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An open adelic image theorem for motivic

representations over function fields

Anna Cadoret

Let F be a field and k a function field of positive transcendence
degree over F. Let S be a smooth, separated, geometrically con-
nected scheme of finite type over k. If F is quasi-finite or alge-
braically closed we show that for motivic representations of the
étale fundamental group π1(S) of S, `-Galois-generic points are
Galois-generic. This is a geometric variant of a previous result of
the author for representations of π1(S) on the adelic Tate mod-
ule of an abelian scheme A→ S when the base field k is finitely
generated of characteristic 0. The procyclicity of the absolute Ga-
lois group of a quasi-finite field allows to reduce the assertion for
F finite to the assertion for F algebraically closed. The assertion
for F algebraically closed can then be deduced, using basically the
same arguments as in the case of abelian schemes, from maximality
results for the image of π1(S) inside the group of Z`-points of its
Zariski-closure.

1. Introduction

Let k be a field of characteristic p ≥ 0, S a smooth, separated, geometrically
connected scheme of finite type over k with generic point η and X → S a
smooth, proper morphism. For every s ∈ S, fix a geometric point s over s and
an étale path from s to η. For a prime ` 6= p, via the canonical isomorphism
(smooth-proper base change) H∗(Xs,Z/`n) ' H∗(Xη,Z/`n), the Galois rep-
resentation by transport of structure of π1(s, s) on H∗(Xs,Z/`n) identifies
with the restriction of the representation of π1(S, η) on H∗(Xη,Z/`n) via the
functorial morphism σs : π1(s, s)→ π1(S, s)→̃π1(S, η). So, from now on, we
omit base-points in our notation for étale fundamental groups and write

H`∞ := H∗(Xη,Z`)/torsion, V`∞ := H`∞ ⊗Q`.
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Let

ρ`∞ : π1(S)→ GL(H`∞), ρ∞ =
∏
`6=p

ρ`∞ : π1(S)→
∏
`6=p

GL(H`∞) =: GL(H∞)

denote the resulting representations and set Π? := im(ρ?), ? =∞, `∞. For
s ∈ S, also set ρ?,s := ρ? ◦ σs and Π?,s := im(ρ?,s), ? =∞, `∞.

Following the terminology of [CK16], we say that s ∈ S is `-Galois-generic
(with respect to ρ∞) if Π`∞,s is open in Π`∞ and that s ∈ S is Galois-generic
(with respect to ρ∞) if Π∞,s is open in Π∞.

Given a prime `, we say that a field F is `-non Lie semisimple if for every
quotient π1(F) � Γ` with Γ` a `-adic Lie group, none of the non-zero Lie sub
algebra of Lie(Γ`) is semisimple. Typical examples are algebraically closed
fields and quasi-finite fields (in particular, finite fields), which are `-non Lie
semisimple for every prime `, or p-adic fields, which are `-non Lie semisimple
for every prime ` 6= p.

Assume now that k is the function field of a smooth, separated, geometrically
connected scheme of finite type and dimension ≥ 1 over a field F. The main
result of this note is

Theorem 1.1. Assume F is `-non Lie semisimple. For a closed point s ∈ S,
the following are equivalent.

1) s ∈ S is `-Galois-generic;

2) s ∈ S is Galois-generic.

In particular, when F is finite, this proves the abundance of closed Galois-
generic points. More precisely, we have

Corollary 1.2. Assume F is finite. Then

1) There exists an integer d ≥ 1 such that there are infinitely many
(`-)Galois-generic closed points s ∈ S with [k(s) : k] ≤ d.

2) Assume furthermore that S is a curve. Then all but finitely many s ∈
S(k) are (`-)Galois-generic.

Proof. Assertion (1) follows from [S89, §10.6] while assertion (2) follows from
[A17, Thm. 1.3 (3)], since motivic representations are GLP. �
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Theorem 1.1 is a geometric variant of a previous result of the author for
representations of π1(S) on the adelic Tate module of an abelian scheme
A→ S when the base field k is finitely generated of characteristic 0. The
’`-non Lie semisimple’ property allows to reduce Theorem 1.1 for F `-non
Lie semisimple to Theorem 1.1 for F algebraically closed (Lemma 2.2.3).
Theorem 1.1 for F algebraically closed can then be deduced, following the
guidelines of [C15], from maximality results for Π`∞ inside the group of Z`-
points of its Zariski-closure in GLH`∞ . For p = 0, the maximality result is
the same as the one used in [C15]; it relies on a group-theoretical result of
Nori ([N87]). For p > 0, the maximality result is due to Hui, Tamagawa and
the author ([CHT17]).

It is reasonable to expect that Theorem 1.1 holds for k a number field
(hence, by Hilbert’s irreducibility theorem, for any finitely generated field
of characteristic 0). This should follow from variants with F`-coefficients of
the Grothendieck-Serre-Tate conjectures.

Acknowledgments. The author is partly funded by the ANR project
ANR-15-CE40-0002-01. She thanks the referees for accurate comments,
which helped clarify the exposition of the paper. In a former version of this
note, Theorem 1.1 was only stated for F finite or algebraically closed. One
of the referees pointed out that it should extend to quasi-finite fields. This
yields the author to observe that her proof was working, more generally, for
`-non Lie semisimple fields.

2. Proof

The implication (1.1.2) ⇒ (1.1.1) is straightforward. We prove the converse
implication. Fix a closed point s ∈ S. Without loss of generality, we may
assume s ∈ S(k).

2.1. Notation

Fix a smooth, separated, geometrically connected scheme U over F with
generic point ζ such that there exists a model

X // S // U //

sU
||

F
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of

X // S // k //

s
}}

F

in the sense that we have a cartesian diagram

X // S // U //

sU
zz

F

X //

OO

S //

OO

�

k = k(ζ)
sdd //

ζ

OO

�

F

,

with X → S smooth, proper and S → U smooth, separated, geometrically
connected of finite type. In particular, the action of π1(S), π1(s) on H∞`
factor respectively through π1(S) � π1(S) and π1(s) � π1(U) so that

2.1.1. the groups Π?,Π?,s ⊂ GL(H?), ? =∞, `∞ identify with the images
of the motivic representations attached to the smooth proper morphisms
X → S and X ×S,sU U → U respectively. We write, again,

ρ? : π1(S)→ GL(H?), ρ?,s : π1(U)→ GL(H?,s), ? =∞, `∞

for the corresponding representations and set

Π̃? := ρ?(π1(SF)), Π̃?,s := ρ?,s(π1(UF)), ? =∞, `∞.

2.2.

We first reduce the assertion for F `-non Lie semisimple to the assertion for
F algebraically closed.

The introduction of the property ‘`-non Lie semisimple’ comes from

2.2.1. Fact. The following equivalent assertions hold:

1) Lie(Π̃`∞) and Lie(Π̃`∞,s) are semisimple Lie algebras;

2) The Zariski closure of Π̃`∞ and Π̃`∞,s in GLH`∞ are semisimple alge-
braic groups.

Proof. Recall 2.1.1. Then 2) follows from comparison between étale and
singular cohomologies and [D71, Prop. (4.2.5), Thm. (4.2.6)] if p = 0 and
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from [D80, Cor. 3.4.13, Cor. 1.3.9] if p > 0. The equivalence of 1) and 2)
follows from the general fact that if Π ⊂ GLr(Q`) is a compact `-adic Lie
group whose Zariski closure G ⊂ GLr,Q`

is semi simple then Π is open in
G(Q`); this boils down to the fact that a semi simple Lie algebra over Q` is
algebraic - see e.g. [S66, §1, Cor.]. �

2.2.2. We begin with an elementary observation (a partial snake lemma
in the category of profinite groups). Consider a commutative diagram of
profinite groups with exact lines

1 // Π̃ // Π // Γ // 1

1 // Π̃′ //
� ?

OO

Π′ //
� ?

OO

Γ′ //

OOOO

1

Assume the two left-hand vertical arrows are injective and the right-hand
vertical arrow is surjective. Then the canonical map Π̃/Π̃′ → Π/Π′ is surjec-
tive and its fibers are isomorphic to Π̃ ∩Π′/Π̃′. In particular,

1) Π̃′ ⊂ Π̃ is open ⇒ Π′ ⊂ Π is open.

2) Π′ ⊂ Π is open and Π̃ ∩Π′/Π̃′ is finite ⇒ Π̃′ ⊂ Π̃ is open.

2.2.3. Lemma.

1) Π̃∞,s ⊂ Π̃∞ is open ⇒ Π∞,s ⊂ Π∞ is open.

2) Fix a prime ` 6= p and assume F is `-non Lie semisimple. Then Π`∞,s ⊂
Π`∞ is open ⇒ Π̃`∞,s ⊂ Π̃`∞ is open.

Proof. Since s ∈ S(k), for ? =∞, `∞ the canonical morphism Π?,s/Π̃?,s →
Π?/Π̃? is surjective and the short exact sequences of profinite groups

1 // Π̃?
// Π?

// Π?/Π̃?
// 1

1 // Π̃?,s
//

� ?

OO

Π?,s
//

� ?

OO

Π?,s/Π̃?,s
//

OOOO

1

is of the form considered in 2.2.2. So 1) follows from 2.2.2.1) while 2) would
follow from 2.2.2.2) provided Π̃`∞ ∩Π`∞,s/Π̃`∞,s is finite. This is where we
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use the assumption that F is `-non Lie semisimple. Indeed, we have

Π̃`∞ ∩Π`∞,s � Π̃`∞ ∩Π`∞,s/Π̃`∞,s ↪→ Π`∞,s/Π̃`∞,s � π1(F).

By Fact 2.2.1, the Lie algebra of Π̃`∞ ∩Π`∞,s/Π̃`∞,s is semisimple, being a
quotient of Lie(Π̃`∞ ∩Π`∞,s) = Lie(Π̃`∞). But this forces it to be 0, since F
is `-non Lie semisimple by assumption. �

Fix a prime ` 6= p, assume F is `-non Lie semisimple and s ∈ S(k) is `-
Galois-generic. From (2.2.3.2), Π̃`∞,s ⊂ Π̃`∞ is open. If Theorem 1.1 holds
for F algebraically closed, this would imply Π̃∞,s ⊂ Π̃∞ is open hence, from
(2.2.3.1), Π∞,s ⊂ Π∞ is open. This observation reduces Theorem 1.1 for F
`-non Lie semisimple to Theorem 1.1 for F algebraically closed.

2.2.3 So, from now on, we assume F is algebraically closed hence

Π̃? = Π?, Π̃?,s = Π?,s, ? =∞, `∞, s ∈ S.

2.3.

Fix a prime `0 6= p and assume s ∈ S(k) is `0-Galois-generic. We want to
show s ∈ S(k) is Galois-generic.

For every prime ` 6= p and profinite group Γ appearing as a subquotient of
GL(H`∞), let Γ+ ⊂ Γ denote the (normal) subgroup of Γ generated by its
`-Sylow subgroups. Let G`∞ , G`∞,s denote respectively the Zariski-closure
of Π`∞ , Π`∞,s in GLH`∞ . Write G`∞ and G`∞,s for the generic fibers of G`∞ ,
G`∞,s.

2.3.1. Fact. The dimensions of G`∞, G`∞,s are independent of `(6= p).

Proof. This follows from comparison between étale and singular cohomolo-
gies if p = 0 and from [LaP95, Thm. 2.4] if p > 0. More precisely, [LaP95,
Thm. 2.4] implies that, if Y → C is a smooth proper morphism with C a
smooth, separated, geometrically connected curve over the algebraic closure
F of Fp then the dimension of the Zariski closure of the image of

π1(C)→ GL(H∗(Yc,Q`))

is idependant of `. To apply this to the setting of (2.1.1), we need the gen-
eralization of [LaP95, Thm. 2.4] for C of arbitrary dimension. This can be
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deduced from the case of curves by Jouanolou’s version of Bertini’s theorem
[Jou83, Thm. 6.10, 2), 3)] and the smooth proper base change theorem. We
refer to the Claim in the proof of [CT17, Prop. 3.2] for details. �

Also, to prove Theorem 1.1, we may freely replace U and S by connected
étale covers. In particular,

2.3.2. Fact. We may assume the following holds.

1) Π`∞ = Π+
`∞, Π`∞,s = Π+

`∞,s for `� 0;

2) Π∞ =
∏
6̀=p Π`∞, Π∞,s =

∏
`6=p Π`∞,s;

3) G`∞, G`∞,s are connected for every prime ` 6= p;

4) Π`∞ = G`∞(Z`)+, Π`∞,s = G`∞,s(Z`)+ for `� 0;

Proof. Recall 2.1.1 and 2.2.3. Then 1) follows from [CT17, Thm. 1.1] while
2) is [CT17, Cor. 4.6]. 3) follows from comparison between étale and singular
cohomologies if p = 0 and from [LaP95, Prop. 2.2] if p > 0. For 4), assume
first p = 0 (see [C15, §2.3] for details). Let Π` ⊂ G`∞(F`) denote the image
of Π`∞ via the reduction-modulo-` morphism G`∞(Z`)→ G`∞(F`). Then,
from [N87, Thm. 5.1], Π` = Π+

` = G`∞(F`)+ for `� 0. This forces Π`∞ =
G`∞(Z`)+ since, by [C15, Fact 2.3, Lemma 2.4], G`∞(Z`)+ → G`∞(F`)+ is
Frattini for `� 0. Eventually, 4) for p > 0 is [CHT17, Thm. 7.3.2]. �

2.4.

We can now conclude the proof. From (2.3.2.2), it is enough to show that

1) Π`∞,s ⊂ Π`∞ is open for every prime ` 6= p;

2) Π`∞,s = Π`∞ for `� 0.

Since s ∈ S(k) is `0-Galois-generic, (2.3.2.3) for `0 ensures G`∞0 ,s = G`∞0 .
As G`∞,s is always a subgroup of G`∞ , Fact 2.3.1 and (2.3.2.3) also ensure
G`∞,s = G`∞ hence G`∞,s = G`∞ for every prime ` 6= p. Then 1) follows from
(2.2.1.1) while 2) follows from (2.3.2.4).
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