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The decomposition groups of plane conics

and plane rational cubics

Tom Ducat, Isac Hedén, and Susanna Zimmermann

The decomposition group of an irreducible plane curve X ⊂ P2 is
the subgroup Dec(X) ⊂ Bir(P2) of birational maps which restrict
to a birational map of X. We show that Dec(X) is generated by its
elements of degree ≤ 2 when X is either a conic or rational cubic
curve.

1. Introduction

1.1. Preliminaries

We work over an algebraically closed field k of any characteristic. By elemen-
tary quadratic transformation we will mean a birational map ϕ ∈ Bir(P2) of
degree 2 with all of its three base points living in P2; such base points will
be called proper as opposed to the infinitely near ones that only live in some
blowup of P2.

Definition 1.1. For an irreducible curve X ⊂ P2, the decomposition group
Dec(X) of X is the subgroup of Bir(P2) of all birational maps ϕ ∈ Bir(P2)
which restrict to a birational map ϕ |X : X 99K X.

Similarly, the inertia group Ine(X) of X is the subgroup of Bir(P2) of all
birational maps ϕ ∈ Bir(P2) which restrict to the identity map ϕ |X= idX .

Elements of Dec(X) are said to preserve the curve X, whilst elements
of Ine(X) are said to fix X. We will write Aut(P2, X) = Dec(X) ∩ PGL3 for
the subgroup of linear maps in Aut(P2) = PGL3 which preserve X.

The focus of this paper is on the group Dec(X) in the case that X ⊂ P2

is a plane rational curve of degree ≤ 3. In this case X is either a line, a
smooth conic, a nodal cubic or a cuspidal cubic.

Remark 1.2. A line X ⊂ P2 (resp. conic, nodal cubic, cuspidal cubic) is
projectively equivalent to any other line X ′ ⊂ P2 (resp. conic, nodal cubic,
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cuspidal cubic), i.e. there is an automorphism λ ∈ PGL3 with λ(X) = X ′.
For rational curves of degree ≥ 4 this is no longer true in general.

Remark 1.3. The image of a curve X of degree d under a quadratic trans-
formation ϕ is 2d−m1 −m2 −m3 where m1,m2,m3 denote the multiplic-
ities of X at the base points of ϕ. For instance, if X is a general line then
the image is a conic which passes through the base points of ϕ−1. This fact
will be used repeatedly, e.g. the composition of quadratic transformations
with two common base points is again quadratic.

1.2. Motivation

The decomposition and inertia groups of plane curves have appeared in a
number of places.

1.2.1. Decomposition and inertia groups of plane curves of genus
≥ 1. The inertia groups of plane curves of geometric genus ≥ 2 were stud-
ied by Castelnuovo [6], and his results were made more precise by Blanc–
Pan–Vust [3]. In both articles adjoint linear systems are used to study prop-
erties of the group—a technique which does not work for curves of genus
≤ 1. The inertia groups of smooth cubic curves have been studied by Blanc.
For a smooth cubic C, the group Ine(C) is very big; it contains a subgroup
which is a free product whose generating set has the same cardinality as C
[2, Theorem 6].

Decomposition groups were introduced by Gizatullin [9], who used them
as a tool to give sufficient conditions for Bir(P2) to be a simple group. This
group is not simple, as shown later by Cantat–Lamy [5] for algebraically
closed fields, and by Lonjou [11] for arbitrary fields.

For a rational curve X ⊂ P2 it is useful to consider the Kodaira dimen-
sion κ = κ(P2, X) of the pair (P2, X). It is known that

1) κ = −∞ if and only if X is Cremona equivalent to a line L,

2) κ = 0 if and only if X is Cremona equivalent to a Coble curve,

3) κ = 1 if and only if X is Cremona equivalent to a curve of degree 3n
with 9 points of multiplicity n > 2 and a tenth point of multiplicity 2

and otherwise κ = 2 [4, §4.4].
In the case where X ⊂ P2 is a line, a conic or a rational cubic curve we

have κ = −∞. In particular there is a birational transformation ϕ ∈ Bir(P2)
with ϕ(L) = X and we obtain an isomorphism Dec(X) ' Dec(L) given by
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ψ 7→ ϕ−1ψϕ. Although it is not degree-preserving, this isomorphism shows
that Dec(X) is not finite. A description of Dec(L) is given in Theorem 1
below.

Blanc–Pan–Vust [4] give a description of the decomposition groups of
plane curves of genus ≥ 2 and some plane curves of genus 1 (smooth cubic
curves and Halphen curves), as well as the decomposition group of rational
plane curves X ⊂ P2 of Kodaira dimension κ(P2, X) = 0 or 1.

1.2.2. The decomposition group of a line. The classical Noether–
Castelnuovo Theorem [7] states that the Cremona group Bir(P2) has a pre-
sentation given by:

Bir(P2) =
〈

PGL3, σ
〉

where σ is any choice of elementary quadratic transformation. The second
two authors [10, Theorem 1] have shown that an analogous statement holds
for the decomposition group of a line:

Theorem 1 ([10]). Let L ⊂ P2 be a line. Then

Dec(L) =
〈

Aut(P2, L), σ
〉

for any choice of elementary quadratic transformation σ ∈ Dec(L). In par-
ticular any map τ ∈ Dec(L) can be factored into elementary quadratic trans-
formations inside Dec(L).

In this article, we present a similar theorem for conic and rational cubic
curves. Uehara [13, Proposition 2.11] proves that for the cuspidal cubic X ⊂
P2, the elements of the subset

{f ∈ Dec(X) | f is an automorphism near the cusp} ( Dec(X)

can be decomposed into quadratic transformations preserving X. Theorem 3
generalises his result to all of Dec(X).

1.2.3. Relationship to dynamics of birational maps. Birational maps
of P2 preserving a curve of degree ≤ 3 show up naturally when studying the
dynamical behaviour of birational maps of surfaces. For instance, Diller–
Jackson–Sommese [8, Theorem 1.1] show that a connected curve which is
preserved by an algebraically stable element of Bir(P2) with positive first
dynamical degree necessarily has degree ≤ 3.
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In their studies of automorphisms of rational surfaces, Bedford–Kim [1,
§ 1] explore the dynamical behaviour of the family of birational transfor-

mations fa,b : (x, y) 7→
(
y, y+ax+b

)
, for a, b ∈ C. For some time it was thought

that an automorphism of a rational surface must preserve a curve of low
degree and it is difficult to find examples which don’t. For this reason, they
focus on maps of this kind preserving a curve, and show that this curve is
necessarily cubic.

1.3. Main results

We will use Theorem 1 to deduce:

Theorem 2. Let C ⊂ P2 be a conic. Then any map τ ∈ Dec(C) can be
factored into elementary quadratic transformations inside Dec(C).

Moreover, from Theorem 2 we will deduce:

Theorem 3. Let X ⊂ P2 be a rational cubic and suppose that the char-
acteristic of k is not 2. Then any map τ ∈ Dec(X) can be factored into
elementary quadratic transformations inside Dec(X).

The basic strategy used to prove both Theorems 2 & 3 is the same in
each case and is explained in § 2. Given a curve Z ⊂ P2, the idea is to
conjugate τ ∈ Dec(Z) to τ ′ ∈ Dec(Y ), for a curve Y ⊂ P2 of lower degree,
and then use the result for Y .

Remark 1.4. The proof of each theorem is elementary and only requires
choosing quadratic transformations with base points that lie outside of a
collection of finitely many points and lines. In the cubic case we need to
choose base points which avoid all of the tangent lines to a conic which pass
through a given point. We must restrict to a field k of characteristic 6= 2 in
this case, since over fields of characteristic 2 every line through a given point
may be tangent to a conic (see [12, Appendix to § 2]).

Remark 1.5. As shown in Proposition 3.5, if char k 6= 2 then for a conic
C it is still possible to write Dec(C) =

〈
Aut(P2, C), σ

〉
using just one suit-

ably general elementary quadratic transformation σ (where ‘suitably general’
means that σ does not contract a tangent line to C). However, if the base
field k is uncountable then we need an uncountable number of elementary
quadratic transformations to generate both Ine(C) (see Remark 3.6) and
Dec(X) for X a nodal cubic (see § 4.3).
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2. The main Proposition

Let Y,Z ⊂ P2 be two arbitrary irreducible plane curves.

Definition 2.1. Let ΦY,Z ⊂ Bir(P2) be the set of all elementary quadratic
transformations ϕ which map Y birationally onto Z.

Note that ΦY,Z is a (possibly empty) subset of Bir(P2) and not a sub-
group. For any ϕ,ψ ∈ ΦY,Z we clearly have ϕψ−1 ∈ Dec(Z). More generally
for any τ ∈ Dec(Y ) we have ϕτψ−1 ∈ Dec(Z).

Proposition 2.2. Suppose that ΦY,Z 6= ∅ and the following three state-
ments hold:

(A) Any τ ∈ Dec(Y ) can be factored into elementary quadratic transfor-
mations inside Dec(Y ).

(B) For any ϕ,ψ ∈ ΦY,Z the composition ϕψ−1 ∈ Dec(Z) can be factored
into elementary quadratic transformations inside Dec(Z).

(C) For any elementary quadratic transformation τ ∈ Dec(Y ) there exist
ϕ,ψ ∈ ΦY,Z such that ϕτψ−1 ∈ Dec(Z) can be factored into elementary
quadratic transformations inside Dec(Z).

Then any τ ∈ Dec(Z) can be factored into elementary quadratic transforma-
tions inside Dec(Z).

Proof. Suppose that τ ∈ Dec(Z) and choose any two maps ϕ,ψ ∈ ΦY,Z 6= ∅.
Then by (A) we can factor τ ′ := ψ−1τϕ ∈ Dec(Y ) into elementary quadratic
transformations τ ′ = τnτn−1 · · · τ2τ1 with τi ∈ Dec(Y ) for all i = 1, . . . , n.

By (C) we can find ϕi, ψi ∈ ΦY,Z such that fi := ϕiτiψ
−1
i ∈ Dec(Z) can

be factored into elementary quadratic transformations inside Dec(Z) for all
i = 1, . . . , n.

Now let ϕ0 := ϕ and ψn+1 := ψ. Then by (B) we can factor gi :=
ψi+1ϕ

−1
i ∈ Dec(Z) into elementary quadratic transformations inside Dec(Z)

for all i = 0, . . . , n.
We can write τ = gnfngn−1 · · · g1f1g0, according to the diagram:

P2 P2 P2 P2 P2 P2 P2 P2

P2 P2 P2 P2

ϕ0 ϕ1 ϕn−1 ϕnψ1 ψ2 ψn ψn+1

τ1 τ2 τn−1 τn

g0 f1 g1 gn−1 fn gn

· · ·

· · ·
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and therefore we can factor τ into elementary quadratic transformations
inside Dec(Z). �

Theorem 2 and Theorem 3 follow from Proposition 2.2, where the three
statements (A), (B), (C) appearing in the proposition are proved in each
case according to:

(A) (B) (C)

Theorem 2 Theorem 1 Lemma 3.2 Lemma 3.3

Theorem 3 Theorem 2 Lemma 4.2 Lemma 4.3

3. The decomposition group of a conic

Throughout this section we let L ⊂ P2 denote a fixed line and C ⊂ P2 a
conic.

Remark 3.1. If ϕ ∈ Bir(P2) is an elementary quadratic transformation
belonging to ΦL,C then all three base points of ϕ must lie outside of L.
Conversely, given any three non-collinear points in P2 \ L we can always
find an elementary quadratic transformation ϕ ∈ ΦL,C with these as base
points.

3.1. Proof of Theorem 2

We prove statements (B) & (C) in Proposition 2.2 in the special case that
Y = L a line and Z = C a conic.

3.1.1. Proof of statement (B) for conics.

Lemma 3.2. Suppose that ϕ1, ϕ2 ∈ ΦL,C . Then the composition ϕ2ϕ
−1
1 ∈

Dec(C) can be factored into elementary quadratic transformations inside
Dec(C).

Proof. For i = 1, 2, we let Pi, Qi, Ri be the base points of ϕi, none of which lie
on L. We may assume that these six points are in general position, i.e. that
no points coincide and that no three points are collinear, as in Figure 1(i).
If this is not the case, choose a third map ϕ3 ∈ ΦL,C whose base points
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The decomposition groups of conics and rational cubics 41

are in general position with respect to both ϕ1 and ϕ2. Then we can write
ϕ2ϕ

−1
1 = (ϕ2ϕ

−1
3 )(ϕ3ϕ

−1
1 ) and decompose each of ϕ2ϕ

−1
3 and ϕ3ϕ

−1
1 into

elementary quadratic transformations inside Dec(C).
We let ψ0 := ϕ1, ψ1, ψ2, ψ3 := ϕ2 be a sequence of elementary quadratic

transformations in ΦL,C with base points:

(P1, Q1, R1), (P1, Q1, R2), (P1, Q2, R2), (P2, Q2, R2)

and we write ϕ2ϕ
−1
1 = (ψ3ψ

−1
2 )(ψ2ψ

−1
1 )(ψ1ψ

−1
0 ).

By our assumption, ψ1 and ψ2 exist since no three points are collinear
and we can take ψ1, ψ2 ∈ ΦL,C since none of these points lie on L. Moreover
ψi+1ψ

−1
i ∈ Dec(C) is an elementary quadratic transformation for i = 0, 1, 2

since ψi and ψi+1 share exactly two common base points and no three base
points are collinear. �

(i)

•P1

• Q1

•
R1

•P2

• Q2

• R2

(ii)

•
P

• Q

•R

•S

Figure 1: Configuration of base points in proof of (i) Lemma 3.2 and (ii)
Lemma 3.3.

3.1.2. Proof of statement (C) for conics. In fact we prove a stronger
statement than statement (C) (since idP2 is a decomposition into zero ele-
mentary quadratic transformations in Dec(C)).

Lemma 3.3. Let τ ∈ Dec(L) be an elementary quadratic transformation.
Then we can find ϕ,ψ ∈ ΦL,C such that ϕτψ−1 = idP2.

Proof. Let P,Q,R be the base points of τ , where P,Q /∈ L and R ∈ L.
Choose a point S /∈ L as in Figure 1(ii), such that no three of P,Q,R, S
are collinear.

Since P,Q, S are non-collinear we let ψ ∈ ΦL,C be an elementary quad-
ratic transformation with these base points. Then ϕ := ψτ−1 ∈ ΦL,C is also
an elementary quadratic transformation since ψ and τ share two base points
and no three base points are collinear. Thus ϕτψ−1 = idP2 . �
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3.2. A generating set for Dec(C)

It was shown in [10] that, for L ⊂ P2 a line, Dec(L) can be generated by
Aut(P2, L) and any one elementary quadratic transformation σ ∈ Dec(L).
This is because Aut(P2, L) is still large enough to act transitively on the set:

B =
{

(P,Q,R) ∈ (P2)3 | P ∈ L and Q,R /∈ L non-collinear
}

of all possible base points for σ. For the conic C ⊂ P2, even though the
analogous action of Aut(P2, C) is no longer transitive, it is still true that
Dec(C) can be generated by Aut(P2, C) and a suitably general elementary
quadratic transformation σ ∈ Dec(C) provided that char k 6= 2.

We fix a model C = V
(
xz − y2

)
⊂ P2 in order to describe Aut(P2, C).

Lemma 3.4. Aut(P2, C) is given by:

Aut(P2, C) =


a2 2ab b2

ac ad+ bc bd
c2 2cd d2

 ∈ PGL3

∣∣∣∣∣∣ ad− bc 6= 0

 ' PGL2 .

In particular any α ∈ PGL2 = Bir(C) extends uniquely to a linear map in
Aut(P2, C).

It follows from Lemma 3.4 that Ine(C) ∩ PGL3 = 〈 idP2 〉. Moreover the
sequence

1→ Ine(C)→ Dec(C)→ PGL2 → 1

is exact and Dec(C) = Ine(C) o PGL2 is a semidirect product, where PGL2

acts on Ine(C) by conjugation.

Proposition 3.5. Let C ⊂ P2 be a conic and suppose that char k 6= 2. Then
Dec(C) = 〈Aut(P2, C), σ 〉 for any elementary quadratic transformation σ
which does not contract a tangent line to C.

Proof. Let τ ∈ Dec(C) be an elementary quadratic transformation and con-
sider the action of PGL2 ' Aut(P2, C) on the set:

B = {(P,Q,R) ∈ (P2)3 | P,Q ∈ C and R /∈ C non-collinear}

of all possible base points for τ . If P,Q ∈ C and R /∈ C are the (ordered)
base points of τ then, by an element of PGL2, we can send P 7→ (1 : 0 : 0),
Q 7→ (0 : 0 : 1) and R to a point in the conic Γd = V (xz − dy2) for a uniquely
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determined 1 6= d ∈ k. Write B =
⋃
d∈k\1Bd, a decomposition into PGL2-

invariant sets according to this pencil of conics Γd. The sets Bd with d 6= 0
are all PGL2-orbits. For the degenerate conic Γ0 the set B0 splits into three
PGL2-orbits B0 = B1,0 ∪B0,1 ∪B0,0 according to the cases:

R ∈ Γ1,0 := {(t : 1 : 0) | t 6= 0}, R ∈ Γ0,1 := {(0 : 1 : t) | t 6= 0},
R = (0 : 1 : 0) .

As shown in Figure 2, these three orbits correspond to the cases where one
or two of the lines contracted by τ are tangent to C.

•

•

•

(i)

•

•

•

(ii)

•

•

•

(iii)

Figure 2: The base points of τ belonging to the orbit (i) Bd with d 6= 0, (ii)
B1,0 or B0,1, (iii) B0,0.

Let σa,b ∈ Dec(C) be an elementary quadratic transformation with base
points (1 : 0 : 0), (0 : 0 : 1) and (a : 1 : b) belonging to an orbit Bab with
ab 6= 0. By composing with a suitable linear map we can assume the map is
actually in Ine(C), in which case σa,b is uniquely determined and given by:

σa,b =
((

1− ab
)
xy + a

(
xz − y2

)
: xz − aby2 :

(
1− ab

)
yz + b

(
xz − y2

))
.

Any elementary quadratic transformation σ ∈ Dec(C) which does not
contract a tangent line to C has base points belonging to the same PGL2-
orbit as σa,b for some a, b ∈ k with ab 6= 0, 1. Therefore, to prove the propo-
sition, it is enough to show that given any a, b ∈ k with ab 6= 0, 1, we can
use σa,b to generate at least one elementary quadratic transformation with
base points belonging to each other PGL2-orbit.

Consider the linear map:

λa,b = (x+ 2ay + a2z : bx+ (1 + ab)y + az : b2x+ 2by + z)

and, for c 6= 0, 1,∞, the diagonal map µc = (c2x : cy : z). Since ab 6= 0 we
get the formula:

σa′,b′ = λ−1a,b µ
−1
c σa,b µc σ

−1
a,b λa,b
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where a′ = 1−abc
b(c−1) and b′ = ab−c

a(c−1) .

As c varies the base points of σa′,b′ are (1 : 0 : 0), (0 : 0 : 1) and the point
R′ = (a(1− abc) : ab(c− 1) : b(ab− c)) lying on the line:

La,b = V
(
bx+ (1 + ab)y + az

)
.

The point R′ can be any point on La,b, except for (a : 0 : −b), corresponding
to c = 1, and La,b ∩ C = {(−1

b : 1 : −b), (−a : 1 : − 1
a)}, corresponding to c =

0,∞. Outside of these points La,b intersects every conic Γd at least once.
For all d 6= 0 this construction gives an elementary quadratic transfor-

mation with base points in Bd.
If d = 0 and ab 6= −1 then La,b meets Γ1,0 and Γ0,1 giving elementary

quadratic transformations with base points in B1,0 and B0,1. If ab = −1
then La,b ∩ Γ0 = (0 : 1 : 0) giving an elementary quadratic transformation
with base points in B0,0.

It remains to produce an elementary quadratic transformation with base
points in B0,0 if ab 6= −1 and in B1,0 and B0,1 if ab = −1. We can use the
construction once to produce σa′,b′ with a′b′ = −1 if ab 6= −1 (or with a′b′ 6=
−1 if ab = −1) and then proceed as above. �

Remark 3.6. If the ground field k is uncountable then the corresponding
statement for Ine(C) is not true, i.e. Ine(C) cannot be generated by linear
maps and any countable collection of elementary quadratic maps. Although
Ine(C) ∩ PGL3 is trivial, Ine(C) contains a lot of elementary quadratic trans-
formations. Indeed the maps

{σa,b ∈ Ine(C) | a, b ∈ k, ab 6= 1}

appearing in the proof of Proposition 3.5 give an uncountable family.

4. The decomposition group of a rational cubic

Throughout this section we let C ⊂ P2 denote a fixed conic and X ⊂ P2

a rational cubic. We will distinguish between the nodal and cuspidal cases
when necessary. As explained in Remark 1.4, we will also assume that the
characteristic of k is not 2.

Remark 4.1. Any map ϕ ∈ ΦC,X must have exactly one base point P ∈ C
and two base points Q,R /∈ C. In this case X is a cuspidal cubic if the line
QR is tangent to C and a nodal cubic otherwise, as shown in Figure 3.



i
i

“3-Heden” — 2019/5/23 — 12:12 — page 45 — #11 i
i

i
i

i
i

The decomposition groups of conics and rational cubics 45

Moreover, given any three non-collinear points in such a position we can
always find a map ϕ ∈ ΦC,X with these three points as base points.

•
P

•
R

•
Q

•
P

•
R

•
Q

(i) (ii)

Figure 3: Base point configurations for ϕ ∈ ΦC,X when X is (i) a nodal cubic
and (ii) a cuspidal cubic.

4.1. Proof of Theorem 3

We now prove statements (B) & (C) in Proposition 2.2 for Y = C a conic
and Z = X a rational cubic.

4.1.1. Proof of statement (B) for cubics.

Lemma 4.2. Suppose that ϕ1, ϕ2 ∈ ΦC,X . Then the composition ϕ2ϕ
−1
1 ∈

Dec(X) can be factored into elementary quadratic transformations inside
Dec(X).

Proof. For i = 1, 2, we let Pi, Qi, Ri be the base points of ϕi, where Pi ∈ C
and Qi, Ri /∈ C. As in the proof of Lemma 3.2, we may intertwine with a
third map ϕ3 ∈ ΦC,X to assume that no base points coincide, no three are
collinear and no two lie on a tangent line to C (unless X is a cuspidal cubic,
in which case we can assume that only Q1, R1 and Q2, R2 lie on a tangent
line to C).

The nodal case: If X is a nodal cubic we let ψ0 := ϕ1, ψ1, ψ2, ψ3 :=
ϕ2 ∈ ΦC,X be a sequence of elementary quadratic transformations with base
points:

(P1, Q1, R1), (P1, Q1, R2), (P1, Q2, R2), (P2, Q2, R2)

and we write ϕ2ϕ
−1
1 = (ψ3ψ

−1
2 )(ψ2ψ

−1
1 )(ψ1ψ

−1
0 ).
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By our assumption ψ1 and ψ2 exist since each of these triples is non-
collinear and ψ1, ψ2 ∈ ΦC,X since they both have precisely one base point
on C and do not contract any tangent line to C. Lastly each composition
ψi+1ψ

−1
i ∈ Dec(X) is an elementary quadratic transformation since ψi and

ψi+1 share exactly two common base points and no three base points are
collinear.

•
P1

•
Q1

•
R1 •

P2

•
Q2

•
R2

(i)

•P1

•
Q1

•
R1

•
P2

• Q2

•R2

•
S

L1

L2

(ii)

Figure 4: Configuration of base points in (i) the nodal case and (ii) the
cuspidal case.

The cuspidal case: If X is a cuspidal cubic then we must be a little bit
more careful to ensure that each of our intermediate maps ψi contracts a
tangent line to C.

For i = 1, 2 let Li be the tangent line to C passing through Qi which does
not contain Ri. By our assumption on the position of the base points, the
point S = L1 ∩ L2 is well-defined, S /∈ C and S is not equal to any Pi, Qi, Ri.
Moreover, no three of the seven points P1, P2, Q1, Q2, R1, R2, S are collinear.

Now we let ψ0 := ϕ1, ψ1, ψ2, ψ3, ψ4 := ϕ2 be a sequence of elementary
quadratic transformations in ΦC,X with base points:

(P1, Q1, R1), (P1, Q1, S), (P1, Q2, S), (P2, Q2, S), (P2, Q2, R2)

and we write ϕ2ϕ
−1
1 = (ψ4ψ

−1
3 )(ψ3ψ

−1
2 )(ψ2ψ

−1
1 )(ψ1ψ

−1
0 ).

As before, ψ1, ψ2, ψ3 exist since each triple of base points is non-collinear
and
ψ1, ψ2, ψ3 ∈ ΦC,X since they all have precisely one base point on C and
contract a tangent line to C. Lastly each composition ψi+1ψ

−1
i ∈ Dec(X)
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is an elementary quadratic transformation since ψi, ψi+1 share exactly two
common base points and no three base points are collinear. �

4.1.2. Proof of statement (C) for cubics.

Lemma 4.3. Let τ ∈ Dec(C) be an elementary quadratic transformation.
Then we can find ϕ,ψ ∈ ΦC,X such that ϕτψ−1 ∈ Dec(X) can be factored
into elementary quadratic transformations inside Dec(X).

Proof. We first assume that τ is an elementary quadratic transformations
which does not contract a tangent line to C (i.e. τ has a configuration of
base points as in Figure 2(i)). Let P,Q ∈ C and R /∈ C be the base points
of τ and let L be a tangent line to C passing through R. By assumption
L 6= PR,QR.

Choose a point S /∈ C as in Figure 5, such that no three of P,Q,R, S are
collinear. If X is a nodal cubic then we choose S to avoid the tangent lines
to C passing through P , Q or R. If X is a cuspidal cubic then we choose S
to lie on L but avoid the tangent lines to C through P or Q.

•
P

• Q

•
R

•S

(i)

•
P

• Q

•
R

•
S

(ii)

Figure 5: Location of the point S when X is (i) a nodal cubic and (ii) a
cuspidal cubic.

Since P,R, S are non-collinear there is an elementary quadratic trans-
formation ψ ∈ ΦC,X with these base points. We let ϕ := ψτ−1 ∈ ΦC,X which
is also an elementary quadratic transformation since ψ and τ share two base
points and no three of the base points are collinear. Thus ϕτψ−1 = idP2 ∈
Dec(X) which is a decomposition into zero elementary quadratic transfor-
mations inside Dec(X).

If τ is an arbitrary elementary quadratic transformation in Dec(C), then
by Proposition 3.5 we can write τ = τn · · · τ1 where τi ∈ Dec(C) are elemen-
tary quadratic transformations which do not contract a tangent line to C.
We can find ϕi, ψi ∈ ΦC,X , for i = 1, . . . , n, such that ϕiτiψ

−1
i ∈ Dec(X) can
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be factored into elementary quadratic transformations inside Dec(X) and
by Lemma 4.2 we can factor ψi+1ϕ

−1
i ∈ Dec(X) into elementary quadratic

transformations inside Dec(X) for i = 1, . . . , n− 1. Therefore, taking ϕ :=
ϕn and ψ := ψ1, we can factor

ϕτψ−1 = (ϕnτnψ
−1
n )(ψnϕ

−1
n−1)(ϕn−1τn−1ψ

−1
n−1) · · · (ψ2ϕ

−1
1 )(ϕ1τ1ψ

−1
1 )

into elementary quadratic transformations inside Dec(X). �

4.2. An example

Let X be a nodal (resp. cuspidal) cubic, let τ ∈ Dec(X) and suppose that
we conjugate τ to get τ ′ ∈ Dec(C), for a conic C, as in the proof of Propo-
sition 2.2. If τ ′ can be decomposed into n elementary quadratic transforma-
tions which do not contract any tangent line to C then näıvely applying the
proof of Theorem 3 gives a decomposition of τ into at most 6(n+ 1) (resp.
8(n+ 1)) elementary quadratic transformations inside Dec(X).

Even in relatively simple cases this gives a very long decomposition which
is far from optimal. For example let X be the cuspidal cubic X = V (x3 −
y2z) ⊂ P2 and consider the de Jonquières involution τ = (xy2 : y3 : 2x3 −
y2z) ∈ Ine(X). This map has one proper base point at the cusp point P ∈ X
and all other base points infinitely near to P . If C is the conic C = V (xz −
y2) then ϕ = (x(y + z) : x(x+ y) : z(y + z)) ∈ ΦC,X and conjugating τ with
ϕ gives τ ′ = ϕ−1τϕ ∈ Dec(C), a map of degree 3 with two proper base points,
which decomposes into four elementary quadratic transformations in Dec(C)
not contracting any tangent line to C. Therefore we can decompose τ into
at worst 40 elementary quadratic transformations inside Dec(X), although
we expect a minimal decomposition to be much shorter.

4.3. Generating sets for Dec(X)

Let X be the nodal cubic given by the model X = V (x3 + y3 − xyz) ⊂ P2.
We see that Aut(P2, X) is the finite group given by:

Aut(P2, X) =

〈ω 0 0
0 ω2 0
0 0 1

 ,

0 1 0
1 0 0
0 0 1

〉 ' S3
where ω ∈ k is a primitive cube root of unity. If k is an uncountable field
then Dec(X) is an uncountable group and therefore cannot be generated by
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Aut(P2, X) and any finite (or countable) collection of elementary quadratic
transformations.

Now suppose X is the cuspidal cubic given by the model X = V (x3 −
y2z) ⊂ P2. In this case Aut(P2, X) is infinite:

Aut(P2, X) =

〈a 0 0
0 1 0
0 0 a3

∣∣∣∣∣∣ a ∈ k×

〉
' Gm .

We do not know whether or not Dec(X) can be generated by Aut(P2, X)
and any countable collection of elementary quadratic transformations.

5. Rational curves of higher degree

We provide a family of plane rational curves Xd ⊂ P2, birationally equiv-
alent to a line and of degree d ≥ 4, to show that we cannot expect Theo-
rems 1, 2 & 3 to be true for curves of higher degree.

Let Xd denote the rational curve given by Xd = V (xd − yd−1z) ⊂ P2

which has a unique singular point P = (0 : 0 : 1), a cusp of multiplicity d− 1,
and a unique inflection pointQ = (0 : 1 : 0). Let LQ = (z = 0) be the tangent
line intersecting Xd at Q with multiplicity d and let LP = (y = 0) be the
tangent line to the cusp P . Any de Jonquières transformation of degree d
with major base point at P and all other base points on Xd \ P sends Xd

onto a line.
A map in Aut(P2, Xd) has to fix P and Q and preserve LP and LQ. It

is straightforward to check that:

Aut(P2, Xd) =
{

(ax : y : adz)
∣∣∣ a ∈ k×

}
' Gm .

Lemma 5.1. The standard involution σ = (yz : zx : xy) ∈ Bir(P2) is the
only elementary quadratic map that preserves Xd, up to composition with
an element of Aut(P2, Xd).

Proof. It is easy to check that σ ∈ Dec(Xd). Any other elementary quadratic
transformation τ ∈ Dec(Xd) must have one base point at P ∈ Xd, one base
point in the smooth locus of Xd and one base point not contained in Xd. In
particular τ−1 also has a base point at P . Since the line τ−1(P ) is tangent
to a point of Xd with multiplicity ≥ d− 1, we must have τ−1(P ) = LQ. As
the line LQ is contracted, both τ and τ−1 must have two base points on LQ,
one of which is LQ ∩Xd = Q. Now the line τ−1(Q) is tangent to the cusp P
so we must have τ−1(Q) = LP , as in Figure 6.
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Since the lines LP and LQ are contracted, the base points of τ are P =
(0 : 0 : 1), Q = (0 : 1 : 0) and LP ∩ LQ = (1 : 0 : 0). Hence, up to an element
of Aut(P2, Xd), we must have τ = σ. �

•P •

•Q

LQ

LP

Q

LQ

LP

P

• • LQ

• LP

P

Q

Figure 6: Resolution of the standard involution σ ∈ Dec(Xd).

Proposition 5.2. If d ≥ 4, the group Dec(Xd) cannot be generated by lin-
ear maps and elementary quadratic transformations.

Proof. By Lemma 5.1, the subgroup of Dec(Xd) generated by linear maps
and elementary quadratic transformations is given by 〈Aut(P2, Xd), σ 〉.
Since σ2 = idP2 and σλ = λ−1σ for any λ ∈ Aut(P2, Xd), all elements of this
subgroup are of the form λ or λσ and are either linear or quadratic. But there
are many elements in Dec(Xd) of degree > 2; for example the de Jonquières
transformation τa = (xyd−1 : yd : (1− a)xd + ayd−1z) for a ∈ k×. �

Remark 5.3. The family of maps {τa | a ∈ k×}, appearing at the end of
the proof of Proposition 5.2, form a subgroup of Ine(Xd) isomorphic to Gm

since τbτa = τab for all a, b ∈ k×.
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