An open adelic image theorem for motivic representations over function fields

ANNA CADORET

Let \mathbb{F} be a field and k a function field of positive transcendence degree over \mathbb{F} . Let S be a smooth, separated, geometrically connected scheme of finite type over k. If \mathbb{F} is quasi-finite or algebraically closed we show that for motivic representations of the étale fundamental group $\pi_1(S)$ of S, ℓ -Galois-generic points are Galois-generic. This is a geometric variant of a previous result of the author for representations of $\pi_1(S)$ on the adelic Tate module of an abelian scheme $A \to S$ when the base field k is finitely generated of characteristic 0. The procyclicity of the absolute Galois group of a quasi-finite field allows to reduce the assertion for \mathbb{F} finite to the assertion for \mathbb{F} algebraically closed. The assertion for \mathbb{F} algebraically closed can then be deduced, using basically the same arguments as in the case of abelian schemes, from maximality results for the image of $\pi_1(S)$ inside the group of \mathbb{Z}_{ℓ} -points of its Zariski-closure.

1. Introduction

Let k be a field of characteristic $p \geq 0$, S a smooth, separated, geometrically connected scheme of finite type over k with generic point η and $X \to S$ a smooth, proper morphism. For every $s \in S$, fix a geometric point \overline{s} over s and an étale path from \overline{s} to $\overline{\eta}$. For a prime $\ell \neq p$, via the canonical isomorphism (smooth-proper base change) $\mathrm{H}^*(X_{\overline{s}}, \mathbb{Z}/\ell^n) \simeq \mathrm{H}^*(X_{\overline{\eta}}, \mathbb{Z}/\ell^n)$, the Galois representation by transport of structure of $\pi_1(s, \overline{s})$ on $\mathrm{H}^*(X_{\overline{s}}, \mathbb{Z}/\ell^n)$ identifies with the restriction of the representation of $\pi_1(S, \overline{\eta})$ on $\mathrm{H}^*(X_{\overline{\eta}}, \mathbb{Z}/\ell^n)$ via the functorial morphism $\sigma_s : \pi_1(s, \overline{s}) \to \pi_1(S, \overline{s}) \to \pi_1(S, \overline{\eta})$. So, from now on, we omit base-points in our notation for étale fundamental groups and write

$$\mathrm{H}_{\ell^{\infty}} := \mathrm{H}^*(X_{\overline{\eta}}, \mathbb{Z}_{\ell}) / \mathrm{torsion}, \ \mathrm{V}_{\ell^{\infty}} := \mathrm{H}_{\ell^{\infty}} \otimes \mathbb{Q}_{\ell}.$$

$$\rho_{\ell^{\infty}}: \pi_1(S) \to \mathrm{GL}(\mathrm{H}_{\ell^{\infty}}), \ \rho_{\infty} = \prod_{\ell \neq p} \rho_{\ell^{\infty}}: \pi_1(S) \to \prod_{\ell \neq p} \mathrm{GL}(\mathrm{H}_{\ell^{\infty}}) =: \mathrm{GL}(H_{\infty})$$

denote the resulting representations and set $\Pi_{?} := \operatorname{im}(\rho_{?}), ? = \infty, \ell^{\infty}$. For $s \in S$, also set $\rho_{?,s} := \rho_{?} \circ \sigma_{s}$ and $\Pi_{?,s} := \operatorname{im}(\rho_{?,s}), ? = \infty, \ell^{\infty}$.

Following the terminology of [CK16], we say that $s \in S$ is ℓ -Galois-generic (with respect to ρ_{∞}) if $\Pi_{\ell^{\infty},s}$ is open in $\Pi_{\ell^{\infty}}$ and that $s \in S$ is Galois-generic (with respect to ρ_{∞}) if $\Pi_{\infty,s}$ is open in Π_{∞} .

Given a prime ℓ , we say that a field \mathbb{F} is ℓ -non Lie semisimple if for every quotient $\pi_1(\mathbb{F}) \twoheadrightarrow \Gamma_\ell$ with Γ_ℓ a ℓ -adic Lie group, none of the non-zero Lie sub algebra of $\text{Lie}(\Gamma_\ell)$ is semisimple. Typical examples are algebraically closed fields and quasi-finite fields (in particular, finite fields), which are ℓ -non Lie semisimple for every prime ℓ , or *p*-adic fields, which are ℓ -non Lie semisimple for every prime ℓ p.

Assume now that k is the function field of a smooth, separated, geometrically connected scheme of finite type and dimension ≥ 1 over a field \mathbb{F} . The main result of this note is

Theorem 1.1. Assume \mathbb{F} is ℓ -non Lie semisimple. For a closed point $s \in S$, the following are equivalent.

- 1) $s \in S$ is ℓ -Galois-generic;
- 2) $s \in S$ is Galois-generic.

In particular, when \mathbb{F} is finite, this proves the abundance of closed Galoisgeneric points. More precisely, we have

Corollary 1.2. Assume \mathbb{F} is finite. Then

- 1) There exists an integer $d \ge 1$ such that there are infinitely many (ℓ) -Galois-generic closed points $s \in S$ with $[k(s):k] \le d$.
- 2) Assume furthermore that S is a curve. Then all but finitely many $s \in S(k)$ are (ℓ) -Galois-generic.

Proof. Assertion (1) follows from [S89, $\S10.6$] while assertion (2) follows from [A17, Thm. 1.3 (3)], since motivic representations are GLP.

Theorem 1.1 is a geometric variant of a previous result of the author for representations of $\pi_1(S)$ on the adelic Tate module of an abelian scheme $A \to S$ when the base field k is finitely generated of characteristic 0. The ℓ -non Lie semisimple' property allows to reduce Theorem 1.1 for \mathbb{F} ℓ -non Lie semisimple to Theorem 1.1 for \mathbb{F} algebraically closed (Lemma 2.2.3). Theorem 1.1 for \mathbb{F} algebraically closed can then be deduced, following the guidelines of [C15], from maximality results for $\Pi_{\ell^{\infty}}$ inside the group of \mathbb{Z}_{ℓ} points of its Zariski-closure in $\mathrm{GL}_{\mathrm{H}_{\ell^{\infty}}}$. For p = 0, the maximality result is the same as the one used in [C15]; it relies on a group-theoretical result of Nori ([N87]). For p > 0, the maximality result is due to Hui, Tamagawa and the author ([CHT17]).

It is reasonable to expect that Theorem 1.1 holds for k a number field (hence, by Hilbert's irreducibility theorem, for any finitely generated field of characteristic 0). This should follow from variants with \mathbb{F}_{ℓ} -coefficients of the Grothendieck-Serre-Tate conjectures.

Acknowledgments. The author is partly funded by the ANR project ANR-15-CE40-0002-01. She thanks the referees for accurate comments, which helped clarify the exposition of the paper. In a former version of this note, Theorem 1.1 was only stated for \mathbb{F} finite or algebraically closed. One of the referees pointed out that it should extend to quasi-finite fields. This yields the author to observe that her proof was working, more generally, for ℓ -non Lie semisimple fields.

2. Proof

The implication $(1.1.2) \Rightarrow (1.1.1)$ is straightforward. We prove the converse implication. Fix a closed point $s \in S$. Without loss of generality, we may assume $s \in S(k)$.

2.1. Notation

Fix a smooth, separated, geometrically connected scheme U over \mathbb{F} with generic point ζ such that there exists a model

of

$$X \longrightarrow S \xrightarrow{s} k \longrightarrow \mathbb{F}$$

in the sense that we have a cartesian diagram

with $\mathcal{X} \to \mathcal{S}$ smooth, proper and $\mathcal{S} \to U$ smooth, separated, geometrically connected of finite type. In particular, the action of $\pi_1(S)$, $\pi_1(s)$ on $\mathrm{H}^{\infty}_{\ell}$ factor respectively through $\pi_1(S) \twoheadrightarrow \pi_1(\mathcal{S})$ and $\pi_1(s) \twoheadrightarrow \pi_1(U)$ so that

2.1.1. the groups $\Pi_{?,R} \subset \operatorname{GL}(\operatorname{H}_{?})$, $? = \infty, \ell^{\infty}$ identify with the images of the motivic representations attached to the smooth proper morphisms $\mathcal{X} \to \mathcal{S}$ and $\mathcal{X} \times_{\mathcal{S},s_{U}} U \to U$ respectively. We write, again,

$$\rho_?: \pi_1(\mathcal{S}) \to \mathrm{GL}(\mathrm{H}_?), \ \rho_{?,s}: \pi_1(U) \to \mathrm{GL}(\mathrm{H}_{?,s}), \ ? = \infty, \ell^\infty$$

for the corresponding representations and set

$$\tilde{\Pi}_{?} := \rho_{?}(\pi_{1}(\mathcal{S}_{\overline{\mathbb{F}}})), \ \tilde{\Pi}_{?,s} := \rho_{?,s}(\pi_{1}(U_{\overline{\mathbb{F}}})), \ ? = \infty, \ \ell^{\infty}.$$

2.2.

We first reduce the assertion for \mathbb{F} ℓ -non Lie semisimple to the assertion for \mathbb{F} algebraically closed.

The introduction of the property ' ℓ -non Lie semisimple' comes from

2.2.1. Fact. The following equivalent assertions hold:

- 1) $\operatorname{Lie}(\overline{\Pi}_{\ell^{\infty}})$ and $\operatorname{Lie}(\overline{\Pi}_{\ell^{\infty},s})$ are semisimple Lie algebras;
- 2) The Zariski closure of $\tilde{\Pi}_{\ell^{\infty}}$ and $\tilde{\Pi}_{\ell^{\infty},s}$ in $\operatorname{GL}_{\mathrm{H}_{\ell^{\infty}}}$ are semisimple algebraic groups.

Proof. Recall 2.1.1. Then 2) follows from comparison between étale and singular cohomologies and [D71, Prop. (4.2.5), Thm. (4.2.6)] if p = 0 and

from [D80, Cor. 3.4.13, Cor. 1.3.9] if p > 0. The equivalence of 1) and 2) follows from the general fact that if $\Pi \subset \operatorname{GL}_r(\mathbb{Q}_\ell)$ is a compact ℓ -adic Lie group whose Zariski closure $G \subset \operatorname{GL}_{r,\mathbb{Q}_\ell}$ is semi simple then Π is open in $G(\mathbb{Q}_\ell)$; this boils down to the fact that a semi simple Lie algebra over \mathbb{Q}_ℓ is algebraic - see *e.g.* [S66, §1, Cor.].

2.2.2. We begin with an elementary observation (a partial snake lemma in the category of profinite groups). Consider a commutative diagram of profinite groups with exact lines

Assume the two left-hand vertical arrows are injective and the right-hand vertical arrow is surjective. Then the canonical map $\tilde{\Pi}/\tilde{\Pi}' \rightarrow \Pi/\Pi'$ is surjective and its fibers are isomorphic to $\tilde{\Pi} \cap \Pi'/\tilde{\Pi}'$. In particular,

- 1) $\Pi' \subset \Pi$ is open $\Rightarrow \Pi' \subset \Pi$ is open.
- 2) $\Pi' \subset \Pi$ is open and $\tilde{\Pi} \cap \Pi' / \tilde{\Pi}'$ is finite $\Rightarrow \tilde{\Pi}' \subset \tilde{\Pi}$ is open.

2.2.3. Lemma.

- 1) $\tilde{\Pi}_{\infty,s} \subset \tilde{\Pi}_{\infty}$ is open $\Rightarrow \Pi_{\infty,s} \subset \Pi_{\infty}$ is open.
- 2) Fix a prime $\ell \neq p$ and assume \mathbb{F} is ℓ -non Lie semisimple. Then $\Pi_{\ell^{\infty},s} \subset \Pi_{\ell^{\infty}}$ is open $\Rightarrow \tilde{\Pi}_{\ell^{\infty},s} \subset \tilde{\Pi}_{\ell^{\infty}}$ is open.

Proof. Since $s \in S(k)$, for $? = \infty, \ell^{\infty}$ the canonical morphism $\Pi_{?,s}/\tilde{\Pi}_{?,s} \to \Pi_?/\tilde{\Pi}_?$ is surjective and the short exact sequences of profinite groups

is of the form considered in 2.2.2. So 1) follows from 2.2.2.1) while 2) would follow from 2.2.2.2) provided $\tilde{\Pi}_{\ell^{\infty}} \cap \Pi_{\ell^{\infty},s}/\tilde{\Pi}_{\ell^{\infty},s}$ is finite. This is where we use the assumption that \mathbb{F} is ℓ -non Lie semisimple. Indeed, we have

$$\widetilde{\Pi}_{\ell^{\infty}} \cap \Pi_{\ell^{\infty},s} \twoheadrightarrow \widetilde{\Pi}_{\ell^{\infty}} \cap \Pi_{\ell^{\infty},s} / \widetilde{\Pi}_{\ell^{\infty},s} \hookrightarrow \Pi_{\ell^{\infty},s} / \widetilde{\Pi}_{\ell^{\infty},s} \leftarrow \pi_{1}(\mathbb{F}).$$

By Fact 2.2.1, the Lie algebra of $\tilde{\Pi}_{\ell^{\infty}} \cap \Pi_{\ell^{\infty},s}/\tilde{\Pi}_{\ell^{\infty},s}$ is semisimple, being a quotient of $\operatorname{Lie}(\tilde{\Pi}_{\ell^{\infty}} \cap \Pi_{\ell^{\infty},s}) = \operatorname{Lie}(\tilde{\Pi}_{\ell^{\infty}})$. But this forces it to be 0, since \mathbb{F} is ℓ -non Lie semisimple by assumption.

Fix a prime $\ell \neq p$, assume \mathbb{F} is ℓ -non Lie semisimple and $s \in S(k)$ is ℓ -Galois-generic. From (2.2.3.2), $\tilde{\Pi}_{\ell^{\infty},s} \subset \tilde{\Pi}_{\ell^{\infty}}$ is open. If Theorem 1.1 holds for \mathbb{F} algebraically closed, this would imply $\tilde{\Pi}_{\infty,s} \subset \tilde{\Pi}_{\infty}$ is open hence, from (2.2.3.1), $\Pi_{\infty,s} \subset \Pi_{\infty}$ is open. This observation reduces Theorem 1.1 for \mathbb{F} ℓ -non Lie semisimple to Theorem 1.1 for \mathbb{F} algebraically closed.

2.2.3 So, from now on, we assume \mathbb{F} is algebraically closed hence

$$\Pi_{?} = \Pi_{?}, \ \Pi_{?,s} = \Pi_{?,s}, \ ? = \infty, \ell^{\infty}, \ s \in S.$$

2.3.

Fix a prime $\ell_0 \neq p$ and assume $s \in S(k)$ is ℓ_0 -Galois-generic. We want to show $s \in S(k)$ is Galois-generic.

For every prime $\ell \neq p$ and profinite group Γ appearing as a subquotient of $\operatorname{GL}(\operatorname{H}_{\ell^{\infty}})$, let $\Gamma^+ \subset \Gamma$ denote the (normal) subgroup of Γ generated by its ℓ -Sylow subgroups. Let $\mathfrak{G}_{\ell^{\infty}}$, $\mathfrak{G}_{\ell^{\infty},s}$ denote respectively the Zariski-closure of $\Pi_{\ell^{\infty}}$, $\Pi_{\ell^{\infty},s}$ in $\operatorname{GL}_{\operatorname{H}_{\ell^{\infty}}}$. Write $G_{\ell^{\infty}}$ and $G_{\ell^{\infty},s}$ for the generic fibers of $\mathfrak{G}_{\ell^{\infty}}$, $\mathfrak{G}_{\ell^{\infty},s}$.

2.3.1. Fact. The dimensions of $G_{\ell^{\infty}}$, $G_{\ell^{\infty},s}$ are independent of $\ell \neq p$.

Proof. This follows from comparison between étale and singular cohomologies if p = 0 and from [LaP95, Thm. 2.4] if p > 0. More precisely, [LaP95, Thm. 2.4] implies that, if $Y \to C$ is a smooth proper morphism with C a smooth, separated, geometrically connected curve over the algebraic closure \mathbb{F} of \mathbb{F}_p then the dimension of the Zariski closure of the image of

$$\pi_1(C) \to \operatorname{GL}(\operatorname{H}^*(Y_{\overline{c}}, \mathbb{Q}_\ell))$$

is idependant of ℓ . To apply this to the setting of (2.1.1), we need the generalization of [LaP95, Thm. 2.4] for C of arbitrary dimension. This can be deduced from the case of curves by Jouanolou's version of Bertini's theorem [Jou83, Thm. 6.10, 2), 3)] and the smooth proper base change theorem. We refer to the Claim in the proof of [CT17, Prop. 3.2] for details. \Box

Also, to prove Theorem 1.1, we may freely replace U and S by connected étale covers. In particular,

2.3.2. Fact. We may assume the following holds.

- 1) $\Pi_{\ell^{\infty}} = \Pi^+_{\ell^{\infty}}, \ \Pi_{\ell^{\infty},s} = \Pi^+_{\ell^{\infty},s} \text{ for } \ell \gg 0;$
- 2) $\Pi_{\infty} = \prod_{\ell \neq p} \Pi_{\ell^{\infty}}, \ \Pi_{\infty,s} = \prod_{\ell \neq p} \Pi_{\ell^{\infty},s};$
- 3) $G_{\ell^{\infty}}$, $G_{\ell^{\infty},s}$ are connected for every prime $\ell \neq p$;
- 4) $\Pi_{\ell^{\infty}} = \mathfrak{G}_{\ell^{\infty}}(\mathbb{Z}_{\ell})^+, \ \Pi_{\ell^{\infty},s} = \mathfrak{G}_{\ell^{\infty},s}(\mathbb{Z}_{\ell})^+ \ for \ \ell \gg 0;$

Proof. Recall 2.1.1 and 2.2.3. Then 1) follows from [CT17, Thm. 1.1] while 2) is [CT17, Cor. 4.6]. 3) follows from comparison between étale and singular cohomologies if p = 0 and from [LaP95, Prop. 2.2] if p > 0. For 4), assume first p = 0 (see [C15, §2.3] for details). Let $\Pi_{\ell} \subset \mathfrak{G}_{\ell^{\infty}}(\mathbb{F}_{\ell})$ denote the image of $\Pi_{\ell^{\infty}}$ via the reduction-modulo- ℓ morphism $\mathfrak{G}_{\ell^{\infty}}(\mathbb{Z}_{\ell}) \to \mathfrak{G}_{\ell^{\infty}}(\mathbb{F}_{\ell})$. Then, from [N87, Thm. 5.1], $\Pi_{\ell} = \Pi_{\ell}^{+} = \mathfrak{G}_{\ell^{\infty}}(\mathbb{F}_{\ell})^{+}$ for $\ell \gg 0$. This forces $\Pi_{\ell^{\infty}} = \mathfrak{G}_{\ell^{\infty}}(\mathbb{Z}_{\ell})^{+}$ since, by [C15, Fact 2.3, Lemma 2.4], $\mathfrak{G}_{\ell^{\infty}}(\mathbb{Z}_{\ell})^{+} \to \mathfrak{G}_{\ell^{\infty}}(\mathbb{F}_{\ell})^{+}$ is Frattini for $\ell \gg 0$. Eventually, 4) for p > 0 is [CHT17, Thm. 7.3.2].

2.4.

We can now conclude the proof. From (2.3.2.2), it is enough to show that

- 1) $\Pi_{\ell^{\infty},s} \subset \Pi_{\ell^{\infty}}$ is open for every prime $\ell \neq p$;
- 2) $\Pi_{\ell^{\infty},s} = \Pi_{\ell^{\infty}}$ for $\ell \gg 0$.

Since $s \in S(k)$ is ℓ_0 -Galois-generic, (2.3.2.3) for ℓ_0 ensures $G_{\ell_0^{\infty},s} = G_{\ell_0^{\infty}}$. As $G_{\ell^{\infty},s}$ is always a subgroup of $G_{\ell^{\infty}}$, Fact 2.3.1 and (2.3.2.3) also ensure $G_{\ell^{\infty},s} = G_{\ell^{\infty}}$ hence $\mathfrak{G}_{\ell^{\infty},s} = \mathfrak{G}_{\ell^{\infty}}$ for every prime $\ell \neq p$. Then 1) follows from (2.2.1.1) while 2) follows from (2.3.2.4).

References

[A17] E. Ambrosi, A uniform open image theorem for l-adic representations in positive characteristic, preprint, (2017).

Anna Cadoret

- [C15] A. Cadoret, An open adelic image theorem for abelian schemes, I.M.R.N. 2015 (2015), 10208–10242.
- [CK16] A. Cadoret and A. Kret, Galois-generic points on Shimura varieties, Algebra and Number Theory 10 (2016), 1893–1934.
- [CHT17] A. Cadoret, C. Y. Hui, and A. Tamagawa, Geometric monodromy — semisimplicity and maximality, Annals of Math. 186 (2017), no. 1, 205–236.
 - [CT17] A. Cadoret and A. Tamagawa, On the geometric image of F_ℓlinear representations of étale fundamental groups, I.M.R.N. 2017 (2017), 1–28.
 - [D71] P. Deligne, Théorie de Hodge, II, Inst. Hautes Etudes Sci. Publ. Math. 40 (1971), 5–57.
 - [D80] P. Deligne, La conjecture de Weil: II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252.
 - [Jou83] J.-P. Jouanolou, Théorèmes de Bertini et Applications, Progress in Mathematics **42**, Birkhäuser Boston, Inc., 1983.
 - [LaP95] M. Larsen and R. Pink, Abelian varieties, *l*-adic representations, and *l*-independence, Math. Ann. **302** (1995), 561–579.
 - [N87] M. V. Nori, On subgroups of $\operatorname{GL}_n(\mathbb{F}_p)$, Inventiones Math. 88 (1987), 257–275.
 - [S66] J.-P. Serre, Sur les groupes de Galois attachés aux groupes pdivisbles, in: Proceedings of a Conference on Local Fields — Driebergen 1966, Springer, (1967), 118–131.
 - [S89] J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects of Mathematics E15, Friedr. Vieweg & Sohn, (1989).

IMJ-PRG, SORBONNE UNIVERSITÉ

4, PLACE JUSSIEU, 75252 PARIS CEDEX 05, FRANCE *E-mail address*: anna.cadoret@imj-prg.fr

RECEIVED MARCH 17, 2017