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On the existence of curves with Ak-singularities

on K3 surfaces

Concettina Galati and Andreas Leopold Knutsen

Let (S,H) be a general primitively polarized K3 surface. We prove
the existence of irreducible curves in |OS(nH)| with Ak-
singularities and corresponding to regular points of the equisingular
deformation locus. Our result is optimal for n = 1. As a corollary,
we get the existence of irreducible curves in |OS(nH)| of geomet-
ric genus g ≥ 1 with a cusp and nodes or a simple tacnode and
nodes. We obtain our result by studying the versal deformation
family of the m-tacnode. Moreover, using results on Brill–Noether
theory of curves on K3 surfaces, we provide a regularity condition
for families of curves with only Ak-singularities in |OS(nH)|.

1. Introduction

Let S be a complex smooth projective K3 surface and let H be a glob-
ally generated line bundle of sectional genus p = pa(H) ≥ 2 and such that
H is not divisible in PicS. The pair (S, H) is called a primitively polar-
ized K3 surface of genus p. It is well-known that the moduli space Kp of
primitively polarized K3 surfaces of genus p is non-empty, smooth and irre-
ducible of dimension 19. Moreover, if (S, H) ∈ Kp is a very general element
(meaning that it belongs to the complement of a countable union of Zariski
closed proper subsets), then PicS ∼= Z[H]. If (S, H) ∈ Kp, we denote by
VS

nH,1δ ⊂ |OS(nH)| = |nH| the so called Severi variety of δ-nodal curves,
defined as the Zariski closure of the locus of irreducible and reduced curves
with exactly δ nodes as singularities. More generally, we will denote by
VS

nH,1d2 , 2d3 ,..., (m−1)dm the Zariski closure of the locus in |nH| of reduced
and irreducible curves with exactly dk singularities of type Ak−1, for every
2 ≤ k ≤ m, and no further singularities. We recall that an Ak-singularity is
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a plane singularity of analytic equation y2 − xk+1. Every plane singularity
of multiplicity 2 is an Ak-singularity, for some k.

The Severi variety VS
nH,1δ ⊂ |OS(nH)| is a well-behaved variety. By [25],

we know that VS
nH,1δ is smooth of the expected dimension at every point

[C] ∈ VS
nH,1δ corresponding to a δ-nodal curve, i.e., the tangent space

T[C]VS
nH,1δ has dimension dim(|nH|)− δ for every δ ≤ dim(|nH|) = pa(nH).

The existence of nodal curves of every allowed genus in the primitive lin-
ear system |H| on a general primitively polarized K3 surface has been
proved first by Mumford, cf. [22]. Later Chen proved the non-emptiness of
VS

nH,1δ in the case (S, H) is a general primitively polarized K3 surface, n ≥ 1
and δ ≤ dim(|nH|) = pa(nH) [7]. Chen’s existence theorem is obtained by
degeneration techniques. A very general primitively polarized K3 surface
St ⊂ P

p of genus p is degenerated in P
p to the union of two rational nor-

mal scrolls S0 = R1 ∪R2, intersecting transversally along a smooth elliptic
normal curve E. Rational nodal curves on St are obtained by deformation
from suitable reduced curves C0 = C1 ∪ C2 ⊂ S0 having tacnodes at points
of E and nodes elsewhere. A key ingredient in the proof of Chen’s theorem
is the Caporaso–Harris description of the locus of (m− 1)-nodal curves in
the versal deformation space Δm of the m-tacnode (or A2m−1-singularity).
The question we ask in this paper is the following.

Main Problem. With the notation above, assume that C = C1 ∪ C2 ⊂
R1 ∪R2 is any curve having an m-tacnode at a point p of E. Then, which
kinds of curve singularities on St may be obtained by deforming the m-
tacnode of C at p?

Theorem 3.3, which is to be considered the main result of this paper,
completely answers this question. It proves that, under suitable hypothe-
ses, the m-tacnode of C at p deforms to dk singularities of type Ak−1,
for every 2 ≤ k ≤ m and dk ≥ 0 such that

∑
k dk(k − 1) = m− 1. By triv-

ial dimensional reasons, no further singularities on St may be obtained
by deforming the m-tacnode of C ⊂ R1 ∪R2. The result is a local result,
obtained by studying the versal deformation family of the m-tacnode, with
the same approach as in [2, Section 2.4]. In particular, the result holds
for any flat family X → Δ of regular surfaces, with smooth total space X
and special fiber X0 = A ∪B having two irreducible components A and B
intersecting transversally, and it can be applied to curves C ′ ⊂ X0 with
several tacnodes on E and any kind of singularities on X0 \ E, cf. Corol-
lary 3.12 and Remark 3.13. Section 3 is completely devoted to the proof
of Theorem 3.3. In Section 4, inspired by [7], we apply Theorem 3.3, more
precisely Corollary 3.12, to a family of K3 surfaces with suitable central
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fiber X0 = R1 ∪ R̃2, by deforming curves C0 = C1 ∪ C2 ⊂ R1 ∪ R̃2 ad hoc
constructed, and we obtain the following result.

Theorem 1.1. Let (S, H) be a general primitively polarized K3 surface of
genus p = pa(H) = 2l + ε ≥ 3, with l ≥ 1 and ε = 0, 1. Then, for every n ≥ 1
and for every (m− 1)-tuple of non-negative integers d2, . . . , dm satisfying

(1)
m∑

k=2

(k − 1)dk =

{
2n(l − 1 + ε) + 2− ε, if (n, p) 	= (2, 3), (2, 4),

2n(l − 1 + ε) + 1− ε, if (n, p) = (2, 3), (2, 4),

there exist reduced irreducible curves C in the linear system |nH| on S such
that:

• C has dk singularities of type Ak−1, for every k = 3, . . . , m, and δ + d2

nodes, where δ = dim(|nH|)−∑m
k=2(k − 1)dk, and no further singu-

larities;

• C corresponds to a regular point of the equisingular deformation locus
ES(C). Equivalently, dim(T[C]ES(C)) = 0.

Finally, the singularities of C may be smoothed independently. In partic-
ular, under the hypothesis (1), for any d′k ≤ dk and for any δ′ ≤ δ, there
exist curves C in the linear system |nH| on S with d′k singularities of type
Ak−1, for every k = 3, . . . , m, and δ′ + d′2 nodes as further singularities and
corresponding to regular points of their equisingular deformation locus.

The notion of equisingular deformation locus and regularity is recalled
in Definition 2.3 and Remark 2.4. In Corollaries 4.1 and 4.2 we observe that
Theorem 1.1 is optimal if n = 1 and that, for n ≥ 1, it implies the existence
of curves of every geometric genus g ≥ 1 with a cusp and nodes or a 2-
tacnode and nodes as further singularities. By [6], this is not possible for
(g, n) = (0, 1). Finally, in the next section, we recall some standard results
and terminology of deformation theory that will be useful later, focusing
our attention on properties of equisingular deformations of curves with only
Ak-singularities on K3 surfaces. In Section 2, we also provide the following
regularity condition.

Proposition 1.2. Let S be a K3 surface with PicS ∼= Z[H], let p = pa(H)
and n ≥ 1 an integer. Assume that C ∈ |nH| is a reduced and irreducible
curve on S having precisely dk ≥ 0 singularities of type Ak−1, for each k ≥ 2,
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and no further singularities, such that

∑
k

(k − 1)dk = deg T 1
C <

p + 2
2

=
H2

4
+ 2, if n = 1 or(2) ∑

k

(k − 1)dk = deg T 1
C < 2(n− 1)(p− 1) = (n− 1)H2, if n ≥ 2,(3)

where T 1
C is the first cotangent bundle of C. Then [C] is a regular point of

ES(C) and the singularities of C may be smoothed independently.

The previous proposition is obtained by results on Brill–Noether theory
of curves on K3 surfaces [16, 19, 20]. In particular, its proof does not require
any degeneration argument of surfaces or curve singularities and is thus
independent of the other results in this paper. Proposition 1.2 together with
Theorem 1.1 provide sufficient conditions for the variety VS

nH,1d2 , 2d3 ,..., (m−1)dm

to be non-empty and regular; see Remark 4.4.

2. Tangent spaces and a new regularity condition

In this section, we recall some properties of the equisingular and equigeneric
deformation loci of a reduced curve on an arbitrary smooth projective K3
surface S and, in particular, of a curve with only Ak-singularities. Finally,
at the end of the section, we prove Proposition 1.2.

Let S be a smooth projective K3 surface and let D be a Cartier divisor on
S of arithmetic genus pa(D). Assume that |D| = |OS(D)| is a Bertini linear
system, i.e., a linear system without base points and whose general element
corresponds to a smooth curve. (In fact, by [23], every irreducible curve D
on S such that D2 ≥ 0 defines a Bertini linear system on S.) If C ∈ |D| is a
reduced curve, we consider the following standard exact sequence of sheaves
on C:

(4) 0 �� ΘC
�� ΘS |C α �� NC|S

β �� T 1
C

�� 0,

where ΘC = hom(Ω1
C ,OC) is the tangent sheaf of C, ΘS |C is the tangent

sheaf of S restricted to C, NC|S 
 OC(C) is the normal bundle of C in S,
and T 1

C is the first cotangent sheaf of C. The latter is supported on the
singular locus Sing(C) of C, and its stalk T 1

C,p at every singular point p of
C is the versal deformation space of the singularity (see [8, (3.1)], [17, 24] or
[15]). Identifying H0(C,NC|S) with the tangent space T[C]|D|, the induced
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map

(5) H0(β) : H0(C,NC|S) �� H0(C, T 1
C) = ⊕p∈Sing(C)T

1
C,p

is classically identified with the differential at [C] of the versal map from
an analytic neighborhood of [C] in |D| to an analytic neighborhood of the
origin in H0(C, T 1

C). By this identification and by the fact that the origin
in T 1

C,p is the only point parametrizing singularities analytically equivalent
to the singularity of C at p [8, Lemma (3.21)], we have that the global
sections of the kernel N ′

C|S of the sheaf map β in (4) are infinitesimal defor-
mations of C that are analytically equisingular, i.e., infinitesimal deforma-
tions of C preserving the analytic class of every singularity of C [8, Defini-
tion (3.9)]. For this reason, N ′

C|S is usually called the equisingular normal
sheaf of C in S [24, Proposition 1.1.9 (ii)]. Let J be the Jacobian ideal of
C. By a straightforward computation, J ⊗NC|S = N ′

C|S and, consequently,
dim(H0(C, T 1

C)) = deg(J) =
∑

p∈C deg(Jp), where Jp is the localization of
J at p. Keeping in mind the versal property of T 1

C , the following definition
makes sense.

Definition 2.1. We say that the singularities of C may be smoothed inde-
pendently if the map H0(β) in (5) is surjective or, equivalently, if
h0(C,N ′

C|S) = h0(C,NC|S)− deg(J). If this happens, we also say that the
Jacobian ideal imposes linearly independent conditions to the linear system
|D|.
Remark 2.2. If C is an irreducible reduced curve in a Bertini linear system
|D| on a smooth projective K3 surface S, then h1(C,NC|S) =
h1(C,OC(C)) = h1(C, ωC) = 1, where ωC denotes the dualizing sheaf of C.
In particular, by the short exact sequence of sheaves on C

0 �� N ′
C|S �� NC|S �� T 1

C
�� 0,

we have that h1(C,N ′
C|S) ≥ 1, and the singularities of C may be smoothed

independently if and only if h1(C,N ′
C|S) = 1.

The locus in |D| of deformations of C preserving the analytic class of
singularities coincides with the locus of formally locally trivial deformations
in the Zariski topology or locally trivial deformations in the étale topol-
ogy [8, Proposition (3.23)]. In general, this locus is a proper subset of the
Zariski locally closed subset ES(C) ⊂ |D| parametrizing topologically equi-
singular deformations of C in |D|, i.e., deformations of C preserving the
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equisingular class of every singularity of C. For the notion of equisingular
deformation of a plane singularity, we refer to [8, Definition (3.13)]. The
equisingular deformation locus ES(C) of C in |D| has a natural structure
of scheme, representing a suitable deformation functor [14, Section 2]. The
tangent space T[C]ES(C) to ES(C) at the point [C] corresponding to C,
is well understood. In particular, there exists an ideal sheaf I, named the
equisingular ideal of C, such that J ⊂ I and

T[C]ES(C) 
 H0(C, I ⊗OC(C)).

Definition 2.3. We say that [C] is a regular point of ES(C) if ES(C) is
smooth of the expected dimension at [C], equivalently if

dim(T[C]ES(C)) = dim(H0(C, I ⊗OC(C))) = dim(H0(C,OC(C)))− deg I.

In this case, we also say that the equisingular ideal imposes linearly inde-
pendent conditions to curves in |D|.

We also recall the inclusion J ⊂ I ⊂ A, where A is the conductor ideal.
Throughout this paper we will be interested in curves with Ak-

singularities. An Ak-singularity has analytic equation y2 = xk+1. Every plane
curve singularity of multiplicity 2 is an Ak-singularity for a certain k ≥ 1.
In particular, two singularities of multiplicity 2 are analytically equivalent
if and only if they are topologically equivalent.

Remark 2.4. The equisingular ideal I of an Ak-singularity of equation
y2 = xk+1 coincides with the Jacobian ideal J = I = (y, xk) [26, Proposi-
tion 6.6]. It follows that, if C ∈ |D| is a reduced curve on S with only Ak-
singularities, then W ⊂ |D| is the linear system of curves passing through
every Ak-singularity p ∈ C and tangent there to the reduced tangent cone
to C at p with multiplicity k and W ⊂ H0(S,OS(D)) is the vector space
such that P(W) = W , then the tangent space

T[C]ES(C) 
 H0(C,NC|S ⊗ I) = H0(C,NC|S ⊗ J) = H0(C,N ′
C|S)

to ES(C) at the point [C] is isomorphic to rC(W), where rC : H0(S,OS(D))
→ H0(C,OC(D)) is the natural restriction map. In particular, every Ak-
singularity imposes at most k = dim(C[x, y]/(y, xk)) linearly independent
conditions to |D|, and the equisingular deformation locus ES(C) of C in
|D| is regular at [C] if and only if the singularities of C may be smoothed
independently. If C ∈ |D| is reduced and irreducible with dk singularities
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of type Ak−1, k = 2, . . . , m, and no further singularities, then the reduced
support of ES(C) is an open set in one irreducible component V of the
variety VS

D,1d2 , 2d3 ,..., (m−1)dm introduced in Section 1. In particular, we have
that

T[C]V ⊂ T[C]ES(C) 
 H0(C,N ′
C|S).

We say that V is regular at [C] if ES(C) is regular at [C], in which case we
have that T[C]V = T[C]ES(C) and dim(T[C]V ) = dim(T[C]ES(C)) =
h0(C,N ′

C|S) = dim(|D|)−∑
k dk(k − 1). Moreover, V is said to be regular if

it is regular at every point corresponding to an irreducible and reduced curve
with dk singularities of type Ak−1, k = 2, . . . , m, and no further singularities.
Finally, we say that VS

D,1d2 , 2d3 ,..., (m−1)dm is regular if all its irreducible com-
ponents are regular. In particular, if VS

D,1d2 , 2d3 ,..., (m−1)dm is regular, all its
irreducible components are generically smooth of the expected dimension.

If k is odd, an Ak-singularity is also called a k+1
2 -tacnode whereas, if k

is even, an Ak-singularity is said to be a cusp. Moreover, by classical termi-
nology, A1-singularities are nodes, A2-singularities are ordinary cusps and
A3-singularities are called simple tacnodes. As we already observed, for every
δ ≤ pa(D), the Severi variety VS

D,1δ of δ-nodal curves is a regular variety, i.e.,
is smooth of the expected dimension at every point [C] corresponding to a
curve with exactly δ nodes as singularities [25].

Now we may prove our regularity condition for curves with only Ak-
singularities on a K3 surface S with PicS ∼= Z[H].

Proof of Proposition 1.2. Assume that [C] is not a regular point of ES(C).
Then, by Remarks 2.2 and 2.4, we must have h1(N ′

C|S) ≥ 2. Now consider
N ′

C|S as a torsion sheaf on S and define A := ext1(N ′
C|S ,OS). Then A is a

rank one torsion-free sheaf on C and a torsion sheaf on S. Moreover, by [16,
Lemma 2.3], being S a K3 surface, we have that h0(A) = h1(N ′

C|S) ≥ 2 and

degA = C2 − degN ′
C|S = deg T 1

C =
∑

k

(k − 1)dk.

By [16, Proposition 2.5 and proof of Theorem I at p. 749], the pair (C,A)
may be deformed to a pair (C ′,A′) where C ′ ∼ C is smooth, and A′ is a line
bundle on C ′ with h0(A′) ≥ h0(A) and degA′ = degA. In other words, there
is a smooth curve in |nH| carrying a g1

deg T 1
C
. If n = 1 then, by Lazarsfeld’s

famous result [20, Corollary 1.4], no curve in |H| carries any g1
d with 2d <

pa(H) + 2.
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Now assume that n ≥ 2. By [19, Theorem 1.3], the minimal gonality of
a smooth curve in a complete linear system |L| on any K3 surface is either

pa(L)+3

2 � = 
L2

4 �+ 2 (the gonality of a generic curve of genus pa(L)) or
the minimal integer d such that 2 ≤ d < 
pa(L)+3

2 � and there is an effective
divisor D satisfying D2 ≥ 0, (L2, D2) 	= (4d− 2, d− 1) and

2D2
(i)

≤ L.D ≤ D2 + d
(ii)

≤ 2d,

with equality in (i) if and only if L ∼ 2D and L2 ≤ 4d and equality in (ii) if
and only if L ∼ 2D and L2 = 4d. If L ∼ nH with n ≥ 2 and PicS ∼= Z[H],
one easily verifies that the minimal integer satisfying these conditions is
d = (n− 1)H2 = 2(n− 1)(pa(H)− 1) (with D = H). The result follows. �

Remark 2.5. As far as we know, the previously known regularity condition
for curves C as in the statement of the proposition above is given by

(6)
∑

k

k2dk ≤ n2H2,

which has been deduced from [18, Corollary 2.4]. This result is very different
from Proposition 1.2 and we will not compare the two results here.

We conclude this section with a naive upper-bound on the dimension
of the equisingular deformation locus of an irreducible curve with only Ak-
singularities on a smooth K3 surface. This result is a simple application of
Clifford’s theorem, and for nodal curves it reduces to Tannenbaum’s proof
that Severi varieties of irreducible nodal curves on K3 surfaces have the
expected dimension [25].

Lemma 2.6. Let |D| be a Bertini linear system on a smooth projective K3
surface S. Let C ∈ |D| be a reduced and irreducible genus g curve with only
Ak-singularities, τ of which are (not necessarily ordinary) cusps. Then

dimT[C]ES(C) ≤ g − τ/2.

Proof. Let C and S be as in the statement. By Remark 2.4, since C has
only Ak-singularities, we have that T[C]ES(C) = H0(C,N ′

C|S). Moreover,
by standard deformation theory (see, e.g., [24, (3.51)]), if φ : C̃ → C ⊂ S is
the normalization map, we have the following exact sequence of line bundles
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on C̃

(7) 0 �� ΘC̃(Z)
φ∗ �� φ∗ΘS

�� N ′
φ

�� 0 .

Here φ∗ : ΘC̃ → φ∗ΘS is the differential map of φ, having zero divisor Z,
and N ′

φ 
 Nφ/Kφ is the quotient of the normal sheaf Nφ of φ by its torsion
subsheaf Kφ (with support on Z). By (7), using that S is a K3 surface, we
have that h1(C̃,N ′

φ) = h1(C̃, Θ−1

C̃
(−Z)) ≥ 1. Moreover, again by [24, p. 174],

one has

N ′
φ 
 φ∗N ′

C|S and hence h0(C,N ′
C|S) ≤ h0(C̃,N ′

φ).

Finally, by applying Clifford’s theorem, we deduce the desired inequality

h0(C,N ′
C|S) ≤ h0(C̃,N ′

φ) ≤ 1
2

degN ′
φ + 1 =

1
2
(2g − 2− τ) + 1 = g − τ

2
.

�

3. Smoothing tacnodes

In this section, by using classical deformation theory of plane curve singu-
larities, we will find sufficient conditions for the existence of curves with
Ak-singularities on smooth projective complex surfaces that we may obtain
as deformations of a “suitable” reducible surface.

Let X → A
1 be a flat family of projective surfaces with smooth total

space X . Assume moreover that X → A
1 has smooth and regular general

fiber Xt and reducible central fiber X0 = A ∪B, consisting of two irreducible
components A and B with h1(OA) = h1(OB) = h1(OXt) = 0 and intersect-
ing transversally along a smooth curve E = A ∩B. Let D be a Cartier divisor
on X . We denote by Dt = D ∩ Xt the restriction of D to the fiber Xt. Notice
that, since X0 = A ∪B is a reducible surface, the Picard group Pic(X0) of
X0 is the fiber product of the Picard groups Pic(A) and Pic(B) over Pic(E).
In particular, we have that

|OX0(D)| = P(H0(OA(D))×H0(OE(D)) H0(OB(D))).

From now on, for every curve C ⊂ X0, we will denote by CA and CB the
restrictions of C to A and B, respectively. Let p be a point of E. Choose
local analytic coordinates (x, z) of A at p and (y, z) of B at p in such a
way that the equation of X at p, by using coordinates (x, y, z, t), is given by
xy = t.
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Now assume there exists a divisor C = CA ∪ CB ⊂ X0, with [C] ∈ |D0|,
such that CA and CB are both smooth curves, tangent to E at a point
p ∈ E with multiplicity m and intersecting E transversally outside p. Local
analytic equations of C at p are given by⎧⎪⎪⎨⎪⎪⎩

y + x− zm = 0,

xy = t,

t = 0,

(8)

with m ≥ 2. Since the singularity of C at p is analytically equivalent to the
tacnode of local equation

(9) f(y, z) = (y − zm)y = 0,

we say that C has an m-tacnode at p.

Definition 3.1. We say that the m-tacnode of C at p imposes linearly inde-
pendent conditions to |D0| if the linear system Wp,m ⊂ |D0| parametrizing
curves FA ∪ FB ⊂ X0, such that FA and FB are tangent to E at p with
multiplicity m, has codimension m (which is the expected codimension).

Remark 3.2. We remark that, if the m-tacnode of C at p imposes linearly
independent conditions to |D0|, then, for every r ≤ m, the locus Wp,r ⊂ |D0|
parametrizing curves with an r-tacnode at p is non-empty of codimension
exactly r. In particular, the general element of an analytic neighborhood of
[C] in |D0| intersects E transversally at m points close to p.

We now introduce the main result of this paper.

Theorem 3.3. Let {d2, . . . , dm} be an (m− 1)-tuple of non-negative inte-
gers such that

m∑
j=2

(j − 1)dj = m− 1.

Using the notation above, assume that:

(1) dim(|D0|) = dim(|Dt|);
(2) the linear system Wp,m−1 ⊂ |D0| of curves with an (m− 1)-tacnode at

p ∈ E has dimension dim(|D0|)−m + 1.
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Denote by VXt

Dt,1d2 , 2d3 ,..., (m−1)dm ⊂ |Dt| the Zariski closure of the locus in |Dt|
of irreducible curves with exactly dj singularities of type Aj−1, for every
2 ≤ j ≤ m, and no further singularities. Then, for a general t 	= 0, there
exists a non-empty irreducible component Vt of VXt

Dt,1d2 , 2d3 ,..., (m−1)dm ⊂ |Dt|
whose general element [Ct] ∈ Vt is a regular point of Vt, i.e., dim(T[Ct]Vt) =
dim(T[Ct]ES(Ct)) = h0(Ct,N ′

Ct|Xt
) = dim(|Dt|)−

∑m
j=2(j − 1)dj .

The proof of this theorem will occupy us until Corollary 3.12. In the
remainder of the section, we will discuss several consequences and applica-
tions of Theorem 3.3.

We want to obtain curves with Ak-singularities on the general fiber Xt

of X as deformations of C ⊂ X0. The moduli space of deformations of C
in X is contained in an irreducible component H of the relative Hilbert
scheme HX|A1

of the family X → A
1. Let πH : H → A

1 be the natural map
from H to A

1. By the hypothesis of regularity on the fibers of the fam-
ily X , we have that the general fiber Ht of πH coincides with the linear
system |OXt(Dt)|, whereas, in general, the central fiber H0 of πH consists
of several irreducible components of the Hilbert scheme of X0, only one of
which, call it H0

0, can be generically identified with |OX0(D0)|. This hap-
pens because the limit line bundle on X0 of a line bundle on Xt is unique
only up to twisting with a multiple of OX (A) (see, e.g. [3, Section 2.2]).
Moreover, by standard deformation theory (cf. e.g. [24, Proposition 4.4.7]),
the hypothesis dim(|D0|) = dim(|Dt|) ensures smoothness of H at the point
[C] corresponding to C. Again, since C is a local complete intersection in
the smooth variety X (see [24, Proposition 1.1.9]), we have the same exact
sequence introduced in the previous section

(10) 0 �� ΘC
�� ΘX |C α �� NC|X

β �� T 1
C

�� 0,

where T 1
C is the first cotangent sheaf of C and where the kernel N ′

C|X of β

is called the equisingular normal sheaf of C in X , cf. [24, Proposition 1.1.9].
By hypothesis, C is smooth outside C ∩ E = CA ∩ CB, it has an m-tacnode
at p and nodes at the other intersection points of CA and CB. So, at every
node r of C we have that

T 1
C,r 
 C[x, y]/(x, y) 
 C,

while the stalk of T 1
C at p is given by

T 1
C,p 
 C

2m−1 
 C[y, z]/Jf ,
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where Jf = (2y − zm, mzm−1y) is the Jacobian ideal of f(y, z) = (y − zm)y
[8]. In particular, choosing

{1, z, z2, . . . , zm−1, y, yz, yz2, . . . , yzm−2}

as a base for T 1
C,p and using the same notation as in [2, 8], the versal defor-

mation family Cp → T 1
C,p of the singularity of C at p has equation

(11) Cp : F (y, z; α, β) = y2 +
( m−2∑

i=0

αiz
i + zm

)
y +

m−1∑
i=0

βiz
i = 0,

while the versal family Cr → T 1
C,r of the node has equation

xy + t = 0.

Denote by D → H the universal family parametrized by H and by Cq → T 1
C,q

the versal family parametrized by T 1
C,q. By versality, for every singular point

q of C there exist analytic neighborhoods Uq of [C] in H, U ′q of q in D and
Vq of 0 in T 1

C,q and a map φq : Uq → Vq such that the family D|Uq
∩ U ′q is

isomorphic to the pull-back of Cq|Vq
, with respect to φq,

(12) Cq

��

Cq|Vq

��

� ��� Uq ×Vq
Cq|Vq

�� � ��

���������������
D|Uq

∩ U ′q
� � ��

��

D

��
T 1

C,q Vq� ��� Uq
φq�� � � �� H.

Furthermore, by the standard identifications of the tangent space T[C]H
at [C] to the relative Hilbert scheme with H0(C,NC|X ) and of the versal
deformation space of a plane singularity with its tangent space at the origin,
the natural map

H0(β) : H0(C,NC|X ) → H0(C, T 1
C) = ⊕q∈Sing(C)T

1
C,q

induced by (10) is identified with the differential dφ[C] at [C] of the versal
map

φ = ⊕q∈Sing(C)φq : ∩q∈Sing(C)Uq ⊂ H → H0(C, T 1
C).

We want to obtain the existence of curves with the desired singularities on
Xt in |Dt| by versality. In particular, we will prove that the locus, in the
image of φ, of curves with dj singularities of type Aj−1, for every j as in
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the statement of Theorem 3.3, is non-empty. In order to do this, we observe
that, no matter how we deform C ⊂ X0 to a curve on Xt, the nodes of C
(lying on E) are necessarily smoothed. Thus singularities of type Ak may
arise by deformation of the tacnode of C at p only. For this reason, we may
restrict our attention to the versal map φp of (12) and its differential

dφp : H0(C,NC|X ) → H0(C, T 1
C) → T 1

C,p

at the point [C] ∈ H0
0, where, as above, H0

0 is the irreducible component of
the central fiber H0 of the relative Hilbert scheme HX|A1

containing [C].
We first study the kernel of dφp.1 Let rC : H0(X0,OX0(D0)) →

H0(C,OC(D0)) = H0(C,NC|X0
) be the natural restriction map, Wp,m−1 the

linear system of curves in |OX0(D0)| with an (m− 1)-tacnode at p, as in
Definition 3.1, and Wp,m−1 ⊂ H0(X0,OX0(D0)) the vector space such that
P(Wp,m−1) = Wp,m−1.

Lemma 3.4. We have

ker(dφp) = ker(dφ[C]) = H0(C,N ′C|X ) = rC(Wp,m−1) = H0(C,N ′C|X0).(13)

More generally, let C ′ = C ′A ∪ C ′B ∈ |D0| be any reduced curve and x ∈ C ′ ∩
E a singular point of C ′ on E. We have that, if Kx is the kernel of the natural
map H0(C ′,NC′|X ) → T 1

C′,x, then

(14) H0(C′,N ′C′|X ) ⊆ Kx ⊆ H0(C′,NC′|X0) and H0(C′,N ′C′|X ) = H0(C′,N ′C′|X0).

Finally, using the notation above, if C ′ has an m-tacnode at x, then

Kx ⊆ rC′(Wx,m−1), with equality if dim(Wx,m−1) = dim(|D0|)−m + 1.(15)

Proof. From what we observed above, we have that ker(dφ[C]) = ker(H0(β))
= H0(C,N ′

C|X ), where N ′
C|X is the equisingular normal sheaf of

C in X . Moreover we have the inclusion ker(dφ[C]) ⊆ ker(dφp). We want
to prove that equality holds and that H0(C,N ′

C|X ) = rC(Wp,m−1) =
H0(C,N ′

C|X0
).

1The kernel and the image of dφp are also computed in [7, Theorem 2.3]. We give
a different and more detailed proof of these two results. This will make the proof
of Theorem 1.1 shorter.
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Consider the localized exact sequence

(16) 0 �� N ′
C|X , p

�� NC|X , p �� T 1
C,p

�� 0.

Using local analytic coordinates x, y, z, t at p as in (8), we may identify:

• the local ring OC, p = OX ,p/IC|X ,p of C at p with C[x, y, z]/(f1, f2),
where f1(x, y, z) = x + y + zm and f2(x, y, z) = xy;

• the OC,p-module NC|X , p with the free OX , p-module homOX , p

(IC|X , p,OC,p), generated by the morphisms f∗1 and f∗2 , defined by

f∗i (s1(x, y, z)f1(x, y, z) + s2(x, y, z)f2(x, y, z)) = si(x, y, z), for i = 1, 2

and, finally;

• the OC,p-module

(ΘX |C) p 
 ΘX ,p/(IC,p ⊗ΘX ,p)

 〈∂/∂x, ∂/∂y, ∂/∂z, ∂/∂t〉OC, p

/〈∂/∂t− x∂/∂y − y∂/∂x〉

with the free OX , p-module generated by the derivatives ∂/∂x, ∂/∂y,
∂/∂z.

With these identifications, the localization αp : (ΘX |C) p → NC|X , p of the
sheaf map α from (10) is defined by

αp(∂/∂x) =
(
s = s1f1 + s2f2 � ∂s/∂x =OC,p

s1∂f1/∂x + s2∂f2/∂x
)

= f∗1 + yf∗2 ,

αp(∂/∂y) = f∗1 + xf∗2 and

αp(∂/∂z) = mzm−1f∗1 .

By definition of N ′
C|X , a section s ∈ NC|X , p is equisingular at p, i.e., s ∈

N ′
C|X , p, if and only if there exists a section

u = ux(x, y, z)∂/∂x + uy(x, y, z)∂/∂y + uz(x, y, z)∂/∂z ∈ ΘX |C p



Curves with Ak-singularities on K3 surfaces 1083

such that s = αp(u). Hence, locally at p, first-order equisingular deforma-
tions of C in X have equations{

x + y + zm + ε(ux + uy + mzm−1uz) = 0,

xy + ε(yux + xuy) = 0.
(17)

The first equation above gives an infinitesimal deformation of the Cartier
divisor cutting C on X0, while the second equation gives an infinitesimal
deformation of X0 in X . More precisely, by [4, Section 2], the equation xy +
ε(yux + xuy) = 0 is the local equation at p of an equisingular deformation
of X0 in X preserving the singular locus E. But X0 may be deformed in X
only to a fiber and X0 is the only singular fiber of X . It follows that the
polynomial yux(x, y, z) + xuy(x, y, z) in the second equation of (17) must
be identically zero. In particular, we obtain that

ker(dφp) ⊂ H0(C,NC|X0
).

Since every infinitesimal deformation of C in X0 preserves the nodes of
C lying on E, i.e., all nodes of C, we deduce that ker(dφp) ⊆ ker(dφ[C])
and thus ker(dφp) = ker(dφ[C]) = H0(C,N ′

C|X ) ⊂ H0(C,NC|X0
). Moreover,

since the natural linear map H0(C,NC|X0
) → H0(T 1

C) is the restriction of
dφ[C] to H0(C,NC|X0

), with kernel H0(C,N ′
C|X0

), we also obtain the equality
H0(C,N ′

C|X0
) = H0(C,N ′

C|X ). This in particular is consistent with the very
well-known fact that there do not exist deformations

(18) C ⊂

��

C ⊂

��

X

����
��

��
��

0 ∈ A
1

of C in X preserving the nodes of C, except for deformations of C in X0

(see [10, Section 2] for a proof).
Notice finally that, by the argument above, the inclusions

H0(C,N ′
C|X ) ⊂ ker(dφp) ⊂ H0(C,NC|X0

)

hold independently of the kind of singularities of C on E. This proves (14).
Now it remains to show that H0(C,N ′

C|X ) = rC(Wp,m−1). Consider the
first equation of (17). By the fact that the polynomial yux(x, y, z)
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+xuy (x, y, z) is identically zero, we deduce that

• ux(0, 0, 0) = uy(0, 0, 0) = 0 and

• for every n ≥ 1, no zn-terms appear in ux(x, y, z) and uy(x, y, z), no
yn-terms and ynzm-terms appear in ux(x, y, z) and, finally, no xn-terms
and xnzm-terms appear in uy(x, y, z).

In particular, local equations at p on B of equisingular infinitesimal defor-
mations of C are given by{

yq(y, z) + zm + εmzm−1uz(x, y, z) = 0,

x = 0,
(19)

where q(y, z) is a polynomial with variables y and z, and similarly on
A. This proves that H0(C,N ′

C|X ) ⊂ rC(Wp,m−1) and more generally the
inclusion in (15). The opposite inclusion rC(Wp,m−1) ⊂ H0(C,N ′

C|X ) fol-
lows from a naive-dimensional computation. Indeed, by the hypothesis (2),
dim(rC(Wp,m−1)) = dim(Wp,m−1) = dim(|D0|)−m + 1. On the other hand,
if W ⊂WE,m is the irreducible component containing the point [C], then
dim(W ) ≥ dim(|D0|)−m + 1 and W is contained in the Zariski closure of
the family of locally trivial deformations of C. Thus, W is the Zariski closure
of the locus of locally trivial deformations of C. Its tangent space at [C] is
isomorphic to H0(C,N ′

C|X ) and (13) is proved. The same argument shows
that Kx = rC′(Wx,m−1) in (15) if dim(Wx,m−1) = dim(|D0|)−m + 1. The
lemma is proved. �

We now describe the image of dφp.

Lemma 3.5. Let α0, . . . , αm−2, β0, . . . , βm−1 be coordinates on T 1
C,p as

above. Then the image Hp ⊂ T 1
C,p of dφp is given by the equations

(20) Hp = dφp(H0(C,NC|X )) : β1 = · · · = βm−1 = 0.

Moreover, the image of H0(C,NC|X0
) under dφp is the linear subspace of Hp

given by

(21) dφp(H0(C,NC|X0
)) = T0V1m : β0 = β1 = · · · = βm−1 = 0

and coincides with the tangent space at 0 of the locus V1m of m-nodal curves.

From the following remark to the end of the section, Vp ⊂ T 1
C and Up ⊂

HX|A1 are analytic neighborhood as in diagram (12).
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Remark 3.6. Notice that, because of the choice we have made for the
local analytic equation of C at p, we have that the locus V1m ⊂ T 1

C,p of m-
nodal curves is the linear space defined by the equations β0 = β1 = · · · =
βm−1 = 0, coinciding with its tangent space at 0. In general, the locus V1m

of m-nodal curves in the versal deformation space of the m-tacnode T 1
C,p is a

smooth variety, parametrizing equigeneric deformations. Lemma 3.5 shows
in general that, if C is as in Theorem 3.3, then dφp(H0(C,NC|X0

)) = T0V1m

and consequently φp(H0
0 ∩ Up) = V1m ∩ Vp.

Proof of Lemma 3.5. We first observe that dim(Hp) = m. Indeed, by Lemma
3.4 and hypothesis (2) of Theorem 3.3, we have that

dim(Hp) = h0(C,NC|X )− dim(rC(Wp,m−1)) = m.

Moreover, since ker(dφp) ⊂ H0(C,NC|X0
) and H0(C,NC|X0

) has codimen-
sion 1 in H0(C,NC|X ), we have that Hp contains dφp(H0(C,NC|X0

)) as a
codimension-1 linear subspace. Again by the hypothesis (2) of Theorem 3.3
and Remark 3.2, the (m− 1)-linear space dφp(H0(C,NC|X0

)) is contained in
the tangent space T0V1m ⊂ T 1

C,p at 0 to the Zariski closure V1m ⊂ T 1
C,p of the

locus of m-nodal curves. Now it is easy to verify that, using the coordinates
(11) on T 1

C,p, the equations of V1m are β0 = · · · = βm−1 = 0. Hence

(22) dφp(H0(C,NC|X0
)) = T0V1m = V1m = φp(H0

0 ∩ Up)

(cf. Remark 3.6). By (22), in order to find a base of Hp, it is enough to
find the image by dφp of the infinitesimal deformation σ ∈ H0(C,NC|X ) \
H0(C,NC|X0

) having equations

{
x + y + zm = 0,

xy = ε.
(23)

The image of σ is trivially the point corresponding to the curve y(y + zm) =
ε. Thus, the equations of Hp ⊂ T 1

C,p are given by (20). �

Now let d2, . . . , dm be non-negative integers such that m =∑m
j=2(j − 1)dj + 1, as in the statement of Theorem 3.3. Let Vp ⊂ T 1

C,p be
the analytic open set as in (12) and denote by

V1d2 , 2d3 ,..., (m−1)dm ⊂ Vp ⊂ T 1
C,p
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the Zariski closure of the locus in Vp of curves with exactly dj singularities of
type Aj , for every j, and no further singularities. The following proposition
implies Theorem 3.3, as indicated below.

Proposition 3.7. We have

(24) V1d2 , 2d3 ,..., (m−1)dm ∩Hp = B1 ∪B2 ∪ · · · ∪Bk,

where every Bi is an irreducible and reduced affine curve containing 0, whose
general element corresponds to a curve with exactly dj singularities of type
Aj−1, for every j, and no further singularities.

Remark 3.8. The number k is explicitly determined by a combinatorial
argument at the end of the proof of Claim 3.9.

Proof of Theorem 3.3. By Lemmas 3.4 and 3.5, we know that the image
φp(Up) ⊂ Vp ⊂ T 1

C,p of Up ⊂ H by φp is an m-dimensional subvariety of Vp

that is smooth at 0. By Remark 2.4 and the openness of versality (more
precisely, by the properties [8, (3.5), (3.6)] of versal deformation families),
up to restricting Vp, we have that V1d2 , 2d3 ,..., (m−1)dm ⊂ Vp is a variety of pure
codimension

∑
j(j − 1)dj = m− 1, which is non-empty by (24). Moreover,

up to restricting Vp again, we may assume that 0 is contained in every irre-
ducible component of V1d2 , 2d3 ,..., (m−1)dm . Hence V1d2 , 2d3 ,..., (m−1)dm ∩ φp(Up)
is non-empty and each of its irreducible components has dimension ≥ 2m−
1− 2m + 2 = 1. By recalling that Hp = dφp(H0(C,NC|X )) = T0φp(Up) and
φp(Up) is smooth at 0, we see that (24) implies that the intersection

V1d2 , 2d3 ,..., (m−1)dm ∩ φp(Up) = B′1 ∪B′2 ∪ · · · ∪B′k,

has pure dimension 1. Now notice that, by semicontinuity, since φ−1
p (0) is

smooth of (maximal) codimension m in the relative Hilbert scheme HX|A1 ,
the same is true for the fiber φ−1

p (x), for x ∈ Vp, up to restricting Vp. More
precisely, again by the properties [8, (3.5), (3.6)] of versal deformation fami-
lies, if x ∈ B′i, with x 	= 0, is a point sufficiently close to 0 of any irreducible
component of V1d2 , 2d3 ,..., (m−1)dm ∩ φp(Up), and [Ct] ∈ φ−1

p (B′i) ∩Ht, then we
have that T[Ct](φ

−1
p (B′i)) 
 H0(Ct,N ′

Ct|X ) and thus φ−1
p (B′i \ 0) is the equi-

singular deformation locus of Ct in X scheme theoretically, cf. Definition 2.3
and Remark 2.4. In particular, φ−1

p (B′i \ 0) ∩Ht is the equisingular defor-
mation locus of Ct in Xt,

T[Ct](φ
−1
p (B′i) ∩Ht) 
 H0(Ct,N ′

Ct|Xt
)
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and

h0(Ct,N ′
Ct|Xt

) = h0(Ct,N ′
Ct|X )− h0(X ,OX ) = dim(|Dt|)−m + 1.

This proves that [Ct] is a regular point of an irreducible component V of the
variety VXt

Dt,1d2 , 2d3 ,..., (m−1)dm . �

Proof of Proposition 3.7. We use the same approach as Caporaso and Harris
in [2, Section 2.4]. Equation (11), defining the versal family Cp of the m-
tacnode, has degree 2 in y. In particular, for every point x = (α, β) ∈ T 1

C,p,
the corresponding curve Cp,x : F (y, z; α, β) = 0 is a double cover of the z-
axis. Moreover, the discriminant map

Δ : T 1
C,p → P2m−1 =

{
z2m +

2m−2∑
i=0

aiz
i, ai ∈ C

}

from T 1
C,p to the affine space of monic polynomials of degree 2m with no

2m− 1 term, defined by

Δ(α, β)(z) =
( m−2∑

i=0

αiz
i + zm

)2 − 4
( m−1∑

i=0

βiz
i
)
,

is an isomorphism (see [2, p. 179]). Thus, we may study curves in the versal
deformation family of the m-tacnode in terms of the associated discrimi-
nant polynomial. In particular, for every point (α, β0, 0, . . . , 0) ∈ Hp, which
we will shortly denote by (α, β0) := (α, β0, 0, . . . , 0), the corresponding dis-
criminant polynomial is given by

(25) Δ(α, β0)(z) =

( m−2∑
i=0

αiz
i + zm

)2

− 4β0 =

(
ν(z)− 2

√
β0

)(
ν(z) + 2

√
β0

)
,

where we set ν(z) :=
∑m−2

i=0 αiz
i + zm. From now on, since we are interested

in deformations of the m-tacnodal curve C ⊂ X0 to curves on Xt, with t 	=
0, we will always assume β0 	= 0, being V1m : β0 = β1 = · · · = βm−1 = 0 the
image in T 1

C,p of infinitesimal (and also effective) deformations of C in X0.
Writing down explicitly the derivatives of the polynomial F (y, z; α, β), one
may verify that a point x = (α, β0) parametrizes a curve Cp,x with an Ak-
singularity at the point (z0, y0) if and only if z0 is a root of multiplicity k + 1
of the discriminant polynomial Δ(α, β0)(z). Our existence problem is thus
equivalent to the following.
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Claim 3.9. Let d2, . . . , dm be an (m− 1)-tuple of non-negative integers
satisfying (1). The locus of points (α, β0) ∈ Hp such that the discriminant
polynomial Δ(α, β0)(z) has exactly dj roots of multiplicity j, for every 2 ≤
j ≤ m, and no further multiple roots, is non-empty of pure dimension 1.

The claim will be proved right below. �
To prove the last claim we need the following auxiliary result, whose

proof is postponed to Appendix A.

Lemma 3.10. Let m ≥ n ≥ 2 be integers and (d+
2 , d−2 , . . . , d+

n , d−n ) be a
2(n− 1)-tuple of non-negative integers satisfying

m =
n∑

j=2

(j − 1)(d+
j + d−j ) + 1 ≥ 2 and(26)

m ≥
n∑

j=2

jd±j > 0.(27)

Then there exists a triple of permutations (τ+, τ−, σ) of m indices, such that
τ± has cyclic structure Πn

j=2j
d±

j , σ is a cycle of order m and στ+τ− = 1.

Definition 3.11. An admissible 2(n− 1)-tuple is a 2(n− 1)-tuple of non-
negative integers (d+

2 , d−2 , . . . , d+
n , d−n ) satisfying (26) and (27).

Proof of Claim 3.9. Let d2, . . . , dm be an (m− 1)-tuple of non-negative inte-
gers satisfying (1). Assume that there exists a point (α, β0) ∈ Hp such that
the discriminant polynomial Δ(α, β0)(z) has the desired properties. Then,
since ν(z)− 2

√
β0 and ν(z) + 2

√
β0 cannot have common factors for β0 	= 0,

there exist non-negative integers d+
j , d−j such that dj = d+

j + d−j and the dj

roots of multiplicity j of the discriminant Δ(α, β0)(z) are distributed as d+
j

roots of ν(z) + 2
√

β0 and d−j roots of ν(z)− 2
√

β0. The obtained 2(m− 1)-
tuple of non-negative integers (d+

2 , d−2 , . . . , d+
m, d−m) is admissible (see Def-

inition 3.11). The polynomial ν(z) = zm +
∑m−2

i=0 αiz
i defines a degree m

covering ν : P
1 → P

1, totally ramified at ∞ and with further d±j ramifica-
tion points of order j − 1 over ±2

√
β0, for every 2 ≤ j ≤ m. We get in this

way

(m− 1) +
m∑

j=2

(j − 1)d+
j +

m∑
j=2

(j − 1)d−j = 2m− 2

ramification points of ν. Hence ν has no further ramification by the Riemann–
Hurwitz formula. The branch points of ν are three, consisting of ∞, −2

√
β0
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and 2
√

β0, if both sums
∑

j d+
j and

∑
j d−j are positive, while the branch

points of ν are only two if
∑

j d+
j = 0 or

∑
j d−j = 0.

Consider first the case that ν has only two ramification points, say∞ and
2
√

β0. Then we have that
∑

j d+
j = 0 and dj = d−j , for every j. In particular,

using the conditions (26) and (27), we find that dj = 0 for j 	= m and dm = 1.
It follows that ν(z)− 2

√
β0 = (z − λ)m, for a certain λ. But the only λ such

that (z − λ)m has no degree m− 1 term, is λ = 0. Thus, we get ν(z) =
zm + 2

√
β0. On the other hand, for every fixed β0 	= 0, if ν(z) = zm + 2

√
β0,

then the associated discriminant Δ(α, β0) = zm(zm + 4
√

β0) has a root of
multiplicity m and no further multiple roots. This proves the claim under the
hypothesis dm = 1 and dj = 0 for j 	= m. More precisely, this shows that the
Zariski closure of the locus in Hp ⊂ T 1

C,p of curves with an Am−1-singularity
is the smooth curve given by the equations

(28) V(m−1)1 ∩Hp :

{
αi = 0, for every 1 ≤ i ≤ m− 2,

α2
0 = 4β0.

Now consider the general case, i.e., assume that
∑

j d±j > 0. Then the
polynomial ν(z) defines an m-covering ν : P

1 → P
1 having branch points

at ∞, −2
√

β0 and +2
√

β0 with monodromy permutations σ, τ+ and τ−

respectively, where σ is an m-cycle while τ± has cyclic structure Πm
j=2j

d±
j .

Moreover, the group 〈σ, τ+, τ−〉 is trivially transitive and, by the theory
of coverings of P

1, we have that στ+τ− = 1. In fact, the class {νΦ|Φ :
P

1 → P
1 automorphism } of degree m coverings isomorphic to ν and with

branch locus at ∞, −2
√

β0 and +2
√

β0, is uniquely determined by the con-
jugacy class of the triple of permutations (τ+, τ−, σ) (cf. e.g., [21, Corol-
lary III.4.10]). Hence, for every β0 	= 0 and for every fixed (2m− 2)-tuple
(d+

2 , d−2 , . . . , d+
m, d−m), there exist at most finitely many polynomials ν(z) with

the properties above, up to a change of variable. Moreover, a change of vari-
able that transforms ν(z) in a polynomial with the same properties cor-
responds to an automorphism Φ : P

1 → P
1 such that Φ(z) = az + b with

am = 1 and b = 0, as ν(z) is monic and has no zm−1-term.
We may now prove the non-emptiness in the general case. Let d2, . . . , dm

be non-negative integers satisfying (1). Then, no matter how we choose
non-negative integers d±i , with di = d+

i + d−i , we have that the (2m− 2)-
tuple d = (d+

2 , d−2 , . . . , d+
m, d−m) is admissible. Furthermore, by Lemma 3.10,

there exist finitely many triples of permutations (τ+, τ−, σ) of m indices
such that τ± has cyclic structure Πm

j=2j
d±

j , σ is a cycle of order m and
στ+τ− = 1. Since the group 〈σ, τ+, τ−〉 is trivially transitive, again by the
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general theory of coverings of P
1, for every γ ∈ C there exists an m-covering

ν(d,(τ+,τ−,σ),γ) : P
1 → P

1 with branch points∞,−γ, +γ and monodromy per-
mutations σ, τ+, τ−, respectively. Up to a change of variables in the domain,
we may always assume that ν is defined by a monic polynomial ν(d,(τ+,τ−,σ),γ)

(z) with no zm−1-term. This proves that the locus of points (α, β0) ∈ Hp such
that the discriminant polynomial Δ(α, β0)(z) has the desired properties is
non-empty. We finally want to see that it has pure dimension 1, by writing
its parametric equations explicitly. We notice that, from what we observed
above, the polynomials,

ν(d,(τ+,τ−,σ),γ)

(
z

ζ

)
, where ζ is an mth root of unity,

are all polynomials with no zm−1-term, and define an m-covering of P
1

isomorphic to ν(d,(τ+,τ−,σ),γ) (whose monodromy is conjugated with
(τ+, τ−, σ)). More generally, if

(29) ν(d,(τ+,τ−,σ),1)(z) = zm +
m−2∑
i=0

ci,(d,(τ+,τ−,σ),1)z
i,

then, for every γ ∈ C \ 0, the polynomials

(30) ν(z) := umν(d,(τ+,τ−,σ),1)

( z

u

)
= zm +

m−2∑
i=0

αiz
i, um = γ

are all the monic polynomials without zm−1-term such that ν2(z)− 4γ2 has
the same kind of multiple roots with the desired distribution, and defining
an m-covering of P

1 with monodromy in the conjugacy class of (τ+, τ−, σ).
We have thus proved that the reduced and irreducible curve of parametric
equations

αi = um−ici,(d,(τ+,τ−,σ),1), for i = 0, 1, . . . , m− 2, and β0 =
u2m

4
, u ∈ C,(31)

is an irreducible component of V1d2 , 2d3 ,..., (m−1)dm ∩Hp. In particular,

V1d2 , 2d3 ,..., (m−1)dm ∩Hp = B1 ∪ · · · ∪Bk

is a reduced curve with k irreducible components, where k is the number
of pairs (d, [τ+, τ−, σ]), such that d = (d+

2 , d−2 , . . . , d+
m, d−m) is an admissible
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(2m− 2)-tuple with d+
j + d−j = dj , for every j, and [τ+, τ−, σ] = {(ρτ+ρ−1,

ρτ−ρ−1, ρσρ−1) | ρ ∈ Sm}, where Sm denotes the symmetric group of order
m and σ, τ+ and τ− ∈ Sm are permutations such that σ is an m cycle, τ±

has cyclic structure Πm
j=2j

d±
j and στ+τ− = 1. �

Theorem 3.3 is a local result. It describes all possible deformations of
an m-tacnode of a reduced curve C ′ ∈ |D0| at a double point x of X0, as
precisely stated in the following.

Corollary 3.12. Let C ′ ⊂ |D0| be any reduced curve with an m-tacnode
at a point x ∈ E and possibly further singularities. Then, fixing coordinates
(α, β) on T 1

C′,x as in (11), we have that the image H ′
x of the morphism

dφ[C′],x : H0(C ′,NC′|X ) → T 1
C′,x

is contained in the linear space Hx : β1 = · · · = βm−1 = 0. Moreover, it con-
tains in codimension 1 the image Γ′x of H0(C ′,NC′|X0

), which is in turn
contained in Γx, with Γx = T0V1m : β0 = β1 = · · · = βm−1 = 0. If Γ′x = Γx

then H ′
x = Hx and, for every (m− 1)-tuple of integers d2, . . . , dm such that∑

j(j − 1)dj = m− 1, the intersection V1d2 , 2d3 ,..., (m−1)dm ∩H ′
x is the curve

given by (24). In particular, there exist curves C ′
t ∈ |Dt| with dj singular-

ities of type Aj−1 at a neighborhood of x, for every j = 2, . . . , m. By (15),
a sufficient condition in order that Γ′x = Γx (equivalently H ′

x = Hx) is that
dim(Wx,m−1) = dim(|D0|)−m + 1.

Proof. By hypothesis we have that C ′ = C ′A ∪ C ′B, with C ′A and C ′B smooth
at x and tangent to E with multiplicity m. Trivially, every deformation
of C ′ in X0 has on E tacnodes of order mi at points pi close to x with∑

i mi = m. In particular, every deformation of C ′ in X0 is equigeneric at p
[8, Definition 3.13]. This implies that the image Γ′x = dφ[C′],x(H0(C ′,NC′|X0

)
is contained in the tangent space Γx = T0V1m : β0 = β1 = · · · = βm−1 at 0 of
the locus V1m of m-nodal curves. By (14) and the fact that H0(C ′,NC′|X0

) is
a codimension 1 subspace H0(C ′,NC′|X ), we have that Γ′x has codimension
1 in H ′

x. Moreover, if σ ∈ H0(C ′,NC′|X ) \H0(C ′,NC′|X0
) is the infinitesi-

mal deformation given by (23), where now x + y + zm = xy = 0 is the local
equation of C ′ at x, then we have that the image point of σ is contained
in H ′

x. Thus H ′
x ⊆ Hx, with Hx : β1 = · · · = βm−1 = 0. The corollary fol-

lows now by Proposition 3.7 and by versality, arguing as in the proof of
Theorem 3.3. �
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Remark 3.13. Corollary 3.12 is helpful if one wants to deform a reduced
curve C ′ ∈ |D0| with tacnodes at points of E and further singularities, by
smoothing together all singularities. In the next section, it will be applied
to the case where X0 is a reducible stable K3 surface and C ′ ⊂ X0 is a
reduced reducible curve with nodes and tacnodes (at singular points of X0)
as singularities. In [11] the curve C ′ ⊂ X0 is also allowed to have a space
triple point at a point of E. In these applications the fact that the family
X → A

1 is a family of K3 surfaces is useful in the construction of the limit
curve, but not in the deformation argument of the curve, where only versality
is used.

In order to help the reader understand the deformation argument in
Theorem 1.1 (especially in the Case 1.4.2), we want to point out the following
difference of behavior between curve singularities at smooth points of X0 and
at points of E. For curves on smooth surfaces we have Definition 2.1. Assume
now that the curve C ′ ⊂ X0 has several tacnodes at points p1, . . . , pr of E
of order m1, .., mr. Then the natural map

H0(C ′,NC′|X ) → ⊕iHpi
⊂ ⊕iT

1
C′,i

is not surjective. Indeed, dim(⊕iHi) =
∑

i mi, but the kernel of the map has
dimension ≥ h0(C ′,NC′|X )−∑

i mi − r + 1. This is not an obstruction to
simultaneously deform the tacnodes to desired singularities of type Ak. A
sufficient condition in order to be able to smooth the tacnodes independently
is that the linear system W of curves in |D0| with an (mi − 1)-tacnode at
pi for every i has codimension

∑
i(mi − 1) in |D0|, as expected. Indeed, if

this happens, then, by (15), we have that h0(C ′,N ′
C′|X0

) = h0(C ′,NC′|X0
)−∑

i(mi − 1). Thus, by Corollary 3.12, the map

H0(C ′,NC′|X0
) → ⊕iΓpi

is surjective and hence the map H0(C ′,NC′|X ) → Hpi
is a surjection for any

i. This implies that tacnodes may be deformed independently by arguing as
in [1, Lemma 4.4] (see Case 1.4.2 of the proof of Theorem 1.1 for details).

We finally observe that the deformation argument of Theorem 1.1 also
works if the limit curve has singularities different than nodes on the smooth
locus of X0, as long as H0(C ′, N ′

C′|X ) has the “expected dimension”.

Remark 3.14. The curve (24) in Proposition 3.7 has nicer geometric prop-
erties in several cases. Consider the case dj = 0 for every j ≥ 3, i.e., defor-
mations of the m-tacnode to curves with m− 1 nodes. Then, by [2, Section
2.4], there is only one possible conjugacy class [τ+, τ−, σ] and the curve (24)
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is smooth and irreducible. Similarly, in the case dm = 1 and dj = 0 for every
j ≤ m− 1, the curve in Hp ⊂ T 1

C,p parametrizing deformations of the m-
tacnode to an Am−1-singularity is defined by (28). In particular it is smooth
and irreducible. This is no longer true in general.

In the special case that m = 2l + 1 is odd and d+
j = d−j for every j, the

parametric equations (31) of (24) have a simpler feature, since the polyno-
mial (29) is odd. Indeed, under the hypotheses, the polynomial
−ν(d,(τ+,τ−,σ),1)(−z) is monic and with no (m− 1)-term and defines an m-
covering of P

1 with monodromy in the conjugacy class (τ+, τ−, σ). More-
over, the discriminant polynomial (−ν(d,(τ+,τ−,σ),1)(−z))2 − 4 has dj roots
of multiplicity j, distributed as d+

j roots of ν(d,(τ+,τ−,σ),1)(−z) + 1 and d−j
roots of ν(d,(τ+,τ−,σ),1)(−z)− 1, for every j, and no further multiple roots.
By uniqueness, there exists ζ ∈ C with ζm = 1 such that

−ν(d,(τ+,τ−,σ),1)(−z) = ν(d,(τ+,τ−,σ),1)(ζz),

from which we deduce that ci,(d,(τ+,τ−,σ),1) = 0, for every even i and ζ = 1.
Then equations (31) become

(32)

α0 = 0, α1 = tlc1,(d,(τ+,τ−,σ),1),

α2 = 0, α3 = tl−1c3,(d,(τ+,τ−,σ),1),
...

...
...

αm−2 = 0 and β0 = tm

4 , t = u2 ∈ C.

Remark 3.15 (Multiplicities and base changes). In the same way as
in [10, Section 1] for families of curves with only nodes and ordinary cusps, it
is possible to define a relative Severi–Enriques variety VX|A1

D,1d2 , 2d3 ,..., (m−1)dm ⊂
H in the relative Hilbert scheme H, whose general fiber is the variety
VXt

Dt,1d2 , 2d3 ,..., (m−1)dm ⊂ |Dt| = Ht. Theorem 3.3 proves that, whenever its
hypotheses are verified, the locus of locally trivial deformations WE,m ⊂ |D0|
of C in |D0| is one of the irreducible components of the special fiber V0 of
VX|A1

D,1d2 , 2d3 ,..., (m−1)dm → A
1.

The multiplicity mC of WE,m, as irreducible component of V0, coincides
with the intersection multiplicity at 0 of the curve

V1d2 , 2d3 ,..., (m−1)dm ∩Hp = B1 ∪ · · · ∪Bk

with the linear space dφp(H0(C,NC|X0
)) : β0 = β1 = · · · = βm−1 = 0.
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Furthermore, the minimum of all intersection multiplicities at 0 of the
irreducible components Bi with dφp(H0(C,NC|X0

)) is the geometric multi-
plicity mg of C defined in [10, Problem 1 and Definition 1]. In particular,
mg ≤ mC . When d2 = m− 1 and dj = 0 for j 	= 2, we know by [2] that k = 1
and B1 is smooth at 0 and tangent to dφp(H0(C,NC|X0

) with multiplicity
mC = m.

By Corollary 3.12 and Remark 3.13, a similar result holds for reduced
curves C ′ ∈ |D0| with tacnodes on E and singularities of type Ak on the
smooth locus of X0, as long as H0(C ′, N ′

C′|X ) has the “expected dimension”.
In this case the multiplicity mC′ may be computed as in [1, Lemma 4.4].

We finally observe that it is an abuse of terminology to say that the
m-tacnodal curve C ⊂ X0 deforms to a curve Ct ∈ |OXt(Dt)| with dj singu-
larities of type Aj−1 for every j. This is true only up to a base change. More
precisely, let

X̃

��

�� X

��
A

1
νmg ��

A
1

be the family of surfaces obtained from X → A
1 by a base change of order

mg. Observe that X̃ is an mg-cover of X totally ramified along the central
fiber. In particular, by substituting νmg

(u) = umg = t in the local equation
xy = t of X at a point p ∈ E = A ∩B, one finds that X̃ is singular exactly
along the singular locus Ẽ 
 E of the central fiber X̃0 
 X0. By blowing-up
mg − 1 times X̃ along E one obtains a family of surfaces

X ′

��

h �� X

��
A

1
νmg ��

A
1

with smooth total space, having general fiber X ′u 
 X̃u 
 Xum , and whose
central fiber has a decomposition into irreducible components X ′0 = E0 ∪ E1 ∪
· · · ∪ Emg−1 ∪ Em where E0 = A, Em = B and Ei is a P

1-bundle on the curve
Ei ∩ Ei−1 
 E, for every 1 ≤ i ≤ m− 1. In this new family of surfaces X ′ →
A

1, we have that the pull-back curve h∗(C) ∈ |OX ′
0
(h∗(D))| of C deforms

to a curve Cu ∈ |OXu
(h∗(D))| with the wished singularities. Equivalently,

the divisor mgC ∈ |OX0(mgD0)| deforms to a reduced curve in |OXt(mgDt)|
having mg irreducible components, each of which is a curve with the desired
singularities.
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Example 3.16. In the previous remark, take m = 5, d3 = 2 and dj = 0, for
j 	= 3. Then mC = mg = 5. Roughly speaking, if the curve C in Theorem 3.3
has a 5-tacnode at the point p ∈ E ⊂ X0, then it appears as limit of curves
with two ordinary cusps on Xt with multiplicity 5.

Proof. If m = 5, d3 = 2 and dj = 0 for j 	= 3, then d+
3 = d−3 = 1 and (τ+, τ−,

σ) = ((123)(345)(654321)), up to conjugation. In particular, V 22 ∩Hp is an
irreducible curve whose parametric equations are given by equation (32) in
Remark 3.14. In particular, it intersects β0 = β1 = · · · = β5 = 0 with mul-
tiplicity 5 at 0. We finally want to prove that V 22 ∩Hp is smooth at 0, by
explicitly computing (32). The following argument has been suggested to us
by the referee. Let ν(z) be a degree 5 polynomial with no z4-term. If we
require

ν(z) = 1 + (z − a)3(z − a′)(z − a′′) = 1 + (z − b)3(z − b′)(z − b′′),

by solving the corresponding polynomial equations, we obtain that

• a is any root of 8x5 − 3,

• a′ and a′′ are the two roots of 3x2 + 9ax + 8a2,

• b = −a, b′ = −a′ and b′′ = −a′′.

Thus we find that ν(z) = 1 + 1
3(z − a)3(3z2 + 9az + 8a2) = z5 − 10a2

3 z3+
5a4z. In particular, the polynomial ν(z) is odd, as expected, and equations
(32) become

(33) α0 = α2 = 0, α1 = 5a4t2, a3 = −10a2

3
t andβ0 =

t5

4
, t ∈ C,

with a any fixed 5th root of 3
8 , proving smoothness. �

The corollary below follows directly from equations (28) and it is an easy
generalization of [10, Lemmas 2 and 6].

Corollary 3.17. Independently of m, if in Remark 3.15 we have that dm =
1 and dj = 0 for j 	= m, then mC = mg = 2. Roughly speaking, the m-tacnodal
curve C in Theorem 3.3 appears as limit of an Am−1-singularity on Xt with
multiplicity 2.

As already observed in Remark 3.15, Examples 3.16 and Corollary 3.17
may be generalized to curves C ′ ⊂ X0 with several tacnodes on E and singu-
larities Ak on the smooth locus of X0, under the hypothesis that
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H0(C ′,N ′
C′|X0

) has the expected dimension. But computing the multiplicity
mC′ in the general case is a non-easy exercise.

4. An application to general K3 surfaces

This section is devoted to the proof of Theorem 1.1. We also point out several
corollaries of it. The degeneration argument we will use has been introduced
in [5] and also used in [7]. In the following (S, H) will denote a general prim-
itively polarized K3 surface of genus p = pa(H). We will show the existence
of curves on S with Ak-singularities as an application of Theorem 3.3, more
precisely of Corollary 3.12. In particular we will study deformations of suit-
able curves with tacnodes and nodes on the union of two ad hoc constructed
rational normal scrolls, cf. Remark 3.13. We point out that our argument is
strongly inspired by the one in [7] but is not the same.

Let p = 2l + ε ≥ 3 be an integer with ε = 0, 1 and l ≥ 1 and let E ⊂
P

p be an elliptic normal curve of degree p + 1. Consider two line bundles
L1, L2 ∈ Pic2(E) with L1 	= L2. We denote by R1 and R2 the rational normal
scrolls of degree p− 1 in P

p generated by the secants of the divisors in |L1|
and |L2|, respectively. We have that

Ri
∼=

⎧⎪⎪⎨⎪⎪⎩
P

1 × P
1 if p = 2l + 1 is odd and OE(1) 	∼ (l + 1)Li,

F1 if p = 2l is even,

F2 if p = 2l + 1 is odd and OE(1) ∼ (l + 1)Li.

We will only need to consider the first two cases. In the first case, where R1
∼=

R2
∼= P

1 × P
1, we let σi and Fi be the classes of the two rulings of Ri, for

i = 1, 2. In the second case, where R1
∼= R2

∼= F1, we let σi be the section of
negative self-intersection and Fi be the class of a fiber. Then the embedding
of Ri into P

p is given by the line bundle σi + lFi for i = 1, 2 and R1 and R2

intersect transversally along the curve E ∼ −KRi
∼ 2σi + (3− ε)Fi, which

is anticanonical in each Ri (cf. [5, Lemma 1]). In particular, R := R1 ∪R2 is
a variety with normal crossings and, by [9, Section 2], we have that the first
cotangent bundle T 1

R 
 NE|R1
⊗NE|R2

of R is a line bundle on E of degree
16. Let now Up be the component of the Hilbert scheme of P

p containing R.
Then we have that dim(Up) = p2 + 2p + 19 and, by [5, Theorems 1 and 2],
the general point [S] ∈ Up represents a smooth, projective K3 surface S of
degree 2p− 2 in P

p such that PicS ∼= Z[OS(1)] = Z[H].
In the proof of Theorem 1.1 we will consider general deformations S → T

of R = S0 over a one-dimensional disc T contained in Up. Now S is smooth
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except for 16 rational double points ξ1, . . . , ξ16 lying on E; these are the
zeroes of the section of the first cotangent bundle T 1

R of R that is the image
by the natural map H0(R,NR|Pp) → H0(R, T 1

R) of the first-order embedded
deformation determined by S → T , cf. [5, pp. 644–647]. Blowing-up S at
these points and contracting the obtained exceptional components (all iso-
morphic to F0) on R2, we get a smooth family of surfaces X → T, such that
Xt 
 St and X0 = R1 ∪ R̃2, where R̃2 is the blowing-up of R2 at the points
ξ1, . . . , ξ16, with new exceptional curves E1, . . . , E16.

Proof of Theorem 1.1. Let p = 2l + ε ≥ 3, with ε = 0, 1, let E be a smooth
elliptic curve and n ≥ 1 an integer.

Case 1. We first prove the theorem under the assumption (n, p) 	= (2, 3),
(2, 4). The proof will be divided into 4 steps.
Step 1.1. We construct two suitable rational normal scrolls R1 and R2. Let
L1 	= L2 be two degree 2 line bundles on E such that

(34) (n− 1)(l − 1 + ε)L1 ∼ (n− 1)(l − 1 + ε)L2.

Note that there is no requirement if n = 1, and that the hypothesis p ≥ 5 if
n = 2 ensures that we can choose L1 	= L2. Now fix any general point r ∈ E
and embed E as an elliptic normal curve of degree p + 1 by the very ample
line bundle

(35) OE(1) :=
(
2n(l − 1 + ε) + 3− ε

)
r − (n− 1)(l − 1 + ε)Li.

When p = 2l + 1 is odd, the condition OE(1) 	∼ (l + 1)Li is equivalent to
(nl + 1)Li 	∼ 2(nl + 1)r, which is certainly verified for a general point r.
Hence, letting R1 and R2 be the two rational normal scrolls in P

p spanned
by L1 and L2 as above, we have that R1

∼= R2
∼= P

1 × P
1 when p = 2l + 1 is

odd and R1
∼= R2

∼= F1 when p = 2l is even.
Step 1.2. We next construct a special curve C ⊂ R = R1 ∪R2, inspired by
[7]. Using the notation above, let Mi be the divisor on Ri defined by Mi =
σi + [n(l − 1 + ε) + 1− ε]Fi. By (35) and the fact that Li|E ∼ Fi|E , we
have that [2n(l − 1 + ε) + 3− ε]r ∈ |OE(Mi)|. Since H0(Ri,ORi

(Mi)) ∼=
H0(E,OE(Mi)) we deduce that there exists a unique (necessarily smooth
and irreducible) curve Ci

n ⊂ Ri such that

(36) Ci
n ∈

∣∣∣Mi

∣∣∣ and Ci
n ∩ E =

(
2n(l − 1 + ε) + 3− ε

)
r,

for both i = 1, 2. Now we fix a general point q0 ∈ E and we denote by H
the hyperplane class of P

p. If n = 1 then Mi ∼ Ci
1 ∼ H on Ri and q0 /∈ Ci

1
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for i = 1, 2. More generally, by (34)–(36), we have that

(nH − C1
n)|E ∼ (nH − C2

n)|E ,

for every n ≥ 1. In particular, if n ≥ 2, there exists a curve D1 ∪D2 ⊂ R
with Di = ∪n−1

j=1 Ci
j ⊂ Ri, where every Ci

j ∈ |σi + (1− ε)Fi| is a (necessarily
smooth and irreducible) curve on Ri, such that

C1
j ∩ E = q2j−2 + (2− ε)q2j−1 and C2

j ∩ E = (2− ε)q2j−1 + q2j ,

with i = 1, 2 and 1 ≤ j ≤ n− 1, and where q1, q2, . . . , q2n−2 = q0 are distinct
points on E. Notice that the curve D1 ∪D2 ⊂ R is uniquely determined by
q0 if p is odd, while for p even there are finitely many curves like D1 ∪D2.
Now, for i = 1, 2, let Ci ∈ |ORi

(nH)| be the curve defined by

Ci =

{
Ci

1 if n = 1,

Di ∪ Ci
n = Ci

1 ∪ Ci
2 ∪ · · · ∪ Ci

n−1 ∪ Ci
n if n ≥ 2.

Observe that, if n ≥ 2, because of the generality of q0, we may assume that
all irreducible components Ci

j of Di intersect Ci
n transversally for i = 1, 2.

In particular, we have that the singularities of C := C1 ∪ C2 ∈ |OR(nH)|
consist of a (p + 1)-tacnode at r ∈ E if n = 1, and are given by nodes on
R \ E and nodes and tacnodes on E if n ≥ 2.
Step 1.3. We now construct a general deformation S → T of R, whose gen-
eral fiber St is a smooth projective K3 surface, and a smooth birational mod-
ification of it

(37) X

���
��

��
��

π �� S

��
T

as above. Let ξ1 + · · ·+ ξ16 ∈ |T 1
R| be a general divisor if n = 1 and a general

divisor such that ξ1 = q0 and ξl 	= qm, for every l ≥ 2 and m ≥ 1, if n ≥ 2.
By the generality of q0, we have that ξ1 + · · ·+ ξ16 is a general member of
|T 1

R| also for n ≥ 2. By the surjectivity of the natural map H0(R,NR|Pp) →
H0(R, T 1

R) (see [5, Corollary 1]), by [5, Theorems 1 and 2] and related refer-
ences (precisely, [9, Remark 2.6] and [13, Section 2]), we deduce that there
exists a deformation S → T of S0 = R whose general fiber is a smooth pro-
jective K3 surface St in P

p with Pic(St) ∼= Z[OSt
(1)] ∼= Z[H] and such that

S is singular exactly at the points ξ1 . . . , ξ16 ∈ E. Let X → T be the smooth
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family obtained from S → T as above and π : X → S the induced birational
morphism. We recall that it has special fiber X0 = R1 ∪ R̃2, where R̃2 is the
blowing up of R2 at ξ1 . . . , ξ16 and R1 ∩ R̃2 = E.
Step 1.4. Let C̃ and π∗(C) be the strict transform and the pull-back of C
with respect to the natural morphism π : X → S. Using the ideas developed
in Section 3, we will prove that π∗(C) deforms into a family of curves in the
Xt’s enjoying the required properties.

In the case n = 1, the result is a straightforward application of Theo-
rem 3.3. Indeed, for n = 1, by the generality of r ∈ E, the curve C̃ 
 π∗(C)
is a (p + 1)-tacnodal curve satisfying all hypotheses of Theorem 3.3.

Assume now that n ≥ 2. In this case π∗(C) = C̃ ∪ Eq0 , where Eq0 = E1 ⊂
R̃2 is the (−1)-curve corresponding to q0 = ξ1. By abusing notation, we
denote every irreducible component of C̃ as the corresponding irreducible
component of C. In particular, we set C̃ = C1

n ∪D1 ∪ C2
n ∪D2 and Di =

∪n−1
j=1 Ci

j , for every i. The singularities of π∗(C) on X0 \ E are given by the sin-
gularities of the strict transform C̃ of C and a further node at x0 = Eq0 ∩ C̃.
We want to obtain curves in |OXt(nHt)| with the desired singularities as
deformations of π∗(C). We first observe that every deformation of π∗(C) in
|OXt(nHt)| is an irreducible curve. This may easily be verified using that
the divisor Ht generates Pic(Xt). In particular, no matter how we deform
π∗(C) to a curve on Xt, at least one node of π∗(C) on (C1

n ∪ C2
n) ∩ (D1 ∪

D2) ∩ (R \ E) must be smoothed. Moreover, the smoothed node may be
chosen arbitrarily, as will be clear by the following argument. Let q ∈ (C1

n ∪
C2

n) ∩ (D1 ∪D2) ∩ (X0 \ E) be any fixed point and consider the natural
morphism

Φ : H0(π∗(C),Nπ∗(C)|X ) → T = ⊕x tacnodeT
1
π∗(C),x ⊕y �=q node on X0\E T 1

π∗(C),y

obtained by composing the morphism H0(π∗(C),Nπ∗(C)|X ) →
H0(π∗(C), T 1

π∗(C)) with the projection H0(π∗(C), T 1
π∗(C)) → T. By Remark

2.4 and Lemma 3.4, the kernel of Φ is contained in the subspace
rπ∗(C)(W) ⊂ H0(π∗(C),Nπ∗(C)|X0

), where rπ∗(C) : H0(X0,OX0(π
∗(C))) →

H0(π∗(C),Nπ∗(C)|X0
) is the restriction map and W ⊂ H0(X0,OX0(π

∗(C)))
is the subspace associated with the linear system W ⊂ |OX0(π

∗(C))| of
curves passing through every node y 	= q of π∗(C) on X0 \ E and having an
(m− 1)-tacnode at every m-tacnode of π∗(C).

We now want to show that

ker(Φ) = rπ∗(C)(W) = H0(π∗(C),N ′π∗(C)|X0) = H0(π∗(C),N ′π∗(C)|X ) = {0}.(38)
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The equality H0(π∗(C),N ′
π∗(C)|X0

) = H0(π∗(C),N ′
π∗(C)|X ) follows from

Lemma 3.4. Moreover, we observe that, in order to prove (38), it is enough
to show that the linear system W consists of the unique curve W = {π∗(C)}.
Indeed, if this last equality is true, then ker(Φ) = rπ∗(C)(W) = {0}. More-
over, the equality W = {π∗(C)} also implies that every curve D in W
contains the point q, too. In other words, every infinitesimal deformation
of π∗(C) in X0 preserving every tacnode and the nodes y different from
q on X0 \ E, also preserves q. Using that the nodes of π∗(C) on E are
trivially preserved by every section of H0(π∗(C),Nπ∗(C)|X0

), we have that
rπ∗(C)(W) ⊂ H0(π∗(C),N ′

π∗(C)|X0
). Since the other inclusion holds trivially,

we obtain (38).
Now the equality W = {π∗(C)} is a straightforward application of

Bezout’s theorem. Let B = B1 ∪B2, where B1 = B|R1 and B2 = B|R̃2
, be a

curve in the linear system W . Assume that q ∈ R̃2. The other case is similar.
We first observe that the intersection number Bi.C

i
n is given by Bi.C

i
n =

n2(l − 1 + ε) + nl. Moreover, by the hypothesis B ∈W , we have that the
intersection multiplicity of B1 and C1

n at r is given by multr(B1, C
1
n) =

2n(l − 1 + ε) + 2− ε. Furthermore, the intersection B1 ∩ C1
n contains the

intersection points C1
n ∩ C1

j , for 1 ≤ j ≤ n− 1. We deduce that the cardi-
nality of the intersection B1 ∩ C1

n is at least equal to

2n(l − 1 + ε) + 2− ε + (n− 1)Mi

(
σi + (ε− 1)Fi

)
= n2(l − 1 + ε) + nl + 1.

Thus, by Bezout’s Theorem, C1
n ⊂ B1. Since B is a Cartier divisor, it follows

that the intersection multiplicity of B2 with E at r is given by multr(B2, E) =
multr(B1, E) ≥ multr(C1

n, E) = 2n(l − 1 + ε) + 3− ε. Moreover, B2 contains
the points, different from q, arising from the intersection of C2

n ∩ C2
j , with

j ≤ n− 1. Using again Bezout’s theorem, we find that C2
n ⊂ B2 and, in par-

ticular q ∈ B. It remains to prove that Ci
j ⊂ Bi, for i = 1, 2 and j ≤ n− 1.

We observe that, if j ≤ n− 1, then Bi.C
i
j = nl. Now consider the inter-

section B2 ∩ C2
n−1. It contains the point q2n−3 with multiplicity 1− ε; the

point x0; the (n− 2)(1− ε) points arising from the intersection C2
j ∩ C2

n−1,
for j ≤ n− 2; the intersection points C2

n−2 ∩ C2
n. This amounts to a total

of nl + 1 points. Thus, C2
n−1 ⊂ B2. Similarly we have that Eq0 ⊂ B2. Then

B1 passes through the further points q0 = q2n−2 = Eq0 ∩ E and q2n−3 with
multiplicity 2− ε. This implies by Bezout that C1

n−1 ⊂ B1. Applying this
argument 2(n− 2) more times, one obtains that B = π∗(C) and thus Φ is
injective.

The rest of the proof will be divided according to the parity of p.
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Case 1.4.1: p = 2l + 1 is odd. Then all singularities of π∗(C) are nodes
except for the point r ∈ E that is a (2nl + 2)-tacnode. Moreover, by Corol-
lary 3.12 (and using the notation therein), the image of Φ is contained in
the linear space

T ′ = Hr ⊕y �=q node on R\E T 1
π∗(C),y ⊂ T.

As Φ is injective, the image of Φ has dimension h0(π∗(C),Nπ∗(C)|X ) =
2n2l + 2. Since dim(Hr) = 2nl + 2 by Corollary 3.12 and the curve π∗(C)
has exactly 2nl(n− 1) nodes on R \ E different from q, the image of Φ must
coincide with T ′. Again by Corollary 3.12 and by versality, we deduce that
the curve π∗(C) may be deformed to a curve Ct ∈ |OXt(nHt)| preserving all
nodes of π∗(C) on R \ E except q and deforming the (2nl + 2)-tacnode to
dk singularities of type Ak−1, for every sequence (dk) of non-negative inte-
gers such that

∑
k(k − 1)dk = 2nl + 1. Moreover, by the fact that ker(Φ) =

H0(π∗(C),N ′
π∗(C)|X ) = {0}, we obtain that the family of curves Ct ∈

|OXt(nHt)| constructed in this way is, scheme theoretically, a generically
smooth curve B ⊂ HX|A1 in the relative Hilbert scheme. By the openness of
versality (more precisely, by the properties [8, (3.5) and (3.6)] of versal defor-
mation families), if [Ct] ∈ B is a general point, then T[Ct]B 
 H0(Ct,N ′

Ct|X ).
In particular, we obtain that

dim(T[Ct]ES(Ct)) = h0(Ct,N ′
Ct|X0

) = h0(Ct,N ′
Ct|X )− 1 = 0.

This proves the theorem in the case p is odd.
Case 1.4.2: p = 2l is even. In this case π∗(C) has a (2n(l − 1) + 3)-

tacnode at r, a 2-tacnode at q2j−1, for every j = 1, . . . , n− 1, and nodes else-
where. In particular, π∗(C) has 2(n− 1)(nl − n + 1) + (n− 1)(n− 2) nodes
on R \ E different from q. Again by Corollary 3.12 (and using the notation
therein), Φ(H0(π∗(C),Nπ∗(C)|X )) is contained in the linear subspace

T ′ = Hr ⊕n−1
j=1 Hq2j−1 ⊕y �=q node on R\E T 1

π∗(C),y

of T. In this case the image of Φ does not coincide with T ′ unless n = 1. For
n = 1 the theorem follows as before. If n > 1 we observe that
Φ(H0(π∗(C),Nπ∗(C)|X )) contains Φ(H0(π∗(C),Nπ∗(C)|X0

)) as a codimension
1 subspace. Moreover, by Corollary 3.12 and a straightforward dimension
count, we have that

Φ(H0(π∗(C),Nπ∗(C)|X0
)) = Γr ⊕n−1

j=1 Γq2j−1 ⊕y �=q node on R\E T 1
π∗(C),y,
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where Γr ⊂ Hr is the locus of (2n(l − 1) + 3)-nodal curves and Γq2j−1 ⊂
Hq2j−1 is the locus of 2-nodal curves, for every j = 1, . . . , n− 1, cf. Remark
3.6. It follows that

Φ(H0(π∗(C),Nπ∗(C)|X )) = Ω⊕y �=q node on R\E T 1
π∗(C),y,

where Ω ⊂ Hr ⊕n−1
j=1 Hq2j−1 is a linear subspace containing Γr ⊕n−1

j=1 Γq2j−1 as
a codimension 1 subspace. Moreover, again by Corollary 3.12 and the sur-
jectivity of the map H0(π∗(C),Nπ∗(C)|X0

)) → Γx, with x = r or x = q2j−1,
we have that the projection maps

ρr : Ω → Hr and ρq2j−1 : Ω → Hq2j−1

are surjective, for every j. By [2, Section 2.4], the locus of 1-nodal curves
in Hq2j−1 is a smooth curve simply tangent to Γq2j−1 at 0. Let (d2, . . . , dm)
be any (m− 1)-tuple of non-negative integers such that

∑m
k=2(k − 1)dk =

2n(l − 1) + 2. By Proposition 3.7 again, the locus V1d2 , 2d3 ,..., (m−1)dm ⊂ Hr of
points corresponding to curves with dk singularities of type Ak−1, for every
k, is a reduced (possibly reducible) curve intersecting Γr only at 0. It follows
that the locus of curves in Ω with d2 + n− 1 nodes and dk singularities of
type Ak−1 for every k ≥ 3 is a reduced (possibly reducible) curve. Paramet-
ric equations of this curve may be explicitly computed for selected values
of d2, . . . , dm (see, e.g., Remark 3.14, Example 3.16 and Corollary 3.17) by
arguing exactly as in [1, proof of Lemma 4.4, pp. 381–382]. By versality,
the curve π∗(C) may be deformed to a curve Ct ∈ |OXt(nHt)|, preserving
all nodes of π∗(C) on R \ E except q and deforming every simple tacnode
of π∗(C) to a node and the (2n(l − 1) + 3)-tacnode at r to dk singulari-
ties of type Ak−1. As before, by the fact that h0(π∗(C),N ′

π∗(C)|X ) = 0 and
properties [8, (3.5) and (3.6)] of versal deformation families, we obtain that
dim(T[Ct]ES(Ct)) = 0, for a general t.

Case 2. We finally consider the cases (n, p) = (2, 3) and (2, 4). Let E be a
general elliptic normal curve of degree p + 1 in P

p and R1 = Q1 and R2 = Q2

be two general rational normal scrolls intersecting transversally along E. Let
X → T be a one-parameter family of very general primitively polarized K3
surfaces with special fiber X0 and double points p1, . . . , p16 ∈ E. Consider
on X0 := Q1 ∪Q2 the curve ∪2

i=1 ∪n
j=1 Ci

j constructed in [7, Section 3.2].
The theorem follows in this case by studying deformations of this curve by
the same techniques as before. Details are left to the reader. �
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In the case n = 1, Theorem 1.1 proves that the variety
VS

H,1d2 , 2d3 ,..., (m−1)dm is non-empty whenever it has non-negative expected
dimension. The precise statement is the following.

Corollary 4.1. Let (S, H) be a general primitively polarized K3 surface
of genus p = pa(H). Then, for every (m− 1)-tuple of non-negative integers
d2, . . . , dm such that

(39)
m∑

j=2

(j − 1)dj ≤ dim(|H|) = p,

there exist reduced irreducible curves C in the linear system |H| on S having
dj singularities of type Aj−1 for every j = 2, . . . , m, and no further singu-
larities and corresponding to regular points of their equisingular deformation
locus ES(Ct). Equivalently, dim(T[Ct]ES(Ct)) = dim(|H|)−∑m

j=2(j − 1)dj .

In particular, the variety VS
H,1d2 , 2d3 ,..., (m−1)dm is non-empty whenever (39)

is satisfied.

The previous result is optimal for g = 0, because, by [6], we know that
all the rational curves in |H| are nodal (and nodes are the worst expected
singularities of a rational curve in |H|). Theorem 1.1 also proves the existence
of divisors in VS

nH,1δ , parametrizing curves with a tacnode or a cusp and
nodes, whenever they have non-negative expected dimension.

Corollary 4.2. Let (S, H) be a general primitively polarized K3 surface of
genus p = pa(H) ≥ 3 and let δ ≤ p− 1. Then the Severi variety VS

nH,1δ of
reduced and irreducible δ-nodal curves contains two non-empty generically
smooth divisors Vtac and Vc, whose general point of every irreducible com-
ponent corresponds to a curve with a simple tacnode and δ − 2 nodes and
an ordinary cusp and δ − 1 nodes, respectively. In particular, the varieties
VS

nH,1δ−2,31 and VS
nH,1δ−1,21, are non-empty.

Remark 4.3. The existence of a further non-empty generically smooth
divisor Vtrip ⊂ VS

nH,1δ , whose general element in every irreducible component
corresponds to a curve with a triple point and δ − 3 nodes, has been proved
in [11, Corollary 4.2] under the assumption (n, p) 	= (1, 4). The case (n, p) =
(1, 4) has been studied in [12, Proposition 2.2]. It is unknown if VS

nH,1δ may
contain divisors W different from Vtrip, Vtac and Vc and parametrizing curves
with singularities different than nodes.
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We finally observe that Theorem 1.1 together with Proposition 1.2 pro-
vide sufficient conditions for the variety VS

nH,1d2 , 2d3 ,..., (m−1)dm to be non-empty
and regular. In the following remark we write explicitly the corresponding
existence and regularity condition for n = 1. The case n ≥ 2 is left to the
reader.

Remark 4.4. By Theorem 1.1 and Proposition 1.2 in the case n = 1, we
have that, if (S, H) is a general primitively polarized K3 surface of genus p
and

(40)
m∑

j=2

(j − 1)dj <
p + 2

2
,

then the variety VS
H,1d2 , 2d3 ,..., (m−1)dm ⊂ |H| is non-empty and regular (cf. Def-

inition 2.3 and Remark 2.4). This condition of existence and regularity is
certainly an improvement of (6) but is not optimal. Indeed, by Mumford
and Tannebaum [22] and [25], we know that the Severi variety of δ-nodal
curves in |H| is non-empty and regular for every δ ≤ p. When (40) is not
satisfied, the existence of irreducible components V ⊂ VS

H,1d2 , 2d3 ,..., (m−1)dm

of dimension bigger that the expected would imply the reducibility of the
variety.

Appendix A: Proof of Lemma 3.10

The proof is by induction on m.
Base case of the induction. We first prove the lemma in the special case

of an admissible 2(n− 1)-tuple satisfying
∑n

j=2 d−j = 1 or
∑n

j=2 d+
j = 1. So

assume, by symmetry, that
∑n

j=2 d−j = 1. Then there is an index i0 such
that d−i0 = 1 and d−j = 0 for all j 	= i0. The question is whether there is a
permutation τ+ of cyclic structure Πn

j=2j
d+

j and a cycle τ− = σi0 of order i0
such that τ+σi0 is cyclic of order m. Let σi0 = (1 2 · · · i0). By (26), we have∑n

j=2(j − 1)d+
j = m− i0. This implies that we can construct a permutation

τ+ of the desired cyclic structure such that each cycle contains precisely one
integer in the set {1, 2, . . . , i0}. It is then easily seen that τ+(1 2 · · · i0) is
an m-cycle.

Induction step. The base cases of the induction are all cases where∑n
j=2 d−j = 1 or

∑n
j=2 d+

j = 1, which have been treated above. Now let
(d+

2 , d−2 , . . . , d+
n , d−n ) be an admissible 2(n− 1)-tuple such that both∑n

j=2 d±j ≥ 2. By symmetry we may assume that
∑n

j=2 jd−j ≥
∑n

j=2 jd+
j .
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Set i0 := min{j| d−j > 0}. We claim that the 2(n− 1)-tuple

(d′+2 , d′−2 , . . . , d′+i0 , d
′−
i0 , . . . , d

′+
n , d′−n ) = (d+

2 , d−2 , . . . , d+
i0

, d−i0 − 1, . . . , d+
n , d−n )

is admissible. Indeed, set m′ :=
∑n

j=2(j − 1)(d′+j + d′−j ) + 1 = m− i0 + 1.

Then m′ ≥ 2 since
∑n

j=2 d′+j =
∑n

j=2 d+
j ≥ 2. Clearly,

(A.1)
n∑

j=2

jd′−j =
n∑

j=2

jd−j − i0 ≤ m− i0 < m− i0 + 1 = m′

by (27). Assume that
∑n

j=2 jd′+j =
∑n

j=2 jd+
j > m′ = m− i0 + 1. Then we

have that

m− i0 + 2 ≤
n∑

j=2

jd+
j ≤

n∑
j=2

jd−j , whence

2m− 2i0 + 4 ≤
n∑

j=2

j(d+
j + d−j )

= 2
n∑

j=2

(j − 1)(d+
j + d−j )

−
n∑

j=2

(j − 2)(d+
j + d−j )

= 2(m− 1)−
n∑

j=2

(j − 2)(d+
j + d−j ),

by (26). It follows that 0 ≤∑n
j=2(j − 2)d−j ≤

∑n
j=2(j − 2)(d+

j + d−j ) ≤ 2i0 −
6. In particular, we obtain that i0 ≥ 3. Moreover, by definition of i0, we
must have 2(i0 − 2) ≤ (i0 − 2)

∑n
j=2 d−j ≤

∑n
j=2(j − 2)d−j ≤ 2i0 − 6, getting

a contradiction. Therefore, we have proved our claim that the 2(n− 1)-tuple

(d′+2 , d′−2 , . . . , d′+i0 , d
′−
i0 , . . . , d

′+
n , d′−n ) = (d+

2 , d−2 , . . . , d+
i0

, d−i0 − 1, . . . , d+
n , d−n )

is admissible.
By induction, there exist permutations τ± in the symmetric group

Sm−i0+1 of order m− i0 + 1 of cyclic structures Πn
j=2j

d′±
j , respectively, such

that
τ+τ− =

(
1 2 · · · (m− i0 + 1)

)
.
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The number of distinct integers from {1, 2, . . . , m− i0 + 1} appearing in the
permutation τ− is

∑n
j=2 jd′−j , which is less than m− i0 + 1 by (A.1). Hence

there exists an x ∈ {1, 2, . . . , m− i0 + 1} not appearing in τ−. Then the
permutation

α− = τ−
(
(m− i0 + 2) (m− i0 + 3) · · · m x

)
has cyclic structure Πn

j=2j
d−

j and

τ+α− =
(
1 2 · · · (m− i0 + 1)

)(
(m− i0 + 2) (m− i0 + 3) · · · m x

)
is cyclic of order m, as desired. �

Remark A.1. In general, given an admissible (2n− 2)-tuple, we have sev-
eral conjugacy classes of triples of permutations satisfying Lemma 3.10. For
example, if m = 7, d+

2 = d+
3 = 1, d−4 = 1 and d±j = 0 otherwise, then the two

triples

((267)(15), (1234), (1, 672, 345)−1) and ((365)(17), (1234), (1, 256, 347)−1)

satisfy Lemma 3.10 and are not conjugated.
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