
Math. Res. Lett. 19 (2012), no. 02, 359–376 c© International Press 2012

EXPLICIT BOUNDS FOR SUMS OF SQUARES

Jeremy Rouse

Abstract. For an even integer k, let r2k(n) be the number of representations of n as a

sum of 2k squares. The quantity r2k(n) is approximated by the classical singular series
ρ2k(n) � nk−1. Deligne’s bound on the Fourier coefficients of Hecke eigenforms gives

that r2k(n) = ρ2k(n) + O(d(n)n
k−1
2 ). We determine the optimal implied constant in

this estimate provided that either k/2 or n is odd. The proof requires a delicate positivity
argument involving Petersson inner products.

1. Introduction and statement of results

In Hardy’s book on Ramanujan [1], he states the following (Chapter 9, p. 132).
The problem of the representations of an integer n as the sum of a
given number k of integral squares is one of the most celebrated in the
theory of numbers. Its history may be traced back to Diophantus, but
begins effectively with Girard’s (or Fermat’s) theorem that a prime
4m+ 1 is the sum of two squares. Almost every arithmetician of note
since Fermat has contributed to the solution of the problem, and it
has its puzzles for us still.

If n is a non-negative integer, let

rs(n) = #{(x1, x2, . . . , xs) ∈ Z
s : x2

1 + x2
2 + · · · + x2

s = n}
be the number of representations of n as a sum of s squares.

The classical work that Hardy refers to includes the results of Jacobi giving the
following exact formulae. Let n be a positive integer and write n = 2αm, where m is
odd. Then

r4(n) =

{
8σ1(m), if α = 0,
24σ1(m), if α ≥ 1,

r8(n) =

⎧⎨
⎩

16σ3(m), if α = 0,

16 · 23α+3 − 15
7

σ3(m), if α ≥ 1.

The search for higher exact formulae (each involving more complicated arithmetic
functions) for was carried out by many mathematicians. Glaisher [2] and Rankin
[3] were interested in these formulae where the arithmetic functions involved were
multiplicative.

In a different direction, Hardy [4] and Mordell [5] applied the circle method to give
an approximation

rs(n) = ρs(n) +Rs(n)
where ρs(n) is the “singular series” and Rs(n) is an error term. Here ρs(n) can be
expressed as a divisor sum if s is even, and ρs(n) � n

s
2−1 provided s > 4. The
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contribution Rs(n) is more mysterious, and Deligne’s proof of the Weil conjectures
(see [6]) implies an estimate of the form

(1.1) Rs(n) = O(d(n)n
s
4− 1

2 )

provided s is even. The phenomena of exact formulae for rs(n) of the form rs(n) =
ρs(n) only occurs for small s. In [7], Rankin shows that Rs(n) is identically zero if
and only if s ≤ 8. Exact formulae of a different nature were given by Milne in [8]
when s = 4n2 and s = 4n(n+ 1).

The problem we study is the implied constant in equation (1.1) above. This is a
natural question, and in [9–11], the author has studied the corresponding problem for
powers of the Δ function, p-core partitions (joint work with Byungchan Kim), and
arbitrary level 1 cusp forms (joint work with Paul Jenkins), respectively. To prove their
now famous “290-theorem” Bhargava and Hanke [12] compute this implied constant
for about 6000 quadratic forms in four variables and use this to determine precisely
which integers these forms represent.

Returning to our problem, if s = 2k and k is even, we have that

ρ2k(n)

=
2k(−1)k/2+1

(2k − 1)Bk

(
σk−1(n) + (−1 + (−1)k/2+1)σk−1(n/2) + (−1)k/22kσk−1(n/4)

)
,

where Bk is the kth Bernoulli number and σk−1(n) is the sum of the (k− 1)st powers
of the positive integer divisors of n (and is hence zero if n is not an integer). Our
main result is the following.

Theorem 1.1. Suppose that k is even. If either k/2 is odd or n is odd, then we have

|r2k(n) − ρ2k(n)| ≤
(

4k +
2k(−1)k/2

(2k − 1)Bk

)
d(n)n

k−1
2 .

Remark 1.1. If 2k = 4 or 2k = 8, the right hand side is zero, and we recover the
exact formulae of Jacobi. For arbitrary even k, we have r2k(1) = 4k and ρ2k(1) =
2k(−1)k/2+1

(2k−1)Bk
. Thus, the inequality above becomes an equality when n = 1. This shows

that the implied constant

4k +
2k(−1)k/2

(2k − 1)Bk

in (1.1) is best possible. The error term is smaller than the main term provided
n� k2.

Our approach to proving Theorem 1.1 is as follows. If

θ(z) = 1 + 2
∞∑

n=1

qn2
, q = e2πiz

is the classical Jacobi theta function, then

θ2k(z) =
∞∑

n=0

r2k(n)qn
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is a modular form of weight k on Γ0(4). If k is even, we can decompose

(1.2)

θ2k(z) = a1Ek(z) + a2Ek(2z) + a3Ek(4z) +
∑

i

cigi(z) +
∑

i

digi(2z) +
∑

i

eigi(4z)

where

Ek(z) = 1 − 2k
Bk

∞∑
n=1

σk−1(n)qn

is the classical level 1 Eisenstein series, and the gi(z) are normalized newforms of level
1, 2 or 4. We prove the following.

Theorem 1.2. Assume the notation above. Then for all i, ci ≥ 0.

Theorem 1.2 allows us to read off∑
i

|ci| =
∑

i

ci = 4k +
2k(−1)k/2

(2k − 1)Bk

from the coefficient of q on both sides of (1.2), using that a1 = (−1)k/2

(2k−1)Bk
.

To prove Theorem 1.2 we use properties of the Petersson inner product on
Mk(Γ0(4)) (see Section 2 for precise definitions). If gi(z) is a newform of level 4,
then gi(z) is orthogonal to every other term in the expansion (1.2). It follows that

〈θ2k, gi〉 = ci〈gi, gi〉.
It suffices to prove that 〈θ2k, gi〉 ≥ 0. This Petersson inner product consists of a
contribution from each of the three cusps of Γ0(4): ∞, 0 and 1/2. The contribution
from ∞ is

2
(4π)k

∞∑
n=1

r2k(n)a(n)
nk−1

∫ ∞

4πn

uk−2e−u du.

Here gi(z) =
∑∞

n=1 a(n)qn. Our approach is to show that the main term in the above
sum comes from n = 1. If n is fixed, r2k(n) is a polynomial of degree 2k in n. We
compute these polynomials explicitly, and use this to the bound the terms when
2 ≤ n ≤ 2500. Next, we use a simple induction bound on r2k(n) to show that the
terms with 2500 ≤ n ≤ k

2π log(k) are small enough. Finally, we use the exponential
decay of

∫ ∞
4πn

uk−2e−u du when n ≥ k
2π log(k).

The cusp at zero behaves in an essentially identical way to the cusp at ∞, and the
contribution from the cusp at 1/2 is very small, since θ(z) vanishes there.

Remark 1.2. This result can be thought of as a refined form of the circle method.
The Eisenstein series is the contribution of the major arcs, while Deligne’s result,
and the bounds we give on the constants ci can be thought of as explicit, uniform
minor arc estimates. Further, it is plausible that the Fourier coefficients of distinct
newforms are independent (an assertion that could be justified under the assumption
of the holomorphy of certain Rankin–Selberg convolutions). This combined with the
recent proof of the Sato–Tate conjecture (see [13]) suggests that for any ε > 0, there
are infinitely many primes p so that

|r2k(p) − ρ2k(p)| >
(

4k +
2k(−1)k/2

(2k − 1)Bk
− ε

)
d(p)p

k−1
2 .
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Remark 1.3. The proof gives more detailed information about the constants ci in
(1.2). In particular, if gi(z) is a newform of level 4 and k ≡ 2 (mod 4), then

ci = 16k · (k − 2)!
(4π)k〈gi, gi〉 (1 +O(αk)),

where α ≈ 0.918. If k ≡ 0 (mod 4), then ci = 0. Similar, but more complicated results
are true for the constants ci associated with levels 1 and 2 newforms.

An outline of the paper is as follows. In Section 2, we give precise definitions
and review necessary background information. In Section 3, we prove a number of
auxiliary results that will be used in the proof of Theorem 1.2. In Section 4, we prove
Theorem 1.2 and use this to deduce Theorem 1.1. Finally in Section 5, we address
other values of k and n.

2. Background

In this section, we give definitions and review necessary background. For N ≥ 1, let
Mk(Γ0(N)) denote the C-vector space of modular forms of weight k on Γ0(N) :={(

a b
c d

)
∈ SL2(Z) : N |c

}
. Let Sk(Γ0(N)) denote the subspace of cusp forms.

If f is a modular form of weight k, and α =
[
a b
c d

]
∈ GL2(Q) and has positive

determinant, define the usual slash operator by

f |α = (ad− bc)k/2(cz + d)−kf

(
az + b

cz + d

)
.

For a positive integer d, define the operator V (d) by f(z)|V (d) = f(dz). It is well-
known (see [14], p. 107 for a proof) that V (d) maps Mk(Γ0(N)) to Mk(Γ0(dN)) and
Sk(Γ0(N)) to Sk(Γ0(dN)). For a positive integer d, define the operator U(d) by

∞∑
n=0

a(n)qn|U(d) =
∞∑

n=0

a(dn)qn.

If d|N , then U(d) maps Mk(Γ0(N)) to itself and Sk(Γ0(N)) to itself. If p is a prime
with p � N , define the usual Hecke operator T (p) by T (p) = U(p) + pk−1V (p).

If f, g ∈Mk(Γ0(N)) and at least one of f or g is a cusp form, let

〈f, g〉 =
3

π[SL2(Z) : Γ0(N)]

∫∫
H/Γ0(N)

f(x+ iy)g(x+ iy)yk dx dy

y2

denote the usual Petersson inner product. If p � N , then the Hecke operators T (p),
acting on Sk(Γ0(N)), are self-adjoint with respect to the Petersson inner product.
Moreover, if α ∈ GL2(Q) and has positive determinant, then 〈f |α, g|α〉 = 〈f, g〉.

Let Snew
k (Γ0(N)) denote the orthogonal complement under this inner product of

the space spanned by all forms

f(z)|V (d), where f(z) ∈ Sk(Γ0(M)),

and we have M |N , M < N , and d is a divisor of N/M . A newform of level N is a
form

f(z) =
∞∑

n=1

a(n)qn ∈ Snew
k (Γ0(N))
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that is a simultaneous eigenform of the Hecke operators T (p), normalized so that
a(1) = 1. We have the Deligne bound

|a(n)| ≤ d(n)n
k−1
2 ,

where d(n) is the number of divisors of n (for a detailed proof of this inequality, see
the new book by Brian Conrad [15]). A newform f(z) of level N is also an eigenform of

the Atkin–Lehner operator WN =
[

0 −1
N 0

]
. This operator commutes with the Hecke

operators T (p) for primes p � N . One has more information about the coefficient a(p)
if p|N . If N = p, then a(p) = −λp k

2−1, where λ is the eigenvalue of f under WN . If
p2|N , then a(p) = 0 (see [16], Theorem 3).

The multiplicity-one theorem states that the joint eigenspaces of all T (p) (with
p � N) in Snew

k (Γ0(N)) are one-dimensional. It follows from this, and the self-adjointness
of the Hecke operators, that if f1 and f2 are two distinct newforms, then 〈f1, f2〉 = 0.
It is known (see Section 5.11 of [17]) that the Eisenstein series Ek(z) (and Ek(z)|V (d))
are orthogonal to cusp forms under the Petersson inner product.

Finally, let η(z) denote as usual the Dedekind eta function

η(z) = q1/24
∞∏

n=1

(1 − qn), q = e2πiz.

We have the following well-known identities:

θ(z) =
η5(2z)

η2(z)η2(4z)
,

η8(4z)
η4(2z)

=
∞∑

n=0

σ(2n+ 1)q2n+1,

(2z + 1)−2θ4
(

z

2z + 1

)
= 16

η8(4z)
η4(2z)

(see the exercises on page 145 of [18], solutions are on p. 234).

3. Preliminary results

In this section, we prove three lemmas that will be used in the proof of the main
results. Our first lemma proves some simple bounds on rs(n).

Lemma 3.1. (1) Suppose that n is a non-negative integer. There are non-negative
constants ci,n (0 ≤ i ≤ n) so that

rs(n) =
n∑

i=0

ci,n

(
s

i

)
, for all s ≥ 0.

(2) If n is fixed, r2s(n)

n
s−1
2

is a decreasing function of s, provided 2s ≥ n+ n
4√n−1

.

(3) If n is a positive integer and s ≥ 6, then

rs(n) ≤ 3(4.11)s

25
√
s!

(n+ s)
s
2−1.
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Proof. We prove the first statement by strong induction on n. For n = 0, we have
rs(0) = 1 = 1 · (s

0

)
. Thus, c0,0 = 1 and the result holds.

Assume the result is true for all m < n. Let t be a positive integer with t ≤ s.
Then

rt(n) − rt−1(n) = 2
�√n�∑
r=1

rt−1(n− r2)

= 2
�√n�∑
r=1

n−r2∑
i=0

ci,n−r2

(
t− 1
i

)
.

Summing both sides over all t, 1 ≤ t ≤ s and using that
∑s

t=1

(
t−1

i

)
=

(
s

i+1

)
gives

rs(n) =
�√n�∑
r=1

n−r2∑
i=0

2ci,n−r2

(
s

i+ 1

)

= 2
n∑

i=1

⎛
⎝�√n−i�∑

r=1

ci−1,n−r2

⎞
⎠(

s

i

)
.

Since the ci−1,n−r2 are non-negative, by the induction hypothesis, it follows that their
sum is non-negative, and this proves that the result is true for n.

To prove the second statement, it suffices to prove that each term in the expression

r2s(n)

n
s−1
2

=
n∑

i=0

ci,n

(
2s
i

)
n

s−1
2

is a decreasing function of s. Let f(s) =
(
2s
i

) · n(1−s)/2. Then,

f(s+ 1)
f(s)

=
1√
n
· (2s+ 2)(2s+ 1)
(2s+ 2 − i)(2s+ 1 − i)

≤ 1√
n

(2s+ 2)(2s+ 1)
(2s+ 2 − n)(2s+ 1 − n)

<
1√
n

(
1 +

n

2s− n

)2

.

This is a decreasing function of s, and if we take s = n+ n
4√n−1

, then 2s− n = n
4√n−1

and so
1√
n

(
1 +

n

2s− n

)2

=
1√
n

(
1 + ( 4

√
n− 1)

)2 = 1.

This proves that f(s+ 1) < f(s), as desired.
We prove the third statement by induction on s. Our base case is s = 6 and in this

case, we use the exact formula:

r6(n) =
∑
d|n

d2 (−4χ−1(d) + 16χ−1(n/d)) ,
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where

χ−1(n) =

⎧⎪⎨
⎪⎩

1, if n ≡ 1 (mod 4),
−1, if n ≡ 3 (mod 4),
0, if n is even.

We rewrite this as

r6(n) = n2
∑
d|n

16χ−1(n/d) − 4χ−1(d)
(n/d)2

.

If n is even, then r6(n)/n2 ≤ 8ζ(2) ≤ 13.2. On the other hand if n is odd, then
16χ−1(n/d)−4χ−1(d) is negative if n/d ≡ 3 (mod 4) and 16χ−1(n/d)−4χ−1(d) ≤ 20
if n/d ≡ 1 (mod 4). Thus,

r6(n)
n2

≤ 20
∑
d|n

d≡1 (mod 4)

1
d2

≤ 20
∞∑

n=0

1
(4n+ 1)2

.

One can show that the right-hand side above is about 21.4966613≤ 6449
300 . We denote

by Cs a constant so that rs(n)≤Cs(n+ s)
s
2−1, and we take C6 = 6449

300 . This proves
the base case.

Assume now that s ≥ 6. We have

rs+1(n) = rs(n) + 2
�√n�∑
m=1

rs(n−m2)

≤ Cs(n+ s)
s
2−1 + 2Cs

�√n�∑
m=1

(n+ s−m2)
s
2−1

≤ Cs(n+ s)
s
2−1 + 2Cs

∫ √
n+s+1

0

(n+ s+ 1 − x2)
s
2−1 dx

≤ Cs(n+ s)
s
2−1 + 2Cs(n+ s+ 1)

s+1
2 −1

∫ 1

0

(1 − u2)
s
2−1 du.

We have

(1 − u2)
s
2−1 = e(

s
2−1) log(1−u2) ≤ e−(s/2−1)u2

.

Thus

2
∫ 1

0

(1 − u2)
s
2−1 du ≤ 2

∫ ∞

0

e−(s/2−1)u2
du =

√
π

s
2 − 1

and

rs+1(n) ≤ Cs(n+ s)
s
2−1 + Cs(n+ s+ 1)

s+1
2 −1

[√
2π
s− 2

]

≤ Cs(n+ s+ 1)
s+1
2 −1

[√
2π
s− 2

+
(n+ s)(s/2)−1

(n+ s+ 1)
s+1
2 −1

]
.
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Note that the second term inside the brackets above is a decreasing function of n and
is relevant only for n ≥ 1. It follows that

rs+1(n) ≤ Cs(n+ s+ 1)
s+1
2 −1 · 1√

s+ 1

[√
2π

√
s+ 1
s− 2

+
(
s+ 1
s+ 2

)s/2−1
]

≤ Cs · 4.11√
s+ 1

(n+ s+ 1)
s+1
2 −1.

Hence, we may take Cs+1 = 4.11√
s+1

Cs and so

Cs =
6449
300

· 4.11s−6√
s!/6!

≤ 3(4.11)s

25
√
s!

.

�

Next, we use Deligne’s bound on the Fourier coefficients of a newform to bound its
value.

Lemma 3.2. Suppose that k ≥ 7, y ≥ 1
2π , and g(z) =

∑∞
n=1 a(n)qn with |a(n)| ≤

d(n)n
k−1
2 . Then

|g(x+ iy)| ≤ 1

(2πy)
k+1
2

Γ
(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
,

where γ is Euler’s constant.

Proof. Since the nth Fourier coefficient of g(z) is bounded by d(n)n
k−1
2 , we have that

|g(x+ iy)| ≤
∞∑

n=1

d(n)n
k−1
2 e−2πny.

If D(x) =
∑

n≤x d(n), then D(x) ≤ x log(x)+γx+1 ≤ x log(x)+(γ+1)x. By partial
summation, we have

∞∑
n=1

d(n)n
k−1
2 e−2πny =

∫ ∞

1

D(x)
[
2πyx

k−1
2 −

(
k − 1

2

)
x

k−3
2

]
e−2πxy dx

≤ 2πy
∫ ∞

k−1
4πy

(log(x) + (γ + 1))x
k+1
2 e−2πxy dx.

Now, we set u = 2πxy, du = 2πy dx. We get

2πy
∫ ∞

k−1
2

(
log

(
u

2πy

)
+ (γ + 1)

)(
u

2πy

) k+1
2

e−u du

2πy

=
1

(2πy)
k+1
2

∫ ∞

k−1
2

(log(u) − log(2πy) + γ + 1)u
k+1
2 e−u du.

Since y ≥ 1
2π , log(2πy) > 0 and so we neglect the term involving it. We get

1

(2πy)
k+1
2

[∫ ∞

k−1
2

log(u)u
k+1
2 e−u du+ (γ + 1)

∫ ∞

k−1
2

u
k+1
2 e−u du

]
.
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If we extend the integrals down to zero, then the negative contribution of
∫ 1

0
log(u)

u
k+1
2 e−u du is cancelled by that of [1.5, 2] for k ≥ 7. Thus, we get the bound

|g(z)| ≤ 1

(2πy)
k+1
2

Γ
(
k + 1

2

)[
ψ

(
k + 1

2

)
+ γ + 1

]
,

where Γ′(z) =
∫ ∞
0

log(u)uz−1e−u du and ψ(z) = Γ′(z)
Γ(z) . The formula (see equation

6.3.21 on p. 258 of [19])

ψ(z) = log(z) − 1
2z

−
∫ ∞

0

2t dt
(z2 + t2)(e2πt − 1)

shows that ψ(z) ≤ log(z). Thus, we obtain the bound

1

(2πy)
k+1
2

Γ
(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
.

�

Finally, we will need to understand Petersson inner products of newforms f with
their images under V (d). This is the subject of the next result.

Lemma 3.3. Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Snew
k (Γ0(N)) is a newform. If

p � N , then

〈f, f |V (p)〉 =
a(p)

pk−1(p+ 1)
〈f, f〉.

Note that the assumption that f has trivial character implies that the Fourier
coefficients of f are real. This fact will be used frequently in what follows.

Proof. Rankin proved in [20] that if f =
∑
a(n)qn and g =

∑
b(n)qn are cusp forms

of weight k, then

∑
n≤x

a(n)b(n)
nk−1

=
(4π)k

(k − 1)!
〈f, g〉x+O(x3/5).

We will use this formula to prove the results above. We start by letting c = (4π)k

(k−1)! ,
and p be a prime number with p � N . Then,

〈f, f |V (p)〉 = lim
x→∞

1
c
· 1
x

∑
n≤x

a(n)a(n/p)
nk−1

= lim
x→∞

1
c
· 1
x

∑
pn≤x

a(pn)a(n)
(pn)k−1

= lim
x→∞

1
c
· 1
pk

· 1
x
p

∑
n≤ x

p

a(pn)a(n)
nk−1

=
1
pk

〈f, f |U(p)〉.
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Now, a(p)f = f |T (p) = f |U(p) + pk−1f |V (p). It follows that

a(p)〈f, f〉 = 〈f, f |T (p)〉 = 〈f, f |U(p)〉 + pk−1〈f, f |V (p)〉
= pk〈f, f |V (p)〉 + pk−1〈f, f |V (p)〉
= pk−1(p+ 1)〈f, f |V (p)〉.

Thus,

〈f, f |V (p)〉 =
a(p)

pk−1(p+ 1)
〈f, f〉.

�

4. Proof of Theorems 1.1 and 1.2

In this section, we will prove the main results. We will first prove Theorem 1.2 and
then deduce Theorem 1.1 from it.

Proof of Theorem 1.2. First, for each newform g of level 1, 2 or 4, we will find a form
g̃ with the property that the coefficient of g in the representation of θ2k is positive if
and only if 〈θ2k, g̃〉 > 0. Each g̃ will be an eigenform of Tp for all odd primes p, and
will also be an eigenform of W4 with the same eigenvalue as that of θ2k.

Recall the decomposition

θ2k(z) = a1Ek(z) + a2Ek(2z) + a3Ek(4z) +
∑

i

cigi(z) +
∑

i

digi(2z) +
∑

i

eigi(4z),

where the gi are newforms of levels 1, 2 or 4, and the ci, di, ei ∈ R. If V is an eigenspace
for all Tn (with n odd), then V is also stable under W4. Since θ2k|W4 = (−1)

k
2 θ2k, it

follows that the projection of θ2k onto V must also have eigenvalue (−1)
k
2 under W4.

If V is an eigenspace coming from a newform gi of level 4, then dimV = 1. If
ci = 0, then gi|W4 = (−1)

k
2 . In this case, we have 〈θ2k, g〉 = 〈cigi, gi〉 = ci〈gi, gi〉 and

thus ci > 0 if and only if 〈θ2k, gi〉 > 0, and so we set g̃i = gi. Part (i) of Theorem 7
of [16] shows that for any newform of level 4, gi|W4 = −gi, and hence ci = 0, if k ≡ 0
(mod 4).

If V is an eigenspace coming from a newform gi of level 2, then dimV = 2. This
vector space decomposes into one-dimensional plus and minus eigenspaces under the
action of W4. It follows that the projection of θ2k onto V is ci(gi + (−2)

k
2 λgi|V (2)),

where λ is the Atkin–Lehner eigenvalue of gi. Thus, we set g̃i = gi + (−2)
k
2 λgi|V (2).

This form will be orthogonal to any element in the opposite W4 eigenspace, since W4

is an isometry with respect to the Petersson inner product. It follows that ci > 0 if
and only if 〈θ2k, g̃i〉 > 0.

If V is an eigenspace coming from a newform gi of level 1, then dimV = 3 and

gi|W4 = 2kgi|V (4),

gi|V (2)|W4 = gi|V (2),

gi|V (4)|W4 = 2−kgi.

We have that V = V + ⊕ V −, where V + and V − are the plus and minus eigenspaces
for W4. Then dimV + = 2 and it is spanned by gi + 2kgi|V (4) and gi|V (2). Also
dimV − = 1 and it is spanned by gi − 2kgi|V (4). If k ≡ 0 (mod 4), then the Atkin–
Lehner sign is +1. If k ≡ 2 (mod 4), the Atkin–Lehner sign is −1.
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When k ≡ 2 (mod 4), we set g̃i = gi − 2kgi|V (4). This form satisfies g̃i|W4 = −g̃i,
and is again orthogonal to the form spanning the plus eigenspace for W4.

When k ≡ 0 (mod 4), we set g̃i = gi− 4
3a(2)gi|V (2)+2kgi|V (4). This form satisfies

g̃i|W4 = g̃i, and is hence orthogonal to gi − 2kgi|V (4). By Lemma 3.3 it is orthogonal
to gi|V (2).

We have

〈θ2k, g̃i〉 =
1
2π

∫∫
H/Γ0(4)

θ2k(z)g̃i(z)yk dx dy

y2

=
1
2π

6∑
j=1

∫ 1/2

−1/2

∫ ∞
√

1−x2

(
θ2k|kγj

)
(x+ iy)g̃i|kγj(x+ iy)yk−2 dy dx.

Here, the matrices

γ1 =
[
1 0
0 1

]
, γ2 =

[
0 −1
1 0

]
, γ3 =

[
0 −1
1 1

]
,

γ4 =
[
0 −1
1 2

]
, γ5 =

[
0 −1
1 3

]
, γ6 =

[
1 0
2 1

]

are a set of representatives for the right cosets of Γ0(4) in SL2(Z).
Term 1. This is the contribution from the cusp at infinity. In particular, it is the

j = 1 term in the above sum. We split this term into two parts: {x+ iy : −1/2 ≤ x ≤
1/2, y ≥ 1}, and {x+ iy : −1/2 ≤ x ≤ 1/2,

√
1 − x2 ≤ y ≤ 1}.

Write

g̃i(z) =
∞∑

n=1

a(n)qn.

Applying the Deligne bound to each of the various possible forms of g̃i, we see that
in all cases |a(n)| ≤ 17

3 d(n)n
k−1
2 .

The first part is

1
2π

∫ ∞

1

∫ 1/2

−1/2

( ∞∑
m=0

r2k(m) e−2πmy e2πimx

)( ∞∑
n=1

a(n) e−2πnye−2πinx

)
yk−2 dx dy.

Since the Fourier series representations converge uniformly on compact subsets of
these regions, we can invert the summations and the integrals and obtain

1
2π

∞∑
m=0

∞∑
n=1

r2k(m)a(n)
∫ 1/2

−1/2

∫ ∞

1

yk−2e−2π(m+n)ye2πi(m−n)x dy dx.

The integral over −1/2 ≤ x ≤ 1/2 is zero unless m = n, in which case it is 1. We set
u = 4πny, du = 4πn dy and this gives

2
(4π)k

∞∑
n=1

r2k(n)a(n)
nk−1

∫ ∞

4πn

uk−2 e−u du.
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We now split this sum into several ranges. The main contribution comes from
n = 1. We have a(1) = 1 and r2k(1) = 4k. This term is

8k
(4π)k

∫ ∞

4π

uk−2e−u du =
8k

(4π)k

[∫ ∞

0

uk−2e−u du−
∫ 4π

0

uk−2e−u du

]

≥ 8k
(4π)k

[
(k − 2)! − (4π)k−1e−4π

]
,

for k ≥ 15, since if k > 4π + 2, uk−2e−u is increasing on [0, 4π].
The second range is 2 ≤ n ≤ 2500. Here we explicitly compute the polynomials

r2k(n) (using the algorithm in the proof of part 1 of Lemma 3.1). Part 2 of Lemma 3.1
shows that r2k(n)

n
k−1
2

is a decreasing function of k, provided k ≥ 1456.

The third range is 2500 ≤ n ≤ k
2π log(2k). In this range, we use the bound from

part 3 of Lemma 3.1, the Deligne bound, d(n) ≤ 2
√
n, and we obtain that∣∣∣∣∣r2k(n)a(n)

nk−1

∣∣∣∣∣ ≤ 34(4.11)2k

25
√

(2k)!
· √n · (n+ 2k)k−1

n
k−1
2

≤ 34
25

(4.11)2k√
(2k)!

·
√

k

2π
log(2k) ·

(√
n+

2k√
n

)k−1

.

The function f(x) =
(
x+ 2k

x

)k−1
is decreasing for x <

√
2k and increasing after that.

We have that f(50) = f(2k
50 ) and 2k

50 ≥
√

k
2π log(2k) if k ≥ 724. Thus, we have the

bound
68
25

(4.11)2k

(4π)k
√

(2k)!
· k3/2

(2π)3/2
log3/2(2k) ·

(
50 +

2k
50

)k−1

· (k − 2)!,

valid provided k ≥ 724. For k ≤ 724, we use the larger of the values of f at x = 50

and x =
√

k
2π log(2k).

The fourth and final range is n ≥ k
2π log(2k). In this range we use the decay of the

integral
∫ ∞
4πn

uk−2e−u du. We have that u ≥ 2k log(2k) and so uk−2e−u ≤ e−u/2 and
so the integral is bounded by 2 e−2πn. Bounding a(n) and r2k(n) as before, we have
that the contribution from this range is at most

34
3(4π)k

∞∑
n= k

2π log(2k)

2n
k
2

nk−1
·
(

3
25

· (4.11)2k√
(2k)!

)
(n+ 2k)k−1 · 2 e−2πn.

We write (n+2k)k−1

nk−1 as
(
1 + 2k

n

)k−1
. If k ≥ 40, 1 + 2k

n ≤ 3.87 and we get

136
25(4π)k

· (4.11)2k(3.87)k−1√
(2k)!

∞∑
n= k

2π log(2k)

n
k
2 e−2πn.

If an = n
k
2 e−2πn, then we have

an+1

an
≤

(
1 +

1
n

) k
2

e−2π ≤ e
k
2n−2π ≤ e−2π+ π

log(2k) ≤ e−5.6.
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Thus, we get the bound

136
25(4π)k

· (4.11)2k(3.87)k−1√
(2k)!

·
(
k

2π
log(2k)

) k
2

(2k)−k · 1
1 − e−5.6

,

valid if k ≥ 40.
The second part of the contribution from the cusp at infinity is

1
2π

∫ 1/2

−1/2

∫ 1

√
1−x2

θ2k(x+ iy)g(x+ iy)yk−2 dy dx.

In this region we use Lemma 3.2 to bound g(x+ iy), and we use that

|θ(z)| ≤ 1 + 2
∞∑

n=1

e−2πn2y ≤ 1.008667

for y ≥ √
3/2. This gives the bound

Γ
(

k+1
2

) [
log

(
k+1
2

)
+ γ + 1

]
(1.008667)2k

(2π)
k+3
2

∫ 1/2

−1/2

∫ 1

√
1−x2

y
k−5
2 dy dx.

The double integral above is less than or equal to
∫ 1/2

−1/2

∫ 1

0
y

k−5
2 dy dx = 2

k−3 . Hence,
we get the bound

34Γ
(

k+1
2

) [
log

(
k+1
2

)
+ γ + 1

]
(1.008667)2k

3(k − 3)(2π)
k+3
2

,

valid for k ≥ 7.
Term 2. This is the contribution of the cusp at zero, and in particular the contri-

butions from the terms involving γ2, γ3, γ4, and γ5. We have

θ2k|W4 = (−1)
k
2 θ2k and g̃i|W4 = (−1)

k
2 g̃i.

Translating this into Fourier expansions gives

θ2k|
[
0 −1
1 0

]
=

(−1)
k
2

2k
θ2k

(z
4

)
, g̃i|

[
0 −1
1 0

]
=

(−1)
k
2

2k
g̃i

(z
4

)
.

Thus, the contribution from these four terms is

1
(2π) · 4k

3∑
j=0

∫ 1/2

−1/2

∫ ∞
√

1−x2
θ2k

(
x+ j + iy

4

)
g̃i

(
x+ j + iy

4

)
yk−2 dy dx.

We set u = x/4 and v = y/4 in the integrand and obtain

1
2π

3∑
j=0

∫ 1/8

−1/8

∫ ∞
√

1−16u2
4

θ2k

(
u+ iv +

j

4

)
g̃i

(
u+ iv +

j

4

)
vk−2 dv du.

We break this into two terms. The first term consists of those pieces with v ≤ 1.
The smallest value v takes on this piece is

√
3/8 and since

√
3/8 > 1

2π , we may use
Lemma 3.2 to bound the contribution. This yields

|g̃i(u+ iv)| ≤ 17

3 · (2πv) k+1
2

Γ
(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
.
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We also have

|θ(u+ iv)| ≤ 1 + 2
∞∑

n=1

e−2πn2v ≤ 1.52182

for v ≥ √
3/8. The contribution of these terms is therefore bounded by

17 · (1.52182)2k

3 · (2π)
k+3
2

Γ
(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

] 3∑
j=0

∫ 1/8

−1/8

∫ 1

√
1−16u2

4

v
k−5
2 dv du

The sum of double integrals is bounded by
∫ 1/2

−1/2

∫ 1

0
v

k−5
2 dv = 2

k−3 and we get the
bound

34 · (1.52182)2k

3 · (2π)
k+3
2 · (k − 3)

Γ
(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
,

on the part where v ≤ 1, valid for k ≥ 7.
The second term consists of those pieces with v ≥ 1. This gives

1
2π

∫ 1/2

−1/2

∫ ∞

1

θ2k(u+ iv)g̃i(u+ iv)vk−2 dv du.

This is exactly the same as the contribution of the first part of the cusp at infinity!
Term 3. This is the contribution of the cusp at 1/2 corresponding to the matrix

γ6. We must understand the Fourier expansion of g̃i|γ6. Since γ6 ∈ Γ0(2), terms of
level 1 or 2 are not affected.

If g is a newform of level 4, then since γ6 is not in Γ0(4), we have that g �→ g+g|γ6

is the trace map from Sk(Γ0(4)) to Sk(Γ0(2)). Since newforms are in the kernel of the
trace map (by Theorem 4 of [21]), it follows that g + g|γ6 = 0 and so g|γ6 = −g.

If g is a newform of level 2, we have

g|V (2)|γ6 = 2−k/2g|
[
2 0
0 1

] [
1 0
2 1

]
= 2−k/2g|

[
0 −1
2 0

] [
1 0
−2 1

] [
1 1/2
0 1

]
.

The first matrix is the Atkin–Lehner involution of level 2, of which g is an eigenform.
The second matrix is in Γ0(2) and the third matrix does not affect the size of the
Fourier coefficients at infinity. It follows that the nth Fourier coefficient of g|V (2)|γ6

is bounded by 2−k/2d(n)n
k−1
2 .

If g is a newform of level 1, we have

g|V (4)|γ6 = 2−kg

[
4 0
0 1

] [
1 0
2 1

]
= 2−kg|

[
2 1
1 1

] [
2 −1
0 2

]
= 2−kg(z − 1/2).

Thus, the nth Fourier coefficient of g|V (4)|γ6 is bounded by 2−kd(n)n
k−1
2 . It follows

that for any g̃i, the nth coefficient of g̃i|γ6 is bounded by 14
3 d(n)n

k−1
2 .

Now, θ2k|γ6 = 22k η(4z)4k

η(2z)4k . The form F (z) = η(4z)8

η(2z)4 ∈M2(Γ0(4)) and satisfies

F (z) =
∑

n odd

σ(n)qn.

Thus, for y ≥ √
3/2, |F (z)| ≤ e−2πy

(∑
n odd σ(n) e−2π(n−1)y

) ≤ 1.0001 e−2πy and so

|θ2k|γ6| ≤ 22k(1.0001)k/2e−kπy
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for y ≥ √
3/2. The contribution of the cusp at 1/2 is therefore

1
2π

∫ 1/2

−1/2

∫ ∞
√

1−x2
θ2k|γ6(x+ iy)g̃i|γ6(x+ iy)yk−2 dy dx.

By Lemma 3.2, we have

|g̃i|γ6(x+ iy)| ≤ 14
3

1

(2π)
k+1
2

Γ
(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
· 1

y
k+1
2

.

This gives the bound

14 · 22k · (1.0001)k/2

3(2π)
k+3
2

Γ
(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

] ∫ ∞

0

y
k−5
2 e−kπy dy.

The integral above is 1

(kπ)
k−3
2

Γ
(

k−3
2

)
, and so the bound on this term is

14 · 22k · (1.0001)k/2

3(2π)
k+3
2 (kπ)

k−3
2

Γ
(
k + 1

2

)
Γ
(
k − 3

2

)[
log

(
k + 1

2

)
+ γ + 1

]

and is valid for k ≥ 7.
After dividing each term above by (k−2)!

(4π)k , the main term is increasing linearly (it
is about 16k), and each other term decreases exponentially. The most troublesome
term is the term from the third range of values of n from the cusp at infinity, and
(after dividing by (k−2)!

(4π)k ) is asymptotic to c1c
k
2k

1/4 ln(k)3/2, where c2 ≈ 0.918, but
c1 ≈ 1.69 × 10543. This term is smaller than the main term only when k ≥ 14,000.

For this reason, we must explicitly calculate our bounds for k < 14, 000. In this
range, we refine our estimate of the troublesome term by using the exact values of the
incomplete Γ-function

∫ ∞
4πn

uk−2 e−u du. Also, for k ≤ 2550, we compute the values of
r2k(n) explicitly for 2 ≤ n ≤ 2500 and use these in our bounds. For k ≥ 2552, we use
part 2 of Lemma 3.1.

Finally, for k ≤ 194, our numerical bounds are not sufficient and we use Magma
to explicitly compute the decomposition of θ2k as in equation (1.2) and find that the
constants ci are non-negative. �

Proof of Theorem 1.1. First, assume that n is odd. Considering the coefficient of q on
both sides of (1.2), we obtain

r2k(1) = 4k =
2k(−1)k/2

(2k − 1)Bk
+

∑
i

ci.

By Theorem 1.2, we have

∑
i

|ci| =
∑

i

ci = 4k − 2k(−1)k/2

(2k − 1)Bk
.

Deligne’s bound on the nth coefficient of gi(z) is bounded by d(n)n
k−1
2 . Plugging this

bound into the decomposition and using the fact that the coefficients of qn in gi(2z)
and gi(4z) are zero if n is odd gives the desired bound on the cusp form contribution
to θ2k(z).
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Now, suppose that k/2 is odd and n is even. Then k ≡ 2 (mod 4). We represent
the decomposition of the cusp form part of θ2k(z) as

C(z) =
∑

i

ri
(
fi(z) − 2kfi(z)|V (4)

)
+

∑
i

si

(
gi(z) − 2

k
2 λigi(z)|V (2)

)
+

∑
i

tihi(z).

Here, the fi(z), gi(z) and hi(z) are the newforms of levels 1, 2 and 4, respectively,
and λi is the Atkin–Lehner eigenvalue of gi(z). One can see that the nth coefficients
of fi(z)− 2kfi(z)|V (4) and gi(z)− 2

k
2 λigi(z)|V (2) are bounded by 3d(n)n

k−1
2 . Thus,

for even n, we obtain the bound(∑
i

3ri + 3si

)
d(n)n

k−1
2 .

We will show that
∑

i 3ri + 3si < 4k − 2k
(2k−1)Bk

.
To compute the constant

∑
i 3ri + 3si, we will compute the trace of C(z) to

Sk(Γ0(2)), given by Tr(C) := C(z) + C(z)|
[
1 0
2 1

]
. Straightforward, but somewhat

lengthy computations show that

Tr(fi(z) − 2kfi(z)|V (4)) = 3fi(z) − 2ai(2)fi(z)|V (2),

Tr(gi(z) − 2
k
2 λigi(z)|V (2) = 3gi(z),

Tr(hi(z)) = 0.

It follows from these formulae that
∑

i 3ri + 3si is the coefficient of q in Tr(C). We
have that

C = θ2k +
1

2k − 1
Ek(z) − 2k

2k − 1
Ek(4z),

Tr(C) = Tr(θ2k) − (−1)k/2

2k − 1
Tr(Ek(z)) − 2k

2k − 1
Tr(Ek(4z)),

=
(
θ2k + 4k η

4k(4z)
η2k(2z)

)
+

2
2k − 1

Ek(z)

− 2k

2k − 1
(
(1 + 21−k)Ek(z)|V (2) − 2−kEk(z)

)
.

Taking the coefficient of q on both sides of the preceding equation gives∑
i

3ri + 3si = 4k − 6k
(2k − 1)Bk

< 4k − 2k
(2k − 1)Bk

since k ≡ 2 (mod 4) and hence Bk > 0. This proves Theorem 1.1 in the case that
k ≡ 2 (mod 4) and n is even. �

5. Final remarks

It is natural to consider if Theorem 1.1 is true in other cases. When k ≡ 0 (mod 4)
and n is even, the main issue is that if gi is a level 1 eigenform and

g̃i = gi − 4
3
a(2)gi|V (2) + 2kgi|V (4) =

∞∑
n=1

c(n)qn,
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then the best possible bound on the Fourier coefficients of g̃i is |c(n)| ≤ 2d(n)n
k−1
2 .

In order for this bound to come close to being achieved, it is necessary for |a(2)|,
the absolute value of the second coefficient in gi, to be close to 2

k+1
2 . Serre proved

in 1997 (see [22]) that if p is a fixed prime, the pth coefficients of newforms become
equidistributed (along any sequence of weights and levels whose sum tends to infinity,
where the levels are not multiples of p). It follows from this that there will be level 1
eigenforms with |a(2)| arbitrarily close to 2

k+1
2 , but also that there will be few such

forms. One approach to extending Theorem 1.1 to the case when k ≡ 0 (mod 4) is to
use the equidistribution of the numbers |a(2)|.

It is also natural to consider the problem of deriving a sharp bound in the case that
k is odd. In the case when k is even, the contribution from the cusp at zero is (up to
a fairly small error) the same as the contribution at the cusp at infinity, since both
θ2k and the newforms are eigenforms of the Atkin–Lehner involution W4. However,
when k is odd, the newforms are not eigenforms of W4 any longer. This means that
the contribution of the cusp at zero is (up to some small error) the contribution of
the cusp at infinity times some complex number λ of absolute value 1. This complex
number is related to the coefficient of q4 of the relevant eigenform gi. A similar result
could be proven provided one could rule out the possibility that λ is close to −1. In
fact, the analogue of Theorem 1.2 is false for k = 17, although this seems to be a
consequence of the smallness of the weight, rather than a value of λ too close to −1.

For half-integral values of k (corresponding to representations of n as the sum of an
odd number of squares), the question is still interesting. In this case, the coefficients
of the cusp forms involve square roots of central critical L-values of quadratic twists
of forms of level 1 and level 2. The analogue of Deligne’s theorem in this case would
be optimal subconvexity bounds on these L-values, currently attainable only under
the assumption of the generalized Riemann hypothesis.
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