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Temperley-Lieb algebras at roots of unity,

a fusion category and the Jones quotient

K. Iohara, G. I. Lehrer, and R. B. Zhang

When the parameter q is a root of unity, the Temperley-Lieb al-
gebra TLn(q) is non-semisimple for almost all n. In this work,
using cellular methods, we give explicit generating functions for
the dimensions of all the simple TLn(q)-modules. Jones showed
that if the order |q2| = ` there is a canonical symmetric bilinear
form on TLn(q), whose radical Rn(q) is generated by a certain
idempotent E`−1 ∈ TL`−1(q) ⊆ TLn(q), which is now referred to
as the Jones-Wenzl idempotent, for which an explicit formula was
subsequently given by Graham and Lehrer. Although the algebras
Qn(`) := TLn(q)/Rn(q), which we refer to as the Jones algebras (or
quotients), are not the largest semisimple quotients of the TLn(q),
our results include dimension formulae for all the simple Qn(`)-
modules. This work could therefore be thought of as generalising
that of Jones et al. on the algebras Qn(`). We also treat a fusion
category Cred introduced by Reshitikhin, Turaev and Andersen,
whose simple objects are the quantum sl2-tilting modules with
non-zero quantum dimension, and which has an associative trun-
cated tensor product referred to below as the fusion product. We
show Qn(`) is the endomorphism algebra of a certain module in
Cred and use this fact to recover a dimension formula for Qn(`).
We also show how to construct a “stable limit” K(Q∞) of the
corresponding fusion category of the Qn(`), whose structure is de-
termined by the fusion rule of Cred, and observe a connection with
a fusion category of affine sl2.
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1. Introduction

The Temperley-Lieb algebras TLn(q) (see §2 below) are algebras over a
ring R which depend on a parameter q ∈ R. They occur in many areas of
mathematics and physics, and may be characterised as the endomorphism
algebras of the objects in the Temperley-Lieb category (see [12]). In this
work we shall generally take R = C. These algebras are well known to have
a cellular structure [11] and their representation theory may be analysed
using this structure.

For generic values of q, the algebra TLn(q) is semisimple, and its simple
modules are the cell modules Wt(n), for t ∈ Z, 0 ≤ t ≤ n and t ≡ n(mod 2).
However when q is a root of unity, the cell modules are often no longer
simple, but have a simple head Lt(n). The modules Lt(n), where t runs over
the same values as above, form a complete set of simple modules for TLn(q)
in this case.

In this work, our first purpose is to give explicit formulae for the dimen-
sions of the modules Lt(n). This will be done by deriving, for each t ∈ Z≥0,
an explicit formula for the generating function

(1.1) Lt(x) :=

∞∑
k=0

dim(Lt(t+ 2k))xk.

The algebra TLn(q) has a trace trn : TLn(q)→ C, identified by Jones,
whose associated bilinear form is generically non-degenerate (see (2.2) be-
low). If q is a root of unity, and the order |q2| = `, then trn has a rad-
ical of dimension 1 if n = `− 1, the generating element being the Jones-
Wenzl idempotent E`−1 ∈ TL`−1(q). An explicit formula for E`−1 is given
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in [12]. Jones has shown [17, Thm. 2.1] that in this case, for any n ≥ `− 1,
the radical Rn(q) of trn is generated by E`−1 ∈ TL`−1(q) ⊆ TLn(q). More-
over, for n ≥ `, the algebra TLn(q) has the canonical semisimple quotient
Qn(`) := TLn(q)/Rn(q), which we refer to as the Jones algebra.

As a consequence of our analysis, we deduce a complete description of the
simple representations of the Jones algebras Qn(`), as well as a generating
function for their dimensions, which recovers a result of [10]. Note that Qn(`)
is far from being the maximal semisimple quotient of TLn(q), as our work
shows.

In §8 we relate Qn(`) to the fusion category Cred introduced by Reshe-
tikhin, Turaev and Andersen [1, 23] whose objects are sums of the indecom-
posable tilting modules of non-zero quantum dimension for the quantum
group Uq(sl2), when q2 is a primitive `th root of unity. The category Cred has
a fusion product⊗, and if ∆q(1) is the indecomposable (in fact simple) tilting
module with highest weight 1, we show that Qn(`) ∼= EndUq(sl2)(∆q(1)⊗n).
Together with our earlier results, this recovers a formula for the dimension
of Qn(`) due to Jones [10].

We note also that our results are related to those of [4], which could be
thought of as treating the more complicated positive characteristic analogue
of some of our material.

2. The Temperley-Lieb algebras

2.1. Definitions

In this work, all algebras will be over C. Much of the theory we develop
applies over more general domains, but since we will be concerned here with
connections to the theory of operator algebras and mathematical physics, we
limit our discussion to C-algebras. For n ∈ N, the Temperley-Lieb algebra
TLn(q) is defined as follows.

Definition 2.1. Let q ∈ C∗. TLn = TLn(q) is the associative C-algebra
with generators f1, f2, . . . , fn−1 and relations

(2.1)

f2i = −(q + q−1)fi for all i

fifi±1fi = fi for all i

fifj = fjfi if |i− j| ≥ 2.
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2.2. The Jones form

In his seminal work [14] on subfactors of a factor, Jones showed that certain
projectors {e1, . . . , en−1} (n = 1, 2, , 3, . . . ) in a von Neumann algebra satisfy
the Temperley-Lieb-like relations, a fact that led to the definition of the
“Jones polynomial” of an oriented link. In the notation of [15, p. 104, (I)–
(VI)], Jones showed that if fi = (q + q−1)ei, then the fi satisfy the relations
(2.1), where Jones’ parameter t is replaced by q2. If q2 6= −1, Jones’ form on
TLn(q) is defined as the unique (invariant) trace trn = tr on TLn(q) which
satisfies

tr(1) = 1 and tr(xfi) = −(q + q−1)−1tr(x)(2.2)

for x ∈ TLi−1 ⊂ TLi ⊆ TLn

for 1 ≤ i ≤ n− 1.
This trace on TLn(q) is non-degenerate if and only if q2 is not a root of

unity, or, if |q2| = `, n ≤ `− 2 ([12, (3.8)]. Thus the discrete set of values of
q2 for which Jones’ sequence (An) of algebras is infinite coincides precisely
with the set of values of q2 for which the trace form above on TLn(q) is
degenerate.

2.3. Cell modules and forms

Let us fix n and consider the representation theory of TLn.
Recall [12] that the Temperley-Lieb category T over C has object set

N and for t, n ∈ N, HomT(t, n) is the vector space with basis the set of
Temperley-Lieb diagrams from t to n, i.e., which have t lower vertices, and
n upper vertices. Composition is by concatenation of diagrams, with free
circles replaced by −(q + q−1). In speaking of Temperley-Lieb diagrams,
we shall freely use the well known terminology which refers to upper arcs
(which join two upper vertices), lower arcs (which join two lower vertices)
and through strings (which join an upper vertex to a lower vertex).

A diagram from t to n is monic if it has a left inverse. This means
(assuming q + q−1 6= 0) that there are no lower arcs. The algebra HomT(n, n)
is the Temperley-Lieb algebra TLn = TLn(q).

By [11] TLn has cell modules Wt := Wt(n) whose basis is the set of monic
Temperley-Lieb morphisms from t to n, where t ∈ T (n), and T (n) = {t ∈
Z | 0 ≤ t ≤ n and t+ n ∈ 2Z}.

Now Wt has an invariant form ( , )t which may be described as follows.
For monic diagrams D1, D2 : t→ n, we form the diagram D∗1D2 : t→ t. If
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D∗1D2 is monic (i.e. a multiple of idt), then we write D∗1D2 = (D1, D2)idt;
otherwise we say (D1, D2) = 0. Here D∗ denotes the diagram obtained from
D by reflection in a horizontal, extended to Wt by linearity.

The form ( , )t is evidently equivariant for the TLn(q)-action; That is,
we have for any element a ∈ TLn(q) and elements v, w ∈Wt(n), (av, w)t =
(v, a∗w)t. Hence the radical Radt of the form ( , )t is a submodule of Wt.
Let Lt := Wt/Radt. The general theory asserts that the Lt are simple, and
represent all the distinct isomorphism classes of simple TLn(q)-modules.

Remark 2.2 (Notation). Note that Wt,Radt and Lt may be regarded
as functors : T→ vect, where vect is the category of finite dimensional
C-vector spaces. The action of these functors on morphisms is explained in
[12, Def. (2.6)], but for the convenience of the reader, we recall here that if
α ∈ HomT(s, n) is a diagram, then Wt(α) ∈ HomC(Wt(s),Wt(n)) is defined
as follows. For any monic diagram µ ∈Wt(s),

Wt(α)(µ) =

{
αµ (composition in T) if α ◦ µ is monic

0 otherwise.

Then Wt(n) is the evaluation of the functor Wt at n, and Radt and Lt are
defined as subfunctors and quotient functors of Wt. When the context makes
it clear, we shall abuse notation by writing Wt for Wt(n), etc.

3. Semisimplicity and non-degeneracy

Clearly, if the trace (2.2) is non-degenerate, the algebra TLn is semisimple.
The converse is true except for one single case (see [12, Rem. 3.8, p.204]).
It follows from [12, Cor. (3.6)] that if |q2| = `, TLn is non-semisimple if and
only if n ≥ `. Moreover we have very precise information concerning the
radical of the invariant trace form.

3.1. Radical of the trace form

The radical of the trace form above is given by the following result (see [12,
§3], [16]).

Proposition 3.1. ([17, Thm. 2.1]) If q is not a root of unity then trn is
non-degenerate and TLn is semisimple for all n.

Suppose the order of q2 is `. Then there is a unique idempotent E`−1 ∈
TL`−1 (the Jones-Wenzl idempotent) such that fiE`−1 = E`−1fi = 0 for 1 ≤
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i ≤ `− 2. Moreover for n ≥ `− 1 the radical of trn is generated as ideal of
TLn by E`−1.

Remark 3.2. cf. [12, Remark (3.8)] It follows from Proposition 3.1 that
the trace trn is non-degenerate if and only if n ≤ `− 2, where ` = |q2|. It
follows that the case n = `− 1 is uniquely characterised as the one where
the form trn is degenerate, but TL`−1 is semisimple.

Note also that E`−1 is regarded as an element of TLn for n ≥ `− 1 in
the usual way, by thinking of it as E`−1 ⊗ I⊗n−`+1.

The following formula for the idempotent E`−1 was proved in [12, Cor.
3.7]. To prepare for its statement, recall that if F is a finite forest (i.e. a
partially ordered set in which x ≤ a, x ≤ b =⇒ a ≤ b or b ≤ a), then we
define a Laurent polynomial

(3.1) hF (x) =
[|F |]x!∏

a∈F [|F≤a|]x
,

where, for m ∈ N, [m]x = xm−x−m

x−x−1 and [m]x! = [m]x[m− 1]x · · · [2]x[1]x.

Theorem 3.3. For any Temperley-Lieb diagram a : 0→ 2n we have an as-
sociated forest Fa, which is simply the poset of arcs, ordered by their nesting.
For any Temperley-Lieb diagram D : t→ n, one obtains a unique diagram
D : 0→ t+ n by rotating the bottom line clockwise by π. With this notation,
if |q2| = `, we have

(3.2) E`−1 =
∑
D

hFD
(q)D,

where the sum is over the diagrams from `− 1 to `− 1, i.e. over the diagram
basis of TL`−1.

Example 3.4. If ` = 4, we may take q = − exp πi
4 , so that q2 = i and the

element E3 ∈ TL3 is easily shown to be equal to

E3 = 1 + f1f2 + f2f1 −
√

2(f1 + f2).

Note that our defining parameter for TLn in this case is −(q + q−1) =
√

2,
and the above element is the familiar one which occurs in the study of the
two-dimensional Ising lattice model.
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...

E`−1

...

= 0 =

...

E`−1

...

Figure 1.

3.2. Properties of the Jones-Wenzl idempotent E`−1

It is well-known that the Jones-Wenzl idempotent is harmonic. This means
that in the Temperley-Lieb category T, if a cap is placed above or below
E`−1, one obtains zero. Diagramatically, this is depicted in Figure 1.

The following result will be needed for the proof of Theorem 7.5 below.

Proposition 3.5. 1) Let |q2| > n, and let Ei be the Jones-Wenzl idem-
potent in TLi for each i ≤ n. Let A (resp. U) be the unique diagram
from 2 to 0 (resp. 0 to 2) in T, and let I be the unique diagram 1 to
1. Then

(I⊗(n−1) ⊗A)(En ⊗ I)(I⊗(n−1) ⊗ U) =

(
[n− 1]q

[n]q
− [2]q

)
En−1.

Diagramatically, this equation may be depicted as in Figure 2.

...

En

...

=
(
[n−1]q
[n]q

− [2]q

)
En−1

Figure 2.

2) When |q2| = `, (I⊗(`−2) ⊗A)(E`−1 ⊗ I)(I⊗(`−2) ⊗ U) = 0. Diagramat-
ically this is depicted in Figure 3.

Proof. It is a result of Wenzl (cf. [5, Thm. 3.3, p.461]) that the Jones-Wenzl
idempotents satisfy the recursion

(3.3) En = En−1 ⊗ I +
[n− 1]q

[n]q
(En−1 ⊗ I)fn−1(En−1 ⊗ I),
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...

E`−1

...

= 0

Figure 3.

where fi is the ith generator of TLn.
Now denote the operator D 7→ (I⊗(n−1) ⊗A)(D ⊗ I)(I⊗(n−1) ⊗ U) by

γ : TLn → TLn−1. It is easily verified that γ(En−1 ⊗ I) = −[2]qEn−1 and
that γ(fn−1) = I⊗(n−1). Hence

γ((En−1 ⊗ I)fn−1(En−1 ⊗ I))

= (I⊗(n−1) ⊗A)(En−1 ⊗ I ⊗ I)(fn−1 ⊗ I)(En−1 ⊗ I ⊗ I)(I⊗(n−1) ⊗ U)

= En−1(I
⊗(n−1) ⊗A)(fn−1 ⊗ I)(I⊗(n−1) ⊗ U)En−1

= En−1γ(fn−1)En−1

= En−1.

Part (1) now follows immediately by applying the operator γ to the rela-
tion (3.3).

To obtain the relation in part (2), observe that if |q2| = `, then by (1),

the left side is equal to ( [`−2]q[`−1]q − [2]q)E`−2. But in our case, [`− 1]q = −q`

and [`− 2]q = −q`[2]q, which proves (2). �

3.3. The Jones quotient

We now wish to consider the quotient of TLn by the ideal generated by
E`−1.

Definition 3.6. Assume that |q2| = ` for a fixed integer ` ≥ 3. Let Rn =
Rn(q) = 〈E`−1〉 be the ideal of TLn(q) generated by the idempotent E`−1 ∈
TL`−1(q), where TL`−1(q) is thought of as a subalgebra of TLn(q) for n ≥
`− 1 in the obvious way. If n < `− 1, we set Rn = 0.

The algebra Qn = Qn(`) (n = `− 1, `, `+ 1, . . . ) is defined by

Qn(`) =
TLn
Rn(q)

.

This algebra will be referred to as the “Jones (projection) algebra”.
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Since we are taking the quotient by the radical of the trace form trn, it
follows that Qn has a non-degenerate invariant trace, and hence that

(3.4) Qn(`) is semisimple.

Remark 3.7. • The algebras Qn(`) are not the maximal semisimple
quotients of TLn(q), as the results of the next section will show.

• We remark that E2 = 1− f1, from which it follows that Qn(3) ∼= C for
all n.

4. Representation theory of TLn(q)

We shall apply the basic results of [12] to obtain precise information about
the simple modules for TLn(q) from the general results in §2.3 about cell
modules.

4.1. Review of the representation theory of TLn

at a root of unity

Let |q2| = `, where ` ≥ 3.
The following description of the composition factors of Wt = Wt(n) was

given in [12, Thm. 5.3], and in the formulation here in [2, Thm. 6.9].

Theorem 4.1. Let |q2| = `, fix n ≥ ` and let T (n) be as above. Let N′ =
{i ∈ N | i 6≡ −1(mod `)}. Define g : N′ → N′ as follows: for t = a`+ b ∈ N′,
0 ≤ b ≤ `− 2, define g(t) = (a+ 1)`+ `− 2− b. Notice that g(t)− t = 2(`−
b− 1), so that g(t) ≥ t+ 2 and g(t) ≡ t(mod 2).

1) For t ∈ T (n) ∩ N′ such that g(t) ∈ T (n), there is a non-zero homo-
morphism θt : Wg(t)(n)→Wt(n). These are explicitly described in [12,
Thm 5.3], and are the only non-trivial homomorphisms between the
cell modules of TLn.

2) If t ∈ T (n) is such that t ∈ N′ and g(t) ∈ T (n), then Wt(n) has com-
position factors Lt and Lg(t), each with multiplicity one. All other cell
modules for TLn(q) are simple.

3) If ` ≥ 3, all the modules Lt(n), t ∈ T (n), are non-zero, and form a
complete set of simple TLn(q)-modules.

Definition 4.2. For t ∈ Z≥0 define functions wt and lt : N→ N by wt(n) =
dim(Wt(n)) and lt(n) = dim(Lt(n)).
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Note that if t > n, wt(n) = lt(n) = 0. Further wt(n) = lt(n) = 0 if n 6≡
t(mod 2).

Proposition 4.3. Let |q2| = `. We have, for t ∈ N′ (defined as in Theo-
rem 4.1):

(4.1) lt(n) =

∞∑
i=0

(−1)iwgi(t)(n).

Proof. Note that since g is a strictly increasing function on N′, for any
particular n, the sum on the right side of (4.1) is finite.

It is evident from Theorem 4.1 (2), that for any t ∈ N′,

(4.2) lt(n) = wt(n)− lg(t)(n).

Applying (4.2) with t replaced by g(t) gives lt(n) = wt(n)− wg(t)(n) +
lg2(t)(n). Applying this repeatedly, and noting that there is an integer t0 ∈ N′
such that t0 ≤ n and g(t0) > n, we obtain the relation (4.1). �

This may be made a little more explicit by the following observation.
Fix ` = |q2| and t ≥ 0, write b(t) = b, where t = a`+ b, with 0 ≤ b ≤ `− 1.
Then for t ∈ N′ we have

(4.3)
g(t) = t+ 2b(t) and

g2(t) = t+ 2`,

where b(t) := `− 1− b(t).
The equation (4.1) may therefore be written as follows.

Corollary 4.4. We have the following equality of functions on N:

lt =

∞∑
i=0

wt+2i` −
∞∑
i=0

wt+2b(t)+2i`(4.4)

=

∞∑
i=0

(wt+2i` − wt+2b(t)+2i`).

5. Generating functions for the cell modules

In this section we recall explicit generating functions for the dimensions of
the cell modules of TLn(q) (cf. [21, Ch. 6]).
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5.1. Cell modules for TLn

Recall that the cell module Wt(n) has a basis consisting of the monic TL-
diagrams D : t→ n. Since such diagrams exist only when t ≡ n(mod 2), we
may write n = t+ 2k, k ≥ 0.

Definition 5.1. For t, k ≥ 0, we write w(t, k) := dimWt(t+ 2k). By con-
vention,W0(0) = 0, so that w(0, 0) = 0. Note that by Definition 4.2, w(t, k) =
wt(t+ 2k).

Proposition 5.2. We have the following recursion for w(t, k). For integers
t, k ≥ 0:

(5.1) w(t, k + 1) = w(t− 1, k + 1) + w(t+ 1, k).

Proof. The proof is based on the interpretation of w(t, k) as the number of
monic TL-diagrams from t to t+ 2k.

Consider first the case t = 0. The assertion is then that w(0, k + 1) =
w(1, k). But all TL-diagrams D : 1→ 1 + 2k are monic, as are all diagrams
0→ 2` (any `). It follows that

w(1, k) = dim(HomT(1, 1 + 2k)) = dim(HomT(0, 2 + 2k)) = w(0, k + 1).

Thus the assertion is true for t = 0 and all k ≥ 0. Similarly, if k = 0, the
assertion amounts to w(t, 1) = w(t− 1, 1) + w(t+ 1, 0). If t > 0, the left side
is easily seen to be equal to t+ 1, while w(t− 1, 1) = t and w(t+ 1, 0) = 1.
If t = 0, the left side is equal to dim(HomT(0, 2k + 2)) = dim(HomT(1, 2k +
1)) = w(1, k). So the recurrence is valid for k = 0 and all t.

Now consider the general case. Our argument will use the fact that
w(t, k + 1) may be thought of as the number of TL-diagrams 0→ 2t+ 2(k +
1) of the form depicted in Fig. 4, which illustrates the case k = 0.

The condition that the diagram be monic is simply that each ai is joined
to some bj , i.e. that each arc crosses the dotted line; of course distinct arcs
are non-intersecting.

Evidently such diagrams fall into two types: those in which [at, b1] is an
arc, and the others. Now the number of diagrams in which [at, b1] is an arc
is clearly equal to w(t− 1, k + 1), while those in which [at, b1] is not an arc
are in bijection with the monic diagrams from t+ 1 to t+ 1 + 2k, as is seen
by shifting the dotted line one unit to the right. Hence the number of the
latter is w(t+ 1, k), and the recurrence (5.1) is proved. �
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a1 a2 at b1 b2 b3 bt+2(k+1)

... ...

Figure 4: Monic diagram t→ t+ 2(k + 1) as a diagram 0→ 2t+ 2(k + 1).

5.2. A binomial expression for w(t, k)

Definition 5.3. For integers t, k ≥ 0, define

(5.2) F (t, k) =

(
t+ 2k

k

)
−
(
t+ 2k

k − 1

)
.

This definition is extended to the domain Z× Z by stipulating that F (t, k) =
0 if t < 0 or k < 0.

It is easily seen that

F (t, k) =
(t+ 1)(t+ 2k)(t+ 2k − 1) · · · (t+ k + 2)

k!
(5.3)

=
t+ 1

t+ k + 1

(
t+ 2k

k

)
,

and that

Lemma 5.4. We have the following recursion for F (t, k). For t, k ≥ 0:

(5.4) F (t, k + 1) = F (t− 1, k + 1) + F (t+ 1, k).

5.3. Catalan calculus–generating functions

For n ≥ 0, write c(n) := w(0, 2n), c(0) = 1. It is easily seen by inspecting
diagrams that for n > 0,

(5.5) c(n) =

n∑
k=1

c(k − 1)c(n− k).
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Writing c(x) :=
∑∞

n=0 c(n)xn, the recursion (5.5) translates into

(5.6) xc(x)2 − c(x) + 1 = 0,

from which it is immediate that

(5.7) c(x) =
1− (1− 4x)

1

2

2x
,

and applying the binomial expansion, that

(5.8) c(n) =
1

n+ 1

(
2n

n

)
.

Now define Wt(x) =
∑∞

k=0w(t, k)xk =
∑∞

k=0wt(t+ 2k)xk. Inspection of
diagrams shows that the w(t, k) satisfy the following recursion.

(5.9) w(t, k) =

k∑
`=0

w(t− 1, `)c(k − `),

which translates into the recursion Wt(x) = Wt−1(x)c(x) for the generating
function Wt(x). Using the fact that W0(x) = c(x), we have proved Proposi-
tion 5.5 below.

Proposition 5.5. For t = 0, 1, 2, . . . , we have Wt(x) =
∑∞

k=0w(t, k)xk =
c(x)t+1.

Corollary 5.6. We have the following equation in Z[[x, y]].

(5.10) W (x, y) :=

∞∑
t,k=0

w(t, k)ytxk =
c(x)

1− yc(x)
.

5.4. A closed expression for w(t, k)

The following result is an easy consequence of the recurrences above.

Theorem 5.7. For integers t, k ≥ 0, we have

(5.11) w(t, k) = F (t, k).

That is,

(5.12) dim(Wt(t+ 2k)) =
t+ 1

t+ k + 1

(
t+ 2k

k

)
.
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6. Generating functions for the simple TLn(q)-modules

We assume throughout this section that the order |q2| = ` ∈ N.
Recall (Definition 4.2) that lt(n) = dim(Lt(n)) is non-zero only if n =

t+ 2k for some integer k ≥ 0. For any integer t ≥ 0 define

(6.1) Lt(x) = L
(`)
t (x) =

∞∑
k=0

lt(t+ 2k)xk.

In this section we shall give explicit formulae for the power series L
(`)
t (x).

6.1. A recurrence for the functions lt

We maintain the following notation, which was introduced in §2.

Notation. Recall that N′ = {t ∈ N | t 6≡ `− 1(mod `)}, and for t ∈ N′,
b(t) = b, where t = a`+ b with 0 ≤ b ≤ `− 2. Write R = {0, 1, 2, . . . , `− 2},
R = {1, 2, 3, . . . , `− 1} and b 7→ b for the bijection R → R given by b =
`− 1− b.

Proposition 6.1. Let t ∈ N and assume below that n ≡ t− 1(mod 2).

1) If b(t) ∈ R (i.e. t ∈ N′) and b(t) 6= `− 2, then

(6.2) lt(n+ 1) = lt−1(n) + lt+1(n).

2) For t ∈ N with b(t) = `− 2, we have, for n ≡ t− 1(mod 2),

(6.3) lt(n+ 1) = lt−1(n).

Proof. The relation (5.1) may be written as follows. For all t, n ∈ N, we have

(6.4) wt(n+ 1) = wt−1(n) + wt+1(n).

Now observe that if b(t) ∈ N′, then applying (6.4) twice, we obtain

wt(n+ 1)− wt+2b(t)(n+ 1) = wt−1(n) + wt+1(n)(6.5)

− wt+2b(t)−1(n)− wt+2b(t)+1(n).

We shall combine the terms of the right side of (6.5) in different ways,
depending on the value of b(t). First take t such that 0 < t < `− 2. Note that
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b(t)± 1 = b(t)∓ 1, and for t such that 0 < b(t) < `− 2 we have b(t± 1) =
b(t)± 1. Hence

wt(n+ 1)− wt+2b(t)(n+ 1)(6.6)

= (wt−1(n)− wt+2b(t)+1(n)) + (wt+1(n)− wt+2b(t)−1(n))

= (wt−1(n)− wt−1+2b(t)+2(n)) + (wt+1(n)− wt+1+2t−2(n))

= (wt−1(n)− wt−1+2b(t−1)(n)) + (wt+1(n)− wt+1+2b(t+1)(n)).

The same relation holds when t in (6.6) is replaced by t+ 2i` (i ≥ 0).
That is, for i ≥ 0 we have

wt+2i`(n+ 1)− wt+2i`+2b(t)(n+ 1)(6.7)

= (wt+2i`−1(n)− wt+2i`−1+2b(t−1)(n))

+ (wt+2i`+1(n)− wt+1+2i`+2b(t+1)(n)).

Now given the second line of (4.4), summing both sides of (6.7) over i ≥ 0
yields the relation (6.2).

Next take t ≡ 0(mod `), i.e. b(t) = 0. Then (6.5) may be written as fol-
lows. For t ≡ 0(mod `), note that b(t) = `− 1, and we have

wt(n+ 1)− wt+2(`−1)(n+ 1)(6.8)

= (wt−1(n)− wt−1+2`(n)) + (wt+1(n)− wt+1+2(`−2)(n))

= (wt−1(n)− wt−1+2`(n)) + (wt+1(n)− wt+1+2(b(t+1))(n)).

The same relation (6.8) holds when t is replaced by t+ 2i` (i ≥ 0).
Summing both sides of (6.8) over i ≥ 0, we see that the first summand

on the right is wt−1(n) since all other summands cancel, while the second
summand is lt+1(n) by (4.4). Now observe that when b(t) = 0, then t− 1 ≡
−1(mod `), whence by Theorem 4.1(2), we have wt−1(n) = `t−1(n). This
completes the proof of (1).

Finally, take t ≡ `− 2(mod `), i.e. b(t) = `− 2, so that b(t) = 1 and
g(t) = t+ 2. In this case (6.5) reads as follows.

wt(n+ 1)− wt+2(n+ 1)(6.9)

= wt−1(n) + wt+1(n)− (wt+1(n) + wt+3(n))

= wt−1(n)− wt+3(n))

= wt−1(n)− wt−1+2b(t−1)(n)).
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The relation (6.9) remains true when t is replaced by t+ 2i` for any
i ≥ 0, so that

wt+2i`(n+ 1)− wg(t+2i`)(n+ 1)(6.10)

= wt+2i`−1(n)− wt+2i`−1+2b(t+2i`−1)(n)),

and summing both sides of (6.10) over i ≡ `− 2(mod `) yields the relation
(6.3) and completes the proof of the proposition. �

6.2. Generating functions

We continue to assume that q2 has finite order `. In this subsection, we give
explicit generating functions for the dimensions lt(n) of the simple modules
Lt(n) of the algebras TLn(q). Specifically, we give explicit formulae for the

power series L
(`)
t (x) defined in (6.1).

Recall (5.7) that c(x) = 1 +
∑∞

n=1
1

n+1

(
2n
n

)
xn, and define

(6.11) d(x) = c(x)− 1 = xc(x)2.

Notice that the relation (5.6) may be written

(6.12) x(d(x) + 1)2 = d(x).

Recall also that for t ∈ N, b(t) is defined by t = a`+ b(t), where 0 ≤
b(t) ≤ `− 1, and that R = {0, 1, . . . , `− 2}.

We shall prove

Theorem 6.2. Maintain the above notation and let t ∈ N. If b(t) = `− 1,

then L
(`)
t (x) = Wt(x) = c(x)t+1.

If b(t) ∈ R then

(6.13) L
(`)
t (x) =

(d(x) + 1)t+1(1− d(x)`−1−b(t))

1− d(x)`
.

Proof. If b(t) = `− 1 then by Theorem 4.1(2), Wt(n) is simple for all n.

Hence in this case L
(`)
t (x) =

∑∞
k=0wt(t+2k)xk = Wt(x) = c(x)t+1 by Propo-

sition 5.5.
Now assume that b(t) ∈ R.



i
i

“8-Lehrer” — 2019/5/29 — 23:39 — page 137 — #17 i
i

i
i

i
i

Temperley-Lieb at roots of unity 137

It follows from (4.4) that for k ≥ 0,

lt(t+ 2k) =

∞∑
i=0

wg2i(t)(t+ 2k)−
∞∑
i=0

wg2i+1(t)(t+ 2k)(6.14)

=

∞∑
i=0

wt+2i`(t+ 2k)−
∞∑
i=0

wt+2i`+2b(t)(t+ 2k).

where g is the function defined in Theorem 4.1.
Now multiply each side of (6.14) by xk and sum over k. We evaluate the

two summands separately. We first have

∞∑
k=0

∞∑
i=0

wt+2i`(t+ 2k)xk =

∞∑
k=0

∞∑
i=0

wt+2i`(t+ 2i`+ 2(k − i`))xk

=

∞∑
k=0

∞∑
i=0

wt+2i`(t+ 2i`+ 2(k − i`))xk−i`xi`

=

∞∑
i=0

xi`
∞∑
k=0

wt+2i`(t+ 2i`+ 2(k − i`))xk−i`

=

∞∑
i=0

xi`Wt+2i`(x) since wt(n) = 0 for n < t

=

∞∑
i=0

xi`c(x)t+2i`+1 by Proposition 5.5

= c(x)t+1
∞∑
i=0

(xc(x)2)i`

=
c(x)t+1

1− (xc(x)2)`

=
(d(x) + 1)t+1

1− d(x)`

A similar calculation yields that

∞∑
k=0

∞∑
i=0

wt+2i`+2b(t)(t+ 2k)xk =
(d(x) + 1)t+1d(x)`−1−b(t)

1− d(x)`
,

and using (6.14), the proof is complete. �
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6.3. An alternative formula for L
(`)
t (x)

We give in this section a formula for L
(`)
t (x) in terms of the polynomials

pi(x) defined below.

Definition 6.3. Define a sequence of polynomials pi(x) ∈ Z[x], i = 1, 2,
3, . . . by

(6.15)
p1(x) = p2(x) = 1 and

pi+1(x) = pi(x)− xpi−1(x) for i ≥ 2.

Thus p3(x) = 1− x, p4(x) = 1− 2x, p5(x) = 1− 3x+ x2 and p6(x) =
1− 4x+ 3x2, etc.

Lemma 6.4. Let y be an indeterminate over Z and j a positive integer.

1) For each j ≥ 1 there are unique integers cji such that

(6.16) 1 + y + y2 + · · ·+ yj−1 =

[ j−1

2 ]∑
i=0

cjiy
i(y + 1)j−1−2i.

2) The integers cji satisfy the recurrence cj+1
i = cji − c

j−1
i−1 .

3) We have
∑[ j−1

2 ]
i=0 cjix

i = pj(x).

Proof. A polynomial f(y) ∈ C[y] is said to be n-palindromic (n ≥ 0) if
ynf(y−1) = f(y). The n-palindromic polynomials form a vector space of
dimension 1 +

[
n
2

]
. For fixed j ≥ 1, the polynomials yi(y + 1)j−1−2i, 0 ≤

i ≤
[
j−1
2

]
are all (j − 1)-palindromic, and since they have leading terms

of different degrees, they form a basis of the space of (j − 1)-palindromic
polynomials.

The statement (1) follows easily.
If we write σj = 1 + y + y2 + · · ·+ yj−1, note that (1 + y)σj = σj+1 +

yσj−1. Applying (6.16), we obtain

[ j−1

2 ]∑
i=0

cjiy
i(y + 1)j−2i =

[ j

2 ]∑
i=0

cj+1
i yi(y + 1)j−2i +

[ j−2

2 ]∑
i=0

cj−1i yi+1(y + 1)j−2−2i.

Comparing the coefficients of yi(y + 1)j−2i yields the relation (2).
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Write Cj(x) =
∑[ j−1

2 ]
i=0 cjix

i. The recurrence (2) shows that Cj+1(x) =
Cj(x)− xCj−1(x). Further, it is easily checked that C1(x) = C2(x) = 1,
which, by comparison with (6.15), completes the proof that Cj(x) = pj(x).

�

Lemma 6.5. Suppose t = a`+ b with b = `− 3 or b = `− 2. Then

L
(`)
t (x) =

c(x)a`

p`(x)
,

where p`(x) is the polynomial defined in (6.15).

Proof. First observe that by (6.3), lt(t+ 2k) = lt−1(t− 1 + 2k) if b(t) = `−
2, so that L

(`)
t (x) will be the same for the two nominated values of t. Now

take t = a`+ `− 2. Applying the formula (6.13), one sees easily that

L
(`)
t (x) =

(d(x) + 1)a`+`−1

1 + d(x) + d(x)2 + · · ·+ d(x)`−1
.

Now using the relation x(d(x) + 1)2 = d(x) repeatedly, together with

Lemma 6.4, one sees that p`−1(x)L
(`)
t (x) = (d(x) + 1)a`. �

The next result is a generalisation of [17, Thm. 2.3], which deals essen-
tially with the case 0 ≤ t ≤ `− 2 of the Theorem.

Theorem 6.6. With the above notation, we have, for t = a`+ b with 0 ≤
b ≤ `− 2,

(6.17) L
(`)
t (x) =

p`−1−b(x)

p`(x)
c(x)a`,

where c(x) is the Catalan series (5.7) and the pi(x) are defined in (6.15).

Proof. The recurrence (6.2) may be written as follows: for t such that b(t) 6=
0, `− 2, we have lt(t+ 2k) = lt−1(t− 1 + 2k) + lt+1(t+ 1 + 2(k − 1)). Mul-
tiplying this relation by xk and summing over k ≥ 0, we obtain, after rear-
rangement,

(6.18) L
(`)
t−1(x) = L

(`)
t (x)− xL(`)

t+1(x).

Now fix a ∈ N and consider the power series L
(`)
t (x) for t = a`+ b, 0 ≤

b ≤ `− 2. We have seen in Lemma 6.5 that when b = `− 2 or `− 3, then

L
(`)
a`+`−2(x) = L

(`)
a`+`−3(x) = c(x)a`

p`(x)
.
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Now fix b such that 0 ≤ b ≤ `− 3 and assume that for all b′ with `− 2 ≥
b′ ≥ b, there are polynomials r`−1−b′(x) such that

L
(`)
a`+b′(x) = r`−1−b′(x)L

(`)
a`+`−2(x).

Then r1(x) = r2(x) = 1 and from the recurrence (6.18) we have

L
(`)
a`+b−1(x) = L

(`)
a`+b(x)− L(`)

a`+b+1(x)

= r`−1−b(x)L
(`)
a`+`−2(x)− xr`−2−b(x)L

(`)
a`+`−2(x)

= r`−1−(b−1)(x)L
(`)
a`+`−2(x),

where r`−1−b+1(x) = r`−1−b(x)− xr`−2−b(x).
It follows that for b = 0, 1, 2, . . . , `− 2, r`−1−b(x) = p`−1−b(x) where pi(x)

is as in (6.15), and that L
(`)
a`+b(x) = p`−1−b(x)L

(`)
a`+`−2(x). The Theorem now

follows by using the expression for L
(`)
a`+`−2(x) in Lemma 6.5. �

Remark 6.7. It is clear that the Jones quotient Qn(`) is not generally the
largest semisimple quotient of TLn(q). In fact this is true precisely when Rn
annihilates all the simple TLn-modules, which happens if and only if n < `.

For example if ` = 3, TL3(q) has two simple modules L1(3) and L3(3) of
dimension 1, so its largest semisimple quotient has dimension 2, while Q3(3)
has dimension 1.

Other examples include TL7 where ` = 5. We have dim(Q7) = F13 = 233
while the maximal semisimple quotient of TL7 has dimension 270.

6.3.1. Some examples. We give several examples of the application of
Theorem 6.6.

1) When ` = 3, Lt(x) = c(x)3a

1−x for t = 3a+ b, 0 ≤ b ≤ 1.

2) When ` = 4, L1(x) = L2(x) = 1
1−2x , while L0(x) = p3(x)

p4(x)
= 1−x

1−2x . So

dimL0(2n) = 2n−1, dimL1(2n+ 1) = 2n and dimL2(2n) = 2n−1.

3) Take ` = 5. We shall determine Li(x) for i = 0, 1, 2, 3. We have L2(x) =
L3(x) = 1

1−3x+x2 , L1(x) = 1−x
1−3x+x2 and L0(x) = 1−2x

1−3x+x2 .

Note that L0(x)−1
x = L1(x).
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Let us write

1− x
1− 3x+ x2

=

∞∑
n=0

anx
n and

x

1− 3x+ x2
=

∞∑
n=0

bnx
n.

Then a0 = 1, a1 = 2, a2 = 5, a3 = 13 and b0 = 0, b1 = 1, b2 = 3, b3 = 8.
Let F1, F2, F3, . . . = 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . be the Fibonacci se-

quence.
We shall show that:

(6.19) a0, b1, a1, b2, a2, b3, a3, . . . = F1, F2, F3, . . .

i.e. that for i = 0, 1, 2, . . . , we have ai = F2i+1 and bi = F2i.
To prove (6.19), given the initial values of the ai and bi, it suffices

to show that
(i) bn + an = bn+1 for n ≥ 0, and
(ii) an + bn+1 = an+1 for n ≥ 0.
For (i), observe that

∞∑
n=0

(an + bn)xn =
1− x+ x

1− 3x+ x2
=

1

1− 3x+ x2
=

∞∑
n=0

bn+1x
n.

Similarly, for (ii), we have
∑∞

n=0(an + bn+1)x
n = 2−x

1−3x+x2 , which is
readily shown to be equal to

∑∞
n=0 an+1x

n.
It follows that L3(x) = L2(x) =

∑∞
n=0 bn+1x

n

We have therefore shown that

dim(L2(2 + 2n)) = dim(L3(3 + 2n)) = bn+1 = F2n+2,

dim(L1(1 + 2n)) = an = F2n+1

and for n > 0,

dim(L0(2n)) = an − bn = an−1 = F2n−1.

4) Again take ` = 5, and consider L8(x). This gives the dimension of the
simple TLn-modules L8(n), which are not modules for Qn. We have

L8(x) = c(x)5

p5(x)
= 1+5x+20x2+···

1−3x+2x2 . So, for example, `(10) = 8 and `8(12) =

43, while dim(W8(10)) = 9 and dim(W8(12)) = 54. This shows that
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the latter modules have radicals of dimension 1 and 11 respectively.
These results are consistent with the facts that W8(10) and W8(12)
respectively have radicals isomorphic to W10(10) and W10(12).

5) Take ` = 6. We shall compute Lt(x) for t = 0, 1, 2, 3, 4. Note first that
L3(x) = L4(x) = 1

1−4x+3x2 , and since 1− 4x+ 3x2 = (1− x)(1− 3x),
we have

L3(x) = L4(x) =

∞∑
n=0

3n+1 − 1

2
xn

It follows that L2(x) = (1− x)L3(x) =
∑∞

n=0 3nxn = 1
1−3x . Similarly,

L1(x) =
1− 2x

1− 4x+ 3x2
=

∞∑
n=0

3n + 1

2
xn

and

L0(x) = 1 + xL1(x) = 1 +

∞∑
n=1

3n−1 + 1

2
xn.

6) Take ` = 7. An easy but tedious calculation shows that in this case

L4(x) = L5(x) = 1 + 5x+ 19x2 + 66x3 + 221x4 + 728x5 + · · ·
L3(x) = 1 + 4x+ 14x2 + 47x3 + 155x4 + 507x5 + · · ·
L2(x) = 1 + 3x+ 9x2 + 28x3 + 89x4 + 286x5 + · · ·
L1(x) = 1 + 2x+ 5x2 + 14x3 + 42x4 + 131x5 + · · ·
L0(x) = 1 + xL1(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + · · ·

7. The algebras Qn(`)

We assume throughout this section that ` is fixed and |q2| = `. Recall (Defi-
nition 3.6) that Qn(`) ' TLn(q)/Rn(q), where Rn is generated by the Jones-
Wenzl idempotent E`−1 ∈ TL`−1(q). We have seen (3.4) that, although they
are not the maximal semisimple quotients of the TLn(q), the algebras Qn are
semisimple and we therefore focus on a description of their simple modules.

7.1. Classification of the simple Qn(`)-modules

The next statement is elementary.

Proposition 7.1. Let n ≥ `− 1. With Rn as above, the simple Qn-modules
are precisely those simple TLn-modules Lt, t ∈ T (n), such that RnLt = 0.
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Remark 7.2. If N is a TLn module, then since Rn = TLnE`−1TLn, it
follows that RnN = 0 if and only if E`−1N = 0. Thus the condition in the
Proposition is relatively straightforward to check.

Remark 7.3 (Remark concerning notation). Although a priori E`−1 ∈
TL`−1, we have regarded it as an element of TLn for any n ≥ `− 1. The
strictly correct notation for E`−1 ∈ TLn, where n ≥ `, is E`−1 ⊗ I⊗(n−`+1),
where the tensor product is in the Temperley-Lieb category T, as described
in [12] or [20]; that is, it is described diagrammatically as juxtaposition
of diagrams, and I is the identity diagram from 1 to 1. We shall use this
notation freely below.

Theorem 7.4. With notation as in Theorem 4.1, let t ∈ T (n) satisfy t ≥
`− 1. Then the idempotent E`−1 ⊗ I⊗(n−`+1) acts non-trivially on Lt. Thus
Qn has at most

[
`
2

]
isomorphism classes of simple modules.

Proof. We begin by showing that if t ∈ T (n) and t ≥ `− 1 then (E`−1 ⊗
I⊗(n−`+1))Wt contains all diagrams of the form I⊗t ⊗D′, where D′ is any
monic diagram from 0 to n− t.

To see this, note that Wt is spanned by monic diagrams from t to n in T.
Take D = I⊗t ⊗D′ ∈Wt, where D′ is any (monic) diagram from 0 to n− t.
By the formula in Theorem 3.3, the coefficient of I⊗(`−1) in E`−1 is 1. Since
all the other summands act trivially on D (because they reduce the number
of ‘through strings’), it follows that (E`−1 ⊗ I⊗(n−`+1))D = D in Wt, and
hence that D ∈ (E`−1 ⊗ I⊗(n−`+1))Wt.

Now if D = I⊗t ⊗D′ as above and ( , )t is the canonical bilinear form
on Wt (see [11, §2]), then (D,D)t is a power of −(q + q−1), and hence is
non-zero. It follows that D 6∈ Radt, and hence that E`−1Lt 6= 0. �

It follows from the above result that the only possible simple Qn-modules
are the Lt with t < `− 1.

Theorem 7.5. The simple Qn modules are the Lt with t ≤ `− 2.

Proof. In view of Proposition 7.1 and Theorem 7.4, it suffices to show that
(E`−1 ⊗ I⊗(n−`+1))Lt = 0 for t ≤ `− 2.

For this, it suffices to show that (E`−1 ⊗ I⊗(n−`+1))Wt ⊆ Radt for t in
the relevant range, and this latter statement will follow if we prove that for
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any two monic diagrams D1, D2 ∈Wt, we have

(7.1)
(

(E`−1 ⊗ I⊗(n−`+1))D1, D2

)
t

= 0.

To see (7.1), observe that since (E`−1 ⊗ I⊗(n−`+1)) is an idempotent, it
follows from the invariance of the form ( , )t, that(

(E`−1 ⊗ I⊗(n−`+1))D1, D2

)
t

=
(

(E`−1 ⊗ I⊗(n−`+1))D1, (E`−1 ⊗ I⊗(n−`+1))D2

)
t
.

Now for any monic diagram D ∈Wt, (E`−1 ⊗ I⊗(n−`+1))D = 0 unless any
upper arc of D whose left end i ≤ `− 1 has right end j ≥ `, for otherwise
D is annihilated by E`−1 ⊗ I⊗(n−`+1) because E`−1 is harmonic. It follows,
again from the harmonic nature of E`−1, that if (E`−1 ⊗ I⊗(n−`+1))D 6= 0, we
must have D = I⊗t1 ⊗D′ ⊗ I⊗t2 , where t1 + t2 = t and D′ : 0→ n− t1 − t2
is a diagram such that each of its arcs (it has only upper arcs) has right end
in {`, `+ 1, . . . , n}.

Now let D1 and D2 be two such diagrams. Then to show that

((E`−1 ⊗ I⊗(n−`+1))D1, (E`−1 ⊗ I⊗(n−`+1))D2)t = 0,

it suffices to show that D∗1(E`−1 ⊗ I⊗(n−`+1))D2 = 0.
This latter fact will follow from the harmonic nature of E`−1, as well

as the property of E`−1 proved in Proposition 3.5(2). To see it, note that
if D∗1(E`−1 ⊗ I⊗(n−`+1))D2 is depicted diagramatically in a way similar to
Figs. 1,2 or 3, the string emanating from the (`− 1)st top vertex (i.e. the
rightmost upper vertex of E`−1) either ultimately returns to an upper vertex
of E`−1, in which case we have the zero element by harmonicity, or else it
joins the corresponding string emanating from the (`− 1)st bottom vertex.
In this case we have the zero element by Proposition 3.5(2).

This completes the proof of the theorem. �

7.2. Dimensions of the simple Qn(`)-modules

Since the simple Qn(`)-modules are just the L
(`)
t (n) where 0 ≤ t ≤ `− 2,

t ≡ n(mod 2), their dimensions are given by the formula (6.17). That is,

(7.2)

∞∑
k=0

dim(L
(`)
t (t+ 2k))xk =

p`−1−t(x)

p`(x)
.
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7.3. The case ` = 4. Clifford algebras

We have seen in (6.3.1)(2) that Q2n+1(4) has just one simple module, whose
dimension is 2n and that Q2n(4) has two simple modules, both of dimension
2n−1. It follows (see also the general formula (8.13)) that dimQn(4) = 2n−1

for n ≥ 1. We shall see in this section that in this case, Qn is actually the
even subalgebra of a Clifford algebra. Because of its connection to the Ising
model in statistical mechanics [21], we shall refer to the Qn(4) as the Ising
algebras.

Let U be a complex vector space of finite dimension n, with a non-
degenerate symmetric bilinear form 〈−,−〉. Then U has an orthonormal
basis u1, . . . , un. If γi = 1√

2
ui for i = 1, . . . , n, then for any i, j,

(7.3) 〈γi, γj〉 =
1

2
δi,j .

The Clifford algebra Cn = C(U, 〈−,−〉) (for generalities about Clifford
algebras we refer the reader to [8]) is defined as

(7.4) Cn =
T (U)

I
,

where T (U) = ⊕∞i=0U
⊗i is the free associative C-algebra (or tensor algebra)

on U , and I is the ideal of T (U) generated by all elements of the form u⊗
u− 〈u, u〉1 (u ∈ U). This last relation may equivalently be written (omitting
the ⊗ in the multiplication)

(7.5) uv + vu = 2〈u, v〉1.

The algebra Cn is evidently generated by any basis of U , and hence
by (7.3) and (7.5) has the presentation

(7.6) Cn = 〈γ1, . . . , γn | γiγj + γjγi = δij for 1 ≤ i, j ≤ n〉.

For any subset J = {j1 < j2 < · · · < jp} ⊆ {1, . . . , n}, write γJ =
γj1γj2 · · · γjp . It is evident that {γJ | J ⊆ {1, 2, . . . , n}} is a basis of Cn which
is therefore Z2-graded (since the relations are in the even subalgebra of the
tensor algebra), the even (resp. odd) subspace being spanned by those γJ
with |J | even (resp. odd).

The following statement is now clear.



i
i

“8-Lehrer” — 2019/5/29 — 23:39 — page 146 — #26 i
i

i
i

i
i

146 K. Iohara, G. I. Lehrer, and R. B. Zhang

Proposition 7.6. The Clifford algebra C(U, 〈−,−〉) has dimension 2n,
where n = dim(U). Its even subalgebra C0n has dimension 2n−1.

The next theorem is the main result of this section; it asserts that the
Ising algebra is isomorphic to the even subalgebra of the Clifford algebra.

Theorem 7.7. We continue to assume ` = 4 and that q = − exp(πi4 ). Other
notation is as above. For n = 3, 4, . . . there are surjective homomorphisms
φn : TLn(q)→ C0n which induce isomorphisms φn : Qn

'−→ C0n.

Proof. Define φn(fj) = 1√
2
(1 + 2iγjγj+1). It was remarked by Koo and Saleur

[18, §3.1 eq. (3.2)] (see also [3]) that the φn(fj) satisfy the relations (2.1)
in Cn, and therefore that φn defines a homomorphism from TLn to Cn, and
further that E3 ∈ ker(φn).

It is evident that the image of φn is C0n, and therefore that φn : Qn → C0n
is surjective. But by Prop. 7.6 these two algebras have the same dimension,
whence φn is an isomorphism. �

7.3.1. Canonical trace. Let TLn(q) be the n-string Temperley-Lieb al-
gebra as above, and assume δ := −(q + q−1) 6= 0 is invertible. The canonical
Jones trace trn on TLn(q) was defined in (2.2). As pointed out in (3.4), this
trace descends to a non-degenerate trace on Qn, satisfying similar properties.
In the case ` = 4 this amounts to the following statement.

Proposition 7.8. There is a canonical trace trn on C0n, given by taking the
constant term (coefficient of 1) of any of its elements. This trace corresponds
to the Jones trace above in the sense that for x ∈ Qn, trn(x) = trn(φ(x)). It
is therefore non-degenerate.

The proof is easy, and consists in showing that trn satisfies the analogue
of (2.2) in C0n.

7.3.2. The spinor representations of so(n). We give yet another in-
terpretation of the algebra in terms of the spin representations of so(n). Let
SO(n) be the special orthogonal group of the space (U, 〈−,−〉) above. Its
Lie algebra has basis the set of matrices (with respect to the orthogonal ba-
sis (γi)) Jij := Eij − Eji, 1 ≤ i < j ≤ n, where the Eij are the usual matrix
units. This basis of so(n) satisfies the commutation relations

(7.7) [Jij , Jkl] = δjkJil − δjlJik − δikJjl + δilJjk.
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Proposition 7.9. For n ≥ 2, there are surjective homomorphisms ψn :
U(so(n))→ C0n ∼= Qn, such that ψn(Jij) = ωij := 1

2(γiγj − γjγi). The irre-
ducible spin representations of so(n) are realised on the simple Qn-modules
L0 and L2 when n is even and on L1 when n is odd.

Proof. As this is well known, we give merely a sketch of the argument. To
show that ψn defines a homomorphism, it suffices to observe that the ωij sat-
isfy the same commutation relations (7.7) as the Jij , and this is straightfor-
ward. The surjectivity of ψn is evident from the observation that ωij = γiγj ,
which shows that the image of ψn contains the whole of C0n ' Qn. �

8. The algebras Qn(`) and the Reshetikhin-Turaev-Andersen
fusion category

We show in this section that Qn(`) is the endomorphism algebra of a certain
truncated tensor product of modules for Uq = Uq(sl2), where q is such that
q2 is a primitive `th root of unity. An observation about the relevant fusion
category permits the determination of the dimension of Qn(`). We assume
throughout that ` ≥ 3.

8.1. Tilting modules for Uq(sl2)

For n ∈ N, let ∆q(n) be the Weyl module (cf. [2, §1]) of the quantum group
Uq = Uq(sl2) and let Tq(n) be the unique indecomposable tilting module for
Uq with highest weight n [2, §5].

It follows from [2, Thm. 5.9] that for n ∈ N,

(8.1) ∆q(1)⊗n '
⊕
t∈N

lt(n)Tq(t),

where lt(n) = dim(Lt(n)) is the dimension of the simple TLn(q)-module
Lt(n). Note that lt(n) is non-zero only if t ≡ n(mod 2).

Further, the structure of the tilting modules Tq(m) is described in [2,
Prop. 6.1] as follows.

(8.2)

(1) If m < ` or m ≡ −1(mod `),

then Tq(m) ' ∆q(m) is a simple Uq-module.

(2) If m = a`+ b with a ≥ 1 and 0 ≤ b ≤ `− 2,

then Tq(m) has a submodule isomorphic to

∆q(m) such that
Tq(m)

∆q(m)
' ∆q(g

−1(m)),
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where g is the function defined in (4.3).

8.2. Andersen’s fusion category

Andersen proved in [1, Thm. 3.4] a general result for quantised enveloping
algebras at a root of unity, which implies in the case of Uq(sl2) that the tilt-
ing modules Tq(m) with 0 ≤ m ≤ `− 2 are precisely those indecomposable
tilting modules with non-zero quantum dimension. This may easily be ver-
ified directly in our case using the description (8.2) of the tilting modules.
Andersen’s result [1, Cor. 4.2] (see also [23]) implies that in our case, we
have the following result.

Proposition 8.1. Let M,N be tilting modules for Uq(sl2). Write

M ⊗N =
⊕
n∈N

mnTq(n),

and define the fusion product ⊗ by

(8.3) M⊗N =

`−2⊕
n=0

mnTq(n).

Then the fusion product ⊗ is associative.

This implies that we have a semisimple tensor category Cred with objects
the tilting modules ⊕`−2n=0mnTq(n)(= ⊕`−2n=0mn∆q(n)) (mn ∈ N), and tensor
product ⊗.

Definition 8.2. For modules M = ⊕`−2n=0mnTq(n) and M ′ = ⊕`−2n=0m
′
nTq(n),

define

(8.4) (M,M ′)Uq
= dim(HomUq

(M,M ′)) =

`−2∑
n=0

mnm
′
n.

Lemma 8.3. Let M,N ∈ Cred. Then

(8.5) (M⊗∆q(1), N)Uq
= (M,N⊗∆q(1))Uq

Proof. Since both sides of (8.5) are additive in M and N , it suffices to
take M = Tq(s) = ∆q(s) and N = ∆q(t) for s, t ∈ {0, 1, 2, . . . , `− 2}. The
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“reduced Clebsch-Gordan formula” asserts that for m ∈ {0, 1, 2, . . . , `− 2},

(8.6) ∆q(m)⊗∆q(1) '


∆q(m− 1)⊕∆q(m+ 1) if m 6= 0 or `− 2

∆q(1) if m = 0

∆q(`− 3) if m = `− 2.

It is now easily verified that HomUq
(M⊗∆q(1), N) ∼= HomUq

(M,∆q(1)⊗N),
and the result follows. �

The following result provides an explicit description of the operation ⊗
in the category Cred.

Proposition 8.4. Suppose s, t ∈ Z are such that 0 ≤ s, t ≤ `− 2. Then

(8.7) ∆q(s)⊗∆q(t) ∼= ∆q(|s− t|)⊕∆q(|s− t|+ 2)⊕ · · · ⊕∆q(m),

where m = m(s, t) = min{s+ t, 2(`− 2)− (s+ t)}.

Proof. Note first that by the commutativity of ⊗, it suffices to prove (8.7)
for s, t such that 0 ≤ t ≤ s ≤ `− 2. Further, observe that (8.7) holds for
t = 0, 1. The case t = 0 is trivial, while if t = 1(≤ s), we have

∆q(s)⊗∆q(1) ∼=

{
∆q(s− 1)⊕∆q(s+ 1) if s < `− 2

∆q(s− 1) if s = `− 2,

which is precisely the assertion (8.7) in this case. We next show that (8.7)
holds when s = `− 2. This assertion amounts to

(8.8) ∆q(`− 2)⊗∆q(t) ∼= ∆q(`− 2− t) for all t.

We prove (8.8) by induction on t; the statement holds for t = 0, 1, as already
observed. For 1 < t ≤ `− 2, we have ∆q(t− 1)⊗∆q(1) ∼= ∆q(t)⊕∆q(t− 2),
whence by induction,

∆q(`− 2)⊗∆q(t− 1)⊗∆q(1)
∼= ∆q(`− 2)⊗∆q(t)⊕∆q(`− 2)⊗∆q(`− 2− (t− 2)).

But again by induction, the left side is equal to ∆q(`− 2− (t− 1))⊗∆q(1) ∼=
∆q(`− 2− (t− 2))⊕∆q(`− 2− t), which proves (8.8).



i
i

“8-Lehrer” — 2019/5/29 — 23:39 — page 150 — #30 i
i

i
i

i
i

150 K. Iohara, G. I. Lehrer, and R. B. Zhang

We may therefore now assume that `− 3 ≥ s ≥ t ≥ 2, and proceed by
induction on t. Using (8.6), and (8.5), we see easily that for any r with
0 ≤ r ≤ `− 2, we have

(∆q(s)⊗∆q(t),∆q(r))Uq
(8.9)

= (∆q(s)⊗∆q(t− 1),∆q(1)⊗∆q(r))Uq

− (∆q(s)⊗∆q(t− 2),∆q(r))Uq
.

We shall show, using (8.9), that for 0 ≤ r ≤ `− 2,

Assertion 8.5. The multiplicity of ∆q(r) in both sides of (8.7) is the same.

If r = 0, the right side of (8.9) is zero unless s− t+ 1 = 1, i.e. s = t, in
which case it is 1. This proves the assertion for r = 0. If r = `− 2, the first
summand on the right side of (8.9) is (∆q(s)⊗∆q(t− 1),∆q(`− 3))Uq

, which
is 1 if s+ t− 1 = `− 1 or `− 3 and zero otherwise. If s+ t− 1 = `− 1, then
the second summand on the right side of (8.9) is 1, whence the right side
is zero unless s+ t = `− 2, in which case it is 1. This proves Assertion 8.5
when r = `− 2.

We may therefore assume that 0 < r < `− 2, so that (8.9) may be writ-
ten as follows.

(∆q(s)⊗∆q(t),∆q(r))Uq
= (∆q(s)⊗∆q(t− 1),∆q(r − 1))Uq

(8.10)

+ (∆q(s)⊗∆q(t− 1),∆q(r + 1))Uq

− (∆q(s)⊗∆q(t− 2),∆q(r))Uq
.

Now by induction, we have

(8.11)

∆q(s)⊗∆q(t− 1) ∼= ∆q(s− t+ 1)⊕∆q(s− t+ 3)

⊕ · · · ⊕∆q(m(s, t− 1))

and ∆q(s)⊗∆q(t− 2) ∼= ∆q(s− t+ 2)⊕∆q(s− t+ 4)

⊕ · · · ⊕∆q(m(s, t− 2)).

We consider three cases.

Case 1: s+ t− 1 > `− 2. In this case it is clear that m(s, t− 1) = m(s, t) +
1 and m(s, t+ 2) = m(s, t) + 2. Hence in equation (8.10), the last two sum-
mands cancel, and we are left with

(∆q(s)⊗∆q(t),∆q(r))Uq
= (∆q(s)⊗∆q(t− 1),∆q(r − 1))Uq

(for 0 < r < `− 2).
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Bearing in mind that m(s, t− 1) = m(s, t) + 1, this completes the proof of
Assertion 8.5 in this case.

Case 2: s+ t− 1 ≤ `− 2 and s+ t 6= `− 1. When s+ t− 1 ≤ `− 2, a short
calculation shows that m(s, t− 1) = m(s, t)− 1 and m(s, t− 2) = m(s, t)−
2, except in the single case when s+ t = `− 1, with which we shall deal
separately. We therefore assume for the moment that s+ t 6= `− 1, and using
(8.11), evaluate each of the three terms in the right side of (8.10). The first
term is 1 for r (of the correct parity) such that s− t+ 2 ≤ r ≤ m(s, t),
and zero otherwise. The second term is 1 for r (of the correct parity) such
that s− t ≤ r ≤ m(s, t)− 2, and zero otherwise, while the third term is −1
for r (of the correct parity) such that s− t+ 2 ≤ r ≤ m(s, t)− 2, and zero
otherwise. This proves Assertion 8.5 in this case.

Case 3: We consider finally the remaining case s+ t = `− 1. In this case
we have m(s, t) = `− 3 = m(s, t− 2), and m(s, t− 1) = `− 2. Using this
we again evaluate the three terms on the right side of (8.10), recalling that
r ≤ `− 3. The first term is 1 for r (of the correct parity) such that s− t+
2 ≤ r ≤ `− 3, and zero otherwise. The second term is 1 for r (of the correct
parity) such that s− t ≤ r ≤ `− 3, and zero otherwise while the third term
is −1 for r (of the correct parity) such that s− t+ 2 ≤ r ≤ `− 3, and zero
otherwise.

This completes the proof of Proposition 8.4. �

8.3. Connection with the algebra Qn(`)

We start with the following observation.

Proposition 8.6. We have

EndUq
(∆q(1)⊗

n

) ∼= Qn(`).

Proof. It follows from the definition and from (8.1) that

(8.12) ∆q(1)⊗n '
`−2⊕
t=0

lt(n)∆q(t).

Since the ∆q(t) are simple for 0 ≤ t ≤ `− 2, it follows that

EndUq
(∆q(1)⊗

n

)

is the direct sum of matrix algebras of degree lt(n), for t such that 0 ≤ t ≤
`− 2 and t ≡ n(mod 2). But this latter set of integers is precisely the set of
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degrees of the simple modules for the semisimple algebra Qn(`). The result
follows. �

Remark 8.7. The results in this paper actually suffice to give a decom-
position of Tq(m)⊗ Tq(n) as a sum of tilting modules. This would give an
alternative proof of Proposition 8.4.

Proposition 8.4 may be used to deduce the dimension of Qn(`).

Corollary 8.8. (see [10, Thm. 2.9.8]) Define

Q(`)(x) :=

∞∑
n=0

dim(Qn+1(`))x
n.

Then

(8.13) Q(`)(x) =
p`−2(x)

p`(x)
,

where the polynomials pi(x) are defined in (6.15).

Proof. It follows from Proposition 8.6 that in the notation of Definition 8.2,

dim(Qn+1(`)) = (∆q(1)⊗(n+1),∆q(1)⊗(n+1))Uq
.

But by n applications of Lemma 8.3, we see that

(∆q(1)⊗(n+1),∆q(1)⊗(n+1))Uq
= (∆q(1)⊗(2n+1),∆q(1))Uq

= l1(2n+ 1).

Finally, by (7.2), we have
∑∞

n=0 l1(2n+ 1)xn = p`−2(x)
p`(x)

, and the proof is
complete. �

9. Fusion algebras and fusion categories

In this section we investigate some structures which are related to the con-
structions above. We start with a fusion structure on the representation
rings of the algebras Qn(`). Throughout this section we take ` = |q2| ≥ 3 as
fixed, unless otherwise specified.
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9.1. Fusion structure on the Jones algebras

Let Qn = Qn(`) be as above. This is a semisimple algebra, and if we write
R(n) := {t ∈ Z | t ≡ n(mod 2) and 0 ≤ t ≤ min{n, `− 2}}, then writing K0

for the Grothendieck ring,

(9.1) K0(Qn) ∼= ⊕t∈R(n)Z[Lt(n)].

Define the algebra

K(Q) :=
⊕
n≥1

K0(Qn),

where multiplication is given by

(9.2) [Ls(m)] ◦ [Lt(n)] := [Ind
Qm+n

Qm⊗Qn
(Ls(m) � Lt(n))].

Remark 9.1. Here Qm ⊗Qn is the subalgebra of Qm+n which is generated
by the image of TLm(q)⊗ TLn(q) ⊆ TLm+n(q) under the canonical map

TLm+n(q)→ Qm+n(`). The induced representation Ind
TLm+n

TLm⊗TLn
(Ls(m) �

Lt(n)) may have summands which are not acted upon trivially by Rm+n(q).
To obtain a representation of Qm+n, we consider the submodule of this
induced representation of TLm+n consisting of elements annihilated by
Rm+n(q).

The multiplication defined above on K(Q) is bilinear, associative and
commutative.

Theorem 9.2. We have

(9.3) [Ls(m)] ◦ [Lt(n)] =
∑

|s−t|≤r≤m(s,t)

[Lr(m+ n)].

where m(s, t) = min{s+ t, 2(`− 2)− (s+ t)}, as in Proposition 8.4.

Proof. It follows from Proposition 8.6 that for m ≥ 1, as Uq ⊗Qm-module,

∆q(1)⊗m ∼= ⊕s∈R(m)∆q(s) � Ls(m).

It follows that as Uq ⊗ (Qm ⊗Qn)-module, we have

(9.4) ∆q(1)⊗(m+n) ∼=
⊕

s∈R(m), t∈R(n)

(∆q(s)⊗∆q(t)) � (Ls(m) � Lt(n)) .
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But as a module for Uq ⊗Qm+n,

(9.5) ∆q(1)⊗(m+n) ∼=
⊕

r∈R(m+n)

∆q(r) � Lr(m+ n).

Moreover by Proposition 8.4, we may expand (9.4) as follows.

(∆q(s)⊗∆q(t)) � (Ls(m) � Lt(n))

∼=
⊕

r∈R(m+n),|s−t|≤r≤m(s,t)

∆q(r) � (Ls(m) � Lt(n)) .

Comparing this last equation with (9.5), we see that given r ∈ R(m+ n),
we have

(9.6) Res
Qm+n

Qm⊗Qn
(Lr(m+ n)) ∼=

⊕
|s−t|≤r≤m(s,t)

(Ls(m) � Lt(n)) .

But the multiplicity of Ls(m) � Lt(n) in Res
Qm+n

Qm⊗Qn
(Lr(m+ n)) is equal

to that of Lr(m+ n) in Ind
Qm+n

Qm⊗Qn
(Ls(m) � Lt(n)) by Frobenius reciprocity.

It follows that (9.6) is equivalent to:

(9.7) Ind
Qm+n

Qm⊗Qn
(Ls(m) � Lt(n)) ∼=

⊕
r:|s−t|≤r≤m(s,t)

Lr(m+ n),

which is the required statement. �

9.2. Connections with the Virasoro algebra

We conclude with some observations and speculations about possible con-
nections of our results with Virasoro algebras. Recall that the Virasoro alge-
bra L = ⊕i∈ZCLi ⊕ CC has irreducible highest weight modules L(c, h) with
highest weight (c, h), where c, h(∈ C) are respectively the central charge and
the eigenvalue of L0. It was conjectured by Friedan, Qiu and Schenker [6]
that L(c, h) is unitarisable if and only if either

1) c ≥ 1 and h ≥ 0, or

2) there exist integers m ≥ 2, r and s with 0 < r < m and 0 < s < m+ 1
such that

c = cm := 1− 6

m(m+ 1)
and h = hr,s :=

((m+ 1)r −ms)2 − 1

4m(m+ 1)
.
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As hr,s = hm−r,m+1−s, it is suffices to take, 1 ≤ s ≤ r < m in the latter case.
The “if” part of this statement was proved by Goddard, Kent and Olive [9]
and the “only if ” part was proved by Langlands [19].

This result bears a superficial resemblance to Jones’ result on the range
of values of the index of a subfactor as was mentioned in the preamble. Thus
it might be expected that case (2) is somehow connected with our algebras
Qn(`) for ` = 3, 4, 5, . . . .

Further, there are several instances in the literature (see, e.g. [7, 18, 22])
which hint at a connection between Qn(`) and the minimal unitary series
of L with central charge c`. Our work may provide some further evidence
along those lines.

For ` = 3, c = 0, and there is just one irreducible representation, viz.
the trivial one. This is ‘consistent’ with Qn(3) = C. For ` = 4, c = 1

2 . This
case is the Ising model, or equivalently, the 2-state Potts model, as we have
already observed.

Now the abelian groups K0(Q2n) n = 1, 2, 3, . . . form an inverse system,
as do the K0(Q2n+1), via the maps

[Lt(n+ 2)] 7→

{
[Lt(n)] if n− t ∈ 2Z≥0
0 otherwise

.

Define the abelian groups

K(Qeven(`)) := lim
←

(K(Q2n(`))) and K(Qodd(`)) := lim
←

(K(Q2n+1(`))).

Then K(Q∞) := K(Qeven(`))⊕K(Qodd(`)) has a Z-basis which may be
written {[Lt] | t = 0, 1, 2, . . . , `− 2}. Define a multiplication on K(Q∞) by

[Ls] ◦ [Lt] =
∑

r≡s+t(2)
|s−t|≤r≤m(s,t)

[Lr].

By the usual properties of inverse limits, we have maps τn : K(Q∞) −→
K0(Qn(`)), given by

τn([Lt]) =

{
[Lt(n)] if n− t ∈ 2Z≥0
0 otherwise.

Theorem 9.2 implies that the ring K(Q∞) is a ‘stable limit’ or ‘comple-
tion’ of the Grothendieck ring K(Q)(= ⊕∞n=1K0(Qn(`))) in the sense that
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for all m,n, s and t,

(9.8) τm([Ls]) ◦ τn([Lt]) = τm+n([Ls] ◦ [Lt]).

Moreover the ring K(Q∞) is isomorphic [24, (4.6), p.369] to the fusion ring
of ŝl2 at level `− 2, which in turn is isomorphic to the subring of the fusion
algebra of L with central charge c`−1 generated by [L(cl−1, h1,s)] (1 ≤ s ≤
l − 1) (cf. [13, §9.3]).
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