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THE DISCRIMINANT AND THE DETERMINANT OF A
HYPERSURFACE OF EVEN DIMENSION

Takeshi Saito

Abstract. For a smooth hypersurface of even dimension, the quadratic character of the

absolute Galois group defined by the determinant of the �-adic cohomology of middle
dimension is computed via the square root of the discriminant of a defining polynomial
of the hypersurface.

Let k be a field, k̄ an algebraic closure of k and ks the maximal separable extension
of k contained in k̄. Let Γk = Gal(ks/k) = Autk(k̄).

Let X be a proper smooth variety of even dimension n over k. If � is a prime number
which is invertible in k, the �-adic cohomology V = Hn(Xk̄,Q�(n

2 )) defines an orthog-
onal representation of the absolute Galois group Γk = Gal(ks/k). The determinant

detV : Γk → {±1} ⊂ Q×
�

is independent of the choice of � (see Corollary 3.3).
Assume that X is a smooth hypersurface of degree d in a projective space of

dimension n + 1, and let f be a homogeneous polynomial defining it. Let discd(f) be
the divided discriminant of f (see Section 2). Assume further that the characteristic
of k is not 2. We shall prove below (Theorem 3.5):

Theorem. The quadratic character detV is defined by the square root of ε(n, d) ·
discd(f), where ε(n, d) is (−1)

d−1
2 if d is odd and is (−1)

d
2 ·n+2

2 if d is even.

[In other words, the kernel of detV : Γk → {±1} is the subgroup of Γk corresponding
to the field extension k(

√
ε(n, d) · discd(f))/k.]

The proof1 is in two parts. One shows (cf. Section 3) by a standard argument on
universal families that the theorem is true up to a sign depending only on d and n.
One then concludes that this sign is equal to ε(n, d), using a topological computation
given in Section 1.

1. Determinant of the complex conjugation

We compute the determinant of the action of the complex conjugation on the coho-
mology of a proper smooth variety of even dimension over R.

Received by the editors October 8, 2011.
1For n = 2, this had already been proved by the late Torsten Ekedahl, in an unpublished 2-page

manuscript dated February 1993. He was then answering a question raised by Jean-Pierre Serre in a
Collège de France course on Galois representations and motives. Ekedahl’s method was similar, but
not identical, to the one in this article. The author was happy to be able to discuss these questions

with him in november 2011, a few days before his unexpected death.
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1.1. We put ΓR = Gal(C/R) = {1, c}. We identify the Grothendieck group K0(Q[ΓR])
of representations of ΓR over Q with the group {(a, b) ∈ Z×Z | a ≡ b (mod 2)} by the
isomorphism sending the class [ρ] of a representation ρ to the pair (Trρ(1), Trρ(c)).
For a representation V of ΓR and an integer m, let V (m) denote the twist of V
by the mth power of the non-trivial character ΓR → {±1}. The automorphism of
K0(Q[ΓR]) sending the class [V ] to [V (1)] is given by (a, b) �→ (a,−b). The map
det : K0(Q[ΓR]) → {±1} sending the class [ρ] to det ρ(c) is given by (a, b) �→ (−1)

a−b
2 .

Proposition 1.2. Let X be a separated scheme of finite type of dimension n over R
and let eC and eR denote the Euler–Poincaré characteristics with compact support of
the topological spaces X(C) and X(R) respectively. Then, the alternating sum

[H∗
c (X(C),Q)] =

2n∑

q=0

(−1)q[Hq
c (X(C),Q)],

viewed as an element of K0(Q[ΓR]) ⊂ Z × Z, is equal to (eC, eR).

Proof. It suffices to show that eR = Tr(c : H∗
c (X(C),Q)). By the long exact sequence

· · · → H∗
c (X(C) X(R),Q) → H∗

c (X(C),Q) → H∗
c (X(R),Q) → · · · ,

we have

Tr(c : H∗
c (X(C),Q)) = Tr(c : H∗

c (X(R),Q)) + Tr(c : H∗
c (X(C) X(R),Q)).

Since X(R) consists of the c-fixed points, we have

Tr(c : H∗
c (X(R),Q)) = eR.

We now show that Tr(c : H∗
c (X(C) X(R),Q)) = 0. By a standard dévissage,

we can reduce the question to the case where X is affine, and then to the case where
it is projective. Hence, we may assume that X is a closed subscheme of a projective
space Pm

R over R. The space Pm(C) can be embedded as a compact algebraic subset
([3, Definition 2.1.1]) in the space of m + 1 by m + 1 Hermitian matrices by the
immersion sending the vector z = (z0, . . . , zm) to the matrix

tz̄·z
z̄·tz .

By [3, Proposition 2.2.7], this implies that the quotient X(C)/ΓR is homeomorphic
to a compact semi-algebraic subset ([3, Definition 2.1.3]) of R(m+1)2 . Hence by [3,
Théorème 9.2.1], there exists a triangulation of X(C)/ΓR such that the image of
X(R) is a union of simplices. For each simplex Δ in the triangulation, the inverse
image of Δ−(Δ∩Image(X(R))) in X(C) consists of its 2 copies switched by c. Hence,
the equality Tr(c : H∗

c (X(C) X(R),Q)) = 0 follows. �

Corollary 1.3. Assume that X is proper and smooth of even dimension n.
1. If we put N = 1

2 (eC − (−1)
n
2 eR), we have

det
(
c : Hn

(
X(C),Q

(n

2

)))
= (−1)N .

2. Let Xd be the Fermat hypersurface in Pn+1
R of degree d defined by the equation

T d
0 + · · · + T d

n+1 = 0.
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Then:

(1.1) det
(
c : Hn

(
Xd(C),Q

(n

2

)))
=

{
(−1)

d−1
2 if d is odd,

(−1)
d
2

n+2
2 if d is even.

Proof. 1. Let m = n/2. Recall that Q(m) is the mth twist of Q, as defined in 1.1;
this means that the complex conjugation acts on it by (−1)m.

We have det(c : Hn(X(C),Q(m))) = det(c : [H∗(X(C),Q(m))]) by Poincaré dual-
ity. By Proposition 1.2, the class [H∗(X(C),Q(m))] in K0(Q[ΓR]) is (eC, (−1)meR)
and we obtain det(c : [H∗(X(C),Q(m))]) = (−1)N .

2. If d is odd, the morphism (t0, . . . , tn+1) �→ (td0, . . . , t
d
n+1) of Xd into X1 induces

a homeomorphism Xd(R) → X1(R); since X1 is isomorphic to Pn, we have eR = 1.
If d is even, then Xd(R) = ∅ and we have eR = 0.

Let us now define a polynomial Φ(T ) ∈ Z[T ] by

Φ(T ) =
1
T

· ((1 − T )n+2 − (1 − (n + 2)T )).

A standard computation using Chern classes shows that eC = Φ(d).

[For the convenience of the reader, we recall this computation. The exact sequences

0 → Ω1
Pn+1 → OPn+1(−1)⊕n+2 → OPn+1 → 0

and
0 → OXd

(−d) → Ω1
Pn+1 ⊗OXd

→ Ω1
Xd

→ 0
imply that the total Chern class c(Ω1

Xd
) is equal to

c(O(−1))n+2 · c(O(−d))−1 · [Xd] = (1 − h)n+2 · (1 − dh)−1 · dh,

where h = c1(O(1)) denotes the class of a hyperplane. The coefficient of hn+1 in
(−1)nc(Ω1

Xd
) is (−1)n

∑n
i=0

(
n+2

i

)
(−1)idn−i+1 =

∑n+2
j=2

(
n+2

j

)
(−1)jdj−1 and is equal

to 1
d · ((1 − d)n+2 − (1 − (n + 2)d)) = Φ(d).]

We have

Φ(d) ≡ Φ(a) + (d − a)Φ′(a) (mod 4) if d ≡ a (mod 2).

Since Φ(1) = n + 1 and Φ(1) + Φ′(1) = n + 2, we have Φ′(1) = 1. Hence, if d is odd,
we get Φ(d) ≡ n + 1 + d − 1 ≡ (−1)n/2 + d − 1 (mod 4), and

2N ≡ (−1)n/2 + d − 1 − (−1)n/2 ≡ d − 1 (mod 4).

If d is even, since Φ(0) = 0 and Φ′(0) =
(
n+2

2

) ≡ 1 + n
2 (mod 2), we have

2N = Φ(d) ≡ d
(
1 +

n

2

)
(mod 4).

Hence, assertion 2 follows from assertion 1. �

2. Discriminant

The literature contains several non-equivalent definitions of “the” discriminant of
a homogeneous polynomial. For instance, the discriminant of x2 + y2 is sometimes
defined as 1, sometimes as 4 and sometimes as −4. In what follows, we shall put
indices to the symbol “disc” in order to clarify the conventions we use.

We start with the most standard definition (see e.g., [10, Chap. 13]), which is
satisfactory over C, but which is not so over an arbitrary field.
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2.1. The discriminant, defined as the resultant of the partial derivatives.
We fix integers n � 0 and d > 1. We consider the polynomial ring Z[T0, . . . , Tn+1] and
the free Z-module E =

⊕n+1
i=0 Z ·Ti. The dth symmetric power SdE is identified with

the free Z-module of finite rank consisting of homogeneous polynomials of degree d
in Z[T0, . . . , Tn+1]. If I = (i0, . . . , in+1) ∈ Nn+2 is a multi-index, we put

T I = T i0
0 · · ·T in+1

n+1 ∈ Z[T0, . . . , Tn+1] and |I| = i0 + · · · + in+1.

The monomials T I of degree |I| = d form a basis of SdE. Let (CI)|I|=d be the dual
basis of (SdE)∨ and define the universal polynomial F =

∑
|I|=d CIT

I .
We consider the resultant2

res(D0F, . . . , Dn+1F )

of its partial derivatives D0F, . . . , Dn+1F . It is a homogeneous polynomial of degree
m = (n + 2)(d − 1)n+1 in (CI)|I|=d with integral coefficients. If we put

(2.1) a(n, d) =
(d − 1)n+2 − (−1)n+2

d
,

the greatest common divisor of the coefficients is da(n,d) by [6, no 5 Lemme 11] and [10,
Chap. 13.1.D Proposition 1.7].

Definition 2.2. We call res(D0F, . . . , Dn+1F ) the resultant-discriminant of F and
we denote it by discr(F ). We call

discd(F ) =
1

da(n,d)
discr(F ),

the divided discriminant of F .

The divided discriminant discd(F ) is known to be geometrically irreducible in char-
acteristic 0 cf. [6, no 6 Proposition 14] and [10, Chap. 13.1.D]. It is proved purely
algebraically in [6, loc. cit.]. The proof in [10, loc. cit.] is geometric and is general-
ized to positive characteristic in Lemma 2.12 below, except the exceptional case in
characteristic 2. See also the remark at the end of this section.

By specialization, the definition of discriminants gives a meaning to discr(f) and
discd(f) for every homogeneous polynomial f in n + 2 variables over a commutative
ring R. The divided discriminant satisfies the following smoothness criterion due to
Demazure:

Proposition 2.3 ([6, no 5 Proposition 12]). Let f be a homogeneous polynomial of
degree d in n+2 variables over a commutative ring R. Then, the divided discriminant
discd(f) is invertible in R if and only if the corresponding hypersurface is a smooth
divisor of the projective space Pn+1

R = Proj R[T0, . . . , Tn+1] over R.

This smoothness criterion would not work with the resultant-discriminant when d
is not invertible in R.

The transformation properties of discd are the same as those of discr, namely
(cf. [6, no 5 Proposition 11] and [10]):

(2.2) discd(λf) = λ(n+2)(d−1)n+1
discd(f)

2For the definition of the resultant of m homogeneous polynomials in m indeterminates, see

e.g., [10, Chap.13, Section 1.A] and [6, no 4 Définition 3].
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and

(2.3) discd(fA) = det(A)d(d−1)n+1
discd(f),

where λ is any element of R, A is any (n + 2) × (n + 2)-matrix with coefficients in
R, and fA(x) = f(Ax). The formula about fA, applied to a permutation, shows that
discd(f) does not depend on the indexing of the coordinates.

2.4. The universal family and the discriminant. We define the universal
family of hypersurfaces. We put Pn+1

Z = P(E) = ProjZ[T0, . . . , Tn+1]. Let Pn,d =
P((SdE)∨) be the projective space defined by the dual (SdE)∨ = Hom(SdE,Z); it
is the moduli space of hypersurfaces of degree d in Pn+1; we shall usually write it P
instead of Pn,d. The universal hypersurface

X ⊂ Pn+1
Z × P

is then defined by the universal polynomial F =
∑

|I|=d CIT
I .

Let Δ be the closed subscheme of X defined by the vanishing of the partial
derivatives D0F, . . . , Dn+1F of the universal polynomial F . By the Jacobian crite-
rion, X Δ is the maximum open subscheme of X on which the canonical morphism
X → P is smooth.

For an integer m ≥ 0, we identify the Z-module Γ(P,O(m)) with the symmetric
power Sm((SdE)∨) consisting of homogeneous polynomials in (CI)|I|=d of degree m.
The closed subscheme D of P = Pn,d defined by the divided discriminant discd(F ) is
reduced and is an effective Cartier divisor flat over Z. For m = (n + 2)(d− 1)n+1, the
divided discriminant discd(F ) is a basis of the free Z-module L = Γ(P,O(m)(−D))
of rank 1.

The following is a geometric interpretation of the smoothness criterion Proposi-
tion 2.3.

Lemma 2.5. The underlying set of the reduced closed subscheme D of P equals the
image of Δ by the projection map Pn+1

Z × P → P.

The equality of underlying sets means that the scheme theoretic image of Δ → P
equals the reduced closed subscheme D of P.

2.6. The discriminant and the dual variety. We recall the formalism of the dual
variety [13, 3.1] and the relation with the discriminant. The rest of this section is not
used in the proof of Theorem 3.5 except the description in Lemma 2.10 at the generic
point of the divisor Dk recalled from SGA 7.

In this subsection, we fix an algebraically closed field k and let the suffix k denote
the base change to k over Z. The indeterminates T0, . . . , Tn+1 define a homogeneous
coordinate of the projective space Pn+1

k = P(Ek). We put r = dim(SdEk) − 1
and Pr = P(SdEk). The projective space Pk = P((SdEk)∨) is the dual P̌r of Pr

parametrizing hyperplanes in Pr. The monomials (T I)|I|=d form a homogeneous co-
ordinate of Pr and the universal coefficients (CI)|I|=d form a homogeneous coordinate
of P̌r = Pk.

The d-th symmetric power SdEk is naturally identified with the space of global
sections Γ(Pn+1

k ,O(d)) of the very ample invertible sheaf O(d) on Pn+1
k . The closed

immersion
vd : Pn+1

k = P(Ek) → Pr = P(SdEk)
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defined by O(d) on Pn+1
k is called the dth Veronese embedding. We consider Pn+1

k as
a closed subscheme of Pr by vd.

The conormal sheaf N of Pn+1
k in Pr is defined as I/I2 where I ⊂ OPr denotes

the ideal sheaf defining the closed subscheme Pn+1
k ⊂ Pr. It is a locally free OPn+1

k
-

module of rank r − (n + 1). Let P(N ) = Proj S•N∨ denote the associated covariant
projective space bundle over Pn+1

k [here, to be consistent with [13, 3.1], we use the
font P to denote the covariant projective space bundle associated to a locally free
sheaf, parametrizing the lines].

We view the projective space bundle P(N ) over Pn+1
k as a closed subscheme of

Pn+1
k × Pk as in [13, (3.1.1)]. We recall the definition of the embedding

(2.4) P(N ) → Pn+1
k × Pk.

The projective space Pk = P((SdEk)∨) is the covariant projective space P(SdEk)
associated to the vector space SdEk. Since the twist by an invertible sheaf does not
change the associated projective space bundle, the product Pn+1

k ×Pk is identified with
the covariant projective space bundle P(SdEk ⊗ v∗

dOPr (−1)) associated to a locally
free OPn+1

k
-module SdEk⊗v∗

dOPr (−1). The canonical map N → Ω1
Pr ⊗OPn+1

k
defined

by the closed immersion Pn+1
k → Pr and the canonical map Ω1

Pr → SdEk ⊗OPr (−1)
for the projective space Pr = P(SdEk) are locally splitting injections. Hence the
composition N → Ω1

Pr ⊗ OPn+1
k

→ SdEk ⊗ v∗dOPr (−1) defines the desired closed

immersion P(N ) → Pn+1
k × Pk by the covariant functoriality.

The map ϕ : P(N ) → P̌r [13, (3.1.2)] is defined as the composition

(2.5) P(N ) → Pn+1
k × Pk → Pk

of the immersion (2.4) and the projection. The dual variety of Pn+1
k ⊂ Pr

k is the
closed subset defined as the image of ϕ [13, (3.1.3)].

Lemma 2.7. Let k be an algebraically closed field.
1. We have an equality P(N ) = Δk of the underlying sets of closed subschemes of

Pn+1
k × Pk.
2. The dual variety of Pn+1

k in Pr
k defined as the image of the map ϕ : P(N ) → Pk

(2.5) equals the underlying set of Dk.

The equality P(N ) = Δk of the underlying sets will imply the isomorphism of
projective space bundles as a consequence of Proposition 2.8 below.

Proof. 1. A k-rational point of P(k) corresponds to a hyperplane H in Pr defined
over k since Pk is the dual of Pr. The intersection of H with Pn+1

k embedded in
Pr by the dth Veronese embedding vd : Pn+1

k → Pr is a hypersurface of degree d
and is the geometric fiber of the universal family X → P at the geometric point
[H] ∈ P(k). Consequently, the set of k-valued points X(k) ⊂ Pn+1(k)×P(k) consists
of the pairs (x, H) ∈ Pn+1(k) × P(k), where H is a hyperplane of Pr containing
x ∈ Pn+1(k) ⊂ Pr(k).

By [13, (3.1.1)], the set of k-valued points P(N )(k) ⊂ Pn+1(k) × P(k) consists
of the pairs (x, H) ∈ X(k) such that H is tangent to Pn+1

k at x. In other words, it
consists of the points of X(k) ⊂ Pn+1(k)×P(k) where the geometric fiber Xk → Pk
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of the canonical map of the universal family X → P is not smooth. Thus the assertion
follows by the Jacobian criterion.

2. Since the dual variety is defined as the image ϕ(P(N )), it follows from assertion
1 and the smoothness criterion Proposition 2.3. �

Proposition 2.8. Δ is a projective space bundle over Pn+1
Z .

By Lemma 2.7.1, we already know that the reduced part of each geometric fiber
Δk is a projective space bundle. We verify that the global equations defining Δ reduce
Proposition 2.8 to this property.

Proof. The closed subscheme Δ of Pn+1
Z × P is defined, on the inverse image of

the open subscheme D(Ti) of Pn+1
Z , by the vanishing of the n + 2 linear forms

F, D0F, . . . , Di−1F, Di+1F, . . . , Dn+1F in (CI)|I|=d by the equality

(2.6) d · F = T0 · D0F + · · · + Tn+1 · Dn+1F.

Hence, it suffices to show that for every geometric point of each D(Ti), these forms
are linearly independent. Or equivalently, it suffices to show that for every geometric
point Spec k → Pn+1

Z , the geometric fiber of Δk → Pn+1
k is a linear subspace of Pk

of codimension n + 2.
Let k be an algebraically closed field and take the notation in 2.6. By Lemma 2.7.1,

we have an equality Δk = P(N ) of the underlying sets. By the definition of the closed
immersion P(N ) → Pn+1

k ×Pk (2.4) recalled above, P(N ) is a linear subbundle of the
projective space bundle Pn+1

k ×Pk over Pn+1
k . Hence the fiber of Δk = P(N ) → Pn+1

k

is a linear subspace of Pk of codimension dim(Pn+1
k × Pk) − dim P(N ).

Since rank N = dimPk −dimPn+1
k , the codimension dim(Pn+1

k ×Pk)−dim P(N )
is equal to (dimPk +dimPn+1

k )−(dimPk−dimPn+1
k −1+dimPn+1

k ) = n+2. Thus,
the assertion follows. �

2.9. The irreducibility of the discriminant modulo p. Let π : X → P denote
the canonical morphism of the universal family of hypersurfaces. By [5, Corollaire
1.3.4] there exists an open subset W of Δ consisting of the points w such that w is
an ordinary quadratic singularity in the fiber Xπ(w).

Lemma 2.10. 1. For every algebraically closed field k, the geometric fiber Wk is
dense in P(N ) = Δk.

2. Assume that n is odd or char k 
= 2. Let W ′
k be the subset of Wk ⊂ P(N )

consisting of the images of geometric points w of Wk that is a unique singular point
in the geometric fiber Xπ(w).

Then, W ′
k is the maximum open subscheme of P(N ) where the restriction of the

morphism ϕ : P(N ) → Pk is an immersion. Consequently, the canonical morphism
P(N ) = Δk → Dk,red to the maximum reduced subscheme of Dk is birational.

Proof. 1. By [13, (3.7.1)], the open subscheme Wk of P(N ) is non-empty. Since P(N )
is irreducible, it is dense.

2. By assertion 1 and [13, Proposition 3.3], the morphism ϕ : P(N ) → Pk (2.5) is
generically unramified (“unramified” as defined in EGA IV (17.3.1) is the same as
“net” in SGA 7: the diagonal map is an open immersion). Hence, the assertion follows
from [13, Proposition 3.5]. �



862 TAKESHI SAITO

We deduce the irreducibility of the reduction of the discriminant modulo p from
Proposition 2.8 using the following Lemma.

Lemma 2.11. Let f : X → Y be a proper morphism of Noetherian schemes. For
a point y of Y , let fy : Xy → y denote the base change by the canonical map y =
Spec κ(y) → Y and define a subset V of Y by

V = {y ∈ Y | Xy = ∅ or fy : Xy → y is an isomorphism}.
Then V is the largest open subset of Y such that X ×Y V → V is a closed immersion.

Proof. The subset

U = {x ∈ X | x is isolated in f−1(f(x))}
of X is the largest open subset of X such that the restriction f |U : U → Y is quasi-
finite by [11, Proposition (4.4.1)]. The complement W = Y f(X U) is the largest
open subset of Y such that the base change W ×Y X → W is finite by [11, Propo-
sition (4.4.2)]. Since V is a subset of W , by replacing Y by W , we may assume f
is finite.

By Nakayama’s lemma, the subset V of Y is the complement of the support of the
coherent OY -module Coker(OY → f∗OX). Hence V is the largest open subscheme
where the morphism OY → f∗OX is a surjection. �

Proposition 2.12. Unless p = 2 and n is even, the divided discriminant discd(F )
modulo p is a geometrically irreducible polynomial in the CI . Consequently, the canon-
ical morphism P(N ) = ΔFp → DFp is birational.

Proof. Let V be the largest open subset of P such that Δ ×P V → V is a closed
immersion. Since Δ is reduced by Proposition 2.8, the induced map Δ×PV → D×PV
is an closed immersion of reduced schemes and is an isomorphism by Lemmas 2.11
and 2.5.

Since the construction of V commutes with base change, Lemmas 2.10.2 and 2.11
imply that the inverse image of VFp is dense in ΔFp if n is odd or p 
= 2. Since the
geometric fiber ΔFp

is reduced and irreducible by Proposition 2.8, the open subscheme
(D×PV )Fp

of DFp
is reduced, irreducible and dense. Hence, the fiber DFp is a divisor

of PFp defined by a geometrically irreducible polynomial.
The last assertion follows from that in Lemma 2.10.2 and that DFp is reduced. �

Proposition 2.12 is proved in [6, no 5 Proposition 14] under the assumption p �

d(d − 1). In the exceptional case p = 2 and n even, we show in Theorem 4.2 that the
signed discriminant ε(n, d)discd(F ) is congruent to a square modulo 4 where ε(n, d)
is defined as in Theorem stated in the introduction.

3. Determinant

In this section, we assume that n is even.
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3.1. Let S be a normal integral scheme of finite type over Z and f : X → S be a
proper smooth morphism of relative dimension n. For a prime number � invertible in
the function field of S, the cup-product defines a non-degenerate symmetric bilinear
form on the smooth Q�-sheaf Rnf∗Q�(n

2 ) on S[1� ]. Hence the determinant defines a
character π1(S[1� ])ab → {±1} ⊂ Q×

� of the fundamental group, which we denote by
[detHn

� (X)].

Lemma 3.2. There exists a unique character [detHn(X)] : π1(S)ab → {±1} such
that, for every prime number � invertible in the function field of S, the composition
with the map π1(S[1� ])ab → π1(S)ab induced by the open immersion S[1� ] → S gives
[detHn

� (X)].

Proof. First, we show the case where S = Spec k for a finite field k = Fq. Then, for
a prime � different form the characteristic of k, Deligne’s theorem on �-adic repre-
sentations tells us that the polynomial det(1 − Frqt : Hn(XF̄q

,Q�)) is in Z[t] and is
independent of �. Hence, the multiplicity m of the eigenvalue of −qn/2 of Frq acting
on Hn(XF̄q

,Q�) and the determinant det(Frq : Hn(XF̄q
,Q�(n

2 ))) = (−1)m are inde-
pendent of �. Since the geometric Frobenius Frq generates a dense subgroup of Γk,
the assertion follows in this case.

We prove the general case. For two different primes � and �′ and for every closed
point x of S[ 1

��′ ], the case proved above gives us a commutative diagram

(3.1)

π1(S[1� ])ab

↗ ↘

Γκ(x) {±1}

↘ ↗
π1(S[ 1

�′ ])
ab

where the left slant arrows are induced by the closed immersion of x.
By the Chebotarev density theorem [16, Theorem 7], [17, Theorem 9.11] for a

normal scheme of finite type over Z, the images Γκ(x) → π1(S[ 1
��′ ])

ab where x runs
the closed points of S[ 1

��′ ] generate a dense subgroup. Hence we obtain a commutative
diagram

(3.2)

π1(S[1� ])ab

↗ ↘

π1(S[ 1
��′ ])

ab {±1}.

↘ ↗
π1(S[ 1

�′ ])
ab

Glueing of coverings shows that π1(S)ab is the push-out of the left half of (3.2).
Thus, the characters [det Hn

� (X)] induce a unique character π1(S)ab → {±1}, which
is independent of �. �
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Corollary 3.3. Let X be a proper smooth scheme of even dimension n over a field
k. Then, for a prime number � invertible in k, the character det Hn(Xk̄,Q�(n

2 )) of
Γk is independent of �.

Proof. We may assume that k is finitely generated over a prime field. Hence, there
exist a normal integral scheme S of finite type over Z such that k is the function field
of S and a proper smooth morphism f : XS → S of relative dimension n such that
the generic fiber is X. Now the assertion follows form Lemma 3.2. �

If k contains an algebraic closure of Q as a subfield, it is reduced to the case
where k is finitely generated over C by a standard limit argument and the Lefschetz
principle. In this case, one can deduce the independence of � from the comparison
theorem between Betti and �-adic cohomology.

3.4. Let d > 1 be an integer and π : X ⊂ Pn+1
Z × P → P = P((SdE)∨) denote

the universal hypersurface of degree d defined by the universal polynomial F . The
complement U = P D of the divisor D defined by the divided discriminant discd(F )
is the maximum open subscheme of P over which π : X → P is smooth.

Since n is even, the degree m = (n + 2)(d − 1)n+1 of the discriminant discd(F ) is
even. We consider the μ2-torsor on the fppf-site of U consisting of bases of O(m

2 )
whose square is equal to the basis discd(F ) of an invertible OU -module OU (m).
We denote by [discd(F )] the class of this torsor in H1

fl(U, μ2).
By applying Lemma 3.2 to the universal smooth hypersurface

πU : XU → U,

we define [detHn(X)] ∈ H1(U,Z/2Z). Let now k be a field and let f ∈ SdE ⊗
k be a homogeneous polynomial of degree d defining a smooth hypersurface Y in
Pn+1

k . Then, the pull-back in H1(k,Z/2Z) = Hom(Γab
k ,Z/2Z) of [detHn(X)] by the

k-valued point of U corresponding to f is given by the determinant of the orthogonal
representation Hn(Yk̄,Q�(n

2 )) for a prime number � invertible in k.

Theorem 3.5. Let n � 0 and d > 1 be integers; assume that n is even. Define the
sign ε(n, d) = ±1 by

(3.3) ε(n, d) =

{
(−1)

d−1
2 if d is odd,

(−1)
d
2

n+2
2 if d is even.

Then, we have

(3.4) [detHn(X)] = [ε(n, d) · discd(F )]

in H1(UZ[ 12 ],Z/2Z).

By a standard specialization argument, Theorem 3.5 implies the Theorem stated
in the introduction.

Proof. The Kummer sequence defines an exact sequence

(3.5) 0 → Γ(U 1
2
,O)×/(Γ(U 1

2
,O)×)2 → H1(U 1

2
,Z/2Z) → Pic(U 1

2
)[2] → 0,

where we have written U 1
2

instead of UZ[ 12 ] for typographical reasons, and Pic(U 1
2
)[2]

denotes the subgroup of Pic(U 1
2
) killed by 2.



THE DISCRIMINANT AND THE DETERMINANT OF A HYPERSURFACE 865

We now compute Γ(U 1
2
,O)× and Pic(U 1

2
). In the exact sequence,

(3.6) 0 → Γ(PZ[ 12 ],O)× → Γ(U 1
2
,O)× → Z → Pic(PZ[ 12 ]) → Pic(U 1

2
) → 0,

the Picard group Pic(PZ[ 12 ]) is canonically identified with Z by the generator [O(1)].
Then, the map Z → Pic(PZ[ 12 ]) is identified with the multiplication by m = (n +
2)(d − 1)n+1 since it sends 1 to the class of O(m). Thus, we have

Γ(U 1
2
,O)× = Γ(PZ[ 12 ],O)× = Z

[
1
2

]×
= 〈−1, 2〉.

It also follows from (3.6) that the Picard group Pic(U 1
2
) is cyclic of order m; since m

is even, this shows that Pic(U 1
2
)[2] has order 2.

Recall that the divisor D defined by discdF is irreducible (see remark after Def-
inition 2.2). Let ξ̄ be a geometric generic point of D and let Iξ̄ denote the absolute
Galois group of the fraction field of the strict henselization OP,ξ̄. Since the profinite
group Iξ̄ is isomorphic to Ẑ, the group Hom(Iξ̄,Z/2Z) is of order 2.

We show that the images of [detHn(X)] and [discd(F )] by the restriction map
H1(U 1

2
,Z/2Z) → Hom(Iξ̄,Z/2Z) are both the unique non-trivial element. For the

latter [discd(F )], this follows from that discd(F ) is a prime element of the irreducible
divisor D.

Let η̄ denote a geometric generic point of Spec OP,ξ̄. We show that the character
detHn(Xη̄,Q�) of Iξ̄ is the unique non-trivial character of order 2. By the result
of [13] recalled in Lemma 2.10.2 applied to k = Q̄, the geometric fiber Xξ̄ has a
unique singular point which is an ordinary quadratic singularity in Xξ̄. Hence, by the
Picard–Lefschetz formula [5, Théorème 3.4 (ii)], we have an exact sequence

0 →Hn(Xξ̄,Q�) → Hn(Xη̄,Q�) → Q�(n
2 )(3.7)

→ Hn+1(Xξ̄,Q�) → Hn+1(Xη̄,Q�) → 0

of �-adic representations of the inertia group Iξ̄. Further, since X is regular, the base
change XOP,ξ̄

to the strict henselization is also regular and the inertia group Iξ̄ acts
on Q�(n

2 ) via the unique non-trivial character Iξ̄ → {±1} by [5, Théorème 3.4 (iii)],
[12]. Since Iξ̄ acts trivially on Hn+1(Xξ̄,Q�) and on Hn(Xξ̄,Q�), the boundary map
Q�(n

2 ) → Hn+1(Xξ̄,Q�) in (3.7) is the zero-map and the character detHn(Xη̄,Q�)
of Iξ̄ is non-trivial.

The composition map

Γ(U 1
2
,O)×/(Γ(U 1

2
,O)×)2 → H1(U 1

2
,Z/2Z) → Hom(Iξ̄,Z/2Z)

is 0 since the strict henselization OP,ξ̄ contains Q̄ as a subfield. By (3.5) we thus get
a map Pic(U 1

2
)[2] → Hom(Iξ̄,Z/2Z).

Since the images of [detHn(X)] and [discd(F )] in Hom(Iξ̄,Z/2Z) are non-trivial,
the map Pic(U 1

2
)[2] → Hom(Iξ̄,Z/2Z) is an isomorphism of groups of order 2. Further

by (3.5), the difference [discd(F )] − [detHn(X)] is in the image of the map

Γ(U 1
2
,O)× = Z

[
1
2

]×
→ H1(U 1

2
,Z/2Z).
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Therefore, [detHn(X)] equals either [±discd(F )] or [±2 discd(F )]. We show that the
latter case is not possible. Let K be the local field of P at the generic point of the fiber
PF2 . Then, the character [detHn(X)] induces an unramified character of ΓK . On the
other hand, [±2 discd(F )] corresponds to a totally ramified quadratic extension of K.
Hence the latter case is excluded and we obtain [det Hn(X)] = [±discd(F )].

It remains to show that the sign is ε(n, d). To do so, let Spec R → U be the
map defined by the homogenous polynomial f = T d

0 + · · · + T d
n+1. Then, since

discd(f) = d−a(n,d)discr(f) > 0, the pull-back of [discd(F )] in H1(R,Z/2Z) is 1.
On the other hand, by Corollary 1.3 and by Artin’s comparison theorem relating
singular and étale cohomology ([1, Théorème 4.1]), the pull-back of [detHn(X)]
equals ε(n, d) ∈ H1(R,Z/2Z) = {±1}. Thus, the assertion is proved. �

4. Discriminant modulo 4

In this section, we keep assuming that n is even.
Let us first prove the following elementary fact:

Lemma 4.1. Let K be a complete discrete valuation field such that 2 is a uniformizer.
Let u ∈ O×

K be a unit which is not a square and let L denote the quadratic extension
K(

√
u).

1. The extension L is unramified over K if and only if there exists a unit v ∈ O×
K

such that u ≡ v2 (mod 4).
2. Assume that the extension L is unramified over K. Then, for every unit v sat-

isfying u ≡ v2 (mod 2), we have u ≡ v2 (mod 4). Further, the corresponding residue
field extension is given by the Artin–Schreier equation t2 + t = w, where w is the
image of 1

4 (uv−2 − 1) in the residue field.

[Recall that “unramified” implies that the residue extension is separable.]

Proof. Let F be the residue field of K. If ū ∈ F× is not a square, the residue field of
L is a quadratic radicial extension of F . Hence, by dividing u by a square, we may
assume u ≡ 1 (mod 2). We put u = 1 + 2a. Substituting x = 1 + 2t into the equation
x2 = u, we obtain t2 + t = a/2. If a is a unit, a solution t cannot be an integer and we
have 2 ordLt = −ordL2. Thus L is totally ramified over K. If a = 2b, the extension L
is unramified and the residue extension is given by t2 + t = b̄.

If v2 ≡ v′2 (mod 2), we have (v/v′)2 ≡ 1 (mod 4) and assertion 2 follows. �

Theorem 4.2. Let n � 0 and d > 1 be integers. We assume that n is even and define
the sign ε(n, d) = ±1 by (3.3). Then, ε(n, d) ·discd(F ) is congruent to a square modulo
4 in Sm((SdE)∨) = Γ(P,O(m)), where m = (n + 2)(d− 1)n+1. More precisely, there
exist homogeneous polynomials A ∈ S

m
2 ((SdE)∨) and B ∈ Sm((SdE)∨) satisfying

ε(n, d) · discd(F ) = A2 + 4B.

Proof. Let K be the local field of P at the generic point ξ of the fiber PF2 . Namely, K
is the fraction field of the completion of the local ring OP,ξ. The residue field F = κ(ξ)
is the function field of PF2 . Take a global section A1 ∈ Γ(P,O(m

2 )) not divisible by 2.
The germ of A1 is a basis of the stalk of O(m

2 ) at ξ. Since the germ of ε(n, d) ·discd(F )
is also a basis of the stalk of O(m) at ξ, the ratio ε(n, d) · discd(F )/A2

1 is a unit at ξ.
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By Theorem 3.5 we have

(4.1) [detHn(X)] = [ε(n, d) · discd(F )],

in H1(UZ[ 12 ],Z/2Z). Since [detHn(X)] is the restriction of an element of H1(U,Z/2Z),
the extension of K generated by the square root of ε(n, d) · discd(F )/A2

1 is an un-
ramified extension. Hence by Lemma 4.1.1, there exists a unit v ∈ O×

K such that
ε(n, d) · discd(F ) ≡ v2 · A2

1 (mod 4).
We consider the local section Ā = v · A1 (mod 2) of OPF2

(m). Since its square
has no pole, the local section Ā has the same property and it defines a global sec-
tion Γ(PF2 ,O(m)). Let us choose a lifting A ∈ Γ(P,O(m)) of Ā. Since ε(n, d) ·
discd(F )/A2 ≡ 1 (mod 2), we have ε(n, d) · discd(F )/A2 ≡ 1 (mod 4) by Lemma
4.1.2. Namely, the difference ε(n, d) · discd(F ) − A2 is divisible by 4 at ξ and hence
divisible on P. �

Corollary 4.3. Let k be a field of characteristic 2 and Y be a smooth hypersurface
of even dimension n in Pn+1

k defined by a homogeneous polynomial f of degree d.
Let A(f) ∈ k× and B(f) ∈ k denote the specialization of the polynomials A and B
occurring in Theorem 4.2.1. Then, the quadratic character detHn(Yk̄,Q�(n

2 )) of Γk

is defined by the Artin–Schreier equation t2 + t = B(f) · A(f)−2.

[In other words, the kernel of detV : Γk → {±1} is the subgroup of Γk corresponding
to the Artin–Schreier extension of k defined by t2 + t = B(f) · A(f)−2.]

Proof. Since the divided discriminant discd(F ) is a basis of OU (m), the section A in
Theorem 4.2 is a basis of OUF2

(m
2 ). The pull-back of [detHn(X)] in H1(UF2 ,Z/2Z)

is defined by t2 + t = B · A−2 by Theorem 4.2 and Lemma 4.1. Hence, the assertion
follows by specialization. �

5. Examples of discriminants

5.1. Binary forms. Let F = C0T
d
0 +C1T

d−1
0 T1+ · · ·+CdT

d
1 be the universal binary

polynomial of degree d > 1 defining the universal family of finite schemes of degree
d in P1. The divided discriminant discd(F ) is a homogeneous polynomial in (Ci) of
degree m = 2d − 2 and the sign ε(0, d) is (−1)d(d−1)/2.

The signed discriminant ε(0, d) · discd(F ) is equal to disd(F ) = Δ̃(C0, . . . , Cd) in
the notation of [4, Chap. 4, Section 6, no 7, formula (52)] where the subscript d stands
for the degree. For d = 2, we have ε(0, 2) = −1 and ε(0, 2) · discd(F ) = b2 − 4ac for
(a, b, c) = (C0, C1, C2).

The discriminant discd(F ) ∈ Z[C0, . . . , Cd] is the unique polynomial such that, if
F =

∏d
i=1(uiT0 − viT1), then

(5.1) discd(F ) =
∏

i �=j

(uivj − ujvi).

Indeed, if we invert C0 and ui’s and if we put si = Ci/C0 and wi = vi/ui, we have
an injection Z[C±1

0 , C1, . . . , Cd] = Z[C±1
0 , s1, . . . , sd] → Z[u±1

1 , . . . , u±1
d , v1, . . . , vd] =

Z[u±1
1 , . . . , u±1

d , w1, . . . , wd] and the right-hand side is C
2(d−1)
0

∏
i �=j(wj −wi). Hence,

the discriminant discd(F ) is divisible in the polynomial ring Z[u1, . . . , ud, v1, . . . , vd]
by the right-hand side and hence is a constant multiple of it since the degrees are
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equal. By evaluating at ui = 1 and vi = ζi
d for a primitive dth root ζd of 1, we get

F = T d
0 − T d

1 and dd−2 · discdF = discrF = res(dT d−1
0 ,−dT d−1

1 ) = (−1)d−1d2(d−1).

For the right-hand side, we have
∏

i �=j(ζ
j
d−ζi

d) = ζ
(d
2)(d−1)

d

∏d−1
i=1 (1−ζi

d)
d = (−1)d−1dd

and (5.1) follows.
Hence, the signed discriminant is given by

(5.2) (−1)d(d−1)/2 · discd(F ) =
∏

i<j

(uivj − ujvi)2;

it is congruent to the square of
∏

i<j(uivj + ujvi) in Z[C0, . . . , Cd] modulo 4. Note

that
∏

i<j(uivj + ujvi) = C
2(d−1)
0

∏
i<j(wi + wj) is a symmetric polynomial in wi’s

and hence is a polynomial in Z[C0, . . . , Cd] ⊂ Z[C±1
0 , s1, . . . , sd].

5.2. Quadrics. Let F =
∑

0�i�j�n+1 CijTiTj be the universal quadratic polyno-
mial defining the universal family of quadrics of even dimension n � 0. The divided
discriminant discd(F ) is the same as the resultant discriminant discr(F ); it is a homo-
geneous polynomial in (Cij) of degree m = n + 2 and the sign ε(n, 2) is (−1)(n+2)/2.

Let A = (Aij) be the m × m symmetric matrix with coefficients in Z[Cij ; 0 � i �
j � n + 1] defined by Aij = Aji = Cij for i < j and Aii = 2Cii. We have TAtT = 2F
where T is the row vector

(
T0, . . . , Tn+1

)
and

(5.3) discd(F ) = discr(F ) = det A.

Indeed, by inverting 2, we see that detA equals the divided discriminant discd(F ) up
to a constant λ which is ± a power of 2. For the unit quadratic form

∑n+1
i=0 T 2

i , we
have discr(F ) = 2n+2 = detA hence λ = 1. This proves (5.3).

Let k be a field of characteristic 
= 2 and let Q be a smooth quadric of even
dimension n in Pn+1

k defined by a non-degenerate quadratic form q(x) = txBx for a
symmetric matrix B ∈ Mn+2(k). Then, the character detHn(Qk̄,Q�(n

2 )) is defined
by the square root of the signed discriminant ε(n, 2)discd q = (−1)

n+2
2 2n+2 detB;

this follows from (5.3) applied to A = 2B.

5.3. Plane cubics. Let C → P=P((S3E)∨) be the universal family of cubic curves
defined by the universal cubic polynomial F for n = 1 and d = 3. The divided
discriminant discd(F ) may be viewed as a section of Γ(P,O(12)). We compare it with
the discriminant of the Jacobian defined by a Weierstrass equation.

Let p : P → P denote the P2-bundle P(E∨) = ProjS•E∨ defined by the dual of
E = O(2)⊕O(3)⊕O and let X ∈ Γ(P, p∗O(2)⊗O(1)), Y ∈ Γ(P, p∗O(3)⊗O(1)), Z ∈
Γ(P,O(1)) denote the components of the tautological map p∗E∨ → O(1). For i =
1, 2, 3, 4, 6, homogeneous polynomials ai(F ) ∈ Si(S3E)∨ = Γ(P,O(i)) of degree i of
the coefficients of F are defined in [2, (1.6)]. Let W be the closed subscheme of P

defined by the homogeneous Weierstrass equation

(5.4) E : Y 2Z + a1XY Z + a3Y Z2 − (X3 + a2X
2Z + a4XZ2 + a6Z

3) = 0.

Then the functor Pic0
C/P is represented by the smooth locus J of W [2, Theorem 1].

Let disce(E) ∈ Γ(P,O(12)) denote the discriminant of the Weierstrass equation
(5.4) in the standard sense defined as a polynomial of ai(F ), cf. [2, (1.3)]. Then, we
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have

(5.5) discd(F ) = −disce(E).

Indeed, since both discd(F ) and disce(E) are bases on the smooth locus U = P D
and Γ(U,O×) = Z× = {±1}, we have discd(F ) = ±disce(E). We determine the sign
by testing it on the Fermat cubic f = x3 + y3 + z3. By (2.1), we have discd(f) =
3−3discr(f) = 3−3 ·34·3 = 39. On the other hand, since c4 and c6 ( [2, (1.3)]) are given
by c4 = 0 and c6 = 23 · 36, we obtain disce(E) = −39.

5.4. Cubic surfaces. We put A = Z[a, b, c, d, e] and P = Proj A. Define a closed
subscheme S of P4 × P = Proj Z[x, y, z, u, v] × P by the Sylvester-type equations

(5.6) x + y + z + u + v = 0, ax3 + by3 + cz3 + du3 + ev3 = 0.

It is known that a general enough cubic equation in characteristic 0 can be put in
that form after a suitable finite extension of the ground field; cf. [7, Section 9.4.1]. In
1862, Salmon ([15, Section 543]) showed that, over C, the corresponding cubic surface
is smooth if and only if a certain polynomial discs(a, b, c, d, e) ∈ A is non-zero. This
polynomial is homogeneous of degree 32 in a, b, c, d, e. Its definition is:

(5.7) discs(a, b, c, d, e) = ((s2 − 64rt)2 − 4t3p)2 − 211(8t6q + t4s(s2 − 4rt)),

where p = a+ b+ c+ d+ e, q = ab+ · · · , r = abc+ · · · , s = abcd+ · · · , t = abcde, are
the elementary symmetric functions of a, b, c, d, e. [We give here the corrected version
of the formula due to W.L. Edge, cf. [8] and [9]; there were numerical mistakes in [15].]

By eliminating one variable in (5.6), one obtains a cubic polynomial Fs with
coefficients in A and its divided discriminant discd(Fs) is a well-defined element of A.
The relation between the Salmon discriminant and the divided one is:

(5.8) discs(a, b, c, d, e) = 3−27 discd(Fs).

Indeed, the polynomial discs(a, b, c, d, e) is geometrically irreducible [9, Lemma 2.5]
and the smooth locus of SQ → PQ is defined by discs(a, b, c, d, e) 
= 0, cf. [15], loc.cit.,
and [9, Corollary 2.10]. This implies that discs(a, b, c, d, e) is a constant multiple of
discd(Fs). We determine the constant by testing it on the Fermat cubic

f = y3 + z3 + u3 + v3

corresponding to (a, b, c, d, e) = (0, 1, 1, 1, 1).
By (5.7), we have discs(0, 1, 1, 1, 1) = 1. On the other hand, we have discd(f) =

3−5discr(f) = 3−5332 = 327. This proves formula (5.8).
For the Clebsch surface corresponding to (a, b, c, d, e) = (1, 1, 1, 1, 1), we have

discs(1, 1, 1, 1, 1) = −355 and the equality (5.8) implies discd(f) = −3325 for the
corresponding polynomial f =

∑
x3 − (

∑
x)3. Since f is divisible by 3, this means

that discd(f/3) = −5, which fits with the fact that f/3 defines a smooth cubic in
every characteristic except 5. See also [9, Remark 2.11].

Let S ⊂ P3
k be a smooth cubic surface defined by a cubic form f ∈ S3Ek. Then

H2(Sk̄,Q�(1)) is spanned by the classes of the 27 lines [18, p. 588], [14, Section 27].
The group of automorphisms of the Z-lattice spanned by the classes of these lines
permuting them and preserving the intersection form is isomorphic to the Weyl group
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W (E6) of the root system E6. The kernel of the determinant map W (E6) → {±1} is
a simple group of order 25920.

The action of Γk on the 27 lines defines a homomorphism

Γk → W (E6),

unique up to conjugation. By applying Theorem 3.5 and using specialization, we see
that the composition Γk → W (E6) → {±1} is defined by the square root of the signed
discriminant −discdf . Note that for a cubic surface, we have n = 2, d = 3 so that
ε(n, d) = −1. In the case where the characteristic of k is not 3, this is equivalent
to [9, Theorem 2.12] which is stated in terms of the Salmon discriminant discsf .

The formula (5.7) together with (5.8) and ε(2, 3) = −1 implies the congruence
ε(2, 3)discd(Fs) ≡ −3s4 (mod 8). Consequently, for a cubic surface in Sylvester form
(5.6) in characteristic 2, the determinant map Γk → {±1} is trivial if and only if k
contains F4.
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