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Completeness on the worm domain and

the Müntz–Szász problem for the

Bergman space

Steven G. Krantz, Marco M. Peloso†, and Caterina Stoppato‡

In this paper we are concerned with the problem of completeness
in the Bergman space of the worm domain Wµ and its truncated
versionW ′

µ. We determine some orthogonal systems and show that
they are not complete, while showing that the union of two partic-
ular such systems is complete.

In order to prove our completeness result we introduce the
Müntz–Szász problem for the 1-dimensional Bergman space of the
disk
{ζ : |ζ − 1| < 1} and find a sufficient condition for its solution.

Introduction

The Diederich–Fornaess worm domain was introduced in [9] and is defined
for a given µ > 0 as

(1) Wµ =
{

(z1, z2) ∈ C2 :
∣∣z1 − ei log |z2|2

∣∣2 < 1− ϕ
(

log |z2|2
)}
,

where ϕ : [−A,A]→ [0, 1] is a smooth, convex, even function that vanishes
identically in [−µ, µ], with A > µ, ϕ(A) = 1, and increasing on [µ,A]. As a
result, Wµ is smooth, pseudoconvex and strictly pseudoconvex at all points
(z1, z2) ∈ ∂Wµ with z1 6= 0. See [6] for a thorough discussion of basic prop-
erties of the worm. The worm turned out to be of fundamental importance
in the theory of geometric analysis in several complex variables, see [15], [1],
[2], [7], [8], [16, 17], [18], [19, 20] and references therein.
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‡The third author supported by the same PRIN grant; by the FIRB grant Differ-
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For computational purposes, Wµ is often truncated to the non-smooth
bounded domain

(2) W ′µ =
{

(z1, z2) ∈ C2 :
∣∣z1 − ei log |z2|2

∣∣2 < 1,
∣∣ log |z2|2

∣∣ < µ
}
,

that is, one replaces the function ϕ with the characteristic function of the
complement of the interval [−µ, µ].

In the discussion that follows, we let Ω denote either domainWµ orW ′µ.
In this study we are concerned with the question of finding orthogonal

and complete sets in A2(Ω). For details about the notions of orthogonality
and completeness in a Hilbert space, see Section 1. As is well known, when
µ ≥ π, Ω has non-trivial Nebenhülle. Here the Nebenhülle is understood to be
the interior of the connected component that contains Ω of the intersection
of all domains of holomorphy containing Ω. We first show that this easily
implies that the closure in A2(Ω) of the holomorphic polynomials is a proper
subset of A2(Ω).

Thus we are led to consider sets of suitable “monomials” in Ω that can
be defined as the holomorphic continuation of non-integral powers zη1 , when
z = (z1, z2) is initially restricted to ∆× {z2 : |z2| = 1}, where we denote by
∆ the disk {ζ ∈ C : |ζ − 1| < 1}.

We determine some orthogonal sets

{H2k,j , k, j ∈ Z, k ≥ 0}, and {H2k+1,j , j ∈ Z, k ≥ 0}

(see Corollary 1.5), and show that their union determines a complete set
in A2(W ′µ) when µ > 0 (Theorem 3.1). We also show that each of the two
systems, however, is not complete (Proposition 3.2).

In order to prove our completeness result, Theorem 3.1, we prove a result
of independent interest, Theorem 2.1. We naturally use the name the Müntz–
Szász problem for the Bergman space for the question of characterizing the
sequences {λj} in the right half-plane for which the sets of powers {ζλj−1}
form a complete set in A2(∆).

The classical Müntz–Szász theorem deals with the completeness of sets
of powers {tλj−

1

2 } in L2
(
[0, 1]

)
, where again λj is in the right half plane. The

solution was provided by C. Müntz [21] and by O. Szász [25] in two separate
papers, where they showed that the set {tλj−

1

2 } is complete L2
(
[0, 1]

)
if

and only if
∑+∞

j=1(1 + |λj |2)−1 Reλj =∞ (see also [22] or [24] for a more
accessible reference).

We find a sufficient condition for the solution of the Müntz–Szász prob-
lem for the Bergman space A2(∆) and use it to prove our completeness
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result for A2(W ′µ). The Müntz–Szász problem for the Bergman space has
been further studied in [23].

Finally we show that the complete set {Hk,j , k, j ∈ Z, k ≥ 0}, is not a
Schauder basis (Theorem 3.3). The definition of Schauder basis is recalled
in Section 1.

1. Orthogonal sets in A2(W ′
µ)

Let µ > 0 and consider the domain W ′µ. The problem we address here is to
find a possibly complete orthonormal system for A2(W ′µ) and consequentely
have a way to obtain an expression for the Bergman kernel.

For the reader’s convenience, let us recall a few definitions, for which we
refer to [27]. A sequence of vectors {vn}n in a Banach space V is

• a Schauder basis if for each w ∈ V there exists a unique scalar sequence
{cn}n such that

∑
n cnvn converges to w with respect to the norm

topology.

Now suppose V to be a separable Hilbert space. A sequence {vn}n in V is

• an orthogonal system if 〈vm, vn〉 = 0 whenever m 6= n;

• an orthonormal system if it is orthogonal and ‖vn‖ = 1 for all n;

• a complete system if 0 is the only vector in V that is orthogonal to vn
for all n; or, equivalently, if the linear span of {vn}n is dense in V .

A complete orthonormal system is automatically a Schauder basis and it is
called an orthornormal basis. On the other hand, a sequence in V that is
not orthogonal may be complete without being a Schauder basis; in other
words, the aforementioned sequences {cn}n may exist for all w ∈ V without
being unique.

In the analysis on the worm domainsWµ andW ′µ a special role is played
by the functions

(3) Eη(z) = eηL(z) ,

where

(4) L(z) = log
(
z1e
−i log |z2|2)+ i log |z2|2 ,



i
i

“11-Peloso” — 2019/6/5 — 11:34 — page 234 — #4 i
i

i
i

i
i

234 S. G. Krantz, M. M. Peloso, and C. Stoppato

and log denotes the principal branch of the logarithm, so that

Eη(z1, z2) =
(
z1e
−i log |z2|2)ηeiη log |z2|2 .

The function L is well defined and holomorphic in a domain contain-
ing ∪µW ′µ (see [18], Lemma 1.2 and Proposition 1.3). Moreover, we point
out that the fiber of W ′µ over each z1 ∈ D(0, 2) \ {0} is not connected and
that L(z) is locally constant in z2, but not constant. The same happens with
Eη(z) for η ∈ C \ Z, while Ek(z) = zk1 for all k ∈ Z, z ∈ W ′µ. Hence the func-
tions Eη are the analytic continuation to W ′µ of the monomial zη1 defined in
W ′π/2 using the principal branch of the logarithm.

It is well known that the functions that are holomorphic in a neighbor-
hood of the closure Wµ are not dense in A2(Wµ). Since a proof of this fact
does not explicitly appear in the literature, we prove the following result
that applies to both domains Wµ and W ′µ.

Proposition 1.1. Let µ ≥ 2π and let A2(Wµ) denote the closure in A2(Wµ)
of the functions that are holomorphic in a neighborhood of Wµ. Then, if

f ∈ A2(Wµ), then f is holomorphic on Ŵµ, where

(5) Ŵµ ⊇
⋃

−µ≤a≤µ−2π

{
(z1, z2) : a < log |z2|2 < a+ 2π, |z1 − eia| < 1

}
.

Therefore A2(Wµ) $ A2(Wµ).
The same conclusions hold true with W ′µ in place of Wµ.

In particular, the polynomials are not dense in either A2(Wµ) or A2(W ′µ).
By contrast, D. Catlin [5] showed that, for every smoothly bounded pseudo-
convex domain Ω, the holomorphic functions in C∞(Ω) are dense in A2(Ω).

Proof. It suffices to prove the result in the case of W ′µ, since the same argu-
ment can be repeated verbatim for Wµ.

Suppose f is holomorphic in a neighborhood of W ′µ and let

Ea =
{

(0, z2) : a ≤ log |z2|2 ≤ a+ 2π
}⋃{

(z1, z2) : log |z2|2 = a or a+ 2π, |z1 − eia| ≤ 1
}
.

Set

Fa(z1, z2) =
1

2πi

∫
γ

f(z1, ζ)

ζ − z2
dζ ,
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where γ is the oriented boundary of the annulus {z2 ∈ C : a < log |z2|2 <
a+ 2π}. Then Fa is holomorphic on the set

Ẽa =
{

(z1, z2) : a < log |z2|2 < a+ 2π, |z1 − eia| < 1
}
.

However, Fa(0, z2) = f(0, z2), since f is holomorphic in a neighborhood of
{(0, z2) :

∣∣ log |z2|2
∣∣ ≤ µ} and−µ ≤ a ≤ µ− 2π implies a+ 2π ≤ µ. It follows

that Fa is a holomorphic extension of f to the set Ẽa and thus f extends
holomorphically to an open set Ŵ ′µ containing the right-hand side of (5).

Now suppose that {fn} are holomorphic in a a neighborhood of W ′µ
and that fn → f in A2(W ′µ). Then fn → f uniformly on the compact sets
{log |z2|2 = a, a+ 2π; |z1 − eia| ≤ 1− δ}, for−µ < a < µ− 2π. By Cauchy’s
formula, {fn} is Cauchy in uniform norm also on the sets

{
a ≤ log |z2|2 ≤ a+ 2π, |z1 − eia| ≤ 1− δ

}
.

Therefore f extends holomorphically to the set on the right-hand side of (5).
Finally, the functions Eη with η not an integer cannot be extended holo-

morphically to any of the sets Ẽa, so that A2(W ′µ) $ A2(W ′µ).
It is immediate to check that the arguments above apply to the case of

Wµ as well. �

Thus, we are led to consider the set of “monomials” of the form
{Eηj (z)z

j
2}j∈Z and ask whether these are orthogonal, and/or complete, for

some choice of values ηj ∈ C.

We denote by dA the Lebesgue measure in the complex plane.

Lemma 1.2. Let Reα,Reβ > −1. Then

∫
∆
ζαζβ dA(ζ) = π

Γ(α+ β + 2)

Γ(α+ 2)Γ(β + 2)
.

In particular, ζα and ζβ are never orthogonal to each other in A2(∆).
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Proof. We have∫
∆
ζαζβ dA(ζ) =

∫ 2

0

∫ cos−1(r/2)

− cos−1(r/2)

(
reiθ

)α(
re−iθ

)β
dθ r dr

=

∫ 2

0
rα+β+1

∫ cos−1(r/2)

− cos−1(r/2)
eiθ(α−β) dθdr

=
2

i(α− β)

∫ 2

0
rα+β+1 sinh

(
cos−1(r/2)i(α− β)

)
dr

=
4

i(α− β)

∫ π/2

0

(
2 cos s

)α+β+1
sin s sinh

(
is(α− β)

)
ds

=
2α+β+3

α+ β + 2

∫ π/2

0

(
cos s

)α+β+2
cosh

(
is(α− β)

)
ds

=
2α+β+3

α+ β + 2

∫ π/2

0

(
cos s

)α+β+2
cos
(
s(α− β)

)
ds .

Now we use [14, (9) p. 391] and, denoting by B the beta function, we
obtain that∫

∆
ζαζβ dA(ζ) =

π

(α+ β + 2)(α+ β + 3)
· 1

B(α+ 2, β + 2)

= π
Γ(α+ β + 2)

Γ(α+ 2)Γ(β + 2)
,

as we wished to prove. �

For a given bounded domain Ω in C2 that is rotationally invariant1 in
the second variable z2, such as Wµ and W ′µ, using the Fourier expansion in
z2, the Bergman space A2(Ω) decomposes as an orthogonal sum

(6) A2(Ω) =
⊕
j∈Z
Hj .

Here

Hj =
{
F ∈ A2(Ω) : F (z1, z2) = f(z1, |z2|)zj2

}
,

where f is holomorphic in z1 and locally constant in |z2|. The orthogonal
projection of A2 onto Hj is given by

QjF (z1, z2) =
1

2π

∫ π

−π
F (z1, e

itz2)e−ijt dt .

1These are called Hartogs domains.
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Then we set

f(z1, |z2|) =
QjF (z1, z2)

zj2
,

and observe that the right-hand side is holomorphic in Ω, but depends only
on the modulus of z2. Hence f is locally constant in |z2|. In general, it will
be constant only if the fiber over a point (z1, z2) in Ω with z1 fixed, is a
connected set in the z2-plane.

Let us go back to the case of W ′µ and let F,G ∈ Hj ,

F (z1, z2) = f(z1, |z2|)zj2 and G(z1, z2) = g(z1, |z2|)zj2.

We have

〈F, G〉A2(W ′µ)(7)

=

∫
| log |z2|2|<µ

∫
|z1−ei log |z2|2 |<1

f(z1, |z2|)g(z1, |z2|)|z2|2j dA(z1)dA(z2)

= 2π

∫
| log r2|<µ

∫
|z1−ei log r2 |<1

f(z1, r)g(z1, r) dA(z1) r2j+1dr

= π

∫
|s|<µ

∫
|z1−eis|<1

f(z1, e
s/2)g(z1, es/2) dA(z1) es(j+1)ds

= π

∫
∆

∫
|s|<µ

f(ζeis, es/2)g(ζeis, es/2) es(j+1)ds dA(ζ) .

Let

(8) ν = π/2µ .

be the reciprocal of the winding number of W ′µ, as also defined in [1] and
let h be the entire function

h(z) =
sinh[µ(j + 1 + iz)]

j + 1 + iz
.

Define

(9) γαβ = h(α− β) .

Proposition 1.3. Let µ>0. For α∈C and j∈Z let Fα,j(z1, z2)=Eα(z)zj2.
Then Fα,j ∈ A2(W ′µ) if and only if Reα > −1. Moreover, if Reα,Reβ > −1,
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then

〈Fα,j , Fβ,j〉A2(W ′µ) = (2π)2γαβ
Γ(α+ β + 2)

Γ(α+ 2)Γ(β + 2)
.

In particular, 〈Fα,j , Fβ,j〉A2(W ′µ) = 0 if and only if

(10) α− β = 2kν + i(j + 1) with k ∈ Z \ {0} .

Proof. We compute 〈Fα,j , Fβ,j〉A2(W ′µ). Starting from (7) we obtain

〈Fα,j , Fβ,j〉A2(W ′µ)(11)

= π

∫
∆

∫
|s|<µ

Eα(ζeis, es/2)Eβ(ζeis, es/2) es(j+1)ds dA(ζ)

= π

∫
∆
ζαζβ

∫
|s|<µ

eis(α−β) es(j+1)ds dA(ζ)

= 2πγαβ

∫
∆
ζαζβ dA(ζ) ,

where

γαβ := 1
2

∫
|s|<µ

es(j+1+i(α−β)) ds

=

{
sinh(µ(j+1+i(α−β)))

j+1+i(α−β)
if j + 1 + i(α− β) 6= 0

µ if j + 1 + i(α− β) = 0 ,

as claimed.
Therefore, γαβ = 0 if and only if

µ(j + 1 + i(α− β)) = kπi for k ∈ Z \ {0} ,

that is,

(12) α− β = 2kν + i(j + 1) for k ∈ Z \ {0} .

Notice that, when α = β, the previous computation gives

‖Eα(z)zj2‖
2
A2(W ′µ) = 2πγα,α

∫
∆
|ζα|2 dA(ζ)

= 2πγα,α

∫
|ζ|<1

e2[Reα log |ζ−1|−Imα arg(ζ−1)] dA(ζ)

= 2πγα,α

∫
|ζ|<1

|ζ − 1|2 Reαe−2 Imα arg(ζ−1) dA(ζ) ,
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which is finite if and only if Reα > −1. This proves the first part of the
statement. The second part now follows from Lemma 1.2. �

The following corollaries now follow at once.

Corollary 1.4. Then, for Reα > −1, we have that Fα,j ∈ A2(W ′µ) and

‖Fα,j‖2A2(W ′µ) = (2π)2 sinh[µ(j + 1− 2 Imα)]

j + 1− 2 Imα

Γ(2 + 2 Reα)

|Γ(2 + α)|2
.

For c0 > −1, and ` = 0, 1, 2, . . . we set

(13) H`,j(z1, z2) = Ec0+ν`+i(j+1)/2(z)zj2 .

Corollary 1.5. For µ > 0, each of the two sets

(14)

{
H2k,j , j ∈ Z, k = 0, 1, 2, . . .

}
, and{

H2k+1,j , j ∈ Z, k = 0, 1, 2, . . .
}
,

is an orthogonal system in A2(W ′µ).

2. The Müntz–Szász problem for the Bergman space

In endeavoring to establish whether the system {H`,j} is complete we are
led to consider the Müntz–Szász problem for the Bergman space.

Recall that we set ∆ = {ζ : |ζ − 1| < 1}. We consider a set of functions
{ζλk}, k = 1, 2, . . . and would like to find a necessary and sufficient condition
for this set to be a complete set in A2(∆), that is, its linear span to be dense
in A2(∆).

Theorem 2.1. Let S be the subset of A2(∆) whose elements are the func-
tions ζλk for k = 0, 1, 2, . . . , where λk = ak + c0 + ib, 0 < a < 1, c0 > −1
and b ∈ R. Then S is a complete set in A2(∆).

Proof. Consider the biholomorphic map C : U → ∆ given by

C(ω) =
2i

i+ ω

of the upper half plane U onto ∆. Then

T : A2(∆) 3 f 7→ (f ◦ C)C ′ ∈ A2(U)
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is a surjective isometry. Next, by the Paley–Wiener theorem, the Fourier
transform F , given by

(Fg)(ξ) =
1

2π

∫ +∞

−∞
g(t)e−iξt dt ,

provides a surjective isometry of A2(U) onto L2
(
(0,+∞), dξ/ξ

)
, see e.g. [3].

Therefore, {ζλk} will be complete in A2(∆) if and only if
{
F
(
Tζλk

)}
is

complete in L2
(
(0,+∞), dξ/ξ

)
.

Now,

T (ζλ)(ω) = − (2i)λ+1

(i+ ω)λ+2
,

while

F
(

(u+ i)−(λ+2)
)

(ξ) =
1

2π

∫ +∞

−∞

1

(u+ i)λ+2
e−iξu du

=
1

iλ+2Γ(λ+ 2)
ξλ+1e−ξχ(0,+∞)(ξ) ,

(see also [11], Lemma 1).
Therefore

F
(
T (ζλ)

)
(ξ) = −(2ξ)λ+1e−ξ

iΓ(λ+ 2)
χ(0,+∞)(ξ) .

Hence the set {ζλk} is complete in A2(∆) if and only if the set {ξλk+1e−ξ}
is complete in L2

(
(0,+∞), dξ/ξ

)
, that is, the set {ξλk+ 1

2 e−ξ/2} is complete
in L2

(
(0,+∞)

)
.

Next, we consider the transformation ξ 7→ ξa = t of (0,+∞) onto itself
and the induced isometry Λ of L2

(
(0,+∞)

)
onto itself given by

(Λψ)(t) =
√

1
aψ(t1/a)

(
t

1

2
( 1

a
−1)
)
.

Under such a transformation, since λk = ak + c0 + ib, we see that
{ξλk+ 1

2 e−ξ/2} is complete in L2
(
(0,+∞)

)
if and only if {tktαe−

1

2
t1/a} is com-

plete in L2
(
(0,+∞)

)
, where

α =
c0 + 1

a
− 1

2
+ i

b

2a
.

We know from [26, Thm. 5.7.1] that the system

{tn+ce−t/2 : n = 0, 1, 2, . . . },
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with c > −1/2, is complete in L2
(
(0,+∞)

)
. Thus, if ψ ∈ L2

(
(0,+∞)

)
is

orthogonal to tktαe−
1

2
t1/a for all k = 0, 1, 2, . . . it follows that∫ +∞

0
tk+Reαe−t/2t−i Imαe

1

2
(t−t1/a)ψ(t) dt = 0

for k = 0, 1, 2, . . . . Since 0 < a < 1, e
1

2
(t−t1/a) is bounded and also Reα > −1

2 ,

we obtain that t−i Imαe
1

2
(t−t1/a)ψ = 0, that is, ψ = 0. This concludes the

proof. �

3. Complete sets in A2(W ′
µ)

From our Müntz–Szász Theorem 2.1 for the Bergman spaceA2(∆), we obtain
the following density result in A2(W ′µ).

Theorem 3.1. Let µ > π/2. Let H`,j(z1, z2) be as in (13). Then
{H`,j}`,j∈Z, `≥0, is a complete set in A2(W ′µ).

Notice that the set {H`,j}, `, j ∈ Z, ` ≥ 0, is the union of the two sets in
(14).

Proof. We wish to show that if F ∈ A2(W ′µ) is orthogonal to H`,j , for `, j ∈
Z, ` ≥ 0, then F is identically zero. It suffices to show that, for each j ∈ Z
fixed, any function F ∈ Hj orthogonal to H`,j for all ` ≥ 0, is identically
zero.

Writing F (z1, z2) = f(z1, |z2|)zj2, from (11) we then have

0 = 〈F, H`,j〉A2(W ′µ)(15)

= π

∫
∆

∫
|s|<µ

f(ζeis, es/2)Ec0+ν`+i(j+1)/2(ζeis, es/2) es(j+1)ds dA(ζ)

= π

∫
∆

∫
|s|<µ

f(ζeis, es/2) es[(j+1)/2+i(c0+ν`)] ds ζc0+ν`+i(j+1)/2dA(ζ) ,

for ` = 0, 1, . . . . Notice that the function

Tf(ζ, w) =

∫
|s|<µ

f(ζeis, es/2)es[(j+1)/2+ic0] eiw ds(16)

= F
(
f(ζeis, es/2)es[(j+1)/2+ic0]χ{|s|<µ}

)
(w)
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is analytic in ζ ∈ ∆, and by the Paley–Wiener theorem [22], is an entire
function in w of exponential type at most µ. Moreover, the function

w 7→ π

∫
∆
Tf(ζ, w)ζc0+ν`+i(j+1)/2dA(ζ)

is again an entire function of exponential type at most µ and by (15) it
vanishes at the points w` = ν`. Observe that

(17) lim sup
r→+∞

exp{2
∑

ν`<r 1/(ν`)}
r2µ/π

=
(1

ν

) 2

ν

lim
r→+∞

r1/ν = +∞ .

By a classical result of Fuchs [13], we know that an entire function of type
µ whose zero set {w` = ν`} satisfies (17) must vanish identically, that is,∫

∆
Tf(ζ, w)ζc0+ν`+i(j+1)/2dA(ζ) = 0 ,

for ` = 0, 1, . . . . Since µ > π/2 we have ν < 1 and by Theorem 2.1 it now
follows that Tf(·, w) = 0, hence,

(18)

∫
|s|<µ

f(ζeis, es/2) es[(j+1)/2+ic0]eisw ds = 0 ,

for all ζ ∈ ∆ and w ∈ C. This implies that f vanishes identically and we are
done. �

Notice that, had we considered either of the orthogonal systems men-
tioned in Corollary 1.5, we would have ended up with the points {w2`} only,
or with {w2`+1}. The analog of Condition (17) would not have been satisfied
and we could not have proved completeness using this approach. In fact, we
are going to show in the next proposition that each of the two systems is
incomplete.

It is also worth mentioning that the worm domains W ′µ are increasingly
badly behaved as µ becomes large. On the other hand, the proof of our
density result breaks down when µ ≤ π/2. This is somewhat surprising, since
when µ ≤ π/2 the fibers over z1 are connected, the geometry of the domain
is much simpler and in principle it should be easier to obtain such results
on W ′µ when µ ≤ π/2.
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Proposition 3.2. Let {H`,j}`,j∈Z, `≥0 be as in Theorem 3.1. Then, for each
m fixed,

(19) ‖H2m+1,j‖2A2(W ′µ) >

+∞∑
j′=−∞

+∞∑
k=0

1

‖H2k,j′‖2A2(W ′µ)

∣∣〈H2m+1,j , H2k,j′
〉∣∣2 ,

and, analogously, for each k fixed,

‖H2k,j‖2A2(W ′µ) >

+∞∑
j′=−∞

+∞∑
m=0

1

‖H2m+1,j′‖2A2(W ′µ)

∣∣〈H2k,j , H2m+1,j′
〉∣∣2 .

Hence, neither system {H2k,j} nor {H2m+1,j} is complete in A2(W ′µ).

Proof. By orthogonality, it suffices to consider the case j′ = j and, dropping
the index j, we write Fk = H2k,j and Gm = H2m+1,j . By Proposition 1.3 we
have that

〈Gm, Fk〉A2(W ′µ) = (2π)2 sin
[
µ
(
2k − (2m+ 1)

)
ν
](

2k − (2m+ 1)
)
ν

×
Γ
(
2c0 + 2 +

(
2(k +m) + 1

)
ν
)

Γ
(
c0 + 2 + 2kν + i j+1

2

)
Γ
(
c0 + 2 + (2m+ 1)ν − i j+1

2

) ,
‖Fk‖2A2(W ′µ) = (2π)2µ

Γ
(
2c0 + 2 + 4kν

)∣∣Γ(c0 + 2 + 2kν + i j+1
2

)∣∣2 ,
‖Gm‖2A2(W ′µ) = (2π)2µ

Γ
(
2c0 + 2 + 2(2m+ 1)ν

)∣∣Γ(c0 + 2 + (2m+ 1)ν − i j+1
2

)∣∣2 .
Therefore, (19) is equivalent to

µΓ
(
2c0 + 2 + 2(2m+ 1)ν

)
(20)

>

+∞∑
k=0

[
sin
[
µ
(
2k − (2m+ 1)

)
ν
](

2k − (2m+ 1)
)
ν

]2 Γ
(
2c0 + 2 +

(
2(k +m) + 1

)
ν
)2

µΓ
(
2c0 + 2 + 4kν

) ,



i
i

“11-Peloso” — 2019/6/5 — 11:34 — page 244 — #14 i
i

i
i

i
i

244 S. G. Krantz, M. M. Peloso, and C. Stoppato

which in turn is implied by

1 >

+∞∑
k=0

1[
µ
(
2k − (2m+ 1)

)
ν
]2 Γ

(
2c0 + 2 +

(
2(k +m) + 1

)
ν
)2

Γ
(
2c0 + 2 + 2(2m+ 1)ν

)
Γ
(
2c0 + 2 + 4kν

)
(21)

=

+∞∑
k=0

1

π2
(
k − 2m+1

2

)2 Γ
(
2c0 + 2 +

(
2(k +m) + 1

)
ν
)2

Γ
(
2c0 + 2 + 2(2m+ 1)ν

)
Γ
(
2c0 + 2 + 4kν

) .
Now, on the one hand the right-hand side in (21) is less than or equal to

+∞∑
k=0

1

π2
(
k − 2m+1

2

)2 ,
since for all x, y > 0, c ≥ 0,

Γ(c+ x+ y)2 =

(∫ +∞

0
tx+y+c−1e−tdt

)2

≤
(∫ +∞

0
t2x+c−1e−tdt

)(∫ +∞

0
t2y+c−1e−tdt

)
= Γ(c+ 2x)Γ(c+ 2y) .

On the other hand, we claim that

π2 >

+∞∑
k=0

1(
k − 2m+1

2

)2 .
Indeed, setting h(w) = π cot(πw) and Q(w) =

(
w − 2m+1

2

)2
, we have

Res

(
h

Q
, k

)
=

1

Q(k)
=

1(
k − 2m+1

2

)2
for all k ∈ Z and

Res

(
h

Q
,
2m+ 1

2

)
= lim

w→ 2m+1

2

π

sin(πw)

cos(πw)

w − 2m+1
2

= −π2.
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The fact that

0 = lim
n→+∞

∫
∂D(0,n+ 1

2
)

h(w)

Q(w)
dw

= 2πi lim
n→+∞

[
Res

(
h

Q
,
2m+ 1

2

)
+

n∑
k=−n

Res

(
h

Q
, k

)]

implies that

π2 =

+∞∑
k=−∞

1(
k − 2m+1

2

)2 > +∞∑
k=0

1(
k − 2m+1

2

)2 ,
as claimed. This concludes the proof. �

Finally, we show that the complete system of Theorem 3.1 is not a
Schauder basis for A2(W ′µ), for all µ ≥ π/2. For the definition of Schauder
basis, see Section 1.

Theorem 3.3. Let µ ≥ π/2, and let H`,j(z1, z2) = Ec0+ν`+i(j+1)/2(z1, z2)zj2,
`, j ∈ Z, ` ≥ 0. For each j ∈ Z fixed, the function H0,j is in the A2(W ′µ)-
closure of span{H`,j , ` = 1, 2, . . . }. In particular, this violates the uniqueness
requirement in the definition of Schauder basis.

Proof. We first assume that µ > π/2.
Let Q = Qn be a polynomial of degree n of one complex variable, without

constant term, Q(w) =
∑n

`=1 c`w
`. Then, arguing as in (7) we have

‖H0,j −
n∑
`=1

c`H`,j‖2A2(W ′µ)(22)

= π

∫
|s|<µ

∫
∆

∣∣ζc0+i(j+1)/2eis(c0+i(j+1)/2)

−
n∑
`=1

c`ζ
c0+ν`+i(j+1)/2eis(c0+i(j+1)/2+ν`)

∣∣2 dA(ζ) es(j+1)ds

= π

∫
|s|<µ

∫
∆

∣∣ζc0+i(j+1)/2
∣∣2 ∣∣∣∣∣1−

n∑
`=1

c`ζ
ν`eisν`

∣∣∣∣∣
2

dA(ζ) ds
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≤ C
∫
|s|<µ

∫
∆

∣∣∣∣∣1−
n∑
`=1

c`(ζ
νeisν)`

∣∣∣∣∣
2

dA(ζ) ds

= C
1

ν2

∫
|s|<µ

∫
Ωs

∣∣∣∣∣1−
n∑
`=1

c`w
`

∣∣∣∣∣
2 ∣∣w 1

ν
−1
∣∣2 dA(w) ds ,

where we have set w = ζνeisν . Since µ > π/2, ν < 1− 2δ for some δ > 0, so
that −π

2 < νs < π
2 and 0 < ν π2 <

π
2 (1− 2δ). Hence,

Ωs ⊆
{
w = ρeit : 0 < ρ < 2ν , ν

(
s− π

2

)
< t < ν

(
s+ π

2

)}
⊆
{
w = ρeit : 0 < ρ < 2ν , |t| < π(1− δ)

}
=: S .

Plugging this into (22) we obtain that

‖H0,j −
n∑
`=1

c`H`,j‖2A2(W ′µ) ≤ C
∫
|s|<µ

∫
S

∣∣1−Qn(w)
∣∣2|w|2( 1

ν
−1) dA(w) ds

= C

∫
S

∣∣1−Qn(w)
∣∣2|w|2( 1

ν
−1) dA(w) .

Setting dω(w) = |w|2( 1

ν
−1)dA(w), the conclusion will follow if we show

that there exist polynomials Pn = 1−Qn such that Pn(0) = 1 and
‖Pn‖A2(S,dω) → 0 as n→ +∞.

In order to prove that such polynomials exist, let ∆+ be the half disk {z ∈
C : |z| < 1, Re z > 0} and p(z) = (z − 1

2)2 + 3
4 . Then p(0) = 1, and |p(z)| ≤

1 for z ∈ ∆+, as it is elementary to check. Therefore,

F (w) = p((2−νw)1/[2(1−δ)])

is a function holomorphic on S such that

• F is continuous on S;

• F (0) = 1;

• |F (w)| ≤ 1 on S.

Observe that ω(S) < +∞. Given ε > 0, let K be a compact subset of S
such that ω(S \K) < ε and let n be a positive integer such that |Fn(w)| ≤ ε
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for w ∈ K. Then ∫
S
|Fn(w)|2 dω(w) ≤ Cε .

By Mergelyan’s approximation theorem (see [24] e.g.), we can find polynomi-
als pn such that |Fn(w)− pn(w)| ≤ ε for w ∈ S. Finally, we set Pn = 1

pn(0)pn
and the conclusion follows easily.

Finally, let µ = π/2, so that ν = 1. Set D = ∪|s|<π/2{z1 : |z1 − eis| < 1}.
We have, ∥∥∥∥∥H0,j −

n∑
`=1

c`H`,j

∥∥∥∥∥
2

A2(W ′µ)

(23)

= π

∫
|s|<µ

∫
|z1−eis|<1

∣∣∣z2c0+i(j+1)
1

∣∣∣ ∣∣∣∣∣1−
n∑
`=1

c`z
`
1

∣∣∣∣∣
2

dA(z1) es(j+1) ds

≤ C
∫
D

∣∣∣∣∣1−
n∑
`=1

c`z
`
1

∣∣∣∣∣
2

dA(z1) .

We observe that D is a Jordan domain, having the origin as a boundary
point. By [12] we know that the polynomials are dense in A2(D) and by
[4] it follows that there exists no bounded boundary evaluation point on
the space of polynomials. Hence, the right hand side of (23) can by made
arbitrarily small and the conclusion now follows. We leave the simple details
to the reader. �

Remark 3.4. It follows from Theorems 3.1 and 3.3 that the set

{H`,j}`,j∈Z, `≥0

is complete, but not a Schauder basis. It would be of interest to show that
the set {H`,j}`,j∈Z, `≥0 is however a frame for A2(W ′), that is, there exist
constants c1, c2 > 0 such that

c1‖f‖2A2(W ′) ≤
∑

`,j∈Z, `≥0

∣∣〈f,H`,j〉A2(W ′)
∣∣2 ≤ c2‖f‖2A2(W ′) .

Indeed, the theory of frames in Hilbert function spaces constitute a funda-
mental tool, especially in sampling and reconstruction of functions — see
[10] where frames were introduced in the context of nonharmonic Fourier se-
ries, and [27] for applications of the theory of frames to the present setting.
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We also recall that, in a separable Hilbert space, a frame that is also a basis
is called a Riesz basis. Hence, in particular, the complete set {H`,j}`,j∈Z, `≥0

of Theorem 3.1 is not a Riesz basis either.

Concluding remarks

Thanks to work of several authors, the worm domain has become an im-
portant object of study. In particular, we are beginning to understand the
Bergman kernel and projection on some versions of the worm. But the orig-
inal smooth worm Wµ is particularly resistive to analysis. It does not have
the built-in symmetries of some of the non-smooth worms. In particular, we
do not have a useful complete orthogonal basis for the Bergman space on
Wµ. In addition to the alternative approach mentioned in [18, §5], this paper
has offered some first steps towards addressing that problem.

As an additional remark, we point out that the results obtained in this
work can be generalized to the case of worm domains in Cn defined and
studied in [2].
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[26] G. Szegő, Orthogonal Polynomials, American Mathematical Society,
Providence, RI, fourth edition (1975), American Mathematical Society,
Colloquium Publications, Vol. XXIII.

[27] R. M. Young, An Introduction to Nonharmonic Fourier Series, Aca-
demic Press, Inc., San Diego, CA, first edition (2001), ISBN 0-12-

772955-0.



i
i

“11-Peloso” — 2019/6/5 — 11:34 — page 251 — #21 i
i

i
i

i
i

Completeness in Bergman spaces 251

Department of Mathematics, Washington University in St. Louis

St. Louis, Missouri 63130, USA

E-mail address: sk@math.wustl.edu

Dipartimento di Matematica “F. Enriques”
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Unità di Ricerca di Firenze c/o DiMaI “U. Dini” Università di Firenze
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