ ξ′′

is the Whitney sum of vector bundles over a CW complex, then spin structures on
any two of ξ, ξ′ and ξ′′ naturally determine a spin structure of the third, so that as
trivializations σ 	 σ′ ⊕ σ′′ over the one-skeleton, (hence also over the two-skeleton),
(cf. [12, p. 33]). Note the canonical spin structure ςp+2 of R

p+2 restricts to a spin
structure on TR

p+2|ı(M). Since TR
p+2|ı(M) = ı∗(TM) ⊕ NRp+2(ı(M)), there is a

complementary spin structure σ⊥ of ı∗(TM) such that:

σ⊥ ⊕ σ = ςp+2,

in the sense that as trivializations σ⊥ ⊕ σ 	 ςp+2 over the one-skeleton M (1).

Lemma 2.1. The spin structure σ⊥ on ı(M) is independent of the choice of Σ and
(W, H).

Proof. It suffices to show σ is independent of the choice of Σ and (W, H). In fact, we
show for any two choices Σ, (W, H) and Σ′, (W ′, H ′), the trivializations (W, H) 	
(W ′, H ′) over ı(M).

First observe that any loop α on ı(M), when pushed into Σ̊ along W , becomes
null-homologous in R

p+2 \ ı(M). To see this, consider the map f : R
p+2 \ ı(M) → S1

defined as follows: take a tubular neighborhood N (Σ̊), where Σ̊ is the interior of Σ,
and let f | : N (Σ̊) → S1 to be the composition: N (Σ̊) ∼= Σ̊ × I

p−→ I
q−→ I/∂I ∼= S1,
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where p is the second-factor projection and q is the quotient map; then extend f | to
f : R

p+2 \ ı(M) → S1 by the constant map. Then f∗ : H1(Rp+2 \ ı(M)) → H1(S1)
is isomorphic, but the push-off of α along W is mapped to 0 ∈ H1(S1), so it is
null-homologous in R

p+2 \ ı(M).
Now (W, H) and (W ′, H ′) differ pointwisely by an element of GL+(2, R), namely

for any x∈M , (W ′, H ′)|x =(W, H)|x · R(x) for some R(x) ∈ GL+(2, R). This gives a
map R : M → GL+(2, R). If for some loop α : S1 → M , R◦α were not null-homotopic
in GL+(2, R), then the push-offs of α along W and W ′ would differ by a non-zero
multiple of the meridian μ, namely the loop that bounds a normal disk of ı(M). Since
μ is the generator of H1(Rp+2 \ ı(M)) ∼= Z by the Alexander duality, the two push-offs
would not be both null-homologous in R

p+2 \ ı(M), which is a contradiction. Thus
R� : π1(M) → π1(GL+(2, R)) is trivial. We conclude that R is homotopic to the
constant identity map as πi(GL+(2, R)) ∼= πi(S1) is trivial for i ≥ 2. This implies
(W, H) 	 (W ′, H ′) over M . �

Lemma 2.1 allows us to make the following definition.

Definition 2.1. For a smooth embedding ı : M ↪→ R
p+2 of a connected, closed,

oriented p-dimensional smooth manifold M into R
p+2, we define the induced spin

structure as:
ı�(ςp+2) = ı∗(σ⊥),

where σ⊥ is as described above.

2.2. Homeomorphism extensions. In this subsection, we prove Proposition 1.1.
Recall that for a spin manifold M with boundary ∂M , ∂M has a natural spin structure
induced from the spin structure of M and the (inward) normal vector of ∂M in M .
A manifold is said to be null spin-cobordant if there is a spin manifold bounded by
it, inducing its spin structure, (cf. [12, Chapter IV], [15]).

Proof of Proposition 1.1. We first show ı�(ςp+2) is null spin-cobordant, or equivalently
that σ⊥ is a spin boundary. In fact, for a Seifert hypersurface Σ of ı(M), the normal
vector field H of Σ in R

p+2 defines a spin structure σH on the normal bundle NRp+2(Σ),
so there is a spin structure σ⊥

H on TΣ such that:

σ⊥
H ⊕ σH = ςp+2,

on TΣ ⊕ NRp+2(Σ) = TR
p+2|Σ. The spin boundary of (Σ, σ⊥

H) is clearly (M, σ⊥) by
the construction.

We next prove the invariance of ı�(ςp+2) under homeomorphically extendable self-
diffeomorphisms. Specifically, for an orientation-preserving self-diffeomorphism τ :
M → M , which extends over ı as an orientation-preserving self-homeomorphism τ̃
of R

p+2, we must show ı�(ςp+2) equals τ∗(ı�(ςp+2)) = (ı ◦ τ)�(ςp+2). Without loss of
generality, we may assume p > 1 as there is nothing to prove for p = 1. We shall omit
writing ı identifying M as a submanifold of R

p+2, and identify D2 as the unit disk
in C.

Let N be a closed tubular neighborhood of M in R
p+2, identified with M × D2

such that M is identified with M × {0} and M × {1} is the push-off of M along
W . By the uniqueness of normal bundle for codimension 2 locally flat embedding
(see [13] for the case of the ambient dimension at least 5, and [3, Section 9.3] for the
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ambient dimension equal to 4), we may assume τ̃ preserves N , and restricted to this
neighborhood, it is a bundle map:

τ̃ : M × D2 → M × D2,

given by τ̃(x, v) → (τ(x), R(x).v), where R(x) ∈ SO(2).
Since τ̃(Σ) is still a (topological) Seifert hypersurface, by the same argument of

Lemma 2.1, R : M → SO(2) is homotopic to the constant identity map. This implies
that τ̃ |N may be assumed to be τ × idD2 under the identification N ∼= M × D2. Let:

X = Sp+2 \ N̊ ,

where Sp+2 = R
p+2 ∪ {∞}. Extend τ̃ to a homeomorphism of Sp+2, still denoted as

τ̃ , by defining τ̃(∞) = ∞. We glue two (opposite) copies X, −X along the boundary
via τ̃ |∂X : ∂X → ∂X, and the resulting smooth manifold is denoted as:

Yτ = X ∪τ (−X).

On the other hand, we may glue via id|∂X to obtain the double of X, denoted as:

Yid = X ∪id (−X).

Thus Yτ is homeomorphic to Yid via τ̃ ∪ id.
Observe that TYid is stably trivial. In fact, X ⊂Sp+2 =∂Dp+3, and we may push

the interior of X into the interior of Dp+3 so that (X, ∂X) ⊂ (Dp+3, Sp+2) is a
proper embedding of pairs. We may further assume that on the collar neighborhood
of ∂Dp+3, diffeomorphically Sp+2 × I, X is identified as ∂X × I. Then doubling Dp+3

along boundary gives a codimension 1 smooth embedding Yid ⊂ Sp+3. Hence, clearly
TYid ⊕ ε1 is trivial, so w2(Yid) = 0 in H2(Yid; Z2), or in other words, Yid is spin.

We wish to show, however, that Yτ is not spin if τ does not preserve ı�(ςp+2). This
would lead to a contradiction because an orientable smooth manifold is spin if and
only if its second Stiefel–Whitney class vanishes, and because the Stiefel–Whitney
class depends only on the homotopy type of the smooth manifold, (cf. [20], also [16]).
Recall also that for an oriented smooth manifold M which admits spin structures,
the space S(M) of spin structures on M , is an affine H1(M ; Z2). Thus any two spin
structures σ1, σ0 ∈ S(M) gives rise to a natural difference homomorphism:

σ1 − σ0 : π1(M) → Z2,

which may be regarded as an element in H1(M ; Z2). Specifically, σ1 − σ0 takes the
value 0 (resp. 1) in Z2 at [α] ∈ π1(M), if σ1 and σ0 are represented by the same
trivialization (resp. two distinct trivializations) of TM over the loop α up to homotopy.

Suppose τ did not preserve ı�(ςp+2). Then there is some smoothly embedded loop
α ⊂ M such that ı�(ςp+2)|α 
	 τ∗(ı�(ςp+2))|α. Since we assumed that τ̃ |N = τ ×
idD2 under the identification N ∼= M × D2, by the construction of ı�(ςp+2), the
difference τ̃∗(ςp+2|N ) − ςp+2|N in H1(N ; Z2) is exactly τ∗(ı�(ςp+2)) − (ı�(ςp+2)) in
H1(M ; Z2), under the natural isomorphism H1(N ; Z2) → H1(M ; Z2) via inclusion.
Hence, τ̃∗(ςp+2|α×{1}) 
	 ςp+2|τ(α)×{1}.

As α×{1} is null-homological in X by the construction (cf. the proof of Lemma 2.1),
it bounds a smoothly immersed oriented surface j : F � X such that j(F̊ ) ⊂ X̊, and
j is a smooth embedding in a collar neighborhood of ∂F . This can be seen by writing
α as a product of commutators, so there is a continuous map F → X, which can
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be perturbed to be an immersion by the Whitney’s trick. Thus, there is a smoothly
immersed closed oriented surface:

̂j : K = F ∪ (−F ) � Yτ ,

defined by j ∪ (−τ̃ ◦ j). Note ̂j∗(TYτ )|F = j∗(TR
p+2)|F has a spin structure ςp+2|F ,

and ̂j∗(TYτ )|−F = (−τ̃◦j)∗(TR
p+2)|−F has a spin structure −ςp+2|(−τ̃(F )). These two

spin structures disagree along α×{1} ⊂ ∂X (corresponding to τ(α)×{1} ⊂ ∂(−X)),
so implies that w2(̂j∗(TYτ )) ∈ H2(K; Z2) does not vanish.

We conclude w2(Yτ ) ∈ H2(Yτ ; Z2) does not vanish either, as it is the pull-back of a
non-trivial element w2(̂j∗(TYτ )) ∈ H2(K; Z2). In other words, Yτ is not spin, which
yields a contradiction as desired. �

Remark 2.1. We are aware that the induced spin structure ı�(ςp+2) can also
be derived from a general construction of characteristic pairs ( [14], cf. also [2, 4]).
Recall that a pair of oriented compact smooth manifolds (W, M) is called character-
istic if M ⊂ W is a proper codimension-2 submanifold dual to w2(M). The space
Char(W, M) of characterizations of (W, M) consists of spin structures on W \ M ,
which does not extend across any component of M , admitting a natural free tran-
sitive action H1(W ; Z2). There is a function h : Char(W, M) → S(M) equivariant
under the natural actions of H1(W ; Z2) on Char(W, M) and H1(M ; Z2) on S(M)
via the homomorphism H1(W ; Z2) → H1(M ; Z2), where S(M) is the space of spin
structures on M , ( [14, Definition 6.1, Theorem 2.4, Lemma 6.2]). When W = Sp+2

and M is connected, Char(W, M) is a single-element group whose image under h
coincides with ı�(ςp+2). This gives an alternative proof of Proposition 1.1 if one as-
sumes τ extends over Sp+2 diffeomorphically rather than just homeomorphically.

Before going to the applications, we mention the following lemma, which justifies
the well-definedness of EC(ı).

Lemma 2.2. Let ı : M ↪→ R
p+2 be a smooth embedding of an orientable closed

p-dimensional manifold. Let τ, τ ′ : M → M be two C-isotopic orientation-preserving
C-homeomorphisms, then τ is C-extendable if and only if τ ′ is C-extendable over ı.

Proof. First assume τ ′ is the identity. Take a tubular neighborhood N of ı(M) in
R

p+2, we have seen that N is diffeomorphic to M × D2. As τ is C-isotopic to the
identity, say ft : M → M where t ∈ [0, 1], we define:

τ̃ | : M × D2 → M × D2,

by τ̃(x, reiθ) = (fr(x), reiθ), where D2 is identified as the unit disk of C. Then τ̃ is
the identity restricted to ∂N ∼= M × ∂D2. We may further extend τ̃ outside N over
R

p+2 by the identity. This implies τ is C-extendable.
In the general case, let τ, τ ′ be two orientation-preserving C-homeomorphisms which

are C-isotopic. Then τ−1 ◦ τ ′ is C-isotopic to the identity, so C-extendable. Let φ :
R

p+2 → R
p+2 be an orientation-preserving C-homeomorphic extension of τ−1 ◦ τ ′. If

τ is C-extendable, say as τ̃ : R
p+2 → R

p+2, then τ ′ may be extended as τ̃ ◦ φ, and
vice versa. �

We thank the referee for pointing out the following reformulation of extendable
diffeomorphisms in the smooth category:
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Lemma 2.3. Let ı : M ↪→ R
p+2 be a smooth embedding of an orientable closed

p-dimensional manifold. An orientation-preserving self-diffeomorphism τ : M → M
extends over R

p+2 as an orientation-preserving self-diffeomorphism if and only if ı◦τ
is diffeotopic to ı.

Proof. If τ is diffeomorphically extendable, we have ı ◦ τ = τ̃ ◦ ı for some orientation-
preserving diffeomorphism τ̃ : R

p+2 → R
p+2, which is diffeotopic to the identity

following from the well known Alexander trick, (cf. [9, Chapter 8, Section 3]). Thus
ı ◦ τ is diffeotopic to ı. On the other hand, if ı ◦ τ is diffeotopic to ı, there is a
diffeotopy Ht : R

p+2 → R
p+2, where 0 ≤ t ≤ 1, such that H0 is the identity and

H1 satisfies H1 ◦ ı = ı ◦ τ by the isotopy extension theorem in the smooth category,
(cf. [9, Chapter 8, Theorem 1.3]). This means H1 is an extension of τ via ı. �

3. Embedded p-tori in R
p+2

In this section, we prove Theorem 1.1 and its corollaries. Throughout this section, we
shall fix a parametrization T p = S1

1 × · · ·×S1
p for a standard p-dimensional torus T p,

where each S1
i is a copy of the unit circle S1 ⊂ C.

3.1. Index lower bounds. We start by some general facts about MCGC(T p) and
its action on the space S(T p) of spin structures on T p.

For any p ≥ 2, Homeo+
C (T p) has a modular subgroup Mod(T p) ∼= SL(p, Z) generated

by elements represented by the Dehn twists τi,j (1 ≤ i, j ≤ p, i 
= j) along the ith
factor in the S1

i × S1
j direction, defined by:

τi,j(u1, . . . , up) = (u1, . . . , uj−1, uiuj , uj+1, . . . , up).

Mod(T p) may be regarded as a subgroup of MCGC(T p) under the natural quotient
π0 : Homeo+

C (T p) → MCGC(T p). Thus the action of MCGC(T p) on H1(T p; Z) induces
a splitting sequence of groups:

1 → IC(T p) → MCGC(T p) → SL(p, Z) → 1,

as Aut+(H1(T p; Z)) ∼= SL(p, Z), (which holds trivially for p = 1 as well). In other
words, MCGC(T p)=IC(T p)�Mod(T p). It is well known that MCGC(T 2) = Mod(T 2)
(cf. [11]), and MCGC(T 3) = Mod(T 3) follows from general results of Hatcher for
Haken three-manifolds [5, 7]. While the case p = 4 remains mysterious, for p ≥ 5,
the splitting is known to be non-trivial and MCGC(T p) are different for various C’s.
Specifically, a theorem of Hatcher ( [6, Theorem 4.1], cf. also [10]) implies IC(T p)
(p ≥ 5) is an infinitely generated abelian group, which can be regarded as a SL(p, Z)-
module with the following decomposition:

IDiff(T p) ∼= Wp ⊕ H2(T p; Z2) ⊕
p

⊕

i=1

Hi(T p; Γi+1),

and IPL(T p) ∼= Wp ⊕ H2(T p; Z2), ITop(T p) ∼= Wp as induced by the forgetting
quoients. Here Wp

∼= Z2[t1, t−1
1 , . . . , tp, t

−1
p ] / Z2[t1 + t−1

1 , . . . , tp + t−1
p ] ∼= Z

⊕∞
2 has

the natural action induced by that of SL(p, Z) on the monomials, and Γi is the ith
Kervaire–Milnor group of homotopy spheres, which is finite abelian, i ≥ 0, and the
SL(p, Z) acts on H2(T p; Z2), Hi(T p; Γi+1) naturally as usual.
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As the space of spin structures S(T p) is an affine H1(T p; Z2), there is a Lie-group
spin structure and 2p − 1 non-Lie-group spin structures. Denote the subset of non-
Lie-group spin structures as S�(T p).

The lower bound in Theorem 1.1 follows from the lemma below.

Lemma 3.1. MCGC(T p) fixes the Lie-group spin structure of T p, and acts transitively
on S�(T p). Hence [MCGC(T p) : EC(ı)] ≥ 2p − 1 if ı : T p ↪→ R

p+2 induces a non-Lie-
group spin structure ı�(ςp+2) on T p.

Proof. For the standard parametrization u = (u1, . . . , up) of T p = S1
1 × · · · × S1

p ,
the Lie group spin structure σ0 ∈ S(T p) is represented by the standard framing
( ∂

∂u1
, . . . , ∂

∂up
) over T p, so for any τ ∈ Mod(T p),

τ−1
∗

(

∂

∂u1
, . . . ,

∂

∂up

) ∣

∣

∣

∣
u =

(

∂

∂u1
, . . . ,

∂

∂up

)∣

∣

∣

∣

τ(u)

· A,

for the matrix A ∈ SL(p, Z) defining τ for any u ∈ T p. This means pulling back by τ
fixes the framing over T p up to homotopy, so τ∗(σ0) = σ0. On the other hand, IC(T p)
fixes σ since the action of MCGC(T p) descends to Aut+(H1(T p)) ∼= SL(p, Z). Thus
MCGC(T p) fixes σ0.

Let σ′, σ′′ ∈ S�(T p), the differences σ′ − σ0, σ
′′ − σ0 ∈ H1(T p; Z2) \ {0}. As

MCGC(T p) acts transitively on H1(T p; Z2) \ {0} and fixes σ0, there is some [τ ] ∈
MCGC(T p) such that τ∗(σ′) = σ′′. Thus MCGC(T p) acts transitively on S�(T p).

Finally, by Proposition 1.1, τ ∈ EC(ı) only if τ fixes ı�(ςp+2), so the transitivity
implies [MCGC(T p) : EC(ı)] ≥ |S�(T p)| = 2p − 1 if ı�(ςp+2) ∈ S�(T p). �

A little more can be said about EC(ı) for general smooth embeddings of T p into
R

p+2.

Lemma 3.2. For p ≥ 1, and for any smooth embedding ı : T p ↪→ R
p+2, IC(T p) ∩

EC(ı) has finite index in IC(T p). Moreover, ITop(T p) ≤ ETop(ı).

Proof. Without loss of generality, we may assume p ≥ 4 as IC(T p) is trivial when
p ≤ 3.

First suppose p ≥ 5. In this case, it suffices to show Wp ≤ EDiff(ı). Let [τ ] ∈ Wp

where τ is a diffeomorphic representative. By Remark (4) of [6, Theorem 4.1], τ
is smoothly concordant to id, namely, there is a diffeomorphism f : T p × [0, 1] →
T p × [0, 1], such that f |T p×{0} = τ , f |T p×{1} = idT p . Let fT , fI be the first and the
second component of f , respectively, i.e., such that f(u, r) = (fT (u, r), fI(u, r)). Pick
a tubular neighborhood N ∼= T p × D2 of ı(T p) in R

p+2. Identify D2 as the unit disk
of C, and define τ̃ | : T p ×D2 → T p ×D2 by τ̃(u, r eiθ) = (fT (u, r), fI(u, r) eiθ). It is
clear that τ̃ | is an orientation-preserving diffeomorphism, which restrict to T p × ∂D2

as identity. We may define an orientation-preserving diffeomorphism τ̃ : R
p+2 → R

p+2

by extending τ̃ | as identity outside N , which extends τ . This shows [τ ] ∈ EDiff(ı).
For p = 4, let [τ ] ∈ IC(T 4) where τ is a C-homeomorphic representative. Pick a

tubular neighborhood N ∼= T 4 ×D2 of ı(T 4) in R
6. We first define τ̃ : T 4 ×D2(1

2 ) →
T 4 × D2(1

2 ) as τ × idD2( 1
2 ), where D2(1

2 ) is the disk of radius one half. τ̃ | restricted
to T 4 × ∂D2(1

2 ) may be regarded as an element of IC(T 5). If it lies in W5, then
there is a C-concordance f : T 5 × [0, 1] → T 5 × [0, 1] between τ̃ |T 4×∂D2( 1

2 ) and the
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identity obtained by joining a C-isotopy between τ̃ |T 4×∂D2( 1
2 ) and a diffeomorphic

representative φ ∈ [τ ] with a smooth concordance between φ and the identity. As
T 5 × [0, 1] ∼= T 4 × (D2 \ D̊2(1

2 )), we may extend τ̃ | using the C-concordance f over
N such that τ̃ |∂N is the identity. Further extend τ̃ | outside N by the identity, we see
[τ ] ∈ EC(ı). This means the preimage of W5 under:

IC(T 4) → IC(T 5),

defined by [τ ] → [τ × idS1 ], is contained in EC(ı). Since W5 has finite index in IC(T 5),
we conclude IC(T 4)∩EC(ı) has finite index in IC(T 4) as well. Moreover, ITop(T 4) ≤
ETop(ı) since W5 = ITop(T 5). �

We proceed to consider unknotted embeddings of T p into R
p+2. These have been

defined and studied in [1]. We recall the notion and properties enough for our use
here. Regard S1 and D2 as the unit circle and the unit disk of C, respectively. The
standard basis of R

n is (�ε1, . . . , �εn), and the m-subspace spanned by (�εi1 , . . . , �εim)
will be written as R

m
i1,...,im

, and hence R
n = R

n
1,...,n ⊂ R

n+1.

Example 3.1 (The standard model). Let ı0 : pt = T 0 → R
2 be ı0(pt) = 0 by

convention. Inductively suppose ıp−1 has been constructed for some p ≥ 1 such that
ıp−1(T p−1) ⊂ D̊p ⊂ R

p
2,...,p+1. Denote the rotation of R

p+2 on the subspace R
2
2,p+2

of angle arg(u) as ρp(u) ∈ SO(p + 2), for any u ∈ S1, and we may define ıp : T p =
T p−1 × S1

p as:

ıp(v, u) = ρp(u)
(

1
2
· �ε2 +

1
4
· ıp−1(v)

)

.

This explicitly describes an embedding of T p = S1
1 × · · · × S1

p into R
p+1
2,...,p+2. In

Figure 1, the images of ıp−1 and ıp are schematically presented on the left and the
right, respectively. One may imagine �ε1 points perpendicularly outward the page.
Observe that the image of T p is invariant under ρp(u).

Definition 3.1. An embedding ı : T p ↪→ R
p+2 is said to be unknotted if there is

a diffeomorphism g : R
p+2 → R

p+2 such that ı and g ◦ ıp have the same image,
i.e., ı(T p) = g ◦ ıp(T p).

Lemma 3.3. For any unknotted embedding ı : T p ↪→ R
p+2, the induced spin structure

ı�(ςp+2) is not the Lie-group spin structure on T p.

Proof. One can easily see that the standard embedding ıp : T p = S1
1×· · ·×S1

p ↪→ R
p+2

can be extended to an embedding of D2 × T p−1 = D2 × S1
2 × · · · × S1

p to R
p+2, for

p ≥ 1, using an induction argument. Thus ı also has a Seifert hypersurface Σ ⊂ R
p+2

diffeomorphic to D2 × T p−1. From the proof of Proposition 1.1, (T p, ı�(ςp+2)) is the
spin boundary of a spin structure on Σ. However, the spin structures on Σ ∼= D2 ×
T p−1 are ς2 ⊕ σ, where σ ∈ S(T p−1), and these induce ∂ς2 ⊕ σ on ∂Σ ∼= S1 × T p−1,
which disagree with the Lie-group spin structure along the loop S1 × ∗. �

Proof of Theorem 1.1. Lemma 3.1 proves [MCGTop(T p) : ETop(ı)] ≥ 2p−1. To see that
any unknotted embedding ı : T p ↪→ R

p+2 realizes the lower bound, note MCGTop(T p) =
ITop(T p)�Mod(T p). By Lemma 3.2, ITop(T p) ≤ ETop(ı). On the other hand, [1, Theo-
rem 1.4] showed Mod(T p) (denoted as Aut(T p) there) has a subgroup of index 2p −1,
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Figure 1. The standard model.

which is diffeomorphically extendable. Therefore, [MCGTop(T p) : ETop(ı)] ≤ 2p − 1,
and hence the index is exactly 2p − 1. �

To prove Corollary 1.1, we need an elementary lemma in group theory.

Lemma 3.4. If G is a subgroup of a semi-direct product of groups N � H, then
[N � H : G] ≤ [N : N ∩ G] · [H : H ∩ G].

Proof. Let N ′ = N ∩ G, H ′ = H ∩ G. Clearly H ′ preserves N ′ under the conjuga-
tion, so the subgroup N ′H ′ is also a semi-direct product. Note [NH : N ′H ′] = [NH :
NH ′] · [NH ′ : N ′H ′]. As N is normal in both NH and NH ′, quotienting out N yields
[NH : NH ′] = [H : H ′]. Because N ∩ N ′H ′ = N ′ as N ′H ′ is a semi-direct product,
the map N → NH ′/N ′H ′ descends to a bijection N/N ′ → NH ′/N ′H ′ between the
cosets, so [NH ′ : N ′H ′] = [N : N ′]. Thus [NH : G] ≤ [NH : N ′H ′] = [N : N ′] · [H :
H ′]. �

Proof of Corollary 1.1. [MCGC(T p) : EC(ı)] ≥ 2p − 1 follows from Lemmas 3.1, 3.3.
By Lemma 3.2, [IC(T p) : IC(T p) ∩ EC(ı)] is finite. By [1, Theorem 1.4], [Mod(T p) :
Mod(T p)∩ EC(ı)] is finite. Therefore, as MCGC(T p) = IC(T p) � Mod(T p), the index
[MCGC(T p) : EC(ı)] is also finite by Lemma 3.4. Note clearly [MCGC(T p) : EC(ı)] =
2p − 1 when p ≤ 3. �

4. Embedded surfaces in R
4

In this section, we prove Theorem 1.2. Note MCGC(Fg) for C = Diff, PL, Top are
all canonically isomorphic to Out(π1(Fg)) due to the Dehn–Nielsen–Baer theorem
(cf. [11]).

Let S(Fg) be the space of spin structures on a closed connected oriented surface
Fg of genus g. There is a surjective map:

S(Fg)
[.]−→ ΩSpin

2
Arf−→ Z2,

where ΩSpin
2 is the second spin cobordism group and Arf is the Arf isomorphism. More

precisely, for any σ ∈ S(Fg), there is an associated non-singular quadratic function
qσ : H1(Fg; Z2) → Z2, such that qσ(α) = 0 (resp. 1) if the spin structure on Fg



SPIN AND CODIM-2 EXTENSIONS 355

restricted to the bounding (resp. Lie-group) spin structure on α. Note qσ(α + β) =
qσ(α) + qσ(β) + α ·β where α ·β is the Z2-intersection number, and σ = σ′ if and only
if qσ = qσ′ . Thus, Arf([σ]) is defined as the Arf invariant of the non-singular quadratic
form qσ. Recall that for a non-singular quadratic form q on V ∼= Z

⊕2g
2 , Arf(q) is 0

(resp. 1) if and only if q vanishes on exactly 22g−1+2g−1 (resp. 22g−1−2g−1) elements,
(cf. [12, Appendix]). Correspondingly, S(Fg) is a disjoint union:

S(Fg) = Bg � Ug,

of bounding and unbounding spin structures. We denote the cardinal numbers of Bg,
Ug as bg, ug, respectively.

Lemma 4.1. For g ≥ 1, bg = 22g−1 + 2g−1 and ug = 22g−1 − 2g−1.

Proof. For g = 1, it is well known that the only unbounding spin structure on F1 = T 2

is the Lie-group spin structure, so b1 = 3, u1 = 1. In general, any pair of two spin
structures σg ∈ S(Fg), δ ∈ S(T 2) determines a bounding (resp. unbounding) spin
structure on Fg+1

∼= Fg # T 2 if and only if Arf([σg]) and Arf([δ]) have the same
(resp. distinct) parity. This implies bg+1 = b1 × bg + u1 × ug = 3 bg + ug, and ug+1 =
b1 ×ug +u1 × bg = 3 ug + bg, so bg+1 −ug+1 = 2 (bg −ug) = · · · = 2g (b1 −u1) = 2g+1.
Using bg−ug = 2g and bg +ug = 22g, we see bg = 22g−1+2g−1, ug = 22g−1−2g−1. �

There is a natural action of MCGC(Fg) on S(Fg), where any [τ ] ∈ MCGC(Fg) acts
as the pull-back τ∗ : S(Fg) → S(Fg).

Lemma 4.2. For g ≥ 1, MCGC(Fg) acts invariantly and transitively on Bg and Ug.

Proof. The invariance of the MCGC(Fg)-action on Bg and Ug follows immediately
from, for example, counting vanishing elements of the associated quadratic forms
qσ, qτ∗(σ) for σ ∈ S(Fg) and [τ ] ∈ MCGC(Fg). It suffices to prove the transitivity of
the action. We argue by induction on g ≥ 1.

When g = 1, F1 is T 2 ∼= S1
1 × S1

2 , and MCGC(T 2) ∼= SL(2, Z) is generated by the
Dehn twists D1, D2 along the first and second factors. It is straightforward to check
that MCGC(T 2) acts transitively on B1 and U1.

Suppose for some g ≥ 1, MCGC(Fg) acts transitively on Bg and Ug for some g ≥ 1.
To see MCGC(Fg+1) acts transitively on Bg+1, let σ, σ′ ∈ Bg+1. Pick a connected
sum decomposition Fg+1

∼= Fg#T 2, which induces a decomposition H1(Fg+1; Z2) ∼=
H1(Fg; Z2) ⊕ H1(T 2; Z2). Then σ determines spin structures σg ∈ S(Fg) and δ ∈
S(T 2) so that [σ] = [σg] + [δ] in ΩSpin

2 , and similarly σ′ determines σ′
g, δ′ so that

[σ′] = [σ′
g]+ [δ′]. If [σg] = [σ′

g], and hence [δ] = [δ′], then by the induction assumption
there are [τg] ∈ MCGC(Fg) and [φ] ∈ MCGC(T 2) such that τ∗

g (σg) = σ′
g, φ∗(δ) = δ′.

Then one finds an element [τ ] ∈ MCGC(Fg+1), where τ = τg#φ, such that τ∗([σ]) =σ′.
Now we consider the case if [σg] 
= [σ′

g], and hence [δ] 
= [δ′]. Thus one of δ, δ′ ∈
S(T 2) is the Lie-group spin structure, and the other is a spin-boundary, but there
always exists some non-trivial [α] ∈ H1(T 2; Z2) such that δ|α = δ′|α. For any [β] ∈
H1(T 2; Z2) with α · β = 1, that [δ] 
= [δ′] implies δ|β 
= δ′|β . On the other hand,
there is some non-trivial [γ] ∈ H1(Fg; Z2), such that σg|γ 
= σ′

g|γ . Let [β̃] = [β]+ [γ] ∈
H1(Fg+1; Z2), we have α·β̃ = 1, and the difference σ−σ′ ∈ H1(Fg; Z2) vanishes on [α]
and [β̃]. We may take two simple closed-curve representatives α, β̃ ⊂ Fg+1 such that
α∩ β̃ is a single point. A regular neighborhood of α∪ β̃ on Fg+1 is a punctured torus
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T̃ \ ∗, which gives another connected sum decomposition of Fg+1 = F̃g#T̃ . It is clear
that with respect to this decomposition, the induced spin structures σ̃g, σ̃

′
g ∈ S(Fg),

δ̃, δ̃′ ∈ S(Fg) satisfy [σ̃g] = [σ̃′
g], [δ̃] = [δ̃′], so we apply the previous case to obtain some

[τ̃ ] ∈ MCGC(Fg+1), such that τ̃∗([σ]) = σ′. This means MCGC(Fg+1) acts transitively
on Bg+1.

The proof for the transitivity of the MCGC(Fg+1)-action on Ug+1 is similar, so we
complete the induction. �
Proof of Theorem 1.2. Because MCGTop(Fg) are represented by self-diffeomorphisms,
by Proposition 1.1, any element in ETop(ı) preserves ı�(ς4) ∈ Bg ⊂ S(Fg). On the other
hand, MCGTop(Fg) acts transitively on Bg (Lemma 4.2). Therefore, [MCGTop(Fg) :
ETop(ı)] ≥ |Bg| = 22g−1 + 2g−1, (Lemma 4.1). �

Corollary 1.2 is an easy consequence of Lemma 4.2:

Proof of Corollary 1.2. Observe that the action of MCGC(Fg) on S(Fg) descends to
an action of a group Γ < Aut+(H1(Fg; Z2)): indeed, if τ projects to the identity
of Aut+(H1(Fg; Z2)), qτ∗σ([α]) = qσ(τ∗[α]) = qσ([α]), for any [α] ∈ H1(Fg; Z2), so
τ∗σ = σ for any σ ∈ S(Fg). Γ is a finite group isomorphic to Sp(2g, Z2) as it preserves
the Z2-intersection form. Then Lemma 4.2 implies Γ acts transitively on Bg, so for
any σ ∈ Bg, StabΓ(σ) < Γ has index bg = 22g−1 + 2g−1. Since id ∈ StabΓ(σ) for all
σ ∈ Bg, the subset:

W =
⋃

σ∈Bg

StabΓ(σ) ⊂ Γ,

has at most bg(
|Γ|
bg

− 1) + 1 < |Γ| elements. Thus for any [τ ] ∈ Γ \ W , τ does not fix
any σ ∈ Bg. In particular, for any smooth embedding ı : Fg ↪→ R

4, ı�(ς) ∈ Bg will not
be invariant under τ . By Proposition 1.1, [τ ] 
∈ ETop(ı). �
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