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The average number of integral points

in orbits

Wade Hindes

Dedicated to Joseph H. Silverman on the occasion of his 60th birthday

Over a number field K, a celebrated result of Silverman states that
if ϕpzq P Kpzq is a rational function whose second iterate is not a
polynomial, the set of S-integral points in the orbit OrbϕpP q “
tϕnpP quně0 is finite for all P P P1pKq. In this paper, we show
that if we vary ϕ and P in a suitable family, the number of S-
integral points in OrbϕpP q is absolutely bounded. In particular,
if we fix ϕ and vary the basepoint P P P1pKq, then we show that
#pOrbϕpP q XOK,Sq is zero on average. Finally, we prove a zero-
average result in general, assuming a standard height uniformity
conjecture in arithmetic geometry.

1. Introduction

Let K{Q be a number field and let S be a finite set of places containing the
archimedean ones. Let ϕpzq P Kpzq be a rational function of degree d ě 2,
and let ϕn denote the nth iterate of ϕ. If ϕ2 is not a polynomial, then
Silverman proved in [20] that the forward orbit

(1) OrbϕpP q :“ tP,ϕpP q, ϕ2pP q, . . . u

contains only finitely many S-integral points for all P P P1pKq. Moreover,
Hsia and Silverman [5] gave an explicit bound on the number of S-integral
points in OrbϕpP q, though it is normally much larger than the actual num-
ber. Nevertheless, there are rational maps (of every degree) with arbitrar-
ily many integral points, illustrating the problem’s subtlety [18, Proposi-
tion 3.46].

On the other hand, one may hope to control #pOrbϕpP q XOK,Sq on
average, that is, as we vary over P P P1pKq. This point of view has yielded
some powerful insight in other areas of number theory [1, 3, 12], and we
proceed with this approach here.
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102 Wade Hindes

We begin by fixing some notation. A rational map ϕ : P1 Ñ P1 of degree
d is defined by two homogenous polynomials

ϕ “ rF,Gs “ radx
d ` ad´1x

d´1y ` ¨ ¨ ¨ ` a0y
d,

bdx
d ` bd´1x

d´1y ` ¨ ¨ ¨ ` b0y
ds

such that the resultant RespF,Gq ‰ 0. In this way, a rational map is de-
termined by a p2d` 2q-tuple of numbers pa0, a1, . . . , ad, b0, b1, . . . bdq, well-
defined up to scaling. In particular, we may identify the set of rational maps
of degree d, denoted Ratd, as an open subset of P2d`1; see [18, §4.3]. More-
over, we define the height of ϕ, written hpϕq, to be its corresponding height
in projective space [18, §3.1].

In this paper, we consider integral points in families φ : X Ñ Ratd of
dynamical systems, where X{K is a projective variety and φ is a rational
map defined over K. Specifically, if X is equipped with a K-morphism β :
X Ñ P1, then we study pOrbφP pβP q XOK,Sq, given by evaluating φ and β
at suitable points P P XpKq.

Remark 1.1. Let KpXq denote the function field of X. Then we can view
the family pX,φ, βq as given by a rational function φpzq P KpXqpzq of degree
d ě 2 and a point β P KpXq, and we will use both perspectives here.

To make our notion of suitable points explicit, define the following subset
of X:

(2) IX,φ :“
 

P P X | φP P Ratd is defined, and φ2P R
sKrxs

(

.

When X is a curve, we prove that the quantity #pOrbφP pβP q XOK,Sq is uni-
formly bounded over all points P P IX,φpKq and all morphisms β : X Ñ P1.
However, as is often the case when studying families of dynamical systems,
we must assume that the generic map φpzq P KpXqpzq is not isotrivial : φ
is isotrivial if there is a Möbius transformation M P PGL2pKpXqq so that
M´1 ˝ φ ˝M is defined over the constant field K.

In particular, given the freedom we have in choosing the basepoint family
β, we have made progress towards a dynamical analog of a conjecture of Lang
[10, page 140] regarding the number of integral points on elliptic curves; see
[18, Conjecture 3.47].

Theorem 1.2. Let X{K be a curve and let φ : X Ñ Ratd Ď P2d`1 and β :
X Ñ P1 be rational maps over K. If φpzq P KpXqpzq of degree d ě 2 is not
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The average number of integral points in orbits 103

isotrivial, then #pOrbφP pβP q XOK,Sq is uniformly bounded over all points
P P IX,φpKq.

Of course, one expects that the actual number of integral points in a par-
ticular orbit is zero, provided that X has sufficiently many rational points.
To make this statement precise, we define a suitable notion of average. Given
an ample height function hX on X and a positive real number B, we write
IX,φpB,Kq for the set of points in XpKq X IX,φ of height at most B. Then
we define the average number of S-integral points in orbits in the family
pX,φ, βq to be

(3) ĚAvgpφ, β, Sq :“ lim sup
BÑ8

ř

PPIX,φpB,Kq
#
`

OrbφP pβP q XOK,S

˘

#IX,φpB,Kq
,

and we show that ĚAvgpφ, β, Sq “ 0 for several families pX,φ, βq over number
fields, including the case of constant families: φ : X Ñ Ratd with φP “ ϕ for
all P P X.

Theorem 1.3. Let ϕpzq P Kpzq be such that degpϕq ě 2 and ϕ2pzq R sKrzs.
If X{K is a curve of genus g ě 1 and β : X Ñ P1 is a non-constant map,
then the set

tP P XpKq |
`

OrbϕpβP q XOS

˘

‰ ∅u

is finite. Moreover, if g ď 1 and XpKq is infinite, then

ĚAvgpϕ, β, Sq :“ lim sup
BÑ8

ř

PPIX,ϕpB,Kq
#
`

OrbϕpβP q XOK,S

˘

#IX,ϕpB,Kq
“ 0

In particular, if X “ P1 and β is the identity map,

ĚAvgpϕ, Sq :“ lim sup
BÑ8

ř

PPP1pB,Kq#
`

OrbϕpP q XOK,S

˘

#P1pB,Kq
“ 0.

For examples of non-constant families pX,φ, βq with ĚAvgpφ, β, Sq “ 0,
see Proposition 2.6. Moreover, assuming a standard height uniformity con-
jecture (see Conjecture 3.1 below) in arithmetic geometry, we prove an
average-zero statement for all curves X and all families pX,φ, βq as in The-
orem 1.2. In fact, for such families, Conjecture 3.1 implies that there is a
largest iterate that can produce an integral point, a stronger statement than
just bounding the number of such iterates:
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Theorem 1.4. Let X{K be a curve and let φ : X Ñ Ratd Ď P2d`1 and β :
X Ñ P1 be rational maps over K. If d ě 2 and pX,φ, βq satisfies:

(1) φ2pzq R KpXqrzs (i.e. the second iterate of φ is not generically a poly-
nomial),

(2) ĥφpβq ą 0,

then P P IX,φpKq and ĥφP pβP q ą 0 for all but finitely many points in XpKq,
and Conjecture 3.1 implies that

Npφ, β, Sq :“ sup
 

n : φnP pβP q P OK,S for some P P IX,φpKq, ĥφP pβP q ą 0
(

is finite. Moreover, if XpKq is infinite, then

ĚAvgpφ, β, Sq :“ lim sup
BÑ8

ř

PPIX,φpB,Kq
#
`

OrbφP pβP q XOK,S

˘

#IX,φpB,Kq
“ 0.

Finally, we outline how one might generalize these results to varieties of
arbitrary dimension, and we illustrate this idea with an explicit 3-dimensional
family in Proposition 3.4.

2. Integral points in orbits in families

Throughout this section, let X be curve, let K be a number field, and let d ě
2. We use some properties of height functions onX to prove that the quantity
#pOrbφP pβP q XOK,Sq is bounded for all non-isotrivial families pX,φ, βq. In
particular, it follows that the average ĚAvgpφ, β, Sq is also bounded for such
families. To prove Theorem 1.2, we use the following result due to Call and
Silverman to estimate canonical heights; see [4, Theorem 4.1].

Theorem 2.1. Let X{K be a curve, let φ : X Ñ Ratd and β : X Ñ P1 be
rational maps over K defined on X0 Ď X, and let hX be an ample height
function on X. Then,

lim
hXpP qÑ8
PPX0

ĥφP pβP q

hXpP q
“ ĥφpβq.

Here ĥφpβq is defined by [18, Theorem 3.20] using the Weil height on KpXq.

Proof of Theorem 1.2. As [5, Corollary 17] suggests, we must bound the
ratio hP2d`1pφP q

L

ĥφP pβP q as we range over suitable points P P IX,φpKq, to
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bound the number of integral points in orbits. To do this, fix an ample height
function hX on X corresponding to a divisor of degree 1 and let H be a
hyperplane class in PicpP2d`1q. In particular, the normalization property of
heights implies that

(4) hP2d`1,HpQq “ hP2d`1pQq `Op1q

for all Q P P2d`1p sKq; see, [17, Theorem III.10.1(a)]. On the other hand,
since the rational map φ : X Ñ Ratd extends to a morphism φ : X Ñ P2d`1

of projective varieties [19, II.2 Prop 2.1], the functorality of heights [17,
Theorem III.10.1(d)] and (4) imply that

(5) hX,φ˚HpP q “ hP2d`1pφP q `Op1q

for all P P XpKq. Now we compare the two height functions hX and hX,φ˚H
on the curve X using [17, Theorem III.10.2]:

(6) lim
hXpP qÑ8

hX,φ˚HpP q

hXpP q
“ degpφ˚Hq.

Here we use that hX was associated to a divisor of degree 1. From here,
we proceed in cases. Suppose first that ĥφpβq ą 0. Then Theorem 2.1, (5)
and (6) together imply that

lim
hXpP qÑ8
PPX0

hP2d`1pφP q

ĥφP pβP q
“ lim

hXpP qÑ8
PPX0

hX,φ˚HpP q `Op1q

ĥφP pβP q

“ lim
hXpP qÑ8
PPX0

hX,φ˚HpP q `Op1q

hXpP q
¨
hXpP q

ĥφP pβP q

“ lim
hXpP qÑ8

hX,φ˚HpP q `Op1q

hXpP q
¨ lim
hXpP qÑ8
PPX0

hXpP q

ĥφP pβP q

“
degpφ˚Hq

ĥφpβq
.

In particular, for all points P P X0 with hXpP q bigger than some fixed δ ą 0,
the ratio

(7)
hP2d`1pφP q

ĥφP pβP q
ď

degpφ˚Hq

ĥφpβq
` 1
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is bounded independently of P . In particular, (7) and [5, Corollary 17] imply
that there is a constant γ “ γ

`

d, rK : Qs
˘

such that

(8) #
`

OrbφP pβP q XOK,S

˘

ď 4#S ¨ γ ` log`d

ˆ

degpφ˚Hq

ĥφpβq
` 1

˙

for all P P IX,φpKq with hXpP q ą δ. On the other hand, hX is ample, so
that any set of K-points of X of bounded height is finite. Hence,

Eδ :“ tP P XpKq : hXpP q ď δu

is a finite set. Therefore, if P P IX,φpKq and P P Eδ, then #pOrbφP pβP q X
OK,Sq is uniformly bounded by Silverman’s original theorem; see [18, Theo-
rem 3.43] or [20] for the general statement. This fact, along with the bound
in (8), completes the proof of Theorem 1.2 when ĥφpβq ą 0.

On the other hand, if ĥφpβq “ 0, then [2, Corollary 1.8] implies that β is
preperiodic for φ: there exist two (distinct) non-negative integers n and m
such that φnpβq “ φmpβq. In particular, this holds for every specialization,
i.e. φnP pβP q “ φmP pβP q for all P P X. Therefore, we see that # OrbφP pβP q ď
maxtn,mu for all P P X. Hence, #pOrbφP pβP q XOK,Sq ď maxtn,mu also,
and we obtain a trivial bound in this case. ˝

Remark 2.2. We note that the uniform bound in Theorem 1.2 need not
hold for isotrivial families. To see this, we use Silverman’s original “clear-
ing denominators” trick in [18, Proposition 3.46]. Fix ϕpzq P Qpzq such that
ϕ2pzq R Qrzs and ĥϕp0q ą 0; write ϕnp0q “ an{bn for some an, bn P Z. More-

over, set BN “
śN
i“1 bi for any N ě 1. Now let X “ P1 and define the family

pX,φ, βq given by φtpzq “ t ¨ ϕpz{tq and βt “ 0 for all t P X K t8u. Then
one checks that for the specializations t :“ BN , we have a lower bound
N ď #pOrbφtpβtq X Zq for all N . Hence, there is no uniform bound as in
Theorem 1.2.

Although it is nice to have an upper bound, one expects that most orbits
contain no integers, provided that X has sufficiently many points. We prove
this in the case of constant families over a curve; see Theorem 1.3. To do
this, we need a different sort of bound on the number of integral points in
orbits than that given in [5, Corollary 17].

Lemma 2.3. There exists an Npϕ, Sq ą 0 such that ϕnpaq P OK,S implies
n ď Npϕ, Sq for all ϕ-wandering points a P P1pKq.
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Proof of Lemma 2.3. Suppose that ϕnpaq P OK,S and that n ě 4. Since,
ϕ2pzq R sKrzs, it follows from the Riemann-Hurwitz formula that #ϕ´4p8q ě
3; see [18, Proposition 3.44]. In particular, the set of S-integral preimages

(9) T4pϕ, Sq :“ tb P P1pKq | ϕ4pbq P OK,Su

is finite; see [18, Theorem 3.36]. Note that ϕ4pϕn´4paqq “ ϕnpaq P OK,S and
ϕn´4paq P T4pϕ, Sq. Hence, hpϕn´4paqq is bounded independently of both a
and n. So together with part (b) and (c) of [5, Proposition 6], we deduce
that degpϕqn´4 ¨ ĥϕpaq “ ĥϕpφ

n´4paqq is bounded. Moreover,

(10) ĥmin
ϕ,K :“ inftĥϕpcq | c P P1pKq wandering for ϕu

is strictly positive by Northcott’s Theorem [18, Theorem. 3.12]). Putting this
together with the fact that degpϕqn´4 ¨ ĥmin

ϕ,K ď degpϕqn´4 ¨ ĥϕpaq is bounded
by the height of points in T4pϕ, Sq, we see that n is bounded independently
of a as desired. ˝

Proof of Theorem 1.3. Since PrePerpϕ,Kq is finite [18, Theorem. 3.12] and
β : X Ñ P1 is non-constant, it follows that

(11) XPrePer
ϕ,β pKq :“ tP P XpKq | βP P PrePerpϕ,Kqu

is finite. In particular, for both statements of Theorem 1.3, it suffices to
assume that P P XpKq is such that βP is a wandering point of ϕ. In light
of Lemma 2.3, we define the set

(12) Tnpϕ, β, Sq :“ tP P XpKq | ϕnpβP q P OK,S , ĥϕpβP q ą 0u.

Suppose that X has genus g ě 1. In this case, it follows from a theorem of
Siegel that Tnpϕ, β, Sq is finite for all n ě 0; see, for instance, [19, Corollary
IX 4.3.1]. Moreover, Lemma 2.3 implies that Tnpϕ, β, Sq “ ∅ for all n ą
Npϕ, Sq. Hence,

tP P XpKq |
`

OrbϕpβP q XOK,S

˘

‰ ∅u

is finite in the positive genus case as claimed.
On the other hand, when X is a rational curve (g “ 0), we may assume

that X “ P1. In this case, Tnpϕ, β, Sq can be infinite; see Remark 2.5 below.
However, we will show that Tnpϕ, β, Sq is sparse in P1pKq. With this in
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mind, for any subset T Ď P1pKq, define the upper density of T to be the
quantity

(13) sδKpT q :“ lim sup
BÑ8

ř

tPPT | HP1 pP qďBu
1

ř

tPPP1pKq | HP1 pP qďBu
1
.

Note that since XPrePer
ϕ,β pKq on (11) is finite, Lemma 2.3 implies that

(14) ĚAvgpϕ, β, Sq ď Npϕ, Sq

Npϕ,Sq
ÿ

n“0

sδK
`

Tnpϕ, β, Sq
˘

.

In particular, it suffices to prove that sδKpTnpϕ, β, Sqq “ 0 for all 0 ď n ď
Npϕ, Sq. Letting f “ ϕn ˝ β, this follows from the following lemma. ˝

Lemma 2.4. Let fpzq P Kpzq be a non-constant rational function and let

T pf, Sq :“ tP P P1pKq | fpP q P OK,Su

be the set of points in P1pKq with S-integral images under f . Then

sδKpT pf, Sqq :“ lim sup
BÑ8

ř

tPPT pf,Sq | HP1 pP qďBu
1

ř

tPPP1pKq | HP1 pP qďBu
1
“ 0.

That is, T pf, Sq has upper density zero in P1pKq.

Proof of Lemma 2.4. Note that T pf, Sq ď T pf, S1q whenever S Ď S1. There-
fore, we may enlarge S and assume that f has good reduction outside of
S. To count elements of T pf, S,Bq, we sieve out points of P1pKq given by
local congruence conditions. To do this, let P be the set of primes p Ď OK ,
disjoint from S, such that f has a pole ap P P1pFpq; here, Fp is the residue
field at p. In particular, it follows from the Chebotarev density theorem that
P has positive Dirichlet density. Let πp : P1pKpq Ñ P1pFpq be the reduction
map, and consider the set

Ip :“ tP P P1pKq : πppP q “ apu.

It follows from the proof of Schanuel’s Theorem [13, Corollary 1 p.447] that
Ip has density pNppq ` 1q´1 in P1pKq. In other words, the residue classes
modulo p equidistribute with respect to the Weil height. To see this, simply
replace the lattice Λ Ď Rk with a translate α` Λ for α P Rk in [13, Theo-
rem 2], and deduce that δK in (13) is translation invariant. In particular,
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by choosing lifts (in K) for each residue class in P1pFpq and translating: for
instance applying a map of the form P Ñ P ` pb´ aq or P Ñ 1{P , we see
that

δK

´

tP P P1pKq : πppP q “ āu
¯

“ δK

´

tP P P1pKq : πppP q “ b̄u
¯

for all ā, b̄ P P1pFpq. In particular, since distinct residue classes are disjoint
and their union covers P1pKq, it follows that δKpIpq “ p1`Nppqq´1 as
claimed. Moreover, translation invariance and the Chinese Remainder The-
orem imply that

δK

¨

˝

č

Nppqďx

Ip

˛

‚“
ź

Nppqďx

1

1`Nppq

for all x P Rě0. On the other hand, T pf, Sq is disjoint from Ip for all p P P:
if P P Ip then πppfpP qq “ fpapq “ 8p, since f has good reduction at p and
p is not in S. In particular, the inclusion-exclusion principle implies that

δKpT pf, Sqq ď
ź

Nppqďx

ˆ

1´
1

1`Nppq

˙

.(15)

However, we can let x grow. Since P had positive density in the primes,
the product above converges to 0 as xÑ8: recall that an infinite product
ś

p1´ aiq, with 0 ď ai ă 1, converges to 0 if and only if
ř

ai diverges. In
our case, ai is on the order of Nppiq

´1, and since the sum of reciprocals of a
set of primes of positive density diverges, the infinite product converges to
0. ˝

Remark 2.5. When X “ P1, it is possible that Tnpϕ, β, Sq is infinite, even
if one assumes that ϕ2pzq R Krzs. For example, let F pzq P Zrzs be any poly-
nomial of degree 2d, let D ą 1 be any square-free integer, and let

(16) ϕpzq “
F pzq

pz2 ´Dqd
.

If pu, vq P Z2 is a solution to the Pell equation u2 ´Dv2 “ 1, then ϕpu{vq “
v2d ¨ F pu{vq P Z. Setting βptq “ t, we see that Tnpϕ, β, Sq is infinite. How-
ever, the set of coprime pairs pu, vq satisfying the Pell equation is sparse in
P1pQq.
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We would like to extend Theorem 1.3 to non-constant families of rational
maps. To do this, note that if pX,φ, βq is a family as in Theorem 1.2, then the
average number of S-integral points in OrbφP pβP q is bounded. In particular,
such families are a good place to test generalizations of Theorem 1.3. In order
to distill the additional properties needed, we study the following family:

Proposition 2.6. Let φ : P1 Ñ Rat3 be the family of rational functions
given by

(17) φtpzq :“
z ´ t

z3 ` 1
, for all t P P1pQq K t´1,8u.

If β P Qptq K ttu is non-constant, then ĚAvgpφ, β,Zq “ 0.

Proof. We must first show that the second iterate of φt is not a polynomial
for all t ‰ ´1. To do this, we compute that

(18) φ2t pzq :“
ftpzq

gtpzq
“
´tz9 ` z7 ´ 4tz6 ` 2z4 ´ 5tz3 ` z ´ 2t

z9 ` 3z6 ` 4z3 ´ 3tz2 ` 3t2z ´ t3 ` 1

and calculate the resultant Resxpft, gtq “ pt` 1q12 ¨ pt2 ´ t` 1q12. One checks
that the only rational root of the resultant is t “ ´1. In particular, it follows
that if t ‰ ´1, then φ2t is not a polynomial. From here, we show the exis-
tence of a largest iterate that can produce an integer point. To do this, we
follow the outline of the proof of Siegel’s theorem on integral points in [18,
Thoerem 3.36]. Write t “ a{b for some coprime a, b P Z and suppose that
φnt pβtq “ φtpφ

n´1
t pβtqq P Z. If we write

φtprx, ysq “
“

bxy2 ´ ay3, bpx3 ` y3q
‰

in terms of coordinates on P1, then the proof of [18, Thoerem 3.36] implies
that

"

x

y
P Q

ˇ

ˇ

ˇ

ˇ

φt

´x

y

¯

P Z
*

Ď
ď

r|pa3`b3q

 

x, y P Z
ˇ

ˇ x3 ` y3 “ r
(

.

Note that |r| ď 2Hptq3, and combined with Lemma 2.7 below, we see that

(19) Hpx{yq ď 2
?

2 ¨Hptq
3

2 , whenever φt

ˆ

x

y

˙

P Z.
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In particular, we obtain the upper bound hpφn´1t pβtqqď3{2 ¨ hptq`logp2
?

2q.
Moreover, parts (b) and (c) of [5, Proposition 6] imply that there is a con-
stant c3 such that

3n´3 ¨ ĥφtpφ
2
t pβtqq “ ĥφtpφ

n´1
t pβtqq(20)

ď hpφn´1t pβtqq ` 5{2 ¨ hpφtq ` c3{2

ď 3{2 ¨ hptq ` logp2
?

2q ` 5{2 ¨ hpφtq ` c3{2.

On the other hand, hpφtq “ hpr1,´t, 1, 1sq “ hptq, so that (20) implies that

3n´3 ¨ ĥφtpφ
2
t pβtqq ď 4 ¨ hptq ` logp2

?
2q ` c3{2.

Finally, parts (a) and (b) of [5, Proposition 6] give the lower bound

(21)
`

degpφ2pβqq ´ 5{2
˘

¨ hptq ´B1 ´ c3{2 ď ĥφtpφ
2
t pβtqq.

However, degpφ2pβqq ě 4 degpβq ě 4 ą 5{2 by Lemma 2.8 below, and we de-
duce that

3n´3 ď
4 ¨ hptq ` logp2

?
2q ` c3{2

`

degpφ2pβqq ´ 5{2
˘

¨ hptq ´B1 ´ c3{2
.

Hence, φnt pβtq P Z implies that n is bounded independently of t (for all but
finitely many t). On the other hand, since pOrbφtpβtq X Zq is finite for all
t ‰ ´1 by Silverman’s theorem, we can bound the number of integral points
in orbits for these exceptional t separately. In any case, we conclude that
there is an integer Npφ, βq, such that φnt pβtq P Z implies n ď Npφ, βq for all
t ‰ ´1 (compare to Lemma 2.3 above).

Finally, Lemma 2.4 implies that T pφn ˝ β,Zq has density zero in P1pQq
for all n ď Npφ, βq. It follows that ĚAvgpφ, β,Zq “ 0 as claimed. ˝

Lemma 2.7. Suppose that x3 ` y3 “ B, for some integers x, y,B P Z with
B ‰ 0. Then

(22) max
 

|x|, |y|
(

ď 2
a

|B|.

Proof of Lemma 2.7. We factor x3 ` y3 in Qrx, ys, and write

B“x3 ` y3“px` yq ¨ px2 ´ xy ` y2q“px` yq ¨

ˆ

3

4
px´ yq2 `

1

4
px` yq2

˙

.

In particular, we see that

(23) max
!

3{4 ¨ px´ yq2, 1{4 ¨ px` yq2
)

ď |B|,
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since |x` y| ě 1 and both terms on the left side of (23) are positive. On the
other hand, it is straightforward to verify that

(24) max
 

|x|, |y|
(

ď max
!

|x´ y|, |x` y|
)

,

and we deduce from (23) and (24) that maxt|x|, |y|u ď 2
a

|B| as claimed. ˝

Lemma 2.8. Let φ be as in (17). If f P Qptq K ttu is non-constant, then
degpφpfqq ě 2 degpfq.

Proof. Write fptq “ P ptq{Qptq for some coprime polynomials P,Q P Qrts.
Then

φpfq “
P ptqQptq2 ´ tQptq3

P ptq3 `Qptq3
.

Now let Aptq “ P ptqQptq2 ´ tQptq3, let Bptq “ P ptq3 `Qptq3, and let C “
gcdpA,Bq. Note first that since C divides B and gcdpP,Qq “ 1, we must
have that gcdpC,Qq “ 1. Therefore, since C divides A, it follows that C
divides P ´ tQ, a non-zero polynomial by our assumption on f . From here,
we proceed in cases.

Case 1: Suppose that degpP q ě degpQq ` 1. Then degpBq “ 3 degpP q “
3 degpfq and degpCq ď degpP ´ tQq ď degpP q. Hence, degpB{Cq ě 2 degpfq
and the result follows.

Case 2: Suppose that degpP q ď degpQq. Then degpAq “ 3 degpQq ` 1 “
3 degpfq ` 1 and degpCq ď degpP ´ tQq ď degpQq ` 1. Hence, degpA{Cq ě
2 degpfq and the result follows. ˝

3. Height uniformity conjectures and averages in families

The main technique we used to establish an average-zero statement for
the one-dimensional families in Proposition 2.6 or the constant families
in Theorem 1.3 was to prove the existence of a uniform largest iterate
Npφ, β, Sq that could produce an S-integral point; see Lemma 2.3. To find
such an Npφ, β, Sq, we used Theorem 2.1 or [5, Proposition 6] to estimate
ĥφP pβP q, and then we bounded the height of points Q P P1pKq such that
φ4P pQq P OK,S ; see Lemma 2.7.

For curves X and non-isotrivial families pX,φ, βq, bounding ĥφP pβP q is
not a problem. On the other hand, the upper bound on the height of points
Q P P1pKq such that φ4P pQq P OK,S follows from several height-uniformity
conjectures in arithmetic geometry, including the following:
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Conjecture 3.1. Let C Ñ B be a family of curves equipped with a family
of non-constant maps F P KpCq. Then there are constants κ1 and κ2 such
that

(25) hCpQq ď κ1 ¨ hBpP q ` κ2 for all
 

Q P CP pKq
ˇ

ˇ FP pQq P OK,S

(

,

whenever CP is a smooth curve of positive genus, or the map FP : CP Ñ P1

has at least three distinct poles. Here, hC is an arbitrary height function and
hB is ample.

Remark 3.2. On each of the relevant fibers, Siegel [16] proved that tQ P
CP pKq | FP pQq P OK,S

(

is a finite set. Hence, Conjecture 3.1 roughly states
that the heights of these points are controlled by the height of the fiber.

Remark 3.3. For families of elliptic curves, versions of Conjecture 3.1 were
made by Hall and Lang [19, IV.7]. Moreover, Conjecture 3.1 is a consequence
of the Vojta conjecture [22, §3.4.3] when the fibers CP have positive genus;
for justification, see [7, Theorem 1.0.1] for the case of elliptic curves and
[6] or [21, Conjecture 4] for the case of higher genus. Over function fields,
bounds such as those on (25) have appeared in [8, 14].

Assuming Conjecture 3.1, we prove an average-zero statement for all one-
parameter families, analogous to Theorem 1.3 and Proposition 2.6 above.

Proof of Theorem 1.4. Write φ2pzq “ fpzq{gpzq for some coprime polynomi-
als f, g P KpXqrzs. Note that φ2pzq R KpXqrzs implies that degpgq ě 1 and
that Respf, gq P KpXq is non-zero. In particular,
(26)
 

P P X : degpfP q “ degpfq, degpgP q “ degpgq, Respf, gqP ‰ 0
(

Ď IX,φ

are open subsets of X; here we use that taking resultants commutes with spe-
cialization, i.e. RespfP , gP q “ Respf, gqP , whenever P PX satisfies degpfP q “
degpfq and degpgP q “ degpgq; see [9, IV.§8].

Now, suppose that P P IX,φ. Then [18, Proposition 3.44] implies that
φ4P P Kpzq has at least 3 distinct poles. Therefore, Conjecture 3.1 applied
to the (trivial) fibered surface P1 ˆX Ñ X and the map FpQ,P q “ φ4ppQq,
implies that there are constants κ1 and κ2 such that for all Q P P1pKq:

FP pQq “ φ4P pQq P OK,S implies hpQq ď κ1 ¨ hXpP q ` κ2.
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Here h is the height function on P1 ˆX given by hpQ,P q :“ h1PpQq. In par-
ticular, if P P IX,φpKq and φnP pβP q P OK,S for some n ě 4, then

FP pφn´4P pβP qq “ φ4P pφ
n´4
P pβP qq “ φnP pβP q P OK,S .

Hence, hpφn´4P pβP qq ď κ1hXpP q ` κ2. On the other hand, there are con-
stants κ3 and κ4 such that:

ˇ

ˇĥφP pxq ´ hpxq
ˇ

ˇ ď κ3 ¨ hXpP q ` κ4, for all x P P1pKq;

this fact follows from [4, Theorem 3.1] or [5, Proposiion 6(b)] followed by
height bounds (4), (5) and (6) above. Therefore,

dn´4 ¨ ĥφP pβP q “ ĥφP pφ
n´4
P pβP qq(27)

ď hpφn´4P pβP qq ` κ3 ¨ hXpP q ` κ4

ď pκ1 ` κ3qhXpP q ` pκ2 ` κ4q.

Now, as in the proof of Theorem 1.2, we use the estimate for ĥφP pβP q due
to Call and Silverman. Specifically, (27) implies that

dn´4 ¨
ĥφP pβP q

hXpP q
ď
pκ1 ` κ3qhXpP q ` pκ2 ` κ4q

hXpP q
.

Cleary, if IX,φpKq is finite, then there is nothing to prove. Therefore, we
may assume that IX,φpKq is infinite. Hence, Theorem 2.1 implies that

dn´4 ĥφpβq “ lim
hXpP qÑ8
PPIX,φpKq

dn´4
ĥφP pβP q

hXpP q
(28)

ď lim
hXpP qÑ8
PPIX,φpKq

pκ1 ` κ3qhXpP q ` pκ2 ` κ4q

hXpP q
“ κ1 ` κ3.

Consequently, for all points P P IX,φpKq with hXpP q bigger than some fixed
δ ą 0,

φnP pβP q P OK,S implies n ď max

"

4, logd

ˆ

κ1 ` κ3

ĥφpβq

˙

` 4

*

,

On the other hand, since hX is ample, the set of points Eδ :“ tP P Iφ,XpKq :
hXpP q ď δu is finite. Therefore, we can bound the n such that φnP pβP q P
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OK,S for P P Eδ separately. In particular, we have shown that

Npφ, β, Sq :“ sup
 

n : φnP pβP q P OK,S(29)

for some P P IX,φpKq, ĥφP pβP q ą 0
(

is bounded as claimed. The averages claim now follows from the argument
given in the proof of Theorem 1.3 verbatim. Namely, if X has positive genus,
then the set of points in IX,φpKq such that φnP pβP q P OK,S for some n ď
Npφ, β, Sq is a union of finite sets, hence finite. In particular, the numerator
defining ĚAvgpφ, b, Sq is zero for all points of sufficiently large height.

On the other hand, suppose that X has genus 0. Then X – P1, since
XpKq is non-empty. Moreover, P1pKq K IP1,φpKq is finite by (26). Therefore,
the asymptotic count for points of bounded height in IX,φpKq is the same as
that for P1pKq. Hence, Lemma 2.4 and the existence of Npφ, β, Sq implies
that ĚAvgpφ, b, Sq “ 0 as in the proof of Theorem 1.3. ˝

To extend Theorem 1.4 to non-constant families of rational maps pX,φ, βq
parametrized by varieties of arbitrary dimension, we translate our strategy
for curves to more general language. In particular, our goal (loosely speaking)
is to show that the set

(30)
 

P P IX,φpKq :
`

OrbφP pβP q XOK,S

˘

‰ ∅
(

is thin in X; see [15, §3.1] for the definition of thin. From here, when
dimpXq ě 2, if X has sufficiently many rational points and the thin sub-
set (possibly a subvariety) containing (30) is small enough, then one expects
that ĚAvgpφ, b, Sq “ 0.

On the other hand, to do this, one likely needs to control ĥφP pβP q for
most points of X. Unfortunately, this task is difficult in general. For instance,
the Zariski closure of the set of points P P Xp sKq such that ĥφP pβP q “ 0
has positive dimension: it contains the codimension-1 subvariety of points
satisfying φP pβP q “ βP .

However, a nice lower bound on canonical heights in terms of the height
of the corresponding map it is predicted by [18, Conjecture 4.98], a dynam-
ical analog of Lang’s canonical height conjecture for elliptic curves [10, page
92], and it is possible that one can use this conjecture and ideas in [4, §3]
to attack (30). Likewise when dimpXq ě 2, one might try to use the Vojta
conjecture, in place of Conjecture 3.1, to prove the existence of a “largest
iterate” Npφ, β, Sq as in Theorem 1.4.

As motivation for the study of integral points in orbits in families pX,β, Sq
when dimpXq ě 2, we conclude with the following example.
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Proposition 3.4. Let φ : A3 Ñ Rat3 be the family of rational maps:

(31) φpr,s,tqpzq :“
pr ¨ sq ¨ z3 ` s ¨ z ` t

z2 ` 1
for r, s, t P Z.

If β : A3 Ñ A1 is the map βpr,s,tq “ rn1 ¨ sn2 ¨ tn3 with mintn1, n2, n3u ě 6,
then

(32) ĚAvgZpφ, β,Zq :“ lim sup
BÑ8

ř

|r|,|s|,|t|ďB #
´

Oφpr,s,tq

`

βpr,s,tq
˘

X Z
¯

p2B ` 1q3
ă 8

A priori, it is not clear that Orbφpr,s,tq
`

βpr,s,tq
˘

contains only finitely many
integers for r, s, t P Z; for instance, φp1,s,0qpzq “ sz is a polynomial, and [18,
Theorem 3.43] does not apply. However, the basepoint βp1,s,0q “ 0 is fixed
in this case, and so finiteness is not a problem. Before we begin the proof
of Proposition 3.4, we prove the stronger statement: that Orbφpr,s,tq

`

βpr,s,tq
˘

contains only finitely many integers for all rational values of r, s, t P Q.

Lemma 3.5. The orbit Orbφpr,s,tq
`

βpr,s,tq
˘

contains only finitely many in-
tegers for all r, s, t P Q.

Proof of Lemma 3.5. Note that if t “ 0, then βpr,s,tq “ 0 and φpr,s,tqp0q “
0. In particular, Orbφpr,s,tq

`

βpr,s,tq
˘

“ t0u, and there is nothing to prove in
this case. Therefore, without loss of generality, we may assume that t ‰ 0.
Likewise, if r ¨ s “ 0, then φpr,s,tq is a bounded function on the real line. In
particular, the set of integers of Orbφpr,s,tq

`

βpr,s,tq
˘

is a finite.
In the remaining cases, it suffices to show that φ2

pr,s,tqpzq R Qrzs; see [18,

Theorem 3.43]. We compute that

φ2pr,s,tqpzq :“
fpr,s,tqpzq

gpr,s,tqpzq

:“
pr4s4qz9 ` p3r3s4 ` rs2qz7 ` p3r3s3t` tqz6 ` ¨ ¨ ¨ ` prst3 ` st` tq

pr2s2qz8 ` pr2s2 ` 2rs2 ` 1qz6 ` p2rstqz5 ` ¨ ¨ ¨ ` pt2 ` 1q
.

Therefore, if φ2
pr,s,tqpzq P Qrzs, then gpr,s,tqpzq ¨ paz ` bq “ fpr,s,tqpzq for some

a, b P Q. By equating the z9 coefficient, we see that a :“ pstq2. Moreover,
after substituting a :“ pstq2 and examining the z8 coefficient, we see that
b “ 0. Similarly, since, b “ 0 and t ‰ 0, the z6 coefficient implies that prsq3 “
´1, and we deduce that prsq “ ´1. In particular, the z7 coefficient implies
that s “ ´1. Finally, substituting s “ ´1 in the constant term, we see that
t “ 0, a contradiction. ˝
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Proof of Proposition 3.4. We begin by establishing a lower bound on
ĥφpr,s,tqpβpr,s,tqq for all integers points pr, s, tq in an open subset of X :“ A3.
In particular, we see that if r, s, t P Z are such that r ¨ s ¨ t ‰ 0, then

hpβpr,s,tqq “ hprn1 ¨ sn2 ¨ tn3q “ log
`

|rn1 | ¨ |sn2 | ¨ |tn3 |
˘

(33)

ě min
1ďiď3

tniu ¨ log max
 

|r|, |s|, |t|
(

.

Let U Ď A3 be the open subset of points P :“ pr, s, tq such that r ¨ s ¨ t ‰
0, and define the height function hXpP q “ log max

 

|r|, |s|, |t|
(

. Then, (33)
implies that

(34) hpβP q ě min
1ďiď3

tniu ¨ hXpP q, for all P P UpZq;

here UpZq denotes the set of points of U with integral coordinates. Note that
the bound on (34) will not hold on UpQq in general. On the other hand, it
is easy to see that
(35)
hpφP q :“ hP7

`

rr ¨ s, 0, s, t, 0, 1, 0, 1s
˘

ď 2 ¨ log max
 

|r|, |s|, |t|
(

“ 2 ¨ hXpP q,

for all P P XpZq. In particular, [5, Proposition 6(b)] and the bounds on (34)
and (35) yield

(36) ĥφP pβP q ě
`

min
1ďiď3

tniu ´ 5
˘

¨ hXpP q ´ C, for all P P UpZq;

here C is an absolute, positive constant. Hence, as in the proof of Theo-
rem 1.2, the upper bound in [5, Corollary 17] implies that #pOrbφP pβP q X
Zq ďMpφ, βq is bounded uniformly over all points P P UpZq. Therefore, it
remains to control #pOrbφP pβP q X Zq for all P “ pr, s, tq such that r ¨ s ¨ t “
0 on average. We do this in cases.

Suppose first that t “ 0. Then one computes that

φpr,s,0qpβpr,s,0qq “ φpr,s,0qp0q “ 0;

hence

(37) #
`

Orbφpr,s,0qpβpr,s,0q
˘

X Z
˘

“ 1, for all r, s P Z.

On the other hand, if s “ 0, then φpr,0,tqpzq “ t{pz2 ` 1q. Therefore,
|φpr,0,tqpzq| ď |t| is a bounded function on the real line. We deduce that,

(38) #
`

Orbφpr,0,tqpβpr,0,tq
˘

X Z
˘

ď 2B ` 1, when maxt|r|, |t|u ď B.
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Finally, suppose that r “ 0. Then φp0,s,tqpzq “ psz ` tq{pz
2 ` 1q is also a

bounded function on the real line. Specifically, |φp0,s,tqpzq| ď |s| ` |t| follows
from elementary calculus. Therefore,

(39) #
`

Orbφp0,s,tqpβp0,s,tq
˘

X Z
˘

ď 4B ` 1, when maxt|s|, |t|u ď B.

We deduce from (37), (38), and (39) that

ř

|r|,|s|,|t|ďB #
´

Orbφpr,s,tq
`

βpr,s,tq
˘

X Z
¯

p2B ` 1q3

“

ř

PPUpZ,Bq#
´

OrbφP
`

βP
˘

X Z
¯

p2B ` 1q3
` ¨ ¨ ¨

`

ř

|r|,|t|ďB #
´

Orbφpr,0,tq
`

βpr,0,tq
˘

X Z
¯

p2B ` 1q3

`

ř

|r|,|s|ďB #
´

Orbφpr,s,0q
`

βpr,s,0q
˘

X Z
¯

p2B ` 1q3

ď

ř

PPUpZ,BqMpφ, βq

p2B ` 1q3
`

ř

|s|,|t|ďBp4B ` 1q

p2B ` 1q3

`

ř

|r|,|t|ďBp2B ` 1q

p2B ` 1q3
`

ř

|r|,|s|ďB 1

p2B ` 1q3

Letting B tend to infinity, we see that

ĚAvgZpφ, β,Zq ďMpφ, βq ` 3,

and the average number of integral points is bounded as claimed; here,
Mpφ, βq is the bound on #pOrbφP

`

βP
˘

X Zq for all P P UpZq obtained from
(36) and [5, Corollary 17]. ˝
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