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THE MONGE–AMPÈRE QUASI-METRIC STRUCTURE ADMITS A
SOBOLEV INEQUALITY

Diego Maldonado

Abstract. Sobolev inequalities associated to the Monge–Ampère quasi-metric structure

are proved.

1. Introduction and main result

The Monge–Ampère measure associated to a twice-differentiable convex function ϕ :
R
n → R is defined as μϕ(x) := detD2ϕ(x). Given x ∈ R

n and t > 0, a section of ϕ
centered at x with height t is the open bounded convex set

(1.1) Sϕ(x, t) := {y ∈ R
n : ϕ(y) < ϕ(x) + 〈∇ϕ(x), y − x〉 + t}.

The relevant compatibility condition between the sections of ϕ, which from now on we
assume to be strictly convex, and its Monge–Ampère measure is the so-called (DC)-
doubling condition. More precisely, we write μϕ ∈ (DC)ϕ if there exist constants B ≥ 1
and 0 < α < 1 such that for all sections Sϕ(x, t)

(1.2) μϕ(Sϕ(x, t)) ≤ Bμϕ(αSϕ(x, t)),

where αSϕ(x, t) denotes α-contraction of Sϕ(x, t) with respect to its (Euclidean) cen-
ter of mass x∗. Constants depending only on B and α in (1.2) as well as on dimension
n will be called geometric constants. The Monge–Ampère quasi-metric structure was
introduced by Caffarelli and Gutiérrez [1] in their pioneering work on the linearized
Monge–Ampère equation. Remarkably, the strictly convex function ϕ generates a
quasi-metric if and only if μϕ possesses the (DC)-doubling property, (see, for in-
stance, [4, Section 2]). More precisely, under the (DC)-doubling condition, ϕ renders
a structure of space of homogeneous type, see [4, Section 2] and references there in,
in such a way that the function

(1.3) ρϕ(x, y) := ϕ(y) − ϕ(x) − 〈∇ϕ(x), y − x〉, x, y ∈ R
n,

becomes a quasi-distance in R
n, that is, ρϕ(x, y) = 0 if and only if x = y; ρϕ(x, y) 	

ρϕ(y, x); and ρϕ(x, y) � ρϕ(x, z)+ρϕ(z, y), where the implicit constants are geometric
constants. By definition (1.1), the sections of ϕ can then be realized as the quasi-balls
associated to ρϕ. On the other hand, if ρϕ generates a quasi-metric then the section
of ϕ satisfy the so-called engulfing property, which, in turn, is equivalent to (DC),
see [2, 3, 6, 7].
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We will use the fact that the (DC)-doubling property implies the existence of
geometric constants K1,K2 > 0 such that

(1.4) Kn
1 t
n ≤ |Sϕ(x, t)|μϕ(Sϕ(x, t)) ≤ Kn

2 t
n, ∀x ∈ R

n, ∀t > 0.

For the proof this statement, as well as the real analysis associated to ϕ and further
characterizations of (DC), see, for instance, [1], Theorem 8 in [2], Theorem 4 in [3], [7],
and [6, Chapter 3].

Suppose that μϕ(x) > 0 for a.e. x ∈ R
n. The linearized Monge–Ampère operator,

denoted by Lϕ, is the typically degenerate, elliptic operator defined as

Lϕ(u)(x) := trace(Aϕ(x)D2u(x)) a.e. x ∈ R
n,

with

(1.5) Aϕ(x) := μϕ(x)(D2ϕ(x))−1 a.e. x ∈ R
n.

The study of Lϕ is best carried out within the Monge–Ampère structure, see [1–4].
In [8], the author proved Poincaré-type inequalities for the Monge–Ampère quasi-
metric structure, which were instrumental in his proof of Harnack’s inequality for
non-negative solutions to Lϕ(u) = 0 (always under the hypothesis μϕ ∈ (DC)ϕ only).

In [9], Tian and Wang proved that if μ ∈ (μ∞) (in their notation, μ ∈ (CG), see [9])
and if the sections of ϕ satisfy certain size conditions (see Lemma 3.3 in [9]), then
a power-like decay of the distribution function of Green functions of Lϕ holds true.
Consequently, a Sobolev inequality associated to Aϕ follows. Namely, there exists
p > 1 such that for every section S := Sϕ(x, t) there is a C > 0 such that whenever
u ∈ C1

0 (S) (that is, u is continuously differentiable and compactly supported in S) we
have

(1.6)
(

1
μϕ(S)

∫
S

|u|p dμϕ
) 1
p

≤ C

(
1

μϕ(S)

∫
S

〈Aϕ∇u,∇u〉
) 1

2

.

The importance and variety of the Sobolev inequalities (1.6) have been thoroughly
stressed in [9].

Our main result is the Sobolev inequality (1.7) below, which we prove resorting to
neither the (μ∞) condition nor apriori size condition on the sections of ϕ. The (μ∞)-
condition is significantly stronger than the (DC)-condition, the gap being comparable
to that between A∞ Muckenhoupt weights and doubling weights, see [4, Section 3] for
a thorough discussion and examples. Moreover, under the (DC)-doubling condition
only, we can guarantee a (perhaps not optimal but) uniform value of p in (1.6). We
prove

Theorem 1. Assume μϕ ∈ (DC)ϕ. Then, there exists a geometric constant K6 > 0
such that for every section S := Sϕ(x0, t) and every u ∈ C1

0 (S), we have

(1.7)
(

1
μϕ(S)

∫
S

|u(x)| 2n
n−1 dμϕ(x)

)n−1
2n

≤ K6 t
1
2

(
1

μϕ(S)

∫
S

|∇ϕu(x)|2 dμϕ(x)
) 1

2

,

where

(1.8) ∇ϕu(x) := D2ϕ(x)−
1
2∇u(x) ∀x ∈ S.

By means of a duality argument involving convex conjugates we also obtain the
following Sobolev-type inequality, now with respect to Lebesgue measure.



THE MONGE-AMPÈRE QUASI-METRIC STRUCTURE 529

Theorem 2. Assume μϕ ∈ (DC)ϕ. Then, there exists a geometric constant K7 > 0
such that for every section S := Sϕ(x0, t) and every u ∈ C1

0 (S), we have

(1.9)
(

1
|S|

∫
S

|u(x)| 2n
n−1 dx

)n−1
2n

≤ K7 t
1
2

(
1
|S|

∫
S

|∇ϕu(x)|2 dx
) 1

2

.

2. Estimates for Green functions

The main step in the proof of Theorem 1 is a power-like decay estimate for the
distribution function of Green functions of Lϕ on the sections of ϕ. Namely,

Theorem 3. Suppose μϕ ∈ (DC)ϕ. There exists a geometric constant K3 ≥ 1 such
that for every section S := Sϕ(x, t) and every z ∈ Sϕ(x, t/2) we have

μϕ({y ∈ S : gS(z, y) > λ}) ≤ K3μϕ(S)1−n
′
tn

′
λ−n

′
, ∀λ > 0.

Here n′ = n/(n− 1) and gS denotes the Green function of Lϕ in S.

Proof. First, assume that x = 0, ϕ(0) = 0, and ∇ϕ(0) = 0. With these assumptions
we have ϕ ≥ 0 and z ∈ Sϕ(0, t) if and only if ϕ(z) < t. Set S := Sϕ(0, t) and
S1/2 := Sϕ(0, t/2).

By the Aleksandrov–Bakelman–Pucci maximum principle (see [4, Lemma 8], [5,
Theorem 9.1]), whenever h is a solution to Lϕ(h) = Hμϕ in S with h = 0 on ∂S, then

(2.1) sup
S

|h| ≤ C1|S|1/n
(∫

S

|H|n dμϕ
)1/n

,

where C1 depends only on the dimension n. On the other hand, note that the problem

(2.2)
{
Lϕ(h) = Hμϕ in S,

h = 0 on ∂S,

is always solvable for H ∈ Ln(S, dμϕ) with h ∈ W 2,n
loc (S) ∩ C(S) because Lϕ has

second-order continuous coefficients and ϕ ∈ C2 with D2ϕ > 0 (see [5, Section 9.6]).
That is, we make use of the fact that ϕ ∈ C2 and consequently the eigenvalues of
(D2ϕ(x))−1 will be bounded and bounded away from zero on compact subsets of R

n.
Notice that we use this fact only to deduce the existence of solutions.

Again by the maximum principle, if H ≥ 0 and h solves (2.2), then h < 0 (unless
H ≡ 0, which trivially yields h ≡ 0). Fix z ∈ S and define Tz by

Tz : Ln(S, μϕ) → R

H → −h(z)
Then Tz is a positive linear functional in Ln(S, μϕ)∗ and, from (2.1),

‖Tz‖Ln(S,μϕ)∗ ≤ C1|S|1/n.
By the Riesz representation theorem, there is a non-negative function gS(z, ·) ∈
Ln

′
(S, μϕ), where n′ = n

n−1 , such that

Tz(H) =
∫
S

gS(z, y)H(y) dμϕ(y)
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and

(2.3)
(∫

S

gS(z, y)n
′
dμϕ(y)

) 1
n′

≤ C1|S|1/n.

That is, for every z ∈ S and h ∈W 2,n
loc (S) ∩ C(S), with h = 0 on ∂S, we have

−h(z) =
∫
S

gS(z, y)Lϕ(h)(y) dy

=
∫
S

gS(z, y)trace((D2φ(y))−1D2h(y))μϕ(y) dy.(2.4)

In particular, setting h := ϕ− t in (2.4), for every z ∈ S1/2 we obtain

t

2
≤ t− ϕ(z) =

∫
S

gS(z, y)trace(D2ϕ(y)−1D2ϕ(y)) dμϕ(y)

= n

∫
S

gS(z, y) dμϕ(y).(2.5)

Next, we prove that Green functions gS(z, ·) satisfy a reverse-Hölder inequality uni-
formly for z ∈ S1/2. Fix z ∈ S1/2, and use (2.3), (1.4), and (2.5) to write

(
1

μϕ(S)

∫
S

gS(z, y)n
′
dμϕ(y)

) 1
n′

≤ C1
μϕ(S)1/n|S|1/n

μϕ(S)
≤ C1K2

t

μϕ(S)

≤ 2C1K2n
1

μϕ(S)

∫
S

gS(z, y) dμϕ(y).(2.6)

Then, from Chebyshev’s inequality and (2.6), for λ > 0 and always for z ∈ S1/2, we
have

μϕ({y ∈ S : gS(z, y) > λ})

≤ μϕ(S)
λn′

1
μϕ(S)

∫
S

gS(z, y)n
′
dμϕ(y)

≤ μϕ(S)
λn′

(
2C1K2n

μϕ(S)

∫
S

gS(z, y) dμϕ(y)
)n′

=
(2C1K2)n

′
μϕ(S)1−n

′
(t− ϕ(z))n

′

λn′

≤ (2C1K2)n
′ μϕ(S)1−n

′
tn

′

λn′ =: K3
μϕ(S)1−n

′
tn

′

λn′ ,

where we also used (2.5). For an arbitrary x0 ∈ R
n and a general section Sϕ(x0, t),

define
ϕx0(x) := ϕ(x0 − x) − ϕ(x0) + 〈∇ϕ(x0), x〉 ∀x ∈ R

n.

Then μϕx0 verifies the (DC)-doubling property with the same constants as μϕ does
(uniformly in x0), also ∇ϕx0(0) = 0, ϕx0(0) = 0 and

Sϕx0 (0, t) = x0 − Sϕ(x0, t).

Thus, μϕx0 (Sϕx0 (0, t)) = μϕ(Sϕ(x0, t)) and if we now apply the obtained result to
ϕx0 , the general case follows by changing variables x0 − x → x. �
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3. Proof of Theorem 1 via Tian-Wang’s crucial lemma

What follows is an adaptation, to the context of the Monge–Ampère structure, of the
crucial lemma by Tian and Wang (see Lemma 2.1 in [9]). We include details of the
proof, as well as some additions, for the sake of completeness and to follow up the
geometric constants involved.

Let S := Sϕ(x0, t0) be a section of ϕ and let G(z, y) denote the Green function
of Lϕ on 2S := Sϕ(x0, 2t0). As before, let us assume that x0 = 0, ϕ(0) = 0, and
∇ϕ(0) = 0. By Theorem 3, for z ∈ S, we have

(3.1) μϕ({y ∈ 2S : G(z, y) > λ}) ≤ K3μϕ(2S)1−n
′
(2t0)n

′
λ−n

′
, ∀λ > 0.

Let us set

(3.2) K := K3μϕ(2S)1−n
′
(2t0)n

′

and p := 2n′ > 2 so that (3.1) reads as in Lemma 2.1 of [9], that is,

(3.3) μϕ({y ∈ 2S : G(z, y) > λ}) ≤ Kλ−
p
2 , ∀λ > 0.

Next, consider any open set U ⊂ S and let ψ1 = ψ1(U) and λ1 = λ1(U) be the first
Dirichlet eigenfunction and eigenvalue of Lϕ in U , that is,

(3.4)
{
Lϕ(ψ1) = −λ1ψ1μϕ in U,

ψ1 = 0 on ∂U.

Let GU denote the Green function of Lϕ in U . Note that, since the coefficients of Aϕ
are continuous and Aϕ is positive definite in S, GU always exists. By the maximum
principle, 0 ≤ GU (z, y) ≤ G(z, y) for every z, y ∈ U (z �= y).

Then ψ1 and GU can be related by ψ1(y) = λ1

∫
U
GU (x, y)μϕ(x) dx. Normalizing

ψ1 to be non-negative with ‖ψ1‖L∞(Ū) = 1 and taking y1 ∈ U ⊂ S ⊂ 2S such that
ψ1(y1) = 1, we can write

1 ≤ λ1(U)
∫
U

GU (x, y1)ψ1(x)μϕ(x) dx

and then, for any y0 ∈ U , use (3.3) to estimate∫
U

GU (x, y0)μϕ(x) dx =
∫ ∞

0

μϕ({x ∈ U : GU (x, y0) > λ}) dλ

≤
∫ ∞

0

min{μϕ(U), μϕ({x ∈ U : G(x, y0) > λ})} dλ

≤
∫ ∞

0

min{μϕ(U),Kλ−
p
2 } dλ = τμϕ(U) +K

∫ ∞

τ

λ−
p
2 dλ

= nK
2
pμϕ(U)1−

2
p ,(3.5)

where τ := (K/μϕ(U))2/p. Next, define c∗ := inf
U⊂S

λ1(U)μϕ(U)1−
2
p , and note that

c∗ ≥ 1
nK2/p > 0. Also define

(3.6) s∗ := inf
{∫

S

〈Aϕ∇u,∇u〉 : u ∈ C1
0 (S̄),

∫
S

F (u)μϕ = 1
}
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where F (u) :=
∫ u
0
f(t) dt and, for a parameter k > 1 to be sent to infinity,

(3.7) f(t) :=
{ |t|p−1 if |t| < k

kp−1 if |t| ≥ k.

In order to make the relevant constants more explicit, we now complement the argu-
ments in [9] by computing an upper bound for s∗. Since S = Sϕ(0, t0), set

(3.8) h(x) :=
{

(t0 − ϕ(x))2 if x ∈ S,
0 if x ∈ R

n \ S.
Hence, by using the divergence theorem, the fact that

div(Aϕ(x)∇u(x)) = trace(Aϕ(x)D2u(x)), ∀u ∈ C2,

(since the columns of Aϕ are divergence free), and choosing k > t20 (so that 0 ≤ h =
|h| ≤ t20 < k in S) in the definition of f in (3.7), we obtain∫
S

〈Aϕ(x)∇h(x),∇h(x)〉 dx = −
∫
S

h(x) div(Aϕ(x)∇h(x)) dx

=
∫
S

h(x) div(2(t0 − ϕ(x))Aϕ(x)∇ϕ(x)) dx

= 2
∫
S

h(x)[(t0 − ϕ(x)) div(Aϕ(x)∇ϕ(x))

− 〈Aϕ(x)∇ϕ(x),∇ϕ(x)〉] dx

≤ 2
∫
S

h(x)(t0 − ϕ(x)) div(Aϕ(x)∇ϕ(x)) dx

= 2
∫
S

h(x)(t0 − ϕ(x)) trace(Aϕ(x)D2ϕ(x)) dx

= 2n
∫
S

h(x)(t0 − ϕ(x))μϕ(x) dx = 2n
∫
S

h
3
2 (x)μϕ(x) dx

≤ 2n
(∫

S

hp(x)μϕ(x) dx
) 3

2p

μϕ(S)
2p−3
2p

= 2np
3
2pμϕ(S)

2p−3
2p

(∫
S

F (h(x))μϕ(x) dx
) 3

2p

,

which implies

(3.9) s∗ ≤ 2np
3
2pμϕ(S)

2p−3
2p .

For a fixed k (always large enough), let v = vk ∈ C1(S̄) denote the function where
the infimum (3.6) is attained. Therefore, v satisfies{

Lϕ(v) = −λ̂f(v)μϕ in S,
v = 0 on ∂S.

Here λ̂ is the Lagrange multiplier associated to the minimization. Take x′ ∈ S such
that

(3.10) v(x′) = ‖v‖L∞(S) =: M.
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As in the proof of Lemma 2.1 in [9] we have

(3.11) λ̂ ≤ s∗ ≤ pλ̂.

For t ∈ (0,M) (here M is as in (3.10)), set Ωt := {x ∈ S : v(x) > M − t}. As in the
proof of Lemma 2.1 in [9] one gets

(3.12) μϕ(Ωt) ≥ βμϕ(Ωt/2)
p

3p−4 ,

where

(3.13) β :=
(

tc∗

2s∗Mp−1

) 2p
3p−4

.

By iteration of (3.12), for m ∈ N we have

(3.14) μϕ(Ωt) ≥ β
∑m
k=0( p

3p−4 )
k

μϕ(Ωt/2m)(
p

3p−4 )
m

.

The next step will be to show that

(3.15) lim
m→∞μϕ(Ωt/2m)(

p
3p−4 )

m

= 1.

In order to show (3.15) we will now deviate from the proof of Lemma 2.1 in [9].
Indeed, instead of using a doubling property for μϕ we use, yet again, that ϕ ∈ C2

and μϕ > 0 so that given a compact set Q we have

(3.16) μϕ(x) ≥ inf
Q
μϕ > 0, ∀x ∈ Q.

Continuing as in the proof of Lemma 2.1 in [9], set a := ‖∇v‖L∞(S), then

Ωt/2m ⊃ B(x′, t2−m/a),

here x′ is as in (3.10). Now, by (3.16) with Q := S̄ setting θ := infQ detD2ϕ > 0 we
get

(3.17) μϕ(Ωt/2m) ≥ θ|B(x′, t2−m/a)| = θωn(t/a)n2−mn, ∀m ∈ N,

where ωn denotes the Lebesgue measure of the unit ball in R
n. The bound (3.17) and

the fact that p > 2 then imply (3.15), and, consequently (from (3.14)),

(3.18) μϕ(Ωt) ≥ β
3p−4

2(p−2) =
(

tc∗

2s∗Mp−1

) p
p−2

.

Note that in the proof of (3.15) no a priori rate of convergence as m→ ∞ is needed, so
we were able to use (3.16) without resorting to any assumptions on a priori structural
control of the infimum in (3.16). Also, since we are not using the hypothesis μϕ 	 1,
we cannot follow the original reasoning in Lemma 2.1 in [9], because μϕ is doubling
on sections of ϕ, but not necessarily on Euclidean balls.

As in the proof of Lemma 2.1 in [9], setting η := k/M (and using (3.18)), we get

1 ≥
(
c∗

2s∗

) p
p−2

[∫ 1−η

0

t
p
p−2 ηp−1 dt+ p

∫ 1

1−η
t
p
p−2 (1 − t)p−1 dt

]
(3.19)

=:
(
c∗

2s∗

) p
p−2

R(η).
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Setting ω := {x ∈ S : v(x) > k}, as in the proof of Lemma 2.1 in [9] it follows that

(3.20) μϕ(ω) ≤ pk−p.

Also, on the set ω we have Lϕ(v) = −λ̂kp−1μϕ, with v = k on ∂ω. Let Gω denote the
Green function of Lϕ in ω and let x′ be as in (3.10). Hence, by (3.5), (3.20), (3.11),
and (3.9)

M = v(x′) = k + λ̂kp−1

∫
ω

Gω(x, x′)μϕ(x) dx ≤ k + 2λ̂kp−1K
2
pμϕ(ω)1−

2
p

≤ k + 2λ̂kp−1K
2
p (pk−p)1−

2
p = (1 + 2λ̂K

2
p )k

≤ (1 + 2s∗K
2
p )k ≤ (1 + 4np

3
2pμϕ(S)

2p−3
2p K

2
p )k =: K4k.

Consequently, η = k
M ≥ 1

K4
and, from (3.19)

s∗ ≥ c∗

2
inf

η∈[1/K4,1]
R(η)

p−2
p ≥ 1

4K2/p
inf

η∈[1/K4,1]
R(η)

p−2
p =: K5 > 0.

At this point, given u ∈ C1
0 (S̄), we can take limits as k → ∞ to obtain

(3.21)
(∫

S

up dμϕ

) 1
p

≤ 1

K
1/2
5

(∫
S

〈Aϕ∇u,∇u〉 dx
) 1

2

.

The seemingly awkward dependence of K and K5 on μϕ(S) and t0 can be circum-
vented by employing the normalization technique of Caffarelli and Gutiérrez [1]. In-
deed, given a section S = Sϕ(x0, t0) let T be an affine transformation normalizing S
so that, in the notation of [1, Section 1], we have

(3.22) ψλ(y) :=
1
λ
ϕ(T−1y), B(0, 1) ⊂ S∗ := T (S) ⊂ B(0, n),

(3.23) μ̄(y) = μΨλ(y) =
1
λn

|T |−2μϕ(T−1y), D2Ψλ(y) =
1
λ

(T−1)tD2ϕ(T−1y)T−1

and μψλ(S
∗) = 1 so that

(3.24) λn|T | = μϕ(Sϕ(x0, t0)).

Applying the previous proof to S∗ and Ψλ and using the fact that

(3.25) c1 ≤ t0
λ

≤ c2,

for geometric constants c1 and c2 (see Theorem 8 in [2]), the constants K in (3.2) and
K5 are now completely geometric (in particular, they are independent of x0 and t0).
Consequently, for ū ∈ C1

0 (S̄∗), it follows that

(3.26)
(∫

S∗
ū(y)pμ̄(y) dy

) 1
p

≤ 1

K
1/2
5

(∫
S∗
〈AΨλ(y)∇ū(y),∇ū(y)〉 dy

) 1
2

.

Finally, given u ∈ C1
0 (S̄) we set y = Tx and u(x) := ū(Tx) for x ∈ Sϕ(x0, t0),

then changing variables in (3.26) by means of (3.22)–(3.25), the Sobolev inequality
(1.7) follows. For further considerations on the smoothness assumptions for ϕ, see
Remark 3.2 in [9]. �
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4. Proof of Theorem 2 via convex conjugation

Given a strictly convex, twice continuously differentiable ϕ : R
n → R, its Legendre

transform or convex conjugate, will be denoted by ψ. Under the hypothesis μϕ ∈
(DC)ϕ we have that μψ := detD2ψ ∈ (DC)ψ (with respect to the sections of ψ),
where the (DC)ψ-doubling constants for μψ depend only on the ones for μϕ and
dimension n. Also, ψ is a strictly convex twice continuously differentiable function
whose domain is R

n and

(4.1) ∇ϕ(∇ψ(x)) = ∇ψ(∇ϕ(x)) = x ∀x ∈ R
n,

(see [3, Section 5]) which implies that

(4.2) D2ϕ(∇ψ(y))D2ψ(y) = D2ψ(∇ϕ(x))D2ϕ(x) = I ∀x, y ∈ R
n

and that, for every Borel set E ⊂ R
n,

(4.3) |E| = |∇ϕ(∇ψ(E))| = μϕ(∇ψ(E)) = μψ(∇ϕ(E)).

Moreover, from Theorem 12 in [3], there exists a geometric constant K0 ≥ 1 such that
for every x ∈ R

n and t > 0,

(4.4) ∇ϕ(Sϕ(x, t/K0)) ⊂ Sψ(∇ϕ(x), t) ⊂ ∇ϕ(Sϕ(x,K0t)).

Next, given a section S := Sϕ(x0, t) of ϕ set y0 := ∇ϕ(x0), Sψ := Sψ(y0,K0t) and
Sϕ := ∇ψ(Sψ). By (4.4) we have that

(4.5) S = Sϕ(x0, t) ⊂ ∇ψ(Sψ(y0,K0t)) = Sϕ.

Given u ∈ C1
0 (S), for y ∈ Sψ let us define v(y) := u(∇ψ(y)). Then, supp(v) =

∇ϕ(supp(u)) ⊂ ∇ϕ(S) ⊂ Sψ, hence v ∈ C1
0 (Sψ). By applying (1.7) (with respect to

ψ) to v on Sψ we obtain
(

1
μψ(Sψ)

∫
Sψ

|v(y)| 2n
n−1 dμψ(y)

)n−1
2n

≤ Kψ
6 (K0t)

1
2

(
1

μψ(Sψ)

∫
Sψ

|∇ψv(y)|2 dμψ(y)

) 1
2

.

By changing variables y = ∇ϕ(x), (4.1), (4.2), and (4.3) yield
(

1
|Sϕ|

∫
Sϕ

|u(x)| 2n
n−1 dx

)n−1
2n

≤ Kψ
6 (K0t)

1
2

(
1

|Sϕ|
∫
Sϕ

|∇ϕu(x)|2 dx
) 1

2

≤ Kψ
6 (K0t)

1
2

(
1
|S|

∫
S

|∇ϕu(x)|2 dx
) 1

2

,

where the last inequality is due to the fact that u (and, therefore, ∇ϕu) is supported
in S and S ⊂ Sϕ. By Lemma 5.2(a) in [1], Lebesgue measure is doubling, with uniform
constant 2n, with respect to the sections of any convex function. Then,

|Sϕ(x, t)| ≤ 2n|Sϕ(x, t/2)| ∀x ∈ R
n, ∀t > 0.

In particular, recalling (4.5),

|S| ≤ |Sϕ| ≤ |Sϕ(x0,K
2
0 t)| ≤ (2K2

0 )n|Sϕ(x0, t)| = (2K2
0 )n|S|.
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Therefore, (
1
|S|

∫
S

|u(x)| 2n
n−1 dx

)n−1
2n

≤
(

(2K2
0 )n

|Sϕ|
∫
Sϕ

|u(x)| 2n
n−1 dx

)n−1
2n

≤ Kψ
6 (2K2

0 )
(n−1)

2 (K0t)
1
2

(
1
|S|

∫
S

|∇ϕu(x)|2 dx
) 1

2

and (1.9) follows with K7 := 2
(n−1)

2 Kψ
6 K

n− 1
2

0 . �
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