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Graphs of large girth and surfaces

of large systole

Bram Petri and Alexander Walker

The systole of a hyperbolic surface is bounded by a logarithmic
function of its genus. This bound is sharp, in that there exist se-
quences of surfaces with genera tending to infinity that attain log-
arithmically large systoles. These are constructed by taking con-
gruence covers of arithmetic surfaces.

In this article we provide a new construction for a sequence of
surfaces with systoles that grow logarithmically in their genera. We
do this by combining a construction for graphs of large girth and a
count of the number of SL2(Z) matrices with positive entries and
bounded trace.

1. Introduction

This article is about a classical problem in hyperbolic geometry and its
analogue in graph theory. In the language of graph theory, this problem
concerns the existence of regular graphs with large girth (a graph is called
k-regular if all of its vertices have degree k). Here, the girth of a graph is
the length of its shortest cycle. It follows from an easy counting argument
that the girth h(Γ) of a k-regular graph Γ is bounded from above by1

h(Γ) . 2 logk−1(n),

in which n is the number of vertices of Γ. Surprisingly, it is actually possible
to construct sequences of k-regular graphs with girth that grows logarith-
mically in the number of vertices. The first constructions of such graphs are

First author partially supported by Swiss National Science Foundation grant
number PP00P2 153024.

1Here and throughout, the notation f(n) . g(n) indicates that

lim sup
n→∞

f(n)/g(n) ≤ 1.
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due to Erdős and Sachs [ES63] and Sauer [Sau67], which provide graphs
of girth roughly logk−1(n). The best known constructions have asymptotic
girth

4

3
logk−1(n),

as n→∞. Examples of graphs that achieve this growth are the trivalent
sextet graphs of [BiHo83], as proved by Weiss in [Wei84], and the Ramanujan
graphs of Lubotzky, Philips, and Sarnak [LPS88]. It is not known whether
the constant 4

3 is optimal. For a survey on constructions of graphs of large
girth, see [Big98].

From the perspective of hyperbolic geometry, this question turns into a
search for genus g (either closed or of finite area) hyperbolic surfaces of large
systole. Here, the systole of a hyperbolic surface is the length of a shortest
homotopically non-trivial and non-peripheral2 curve.

Borrowing familiar arguments from the graph case, it can be proved that
the systole sys(S) of a closed hyperbolic surface S satisfies

sys(S) . 2 log(g),

where g is the genus of S. A similar bound holds true when S has punctures,
however the proof in this case is less straightforward. The best known upper
bounds are due to Schmutz-Schaller [SS97] and Fanoni and Parlier [FP14].

As with graphs, there exist sequences of hyperbolic surfaces with systoles
that grow logarithmically in the genus. Curiously, the best known construc-
tions in this case also come with a factor 4

3 . That is, there exist sequences
of hyperbolic surfaces {Sk}∞k=0 such that

sys(Sk) &
4

3
log(gk),

where gk is the genus of Sk and gk →∞ as k →∞. Buser and Sarnak [BS94]
were the first to construct such sequences, using congruence covers of certain
closed arithmetic surfaces. Katz, Schaps, and Vishne [KSV07] generalized
their construction to principal congruence covers of any closed arithmetic
surface. In [Mak13], Makisumi proved that the constant 4

3 is actually optimal
for congruence covers. For a survey on surfaces of large systole, see [Par14].

Very few explicit examples of global and local maximizers of the systole
as a function on moduli spaces of closed hyperbolic surfaces are known, es-
pecially for closed surfaces. The global maximizer is known only in genus

2Recall that non-peripheral means not homotopic to a puncture or boundary
component.
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2 [Jen84] and examples of local maximizers are known in genus 3, 6 and 10
[Ham01]. For cusped surfaces, we know an infinite sequence of global maxi-
mizers: Schmutz-Schaller proved that the principal congruence subgroups of
PSL2(Z) are global maximizers in their moduli spaces [Sch93].

The main goal of this paper is to give a new construction of sequences
of hyperbolic (both closed and cusped) surfaces with systoles that grow
logarithmically in their genera (see Corollary 4.2). The idea is to combine
the graph theoretical construction by Erdős and Sachs with a count of the
number of matrices of small trace in the semigroup of SL2(Z)-matrices with
non-negative entries (see Proposition 3.4).

Concretely, we construct cusped surfaces with systole at least:

log g − log log g − C,

where g is the genus of the corresponding surface and C is some absolute
constant. Furthermore, given natural numbers (traces) k1, . . . , kr, each ex-
ceeding the trace corresponding to the systole, and natural numbers (multi-
plicities) m1, . . . ,mr that are small enough (see Section 4), we can construct
these surfaces in such a way that they have at least mi curves of length

2 · arccosh(ki/2)

for i = 1, . . . , r. These surfaces can be compactified, in essence by adding
points in the cusps, in order to obtain closed surfaces. A result of Brooks
(Lemma 2.2) implies that the systole of these compactified surfaces remains
close to their cusped counterparts.

As a consequence of their construction, these surfaces come with a tri-
angulation that has a dual graph Γ of girth

h(Γ) & 1
2 logφ(n) ≈ 1.039 log n,

where n is the number of vertices of Γ and φ = (1 +
√

5)/2 denotes the
golden ratio.

2. Preliminaries

In this section we explain how to construct a surface from a cubic ribbon
graph and how the geometry of such a surface depends on the combinatorics
of the underlying graph. The construction we use is taken from [BM04] (see
also [Bro04]).
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2.1. Surfaces from graphs

We begin with the definition of a cubic ribbon graph:

Definition 2.1. A graph Γ = (V,E) is called cubic if:

deg(v) = 3 for all v ∈ V.

A cubic ribbon graph is a pair (Γ,O), where Γ is a cubic graph and O is a
map that assigns a cyclic order to the triple of edges emanating from each
vertex.

Ribbon graphs are sometimes called fatgraphs or oriented graphs. It
should be noted that these definitions do not distinguish between graphs
and multigraphs: graphs in this text are allowed to have loops and multiple
edges.

Given a cubic ribbon graph (Γ,O) we construct a topological surface
S(Γ,O) as follows. To every vertex v of Γ we assign a triangle, whose three
sides correspond to the edges emanating from v. Then, for each edge e of
Γ, we glue together the two triangle sides corresponding to e. We do this
in such a way that the resulting surface is orientable. The orientation we
pick is the one corresponding to the cyclic order on the edges emanating
from each vertex (eg. via the right-hand rule). In this way, the pair (Γ,O)
uniquely determines the surface S(Γ,O).

We observe that the graph Γ naturally embeds into the surface S(Γ,O),
and we will often think of it as such without mention. In this setting the
combinatorics of the underlying graph can be used to control the topology of
the surface; for example, the following result of Beineke and Harary bounds
the genus of S(Γ,O) using solely combinatorial data:

Proposition 2.1. [BeHa65] Let Γ be a connected graph with p vertices, q
edges and girth h that embeds into a surface S of genus g. Then:

1 +
1

2

(
1− 2

h

)
q − 1

2
p ≤ g

We can turn S(Γ,O) into a geometric surface by defining a metric on
the underlying triangle. Here, the metric we choose is the metric of the ideal
hyperbolic triangle. This metric extends to all of S(Γ,O) so long as the
gluing maps between the triangles are isometries. There are an uncountable
number of such isometries, and in this article we choose the unique gluing
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such that the perpendiculars connecting the identified sides to the vertices
opposite them meet, as in Figure 1 below:

H2

Figure 1: A shear 0 gluing of two triangles.

In a general gluing of ideal hyperbolic triangles, the signed distance be-
tween the two endpoints of the perpendiculars is called the shear of the
gluing. In other words, we choose each of our gluings to have shear 0. This
implies that S(Γ,O) is a punctured surface with a complete hyperbolic struc-
ture. The punctures of S(Γ,O), called cusps, correspond one-to-one with
cycles in (Γ,O) that consist exclusively of lefthand turns.

It is also possible to turn S(Γ,O) into a closed hyperbolic surface. To
see this, we recognize the hyperbolic structure on S(Γ,O) as a conformal
structure in which the cusps are conformally equivalent to punctured disks.
By adding points to these punctured disks, we can extend this conformal
structure to a conformal structure of a closed surface. The uniformization
theorem gives the existence of a unique complete hyperbolic structure in
the equivalence class of this conformal surface (provided that the genus of
S is at least 2, which we assume). Our surface, equipped with this specific
hyperbolic structure, will be denoted S(Γ,O).

2.2. The geometry of curves

A particularly nice feature of the construction above is that the geometry
of S(Γ,O) is entirely determined by the combinatorics of the underlying
ribbon graph (Γ,O). In what follows we will explain how to understand the
geometry of curves on S(Γ,O) in terms of (Γ,O).
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It is a classical fact from hyperbolic geometry (see for example Theo-
rem 1.6.6 in [Bus92]) that the homotopy class of a non-peripheral, non-trivial
closed curve γ contains a unique geodesic γ̃. This geodesic minimizes the
length among all curves in that homotopy class. Furthermore, if the surface
is given by

S = H2/G

where G ⊂ PSL2(R) is a torsion-free discrete subgroup, then we can find a
hyperbolic element g ∈ G such that the axis of g in H2 projects to the γ̃ in
S. The length of γ̃ is equal to the translation length Tg of g. This translation
length is in turn given by:

Tg = 2 · arccosh

(
|tr (g)|

2

)
,

in which tr (g) denotes the trace of g ∈ PSL2(R) (see for instance [Bea83,
§7.34]).

The construction of S(Γ,O) allows us to recover the translation length
for a given curve. Namely, given a curve γ on S(Γ,O), we can homotope it
to a cycle3 γ̃ on the graph Γ ⊂ S(Γ,O). Because Γ is oriented we can tell
whether γ turns ‘left’ or ‘right’ at a given vertex. This means that traversing
the curve γ once gives us a word w(γ) in letters L and R. We set

(1) L =

(
1 1
0 1

)
and R =

(
1 0
1 1

)
,

which turns w(γ) into a matrix. The length of the unique geodesic γ̃ homo-
topic to γ is now given by

`(γ̃) := 2 · arccosh

(
tr (w(γ))

2

)
.

Note that the word w(γ) is not well-defined: it depends on where we start to
traverse γ and in which direction we do so. This has no effect on the trace,
however, which means that `(γ̃) is well-defined.

When we consider S(Γ,O) instead, we seem to lose the combinatorial
description of the length of curves: the uniformization theorem tells us that
there is a natural hyperbolic structure on S(Γ,O), but it does not tell us
anything about the geometry of this structure. However, there is a way

3Here, a cycle is any closed path on a graph. A closed path that meets every
vertex and edge in Γ at most once will be called a circuit.
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to solve this problem, using a result of Brooks [Bro04]. We first need the
following definition:

Definition 2.2. Let S be a hyperbolic surface with at least one cusp and
fix r > 0. Then S is said to have cusp length ≥ r if for each cusp of S there
exists a non-self-intersecting horocycle of length r about that cusp, such that
no two horocycles intersect.

We have the following Lemma:

Lemma 2.2. [Bro04] Let (Γ,O) be a cubic ribbon graph such that S(Γ,O)
has cusp length ≥ r, where r is sufficiently large. Then for every non-
peripheral and homotopically essential geodesic γ on S(Γ,O) there exists
a geodesic γ on S(Γ,O) such that the image of γ under the map S(Γ,O)→
S(Γ,O) is homotopic to γ and

`(γ) ≤ `(γ) ≤ (1 + δ(r))`(γ),

where δ(r)→ 0 as r →∞.

3. Words in L and R

In the previous section we have seen that in order to understand the lengths
of curves on a surface S(Γ,O) we need to understand which words in L and
R appear as cycles on (Γ,O). In this section we collect some basic properties
of the set of words in L and R and use these properties to produce estimates
for the number of words in L and R of bounded trace.

3.1. Basic properties

We start with some notation. The semigroup of words in L and R (as defined
in line (1)) will be denoted

〈L,R〉+.

Elements of this set will sometimes be interpreted as matrices and sometimes
as strings in two letters. It will be clear from context which of the two we
mean. We define an equivalence relation on 〈L,R〉+ as follows:

Definition 3.1. Let w,w′ ∈ 〈L,R〉+. We write w ∼ w′ if either of the fol-
lowing is true:
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– w′ is a cyclic permutation of w.

– w′ is a cyclic permutation of w∗, where w∗ is the word obtained by reading
w backwards and interchanging L and R.

In the previous section we noted that the map from cycles on (Γ,O) to
〈L,R〉+ is not well-defined. The equivalence defined here solves this problem,
since the compositions of maps into 〈L,R〉+/ ∼ is well-defined. If γ is a cycle
on Γ and its image under the given map is [w] we say that γ carries [w].

The following lemma provides various estimates on the trace of words
in 〈L,R〉+:

Lemma 3.1. Let w ∈ 〈L,R〉+. If w′ ∈ 〈L,R〉+ can be obtained from insert-
ing letters from {L,R} into w then

tr
(
w′
)
≥ tr (w) ,

with equality if and only if w′ ∼ Lm for some m. Moreover, tr (w) ≤ φlenw +
1 in general, and tr (w) ≥ len(w) + 1 unless w ∼ Lm for some m.

Proof. By the identity

tr

((
1 1
0 1

)(
a b
c d

))
= tr

(
a b
c d

)
+ c,(2)

we see that tr (Lw) ≥ tr (w) with equality if and only if c = 0, ie. if and only
if w = Lm for some m. Since any letter insertion is equivalent (modulo ∼)
to left-multiplication by L and trace is well-defined on 〈L,R〉+/ ∼, we see
that trace is non-decreasing with letter insertion.

To prove the upper bound on tr (w) we use the fact that among all
words of k letters, the trace is maximized by words of the form (LR)m and
R(LR)m (depending on whether k is even or odd). This in turn follows from
an elementary but tedious case by case analysis. The fact that the traces of
(LR)m and R(LR)m satisfy the inequality follows by direct computation.

If w 6∼ Lm, choose η ∼ w ending in LR. For each letter of η prepended to
LR, we augment our trace by at least 1. (In the case of multiplication by L,
this is line (2).) It follows that tr (η) ≥ len(η)− 2 + tr (LR) = len(η) + 1. �

In particular, the insertion of letters into a word cannot decrease its
trace. From this, we for instance conclude that the systole of S(Γ,O) is
always homotopic to a circuit in Γ.
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3.2. Counting words by trace

Let SL2(Z)+ denote the semigroup of integer matrices with determinant 1
and non-negative coordinates. It’s clear that SL2(Z)+ contains 〈L,R〉+.

Let n(m) denote the number of elements in 〈L,R〉+ of trace m. The
infinite collections 〈L〉+ and 〈R〉+ demonstrate that n(2) is not finite. On
the other hand, n(m) is finite for m ≥ 3, as the following Proposition shows:

Proposition 3.2. The following inequality holds for all m ≥ 3:

n(m) ≤
m−1∑
a=1

d (a(m− a)− 1) ,

in which d(k) is the number of divisors of k.

Proof. Let n′(m) denote the number of elements of SL2(Z)+ of trace m.
Then n(m) ≤ n′(m), whenever both are finite. To enumerate the elements
of SL2(Z)+ of trace m, consider a general matrix

γ :=

(
a b
c d

)
∈ SL2(Z)+(3)

of trace m. Free choice of a in the interval [1,m− 1] determines d = m− a
by trace. As well, the determinant relation ad− bc = 1 gives ad− 1 = bc,
hence b divides a(m− a)− 1 (whereafter choice of b determines c uniquely).
It follows that

n(m) ≤ n′(m) =

m−1∑
a=1

d(a(m− a)− 1),

as desired. �

As it happens, the upper bound in Proposition 3.2 is an equality. This
follows from the non-obvious fact that the inclusion 〈L,R〉+ ⊂ SL2(Z)+ is
an equality:

Proposition 3.3. We have 〈L,R〉+ = SL2(Z)+.

Proof. Fix γ ∈ SL2(Z)+, defined as in line (3). For γ of trace 2, we see that
γ takes the form Lk or Rk for some integer k ≥ 0, hence γ ∈ 〈L,R〉+. Now,
suppose by induction that γ ∈ 〈L,R〉+ for all matrices of trace less than
m > 2 and fix γ of trace m.
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Computation shows that L−1γ ∈ SL2(Z)+ provided a > c and b ≥ d,
while R−1γ ∈ SL2(Z)+ under the assumptions c ≥ a and d > b. For the sake
of contradiction, suppose that neither holds. If a > c and d > b, then

det(γ) = ad− bc ≥ (c+ 1)(b+ 1)− bc = b+ c+ 1 = 1,

so that b = c = 0 and γ = I, which contradicts that tr(γ) = m. Alternatively,
suppose that c ≥ a and b ≥ d. Then

det(γ) = ad− bc ≤ cb− bc = 0,

another contradiction. Thus SL2(Z)+ contains at least one of L−1γ or R−1γ,
hence so does 〈L,R〉+ (by induction and Lemma 3.1). In either case, γ ∈
〈L,R〉+. �

To estimate the growth of n(m) we need only estimate the growth of
the divisor function. It is well-known that d(n) = o(nε) for all ε > 0, from
which we immediately obtain that n(m) = o(m1+ε).

We denote by N(m) the partial sums of n(m), ie.

N(m) =

m∑
k=3

n(k).

This function satisfies the trivial upper bound N(m) = o(m2+ε). With a bit
more work, we obtain a more precise upper bound for this function:

Proposition 3.4. The function N(m) is O(m2 logm).

Proof. Interchanging the order of summation, we write

N(m) =
∑
k≤m

k−1∑
a=1

d(a(k − a)− 1) =

m−1∑
a=1

a(m−a−1)∑
n≡−1(a)

d(n),(4)

so that the inner sum adds the contribution of the divisor function over the
arithmetic progression n ≡ −1 mod a. To continue, we require a well-known
result due independently to Selberg and Hooley; that the Weil bound for the
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Kloosterman sum gives a uniform estimate∑
n≤X

n≡−1(a)

d(n) =
1

ϕ(a)

∑
n≤X

(n,a)=1

d(n) +O
(

(a
1

2 +X
1

3 )Xε
)
,

as recounted by Fouvry and Iwaniec in [FI92], eg. Opening up the second
divisor sum in the line above yields

1

ϕ(a)

∑
m1≤X

(m1,a)=1

∑
m2≤X/m1

(m2,a)=1

1 =
∑
m1≤X

(m1,a)=1

X

am1
+O (1)� X logX

a
,(5)

in which we’ve abandoned coprimality to simplify our bound. Returning to
line (4), we take X := a(m− a− 1)− 1, and end with the estimate

N(m)�
∑
a<m

a(m− a)

a
log(a(m− a)) = O

(
m2 logm

)
,

as desired. �

Remark 3.5. Conversely, restricting the final m1-sum in line (5) to the
primes less than X gives a lower bound in line in (5) of the form

X(log logX)/a.

This propagates to show that N(m)� m2 log logm, ie. that N(m) grows
super-quadratically. .

4. Construction of surfaces with large systole

The results from the previous section allow us to construct hyperbolic sur-
faces with systole logarithmic in their genus. The construction we present is
a Riemann surface version of the construction for graphs of large girth by
Erdős and Sachs [ES63] and Sauer [Sau67], while our presentation is inspired
by a version of these proofs given by Bollobás [Bol78] (see also [Big98]).

In our theorem below we will speak of oriented circuits without reference
to the specific oriented trivalent graphs containing them. An oriented circuit
in this sense will be a circuit in which it is known whether one turns right or
left when traversing a vertex in a given direction. Note that such a circuit
naturally corresponds to a word in L and R. In this way we are able to define
the trace of a cycle or an oriented path. The data of an oriented path in this
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context includes the data of the direction the path turns in at its initial and
final vertices. This means that an oriented path naturally runs between two
edges instead of two vertices.

We have the following theorem:

Theorem 4.1. Let H = (V,E) be an oriented graph in which every con-
nected component is an oriented circuit such that:

1. Each circuit in H has trace at least k.

2. H has an even number of vertices at least equal to 2 ·N(k − 2) + 4k − 4.

Then we can complete H to a trivalent ribbon graph H ′, respecting the ori-
entation of the circuits, in such a way that H ′ contains no homotopically
essential non-peripheral cycle carrying a word of trace less than k. Further-
more, the girth of H ′ satisfies

h(H ′) & logφ(k),

and every cusp in H ′ has at least k triangles around it.

Proof. Our proof is constructive. We will construct a set E′ of edges on V
that contains E such that the graph H ′ = (V,E′) has the desired properties.
Note that this construction does not add vertices, hence the orientation at
every vertex in H ′ is given by the initial data and does not change anywhere
in the process that we will describe. As such, we will not mention it in the
rest of the proof.

We shall consider sets E′ of edges on V with the following properties:

(a) E ⊂ E′.

(b) Every cycle in H ′ = (V,E′) has trace at least k or is a cycle of lefthand
turns with at least k edges.

An example of such a set is the set E itself.
We will prove the following claim, which is sufficient to prove the theo-

rem:

Claim. If E′ satisfies (a) and (b) and the graph H ′ = (V,E′) has a vertex
of degree 2 then there exists a set E′′ of edges on V that also satisfies (a)
and (b) such that |E′′| = |E′|+ 1.

In order to prove the claim we need to define some specific subsets of
V , depending on E′. Given x, y ∈ V , a forbidden k-path between a degree
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2 vertex x and a vertex y will be a path in H ′ of trace less than k − 1 and
with fewer than k − 1 edges. We emphasize again that the trace of a path
depends on the choice of the directions of the turns at x and y. At x we
will always choose the direction so that the path comes from the ‘missing’
edge at x. This makes sense because of the fact that the orientation at x is
predefined. For a degree 2 vertex x we now define:

Fk(x) = {y ∈ V : there exists a forbidden k-path from x to y}.

This set can be seen as some sort of k-ball around the missing edge at x.
The crucial observation is the following: if x and y have degree 2 and

y ∈ V r Fk(x), then we do not introduce any (non-lefthand turn) cycles of
trace ≤ k by adding an edge between x and y.

To see this, note that such a cycle necessarily builds upon a non-forbidden
k-path from x to y, hence has length ≥ k or trace ≥ k. This last case uses
Lemma 3.1, and gives our claim directly. If our cycle has length ≥ k, then
it carries a word w such that either

1. w ∼ Lm with m ≥ k, in which case the cycle corresponds to a cusp.

2. w 6∼ Lm, whereby Lemma 3.1 gives the inequality tr (w) ≥ len(w) + 1,
which implies that our cycle has trace ≥ k.

We note as well that since the total number of vertices is even there will
always be an even number of degree 2 vertices. So, given E′, there are two
cases:

Case 1. There exist two degree 2 vertices x and y in H ′ for which there
does not exist a forbidden k-path connecting x to y.

Case 2. There exists no pair of such vertices.

Our proof breaks into cases along these lines.
Case 1 is immediate. When we connect x and y by an edge, we obtain a

set E′′ that satisfies our requirements.
For Case 2 our argument is more involved. If y ∈ Fk(x), then x and y

may be joined by a path of trace at most k − 2 and with at most k − 2
edges. There are N(k − 2) paths of trace in [3, k − 2], and there are at most
2(k − 2) + 1 paths of trace 2 and length ≤ k − 2. (Coming from the trivial
path and the 2(k − 2) paths of the form Lm and Rm with m ∈ [1, k − 2].)
Thus

|Fk(x)| ≤ N(k − 2) + 2k − 3.
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Now take x, y ∈ V two vertices of degree 2 in H ′ and define the sets

U = Fk(x) ∪ Fk(y) and I = Fk(x) ∩ Fk(y).

Inclusion-exclusion gives

|U | = |Fk(x)|+ |Fk(y)| − |I|
≤ 2N(k − 2) + 4k − 6− |I|
≤ |V | − 2− |I| .

Then, defining W := V \ U , we have

|W | = |V | − |U | ≥ |I|+ 2.

Under the assumptions of Case 2, all vertices in W have degree 3 in H ′.
In particular, each vertex in W is an endpoint to a unique edge in E′ \ E.
Thus for every w ∈W there exists a unique vertex w′ such that w and w′ are
endpoints of an edge in E′\E. Note as well that w 6= w′, as equality forces
degw ≥ 4, a contradiction. Using this we define the set W ′:

W ′ := {w′ ∈ V : ∃w ∈W such that w′ and w share an edge in E′\E}.

We have ∣∣W ′∣∣ = |W | ≥ |I|+ 2.

Thus there exists some w′ ∈W ′ not in I. In other words, there is either no
forbidden k-path from x to w′ or no forbidden k-path from y to w′. Without
loss of generality we assume the former. We now define the edge set

E′′ := E′ \ ww′ ∪ xw′ ∪ yw,

and claim that E′′ satisfies (a) and (b).
Condition (a) is immediate. For (b), we proceed by contradiction. Sup-

pose H ′′ = (V,E′′) contains a non-trivial, non-peripheral cycle of trace < k.
This cycle necessarily contains both of the edges xw′ and yw. There are two
options for the order of appearance of the vertices x, y, w, and w′ along this
cycle:

x,w′, y, w or w′, x, y, w(6)

(up to the dihedral symmetry of the cycle).
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Since we have assumed that there is no forbidden k-path between x
and w in H ′, any non-trivial, non-peripheral cycle containing x and w in
succession has trace at least k. This implies that the first option is impossible
(by Lemma 3.1).

For the second option, consider the following diagram:

γ1

γ2
y w

w′x

Figure 2: The second option in line (6).

In Figure 2 above, γ1 represents the offending cycle of trace < k in H ′′,
while the cycle γ2 lies in H ′. Because the turns

w′ → x and w → y

are in the same direction as the turns

w′ → w and w → w′,

respectively, the word on γ1 can be obtained by concatenating the word on
γ2 with some number of letters.

Since γ2 ⊂ H ′, we have two options for the word w2 carried by γ2: either
w2 ∼ Lm for some m ≥ k, or tr (w2) ≥ k. Either way, it follows from Lemma
3.1 that the word w1 on γ1 has tr (w1) > k or that w1 ∼ Lm for some m ≥ k.
This contradicts our assumptions on γ1, which proves that E′′ satisfies (b).
The chief Claim follows.

Finally, to see that the graph we obtain in the end has girth & logφ(k)
we note that all the circuits in H ′ are either left hand turn circuits of at
least k edges or carry a word of trace at least k. Lemma 3.1 tells us that a
word with trace at least k has at least ∼ logφ(k) letters, which implies the
statement. �

Let us note that for k ∈ N large enough, it is indeed possible to construct
graphs Hk consisting of disjoint circuits of trace ≥ k and 2 ·N(k − 2) + 4k −
4 vertices. We can for instance use the fact that the trace of the word (LR)r
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grows exponentially in r. This implies that the graph consisting of one cycle
of length 2 ·N(k − 2) + 4k − 4 that carries the word

(LR)N(k−2)+2k−2

will do. Indeed, the minimal (and only) trace that appears in this graph
is super-exponential in k (this follows from Remark 3.5; N(k − 2) grows
faster than quadratic in k), so Hk certainly satisfies the conditions from
Theorem 4.1. Hence, by plugging these graphs Hk into the theorem, we
obtain a sequence {(Γk,Ok)}∞k=1 of cubic ribbon graphs with the following
properties:

1. Γk has 2 ·N(k − 2) + 4k − 4 = O(k2 log k) vertices (the bound follows
from Proposition 3.4)

2. and furthermore the trace of any essential curve on S(Γk,Ok) is
bounded from below by k.

As a corollary, we obtain the following:

Corollary 4.2. The construction above gives rise to sequences of cusped
hyperbolic surface {Sgk}

∞
k=0 and sequences of closed hyperbolic surfaces{

Sgk
}∞
k=0

such that:

lim inf
k→∞

sys(Sgk)

log(gk)
≥ 1 and lim inf

k→∞

sys(Sgk)

log(gk)
≥ 1(7)

in which c1k
2 log log k ≤ gk ≤ c2k2 log k for some absolute constants c1, c2 >

0.

Proof. Using Theorem 4.1 above, construct a sequence {(Γk,Ok)}∞k=1 of cu-
bic ribbon graphs such that Γk has O

(
k2 log k

)
vertices and that the trace of

any non-trivial curve on S(Γk,Ok) is bounded from below by k (for instance
the sequence described above). If Vk denotes the number of vertices of Γk,
this means that

sys (S(Γk,Ok)) = 2 · arccosh
(

min
{

tr(γ)
2 : γ a cycle on Γk

})
≥ 2 · arccosh

(
k

2

)
≥ log(Vk)− log log k − logB,

where B comes from the implied constant in the estimate Vk = O(k2 log k). It
remains to relate the number of vertices of (Γk,Ok) to the genus of S(Γk,Ok).
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By construction, our surface S(Γk,Ok) comes with a triangulation, which
means that we can compute its Euler characteristic. For each k, we have

2c− 2

c∑
i=1

gi = v − e+ f

where c is the number of connected components of S(Γk,Ok), gi the genus of
the ith connected component, v the number of vertices in the triangulation,
e the number of edges, and f the number of faces. We have

f = Vk and e =
3

2
· Vk,

and thus

2

c∑
i=1

gi = 2c− v +
1

2
Vk.

Since h(Γk)� logφ k, each connected component of Γk consists of at least
logφ k vertices, hence Vk � c logφ k. It follows that

gi ≤ 2

c∑
i=1

gi �
Vk

logφ k
+

1

2
Vk = O(Vk),

and hence

sys (S(Γk,Ok)) ≥ log(gk)− log log k −R,(8)

in which R is a constant independent of k and gk is the genus of any of the
connected components of S(Γk,Ok) or the sum of all these genera, depending
on the reader’s preference. Line (8) proves the first inequality of line (7); for
the second inequality, we need only recall Lemma 2.2.

To prove that the genera of these surfaces actually grow super-quadra-
tically in k, we use that the fact that Γk embeds into S(Γk,Ok). This puts
restrictions on the genus gk of S(Γk,Ok). Concretely, Proposition 2.1 tells
us that

1 +

(
1

4
− 3

2h(Γk)

)
Vk ≤ gk.

Since h(Γk)� log k, the lefthand side above tends to 1 + Vk/4 as k grows
large, hence gk � Vk. Now using the fact that Vk � k2 log log k (Remark 3.5)
completes the proof. �
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Finally, we remark that Theorem 4.1 gives us some control over the
bottom part of the length spectrum. That is, given k0 ≤ k1 ≤ · · · ≤ kr and
m1, . . . ,mr ∈ N such that there exist words w1, . . . , wr ∈ 〈L,R〉+ satisfying

tr (wi) = ki and

r∑
i=1

mi len(wi) ≤ 2 ·N(k0 − 2) + 4k0 − 4

for i = 1, . . . , r, we can construct our cusped surface in such a way that it
has systole ≥ 2 · arccosh(k0/2), genus � k20 log k0, and contains at least mi

curves of length

2 · arccosh

(
ki
2

)
,

for i = 1, . . . , r. In the closed case we do not get such exact control, but we
can choose to construct the surfaces such that they contain mi curves with
lengths in a small interval around the values above. By Lemma 2.2 these
intervals become arbitrarily small as k0 becomes large.

Given words w1, . . . , wr, the condition on the multiplicities mi is easy
to verify. However, without explicit examples of words, it is not easy to
see whether a set of traces k0, k1, . . . , kr and multiplicities m1, . . . ,mr is
‘realizable’. A sufficient (but certainly not necessary) condition on the traces
and multiplicities is

r∑
i=1

mi(ki − 1) ≤ 2 ·N(k0 − 2) + 4k0 − 4

This follows from the fact that tr
(
Lk−2R

)
= k.
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[Ham01] U. Hamenstädt, New examples of maximal surfaces, L’Enseigne-
ment Math. 47 (2001), 65–101.



i
i

“12-Petri” — 2019/3/15 — 15:04 — page 1956 — #20 i
i

i
i

i
i

1956 B. Petri and A. Walker
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